TW201727937A - Light-emitting diode device - Google Patents

Light-emitting diode device Download PDF

Info

Publication number
TW201727937A
TW201727937A TW105108147A TW105108147A TW201727937A TW 201727937 A TW201727937 A TW 201727937A TW 105108147 A TW105108147 A TW 105108147A TW 105108147 A TW105108147 A TW 105108147A TW 201727937 A TW201727937 A TW 201727937A
Authority
TW
Taiwan
Prior art keywords
layer
type semiconductor
electrode
semiconductor layer
emitting diode
Prior art date
Application number
TW105108147A
Other languages
Chinese (zh)
Other versions
TWI620343B (en
Inventor
潘錫明
Original Assignee
宏齊科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏齊科技股份有限公司 filed Critical 宏齊科技股份有限公司
Publication of TW201727937A publication Critical patent/TW201727937A/en
Application granted granted Critical
Publication of TWI620343B publication Critical patent/TWI620343B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body

Abstract

A light-emitting diode device includes a substrate, an epitaxial layer, a transparent conductive layer, a reflective insulating layer, a first electrode, and a second electrode. The epitaxial layer includes a first type semiconductor layer disposed on the substrate and a second type semiconductor layer disposed on a surface of a partial area of the first type semiconductor layer. The first electrode is disposed on a surface of another partial area of the first type semiconductor layer. The second electrode is disposed on a surface of a partial area of the second type semiconductor layer. The reflective insulating layer covers a surface of the epitaxial layer. The transparent conductive layer is disposed between the second type semiconductor layer and the reflective insulating layer.

Description

發光二極體元件 Light-emitting diode component

本發明關於半導體技術領域,特別係關於一種發光二極體元件。 The present invention relates to the field of semiconductor technology, and in particular to a light emitting diode element.

發光二極體(Light-Emitting Diode,LED)是一種能將電能轉化為光能的半導體電子元件。隨著技術的不斷進步,由於發光二極體具有低功耗、低熱、啟動無延時、高亮度等特點,因此被廣泛應用於顯示器、電視機採光裝飾和照明等領域。 A Light-Emitting Diode (LED) is a semiconductor electronic component that converts electrical energy into light energy. With the continuous advancement of technology, the light-emitting diode has been widely used in the fields of display, television lighting decoration and lighting because of its low power consumption, low heat, no delay, and high brightness.

但是,目前的發光二極體元件,尤其倒裝發光二極體元件的結構通常較複雜,相應的製造工藝也會比較繁瑣,導致生產良率不高。 However, the current structure of the LED component, especially the flip-chip LED component, is usually complicated, and the corresponding manufacturing process is cumbersome, resulting in low production yield.

本發明提供一種發光二極體元件,用於解決現有的發光二極體元件的結構和工藝流程過於複雜和繁瑣的問題。 The invention provides a light-emitting diode component for solving the problem that the structure and process flow of the existing light-emitting diode component are too complicated and cumbersome.

本發明提供一種發光二極體元件,包含基板、磊晶層、透明導電層、絕緣反射層以及第一電極和第二電極。磊晶層包含位於基板上的第一型半導體層和位於第一型半導體 層的部分區域表面上的第二型半導體層。第一電極位於第一型半導體層的另一部分區域表面上。第二電極位於第二型半導體層的部分區域表面上。絕緣反射層覆蓋磊晶層的表面。透明導電層位於第二型半導體層和絕緣反射層之間。 The invention provides a light emitting diode element comprising a substrate, an epitaxial layer, a transparent conductive layer, an insulating reflective layer, and first and second electrodes. The epitaxial layer includes a first type semiconductor layer on the substrate and a first type semiconductor A second type semiconductor layer on the surface of a partial region of the layer. The first electrode is located on a surface of another partial region of the first type semiconductor layer. The second electrode is located on a surface of a partial region of the second type semiconductor layer. An insulating reflective layer covers the surface of the epitaxial layer. The transparent conductive layer is between the second type semiconductor layer and the insulating reflective layer.

本發明提供的發光二極體元件中,第一型半導體層和第二型半導體層表面呈階梯結構,第一型半導體層和第二型半導體層的表面分別設置有第一電極和第二電極,絕緣反射層覆蓋露出的磊晶層表面,透明導電層設置在第二型半導體層和絕緣反射層之間,有效簡化了發光二極體元件的結構和製備流程,提高生產良率。 In the light emitting diode device provided by the present invention, the surfaces of the first type semiconductor layer and the second type semiconductor layer have a stepped structure, and the surfaces of the first type semiconductor layer and the second type semiconductor layer are respectively provided with the first electrode and the second electrode The insulating reflective layer covers the exposed surface of the epitaxial layer, and the transparent conductive layer is disposed between the second type semiconductor layer and the insulating reflective layer, which simplifies the structure and preparation process of the light emitting diode element and improves the production yield.

11‧‧‧基板 11‧‧‧Substrate

12‧‧‧磊晶層 12‧‧‧ epitaxial layer

121‧‧‧第一型半導體層 121‧‧‧First type semiconductor layer

122‧‧‧第二型半導體層 122‧‧‧Second type semiconductor layer

13‧‧‧透明導電層 13‧‧‧Transparent conductive layer

14‧‧‧絕緣反射層 14‧‧‧Insulating reflective layer

15‧‧‧第一電極 15‧‧‧First electrode

16‧‧‧第二電極 16‧‧‧second electrode

21‧‧‧基板 21‧‧‧Substrate

22‧‧‧磊晶層 22‧‧‧ epitaxial layer

221‧‧‧N型半導體層 221‧‧‧N type semiconductor layer

222‧‧‧P型半導體層 222‧‧‧P type semiconductor layer

23‧‧‧透明導電層 23‧‧‧Transparent conductive layer

231‧‧‧透明導電單元 231‧‧‧Transparent Conductive Unit

24‧‧‧絕緣反射層 24‧‧‧Insulated reflective layer

25‧‧‧第一電極 25‧‧‧First electrode

26‧‧‧第二電極 26‧‧‧second electrode

31‧‧‧基板 31‧‧‧Substrate

32‧‧‧磊晶層 32‧‧‧ epitaxial layer

321‧‧‧N型半導體層 321‧‧‧N type semiconductor layer

322‧‧‧P型半導體層 322‧‧‧P type semiconductor layer

33‧‧‧透明導電層 33‧‧‧Transparent conductive layer

331‧‧‧開孔 331‧‧‧Opening

34‧‧‧絕緣反射層 34‧‧‧Insulated reflective layer

35‧‧‧第一電極 35‧‧‧First electrode

36‧‧‧第二電極 36‧‧‧second electrode

41‧‧‧第一金屬層 41‧‧‧First metal layer

42‧‧‧第二金屬層 42‧‧‧Second metal layer

51‧‧‧第一金屬條 51‧‧‧First metal strip

52‧‧‧第二金屬條 52‧‧‧Second metal strip

53‧‧‧第三金屬層 53‧‧‧ Third metal layer

54‧‧‧第四金屬層 54‧‧‧Fourth metal layer

第1圖為本發明實施例一提供的發光二極體元件的剖面結構示意圖。 FIG. 1 is a schematic cross-sectional view of a light emitting diode device according to Embodiment 1 of the present invention.

第2A圖為本發明實施例二提供的發光二極體元件的剖面結構示意圖。 2A is a schematic cross-sectional view of a light emitting diode device according to Embodiment 2 of the present invention.

第2B圖為本發明實施例二中透明導電層的俯視結構示意圖。 2B is a schematic top view of the transparent conductive layer in the second embodiment of the present invention.

第3A圖為本發明實施例三提供的發光二極體元件的剖面結構示意圖。 FIG. 3A is a schematic cross-sectional view of a light emitting diode device according to Embodiment 3 of the present invention.

第3B圖為本發明實施例三中透明導電層的俯視結構示意圖。 FIG. 3B is a schematic top plan view of the transparent conductive layer in the third embodiment of the present invention.

第4A圖為本發明實施例四提供的發光二極體元件的剖面結構示意圖。 4A is a schematic cross-sectional structural view of a light emitting diode device according to Embodiment 4 of the present invention.

第4B圖為第4A圖的俯視結構示意圖。 Fig. 4B is a schematic top plan view of Fig. 4A.

第5A圖為本發明實施例五提供的一種發光二極體元件的俯視結構示意圖。 FIG. 5A is a schematic top plan view of a light emitting diode element according to Embodiment 5 of the present invention.

第5B圖為本發明實施例五提供的另一種發光二極體元件的俯視結構示意圖。 FIG. 5B is a schematic top plan view of another LED component provided by Embodiment 5 of the present invention.

第5C圖為本發明實施例五提供的又一種發光二極體元件的俯視結構示意圖。 FIG. 5C is a schematic top plan view of still another light emitting diode element according to Embodiment 5 of the present invention.

為使本發明實施例的目的、技術手段和優點更加清楚,下面將結合本發明實施例中的附圖,對本發明實施例中的技術手段進行清楚、完整地描述。為了方便說明,放大或者縮小了不同層和區域的尺寸,所以圖中所示大小和比例並不一定代表實際尺寸,也不反映尺寸的比例關係。 The technical means in the embodiments of the present invention will be clearly and completely described in the following with reference to the drawings in the embodiments of the present invention. For convenience of description, the sizes of different layers and regions are enlarged or reduced, so the sizes and proportions shown in the drawings do not necessarily represent actual dimensions, nor do they reflect the proportional relationship of dimensions.

第1圖為本發明實施例一提供的發光二極體元件的剖面結構示意圖,如第1圖所示,該元件包含:基板11、磊晶層12、透明導電層13、絕緣反射層14以及第一電極15和第二電極16;其中,磊晶層12包含位於基板11上的第一型半導體層121和位於第一型半導體層121的部分區域表面上的第二型半導體層122;第一電極15位於N型半導體層121的另一部分區域表面上,第二電極16位於P型半導體層122的部分區域表面上;絕緣反射層14覆蓋磊晶層12的表面;透明導電層13位於第二型半導體層122和絕緣反射層14之間。其中,基板11具體可以為透明基板,以實現發光二極體元件的發光效果,可選地,基板11可以包含但不限於藍寶石、碳化矽(SiC)、氮化鎵(GaN)以及氮化鋁(AlN)中的任一種。磊晶層12可以為半導體元素,例如單晶矽、多晶矽或非晶結構的矽,也可以為混合的半導體結構,例如碳化矽、銻化銦、碲化鉛、砷化銦、磷化 銦、砷化鎵或銻化鎵或矽鍺(SiGe)、合金半導體或其組合。此外,磊晶層12可以為包含一種以上元素的半導體,這些元素可以為選自鎵(Ga)、銦(In)、氮(N)、鋁(Al)、鍺(Ge)、砷(As)、磷(P)以及硒(Se)的組合。本實施例在此不對其進行限制。 1 is a schematic cross-sectional view of a light emitting diode device according to Embodiment 1 of the present invention. As shown in FIG. 1 , the device includes a substrate 11 , an epitaxial layer 12 , a transparent conductive layer 13 , an insulating reflective layer 14 , and a first electrode 15 and a second electrode 16; wherein the epitaxial layer 12 includes a first type semiconductor layer 121 on the substrate 11 and a second type semiconductor layer 122 on a surface of a partial region of the first type semiconductor layer 121; An electrode 15 is located on the surface of the other portion of the N-type semiconductor layer 121, the second electrode 16 is located on the surface of the partial region of the P-type semiconductor layer 122, the insulating reflective layer 14 covers the surface of the epitaxial layer 12, and the transparent conductive layer 13 is located at the surface. Between the two-type semiconductor layer 122 and the insulating reflective layer 14. The substrate 11 may specifically be a transparent substrate to achieve a light-emitting effect of the light-emitting diode element. Optionally, the substrate 11 may include, but is not limited to, sapphire, tantalum carbide (SiC), gallium nitride (GaN), and aluminum nitride. Any of (AlN). The epitaxial layer 12 may be a semiconductor element such as a single crystal germanium, a polycrystalline germanium or an amorphous germanium structure, or a mixed semiconductor structure such as tantalum carbide, indium antimonide, lead telluride, indium arsenide, phosphating. Indium, gallium arsenide or gallium antimonide or germanium (SiGe), alloy semiconductors or combinations thereof. In addition, the epitaxial layer 12 may be a semiconductor containing more than one element, and these elements may be selected from the group consisting of gallium (Ga), indium (In), nitrogen (N), aluminum (Al), germanium (Ge), and arsenic (As). , a combination of phosphorus (P) and selenium (Se). This embodiment is not limited thereto.

具體來說,第一型半導體層121與第二型半導體層122的導電類型不同。例如,第一型半導體層121是N型半導體層,第二型半導體層122是P型半導體層。以第一型半導體層121是N型半導體層,第二型半導體層122是P型半導體層舉例,磊晶層12自下而上依次包含N型半導體層121和覆蓋部分N型半導體層121表面的P型半導體層122,即N型半導體層和P型半導體層的表面呈階梯結構,製備這種階梯結構的方法可以有多種,例如,可以先在基板上依次疊加形成N型半導體層和P型半導體層,而後對P型半導體層的部分區域進行蝕刻,直至露出N型半導體層的表面,形成階梯結構。可以理解,製備磊晶層12的工藝方法有多種,在此不再一一詳細闡述。 Specifically, the conductivity types of the first type semiconductor layer 121 and the second type semiconductor layer 122 are different. For example, the first type semiconductor layer 121 is an N type semiconductor layer, and the second type semiconductor layer 122 is a P type semiconductor layer. The first type semiconductor layer 121 is an N type semiconductor layer, and the second type semiconductor layer 122 is a P type semiconductor layer. The epitaxial layer 12 includes an N-type semiconductor layer 121 and a surface of a portion of the N-type semiconductor layer 121 in this order from bottom to top. The surface of the P-type semiconductor layer 122, that is, the surface of the N-type semiconductor layer and the P-type semiconductor layer, has a stepped structure, and there are various methods for preparing such a step structure. For example, an N-type semiconductor layer and a P may be sequentially stacked on a substrate. The semiconductor layer is then etched to a portion of the P-type semiconductor layer until the surface of the N-type semiconductor layer is exposed to form a stepped structure. It can be understood that there are various methods for preparing the epitaxial layer 12, which will not be elaborated here.

進一步的,絕緣反射層14能夠保護發光二極體元件結構,並且能夠通過將發光二極體發出的光反射至基板,進一步提高發光二極體元件的發光效率。可選地,絕緣反射層的結構可以為單層結構,也可以為多層結構。可選地,絕緣反射層14可以為多層結構,例如分散式布拉格反射鏡(Distributed Bragg Reflectors,DBR)或全反射鏡(Omni-Directional Reflector,ODR)。 Further, the insulating reflective layer 14 can protect the structure of the light emitting diode element, and can further improve the light emitting efficiency of the light emitting diode element by reflecting the light emitted from the light emitting diode to the substrate. Alternatively, the structure of the insulating reflective layer may be a single layer structure or a multilayer structure. Alternatively, the insulating reflective layer 14 may be a multi-layer structure such as a Distributed Bragg Reflectors (DBR) or an Omni-Directional Reflector (ODR).

其中,分散式布拉格反射鏡由兩種不同折射率的材料交替排列組成,每層材料的光學厚度為中心反射波長的 1/4,因此是一種四分之一波長多層系統。布拉格反射鏡的反射率很高,可達99%以上,因此可以有效提升發光二極體元件的亮度,並且,結構為分散式布拉格反射鏡的絕緣反射層能夠避免金屬反射層存在的光吸收問題,還可以通過改變材料的折射率或厚度來調整能隙位置。進一步的,分散式布拉格反射鏡可以由氧化鈦(TiO2)、氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鉭(Ta2O5)、氮化矽(Si3N4)、硫化鋅(ZnS)以及氟化鈣(CaF2)中的任意兩種材料製備形成,具體來說,製備分散式布拉格反射鏡的方法可以採用通常的分散式布拉格反射鏡製備方法,在此不再詳細闡述。 Among them, the decentralized Bragg mirror is composed of two materials with different refractive indexes alternately arranged. The optical thickness of each layer material is 1/4 of the central reflection wavelength, so it is a quarter-wavelength multi-layer system. The reflectivity of the Bragg mirror is very high, up to 99%, so that the brightness of the LED component can be effectively improved, and the insulating reflective layer of the distributed Bragg mirror can avoid the light absorption problem of the metal reflective layer. The energy gap position can also be adjusted by changing the refractive index or thickness of the material. Further, the decentralized Bragg mirror may be composed of titanium oxide (TiO 2 ), cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), tantalum oxide (Ta 2 O 5 ), tantalum nitride (Si 3 N 4 ). ), the preparation of any two materials of zinc sulfide (ZnS) and calcium fluoride (CaF 2 ). Specifically, the method for preparing the dispersed Bragg mirror can be performed by a conventional method of preparing a distributed Bragg mirror. No longer elaborated.

其中,全反射鏡可以由至少一金屬層與至少一絕緣層組成,且金屬層覆蓋絕緣層,位於絕緣層上方,以避免與半導體直接接觸。進一步的,金屬層可以由金(Au)、銀(Ag)、鋁(Al)、銅(Cu)、鈀(Pd)、銠(Rh)、鉻(Cr)以及鈦(Ti)中的任意材料製備形成,絕緣層可以由氧化鈦(TiO2)、氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鉭(Ta2O5)、氮化矽(Si3N4)、硫化鋅(ZnS)以及氟化鈣(CaF2)中的任意材料製備形成。具體來說,製備全反射鏡的方法可以採用通常的全反射鏡製備方法,在此不再詳細闡述。 Wherein, the total reflection mirror may be composed of at least one metal layer and at least one insulation layer, and the metal layer covers the insulation layer over the insulation layer to avoid direct contact with the semiconductor. Further, the metal layer may be any of gold (Au), silver (Ag), aluminum (Al), copper (Cu), palladium (Pd), rhenium (Rh), chromium (Cr), and titanium (Ti). Prepared and formed, the insulating layer may be composed of titanium oxide (TiO 2 ), cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), tantalum oxide (Ta 2 O 5 ), tantalum nitride (Si 3 N 4 ), vulcanization. Any of zinc (ZnS) and calcium fluoride (CaF 2 ) is prepared. Specifically, the method of preparing the total reflection mirror can adopt a general method of preparing a total reflection mirror, which will not be described in detail herein.

再可選地,絕緣反射層14可以為單層結構,進一步的,絕緣反射層可以包含矽膠與氧化鈦的混合物。單層結構的絕緣反射層可以有效簡化元件結構,節省工藝。其中,形成於第二型半導體層和該絕緣反射層之間的透明導電層(Transparent Conductive Layer,TCL),具備高導電率和 較好的透光特性,化學穩定性好,並且能夠達到擴散電流,降低接觸電阻的效果。進一步的,透明導電層可以包含但不限於鎳金化物(NiAu)、氧化銦錫(ITO)、氧化鋅(ZnO)、氧化鋁鋅(AZO)以及氮化鈦(TiN)中的任一種。 Further, the insulating reflective layer 14 may have a single layer structure. Further, the insulating reflective layer may comprise a mixture of silicone and titanium oxide. The single-layer insulating reflective layer can effectively simplify the component structure and save the process. Wherein, a transparent conductive layer (TCL) formed between the second type semiconductor layer and the insulating reflective layer has high conductivity and Good light transmission characteristics, good chemical stability, and ability to achieve diffusion current and reduce contact resistance. Further, the transparent conductive layer may include, but is not limited to, nickel nitride (NiAu), indium tin oxide (ITO), zinc oxide (ZnO), aluminum zinc oxide (AZO), and titanium nitride (TiN).

具體來說,第一電極形成於第一型半導體層表面,與第一型半導體層電連接,第二電極形成於第二型半導體層表面,與第二型半導體層電連接,且第一電極和第二電極分離設置,覆蓋磊晶層表面的絕緣反射層將第一電極和第二電極隔離開。進一步的,第一電極和第二電極的材料可以為鈦(Ti)、鉻(Cr)、金(Au)、銀(Ag)、鋁(Al)、鉑(Pt)或鉬(Mo)等,具體材料的選擇可根據實際情況而定。優選的,第一電極和第二電極可以通過蒸鍍、濺鍍、印刷工藝或電鍍工藝在同一工藝環節中共同形成,以簡化工藝流程。實際應用中,第一電極和第二電極可以為與第一方向平行的條形電極。 Specifically, the first electrode is formed on the surface of the first type semiconductor layer, electrically connected to the first type semiconductor layer, the second electrode is formed on the surface of the second type semiconductor layer, electrically connected to the second type semiconductor layer, and the first electrode Separate from the second electrode, the insulating reflective layer covering the surface of the epitaxial layer separates the first electrode from the second electrode. Further, the material of the first electrode and the second electrode may be titanium (Ti), chromium (Cr), gold (Au), silver (Ag), aluminum (Al), platinum (Pt) or molybdenum (Mo). The choice of specific materials can be based on actual conditions. Preferably, the first electrode and the second electrode may be formed together in the same process step by evaporation, sputtering, printing process or electroplating process to simplify the process flow. In practical applications, the first electrode and the second electrode may be strip electrodes parallel to the first direction.

本實施例提供的發光二極體元件,第一型半導體層和第二型半導體層表面呈階梯結構,第一型半導體層和第二型半導體層的表面分別設置有第一電極和第二電極,絕緣反射層覆蓋露出的磊晶層表面,透明導電層設置在第二型半導體層和絕緣反射層之間,有效簡化了發光二極體元件的結構和製備流程,提高生產良率。 In the light emitting diode device provided in this embodiment, the surfaces of the first type semiconductor layer and the second type semiconductor layer have a stepped structure, and the surfaces of the first type semiconductor layer and the second type semiconductor layer are respectively provided with the first electrode and the second electrode The insulating reflective layer covers the exposed surface of the epitaxial layer, and the transparent conductive layer is disposed between the second type semiconductor layer and the insulating reflective layer, which simplifies the structure and preparation process of the light emitting diode element and improves the production yield.

第2A圖為本發明實施例二提供的發光二極體元件的剖面結構示意圖,如第2A圖所示,該元件包含:基板21、磊晶層22、透明導電層23、絕緣反射層24以及第一電極25和第二電極26;其中,磊晶層22包含位於基板21上的N型半導體 層221和位於N型半導體層221的部分區域表面上的P型半導體層222;第一電極25位於N型半導體層221的另一部分區域表面上,第二電極26位於P型半導體層222的部分區域表面上;絕緣反射層24覆蓋磊晶層22的表面;透明導電層23位於P型半導體層222和絕緣反射層24之間,透明導電層23包含多個分離設置的透明導電單元231。其中,基板21具體可以為透明基板,以實現發光二極體元件的發光效果,可選地,基板21可以包含但不限於藍寶石、碳化矽(SiC)、氮化鎵(GaN)以及氮化鋁(AlN)中的任一種。磊晶層22可以為半導體元素,例如單晶矽、多晶矽或非晶結構的矽,也可以為混合的半導體結構,例如碳化矽、銻化銦、碲化鉛、砷化銦、磷化銦、砷化鎵或銻化鎵或矽鍺(SiGe)、合金半導體或其組合。此外,磊晶層12可以為包含一種以上元素的半導體,這些元素可以為選自鎵(Ga)、銦(In)、氮(N)、鋁(Al)、鍺(Ge)、砷(As)、磷(P)以及硒(Se)的組合。本實施例在此不對其進行限制。 2A is a cross-sectional structural view of a light emitting diode device according to Embodiment 2 of the present invention. As shown in FIG. 2A, the device includes: a substrate 21, an epitaxial layer 22, a transparent conductive layer 23, an insulating reflective layer 24, and a first electrode 25 and a second electrode 26; wherein the epitaxial layer 22 comprises an N-type semiconductor on the substrate 21. The layer 221 and the P-type semiconductor layer 222 on the surface of the partial region of the N-type semiconductor layer 221; the first electrode 25 is located on the surface of the other portion of the N-type semiconductor layer 221, and the second electrode 26 is located at the portion of the P-type semiconductor layer 222. On the surface of the region, the insulating reflective layer 24 covers the surface of the epitaxial layer 22; the transparent conductive layer 23 is located between the P-type semiconductor layer 222 and the insulating reflective layer 24, and the transparent conductive layer 23 includes a plurality of transparent conductive units 231 disposed separately. The substrate 21 may specifically be a transparent substrate to achieve a light-emitting effect of the light-emitting diode element. Optionally, the substrate 21 may include, but is not limited to, sapphire, tantalum carbide (SiC), gallium nitride (GaN), and aluminum nitride. Any of (AlN). The epitaxial layer 22 may be a semiconductor element such as a single crystal germanium, a polycrystalline germanium or an amorphous structure germanium, or a mixed semiconductor structure such as tantalum carbide, indium antimonide, lead telluride, indium arsenide, indium phosphide, Gallium arsenide or gallium antimonide or germanium (SiGe), alloy semiconductors or combinations thereof. In addition, the epitaxial layer 12 may be a semiconductor containing more than one element, and these elements may be selected from the group consisting of gallium (Ga), indium (In), nitrogen (N), aluminum (Al), germanium (Ge), and arsenic (As). , a combination of phosphorus (P) and selenium (Se). This embodiment is not limited thereto.

具體來說,磊晶層22自下而上依次包含N型半導體層221和覆蓋部分N型半導體層221表面的P型半導體層222,即N型半導體層和P型半導體層的表面呈階梯結構,製備這種階梯結構的方法可以有多種,例如,可以先在基板上依次疊加形成N型半導體層和P型半導體層,而後對P型半導體層的部分區域進行蝕刻,直至露出N型半導體層的表面,形成階梯結構。可以理解,製備磊晶層22的工藝方法有多種,在此不再一一詳細闡述。 Specifically, the epitaxial layer 22 includes an N-type semiconductor layer 221 and a P-type semiconductor layer 222 covering a surface of the partial N-type semiconductor layer 221 in order from bottom to top, that is, the surface of the N-type semiconductor layer and the P-type semiconductor layer has a stepped structure. There may be various methods for preparing such a step structure. For example, an N-type semiconductor layer and a P-type semiconductor layer may be sequentially stacked on a substrate, and then a partial region of the P-type semiconductor layer is etched until an N-type semiconductor layer is exposed. The surface forms a stepped structure. It can be understood that there are various methods for preparing the epitaxial layer 22, which will not be elaborated here.

進一步的,絕緣反射層24能夠保護發光二極體元 件結構,並且能夠通過將發光二極體發出的光反射至基板,進一步提高發光二極體元件的發光效率。可選地,絕緣反射層的結構可以為單層結構,也可以為多層結構。可選地,絕緣反射層可以為多層結構,例如分散式布拉格反射鏡(Distributed Bragg Reflectors,DBR)或全反射鏡(Omni-Directional Reflector,ODR)。 Further, the insulating reflective layer 24 can protect the LED body The structure and the light-emitting efficiency of the light-emitting diode element can be further improved by reflecting the light emitted from the light-emitting diode to the substrate. Alternatively, the structure of the insulating reflective layer may be a single layer structure or a multilayer structure. Alternatively, the insulating reflective layer may be a multi-layer structure such as a Distributed Bragg Reflectors (DBR) or an Omni-Directional Reflector (ODR).

其中,分散式布拉格反射鏡由兩種不同折射率的材料交替排列組成,每層材料的光學厚度為中心反射波長的1/4,因此是一種四分之一波長多層系統。布拉格反射鏡的反射率很高,可達99%以上,因此可以有效提升發光二極體元件的亮度,並且,結構為分散式布拉格反射鏡的絕緣反射層能夠避免金屬反射層存在的光吸收問題,還可以通過改變材料的折射率或厚度來調整能隙位置。進一步的,分散式布拉格反射鏡可以由氧化鈦(TiO2)、氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鉭(Ta2O5)、氮化矽(Si3N4)、硫化鋅(ZnS)以及氟化鈣(CaF2)中的任意兩種材料製備形成,具體來說,製備分散式布拉格反射鏡的方法可以採用通常的分散式布拉格反射鏡製備方法,在此不再詳細闡述。 Among them, the decentralized Bragg mirror is composed of two materials with different refractive indexes alternately arranged. The optical thickness of each layer material is 1/4 of the central reflection wavelength, so it is a quarter-wavelength multi-layer system. The reflectivity of the Bragg mirror is very high, up to 99%, so that the brightness of the LED component can be effectively improved, and the insulating reflective layer of the distributed Bragg mirror can avoid the light absorption problem of the metal reflective layer. The energy gap position can also be adjusted by changing the refractive index or thickness of the material. Further, the decentralized Bragg mirror may be composed of titanium oxide (TiO 2 ), cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), tantalum oxide (Ta 2 O 5 ), tantalum nitride (Si 3 N 4 ). ), the preparation of any two materials of zinc sulfide (ZnS) and calcium fluoride (CaF 2 ). Specifically, the method for preparing the dispersed Bragg mirror can be performed by a conventional method of preparing a distributed Bragg mirror. No longer elaborated.

其中,全反射鏡可以由至少一金屬層與至少一絕緣層組成,且金屬層覆蓋絕緣層,位於絕緣層上方,以避免與半導體直接接觸。進一步的,金屬層材料可以由金(Au)、銀(Ag)、鋁(Al)、銅(Cu)、鈀(Pd)、銠(Rh)、鉻(Cr)以及鈦(Ti)中的任意材料製備形成,絕緣層可以由氧化鈦(TiO2)、氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鉭(Ta2O5)、氮化矽(Si3N4)、 硫化鋅(ZnS)以及氟化鈣(CaF2)中的任意材料製備形成。具體來說,製備全反射鏡的方法可以採用通常的全反射鏡製備方法,在此不再詳細闡述。 Wherein, the total reflection mirror may be composed of at least one metal layer and at least one insulation layer, and the metal layer covers the insulation layer over the insulation layer to avoid direct contact with the semiconductor. Further, the metal layer material may be any of gold (Au), silver (Ag), aluminum (Al), copper (Cu), palladium (Pd), rhodium (Rh), chromium (Cr), and titanium (Ti). The material is prepared, and the insulating layer may be composed of titanium oxide (TiO 2 ), cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), tantalum oxide (Ta 2 O 5 ), tantalum nitride (Si 3 N 4 ), Any of zinc sulfide (ZnS) and calcium fluoride (CaF 2 ) is prepared. Specifically, the method of preparing the total reflection mirror can adopt a general method of preparing a total reflection mirror, which will not be described in detail herein.

再可選地,絕緣反射層可以為單層結構,進一步的,絕緣反射層可以包含矽膠與氧化鈦的混合物。單層結構的絕緣反射層可以有效簡化元件結構,節省工藝。 Still alternatively, the insulating reflective layer may have a single layer structure. Further, the insulating reflective layer may comprise a mixture of silicone and titanium oxide. The single-layer insulating reflective layer can effectively simplify the component structure and save the process.

具體來說,第一電極形成於N型半導體層表面,與N型半導體層電連接,第二電極形成於P型半導體層表面,與P型半導體層電連接,且第一電極和第二電極分離設置,覆蓋磊晶層表面的絕緣反射層將第一電極和第二電極隔離開。進一步的,第一電極和第二電極的材料可以為鈦(Ti)、鉻(Cr)、金(Au)、銀(Ag)、鋁(Al)、鉑(Pt)或鉬(Mo)等,具體材料的選擇可根據實際情況而定。優選的,第一電極和第二電極可以通過蒸鍍、濺鍍、印刷工藝或電鍍工藝在同一工藝環節中共同形成,以簡化工藝流程。 Specifically, the first electrode is formed on the surface of the N-type semiconductor layer, electrically connected to the N-type semiconductor layer, the second electrode is formed on the surface of the P-type semiconductor layer, electrically connected to the P-type semiconductor layer, and the first electrode and the second electrode The separation arrangement covers an insulating reflective layer covering the surface of the epitaxial layer to isolate the first electrode from the second electrode. Further, the material of the first electrode and the second electrode may be titanium (Ti), chromium (Cr), gold (Au), silver (Ag), aluminum (Al), platinum (Pt) or molybdenum (Mo). The choice of specific materials can be based on actual conditions. Preferably, the first electrode and the second electrode may be formed together in the same process step by evaporation, sputtering, printing process or electroplating process to simplify the process flow.

其中,形成於P型半導體層和該絕緣反射層之間的透明導電層(Transparent Conductive Layer,TCL),具備高導電率和較好的透光特性,化學穩定性好,並且能夠達到擴散電流,降低接觸電阻的效果。進一步的,透明導電層可以包含但不限於鎳金化物(NiAu)、氧化銦錫(ITO)、氧化鋅(ZnO)、氧化鋁鋅(AZO)以及氮化鈦(TiN)中的任一種。 The transparent conductive layer (TCL) formed between the P-type semiconductor layer and the insulating reflective layer has high conductivity and good light transmission characteristics, good chemical stability, and can reach a diffusion current. Reduce the effect of contact resistance. Further, the transparent conductive layer may include, but is not limited to, nickel nitride (NiAu), indium tin oxide (ITO), zinc oxide (ZnO), aluminum zinc oxide (AZO), and titanium nitride (TiN).

優選的,為了減小透明導電層對發光二極體元件的發光影響,使得更多的光能夠通過絕緣反射層反射至基板,透明導電層23可以包含多個分離設置的透明導電單元231,使 更多的光通過各透明導電單元231之間的間隙直接照射在絕緣反射層上發生反射,抵達基板,從而在實現了擴散電流,降低接觸電阻的基礎上,還能夠進一步提高發光二極體元件的發光效率。 Preferably, in order to reduce the influence of the transparent conductive layer on the light-emitting diode element, more light can be reflected to the substrate through the insulating reflective layer, and the transparent conductive layer 23 may include a plurality of transparent conductive units 231 disposed separately. More light is directly irradiated on the insulating reflective layer through the gap between the transparent conductive units 231 to be reflected and reaches the substrate, thereby further improving the light-emitting diode element on the basis of realizing the diffusion current and reducing the contact resistance. Luminous efficiency.

本實施例中的透明導電層23包含多個分離設置的透明導電單元231,透明導電單元231之間是互相獨立的,沒有發生直接接觸,而是通過第二電極間接連接導通。舉例來說,第2B圖為本發明實施例二中透明導電層的俯視結構示意圖,如第2B圖所示,透明導電層23包含多個分離設置的透明導電單元231,透明導電單元231之間不直接接觸。需要說明的是,圖中所示只是一種舉例的實施方式,而並未對透明導電層23的具體參數進行限制。例如,透明導電單元231的排布方式、形狀等都可以根據元件的尺寸和結構設定。 The transparent conductive layer 23 in this embodiment includes a plurality of transparent conductive units 231 disposed separately. The transparent conductive units 231 are independent of each other, and no direct contact occurs, but is indirectly connected through the second electrodes. For example, FIG. 2B is a schematic top view of a transparent conductive layer according to Embodiment 2 of the present invention. As shown in FIG. 2B, the transparent conductive layer 23 includes a plurality of transparent conductive units 231 disposed separately, and between the transparent conductive units 231. Not in direct contact. It should be noted that the figure is only an exemplary embodiment, and the specific parameters of the transparent conductive layer 23 are not limited. For example, the arrangement, shape, and the like of the transparent conductive unit 231 can be set according to the size and structure of the element.

本實施例提供的發光二極體元件,N型半導體層和P型半導體層表面呈階梯結構,N型半導體層和P型半導體層的表面分別設置有第一電極和第二電極,絕緣反射層覆蓋露出的磊晶層表面,P型半導體層和絕緣反射層之間設置有透明導電層,有效簡化了發光二極體元件的結構和製備流程,提高生產良率。並且透明導電層包含多個分離設置的透明導電單元,使更多的光直接照射在絕緣反射層上發生反射,抵達基板,從而在實現了擴散電流,降低接觸電阻的基礎上,進一步提高發光二極體元件的發光效率。 In the light emitting diode device provided in this embodiment, the surface of the N-type semiconductor layer and the P-type semiconductor layer have a stepped structure, and the surfaces of the N-type semiconductor layer and the P-type semiconductor layer are respectively provided with a first electrode and a second electrode, and an insulating reflective layer The surface of the exposed epitaxial layer is covered, and a transparent conductive layer is disposed between the P-type semiconductor layer and the insulating reflective layer, which simplifies the structure and preparation process of the LED component and improves the production yield. And the transparent conductive layer comprises a plurality of transparent conductive units disposed separately, so that more light is directly irradiated on the insulating reflective layer to reflect and reach the substrate, thereby further improving the light emission based on the realization of the diffusion current and the reduction of the contact resistance. Luminous efficiency of polar body components.

第3A圖為本發明實施例三提供的發光二極體元件的剖面結構示意圖,如第3A圖所示,該元件包含:基板31、 磊晶層32、透明導電層33、絕緣反射層34以及第一電極35和第二電極36;其中,磊晶層32包含位於基板31上的N型半導體層321和位於N型半導體層321的部分區域表面上的P型半導體層322;第一電極35位於N型半導體層321的另一部分區域表面上,第二電極36位於P型半導體層322的部分區域表面上;絕緣反射層34覆蓋磊晶層32的表面;透明導電層33位於P型半導體層322和絕緣反射層34之間,透明導電層33開設有開孔331,開孔率不大於90%。 3A is a cross-sectional structural view of a light emitting diode device according to Embodiment 3 of the present invention. As shown in FIG. 3A, the device includes: a substrate 31, The epitaxial layer 32, the transparent conductive layer 33, the insulating reflective layer 34, and the first electrode 35 and the second electrode 36; wherein the epitaxial layer 32 includes an N-type semiconductor layer 321 on the substrate 31 and an N-type semiconductor layer 321 a P-type semiconductor layer 322 on the surface of the partial region; the first electrode 35 is located on the surface of the other portion of the N-type semiconductor layer 321, and the second electrode 36 is located on the surface of the partial region of the P-type semiconductor layer 322; the insulating reflective layer 34 covers the surface of the portion The transparent conductive layer 33 is located between the P-type semiconductor layer 322 and the insulating reflective layer 34. The transparent conductive layer 33 is provided with an opening 331 having an opening ratio of not more than 90%.

其中,該開孔率可以通過以下公式計算獲得:開孔率=(1-透明導電層的面積/P型半導體層的面積)×100%。這裡提到的透明導電層的面積指的是透明導電層的實際面積,即不包含開孔的透明導電層的面積。 Here, the opening ratio can be calculated by the following formula: the opening ratio = (1 - area of the transparent conductive layer / area of the P-type semiconductor layer) × 100%. The area of the transparent conductive layer referred to herein refers to the actual area of the transparent conductive layer, that is, the area of the transparent conductive layer not including the opening.

其中,基板具體可以為透明基板,以實現發光二極體元件的發光效果,可選地,基板可以包含但不限於藍寶石、碳化矽(SiC)、氮化鎵(GaN)以及氮化鋁(AlN)中的任一種。磊晶層可以為半導體元素,例如單晶矽、多晶矽或非晶結構的矽,也可以為混合的半導體結構,例如碳化矽、銻化銦、碲化鉛、砷化銦、磷化銦、砷化鎵或銻化鎵或矽鍺(SiGe)、合金半導體或其組合。此外,磊晶層12可以為包含一種以上元素的半導體,這些元素可以為選自鎵(Ga)、銦(In)、氮(N)、鋁(Al)、鍺(Ge)、砷(As)、磷(P)以及硒(Se)的組合。本實施例在此不對其進行限制。 The substrate may specifically be a transparent substrate to achieve a light-emitting effect of the light-emitting diode element. Optionally, the substrate may include, but is not limited to, sapphire, tantalum carbide (SiC), gallium nitride (GaN), and aluminum nitride (AlN). Any of them. The epitaxial layer may be a semiconductor element such as a single crystal germanium, a polycrystalline germanium or an amorphous structure, or a mixed semiconductor structure such as tantalum carbide, indium antimonide, lead telluride, indium arsenide, indium phosphide, or arsenic. Gallium or germanium or germanium or germanium (SiGe), alloy semiconductors or combinations thereof. In addition, the epitaxial layer 12 may be a semiconductor containing more than one element, and these elements may be selected from the group consisting of gallium (Ga), indium (In), nitrogen (N), aluminum (Al), germanium (Ge), and arsenic (As). , a combination of phosphorus (P) and selenium (Se). This embodiment is not limited thereto.

具體來說,磊晶層自下而上依次包含N型半導體層和覆蓋部分N型半導體層表面的P型半導體層,即N型半導體 層和P型半導體層的表面呈階梯結構,製備這種階梯結構的方法可以有多種,例如,可以先在基板上依次疊加形成N型半導體層和P型半導體層,而後對P型半導體層的部分區域進行蝕刻,直至露出N型半導體層的表面,形成階梯結構。可以理解,製備磊晶層22的工藝方法有多種,在此不再一一詳細闡述。 Specifically, the epitaxial layer sequentially includes an N-type semiconductor layer and a P-type semiconductor layer covering a surface of the partial N-type semiconductor layer, that is, an N-type semiconductor, from bottom to top. The surface of the layer and the P-type semiconductor layer have a stepped structure, and the method for preparing the stepped structure may be various. For example, an N-type semiconductor layer and a P-type semiconductor layer may be sequentially stacked on the substrate, and then the P-type semiconductor layer may be sequentially stacked on the substrate. A portion of the region is etched until the surface of the N-type semiconductor layer is exposed to form a stepped structure. It can be understood that there are various methods for preparing the epitaxial layer 22, which will not be elaborated here.

進一步的,絕緣反射層能夠保護發光二極體元件結構,並且能夠通過將發光二極體發出的光反射至基板,進一步提高發光二極體元件的發光效率。可選地,絕緣反射層的結構可以為單層結構,也可以為多層結構。可選地,絕緣反射層可以為多層結構,例如分散式布拉格反射鏡(Distributed Bragg Reflectors,DBR)或全反射鏡(Omni-Directional Reflector,ODR)。 Further, the insulating reflective layer can protect the structure of the light emitting diode element, and can further improve the light emitting efficiency of the light emitting diode element by reflecting the light emitted from the light emitting diode to the substrate. Alternatively, the structure of the insulating reflective layer may be a single layer structure or a multilayer structure. Alternatively, the insulating reflective layer may be a multi-layer structure such as a Distributed Bragg Reflectors (DBR) or an Omni-Directional Reflector (ODR).

其中,分散式布拉格反射鏡由兩種不同折射率的材料交替排列組成,每層材料的光學厚度為中心反射波長的1/4,因此是一種四分之一波長多層系統。布拉格反射鏡的反射率很高,可達99%以上,因此可以有效提升發光二極體元件的亮度,並且,結構為分散式布拉格反射鏡的絕緣反射層能夠避免金屬反射層存在的光吸收問題,還可以通過改變材料的折射率或厚度來調整能隙位置。進一步的,分散式布拉格反射鏡可以由氧化鈦(TiO2)、氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鉭(Ta2O5)、氮化矽(Si3N4)、硫化鋅(ZnS)以及氟化鈣(CaF2)中的任意兩種材料製備形成,具體來說,製備分散式布拉格反射鏡的方法可以採用通常的分散式布拉格反射鏡製備方法,在此不再詳細闡述。 Among them, the decentralized Bragg mirror is composed of two materials with different refractive indexes alternately arranged. The optical thickness of each layer material is 1/4 of the central reflection wavelength, so it is a quarter-wavelength multi-layer system. The reflectivity of the Bragg mirror is very high, up to 99%, so that the brightness of the LED component can be effectively improved, and the insulating reflective layer of the distributed Bragg mirror can avoid the light absorption problem of the metal reflective layer. The energy gap position can also be adjusted by changing the refractive index or thickness of the material. Further, the decentralized Bragg mirror may be composed of titanium oxide (TiO 2 ), cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), tantalum oxide (Ta 2 O 5 ), tantalum nitride (Si 3 N 4 ). ), the preparation of any two materials of zinc sulfide (ZnS) and calcium fluoride (CaF 2 ). Specifically, the method for preparing the dispersed Bragg mirror can be performed by a conventional method of preparing a distributed Bragg mirror. No longer elaborated.

其中,全反射鏡可以由至少一金屬層與至少一絕緣層組成,且金屬層覆蓋絕緣層,位於絕緣層上方,以避免與半導體直接接觸。進一步的,金屬層材料可以由金(Au)、銀(Ag)、鋁(Al)、銅(Cu)、鈀(Pd)、銠(Rh)、鉻(Cr)以及鈦(Ti)中的任意材料製備形成,絕緣層可以由氧化鈦(TiO2)、氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鉭(Ta2O5)、氮化矽(Si3N4)、硫化鋅(ZnS)以及氟化鈣(CaF2)中的任意材料製備形成。具體來說,製備全反射鏡的方法可以採用通常的全反射鏡製備方法,在此不再詳細闡述。 Wherein, the total reflection mirror may be composed of at least one metal layer and at least one insulation layer, and the metal layer covers the insulation layer over the insulation layer to avoid direct contact with the semiconductor. Further, the metal layer material may be any of gold (Au), silver (Ag), aluminum (Al), copper (Cu), palladium (Pd), rhodium (Rh), chromium (Cr), and titanium (Ti). The material is prepared, and the insulating layer may be composed of titanium oxide (TiO 2 ), cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), tantalum oxide (Ta 2 O 5 ), tantalum nitride (Si 3 N 4 ), Any of zinc sulfide (ZnS) and calcium fluoride (CaF 2 ) is prepared. Specifically, the method of preparing the total reflection mirror can adopt a general method of preparing a total reflection mirror, which will not be described in detail herein.

再可選地,絕緣反射層可以為單層結構,進一步的,絕緣反射層可以包含矽膠與氧化鈦的混合物。單層結構的絕緣反射層可以有效簡化元件結構,節省工藝。 Still alternatively, the insulating reflective layer may have a single layer structure. Further, the insulating reflective layer may comprise a mixture of silicone and titanium oxide. The single-layer insulating reflective layer can effectively simplify the component structure and save the process.

具體來說,第一電極形成於N型半導體層表面,與N型半導體層電連接,第二電極形成於P型半導體層表面,與P型半導體層電連接,且第一電極和第二電極分離設置,覆蓋磊晶層表面的絕緣反射層將第一電極和第二電極隔離開。進一步的,第一電極和第二電極的材料可以為鈦(Ti)、鉻(Cr)、金(Au)、銀(Ag)、鋁(Al)、鉑(Pt)或鉬(Mo)等,具體材料的選擇可根據實際情況而定。優選的,第一電極和第二電極可以通過蒸鍍、濺鍍、印刷工藝或電鍍工藝在同一工藝環節中共同形成,以簡化工藝流程。實際應用中,第一電極和第二電極可以為與第一方向平行的條形電極。 Specifically, the first electrode is formed on the surface of the N-type semiconductor layer, electrically connected to the N-type semiconductor layer, the second electrode is formed on the surface of the P-type semiconductor layer, electrically connected to the P-type semiconductor layer, and the first electrode and the second electrode The separation arrangement covers an insulating reflective layer covering the surface of the epitaxial layer to isolate the first electrode from the second electrode. Further, the material of the first electrode and the second electrode may be titanium (Ti), chromium (Cr), gold (Au), silver (Ag), aluminum (Al), platinum (Pt) or molybdenum (Mo). The choice of specific materials can be based on actual conditions. Preferably, the first electrode and the second electrode may be formed together in the same process step by evaporation, sputtering, printing process or electroplating process to simplify the process flow. In practical applications, the first electrode and the second electrode may be strip electrodes parallel to the first direction.

其中,形成於P型半導體層和該絕緣反射層之間的透明導電層(Transparent Conductive Layer,TCL),具 備高導電率和較好的透光特性,化學穩定性好,並且能夠達到擴散電流,降低接觸電阻的效果。進一步的,透明導電層可以包含但不限於鎳金化物(NiAu)、氧化銦錫(ITO)、氧化鋅(ZnO)、氧化鋁鋅(AZO)以及氮化鈦(TiN)中的任一種。 a transparent conductive layer (TCL) formed between the P-type semiconductor layer and the insulating reflective layer, It has high conductivity and good light transmission characteristics, good chemical stability, and can achieve diffusion current and reduce contact resistance. Further, the transparent conductive layer may include, but is not limited to, nickel nitride (NiAu), indium tin oxide (ITO), zinc oxide (ZnO), aluminum zinc oxide (AZO), and titanium nitride (TiN).

本實施例中,為了減小透明導電層對發光二極體元件的發光影響,使得更多的光能夠通過絕緣反射層反射至基板,透明導電層開設有開孔,以使更多的光通過開孔直接照射在絕緣反射層上發生反射,抵達基板,從而在實現了擴散電流,降低接觸電阻的基礎上,還能夠進一步提高發光二極體元件的發光效率。具體來說,透明導電層的開孔率不大於90%,以保證擴散電流,降低接觸電阻的效果。優選的,開孔331可以均勻分佈,使得發光二極體元件發出的光更加均勻,優化發光效果。 In this embodiment, in order to reduce the influence of the transparent conductive layer on the light-emitting diode element, more light can be reflected to the substrate through the insulating reflective layer, and the transparent conductive layer is provided with an opening to allow more light to pass. The opening is directly irradiated on the insulating reflective layer to reflect and reach the substrate, so that the diffusion current can be reduced and the contact resistance can be reduced, and the luminous efficiency of the light-emitting diode element can be further improved. Specifically, the opening ratio of the transparent conductive layer is not more than 90% to ensure the diffusion current and reduce the contact resistance. Preferably, the openings 331 are evenly distributed, so that the light emitted by the LED components is more uniform, and the luminous effect is optimized.

本實施例中的透明導電層33為開設有開孔331的連續導電膜。舉例來說,第3B圖為本發明實施例三中透明導電層的俯視結構示意圖,如第3B圖所示,透明導電層33為連續導電膜,其上開設有開孔331。需要說明的是,圖中所示只是一種舉例的實施方式,而並未對開孔331的具體參數進行限制。例如,開孔的排布方式、形狀等都可以根據元件的尺寸和結構設定。 The transparent conductive layer 33 in this embodiment is a continuous conductive film having openings 331 formed therein. For example, FIG. 3B is a schematic top view of the transparent conductive layer in the third embodiment of the present invention. As shown in FIG. 3B, the transparent conductive layer 33 is a continuous conductive film having an opening 331 formed therein. It should be noted that the figure is only an exemplary embodiment, and the specific parameters of the opening 331 are not limited. For example, the arrangement, shape, and the like of the openings can be set according to the size and structure of the components.

本實施例提供的發光二極體元件,N型半導體層和P型半導體層表面呈階梯結構,N型半導體層和P型半導體層的表面分別設置有第一電極和第二電極,絕緣反射層覆蓋露出的磊晶層表面,P型半導體層和絕緣反射層之間設置有透明導 電層,有效簡化了發光二極體元件的結構和製備流程,提高生產良率。並且透明導電層開設有開孔,使更多的光直接照射在絕緣反射層上發生反射,抵達基板,從而在實現了擴散電流,降低接觸電阻的基礎上,進一步提高發光二極體元件的發光效率。 In the light emitting diode device provided in this embodiment, the surface of the N-type semiconductor layer and the P-type semiconductor layer have a stepped structure, and the surfaces of the N-type semiconductor layer and the P-type semiconductor layer are respectively provided with a first electrode and a second electrode, and an insulating reflective layer Covering the exposed epitaxial layer surface, a transparent guide is disposed between the P-type semiconductor layer and the insulating reflective layer The electric layer effectively simplifies the structure and preparation process of the light-emitting diode element and improves the production yield. And the transparent conductive layer is provided with an opening, so that more light is directly irradiated on the insulating reflective layer to reflect and reach the substrate, thereby further improving the light emission of the light emitting diode element on the basis of realizing the diffusion current and reducing the contact resistance. effectiveness.

可選地,為了提高電極與外界電連接的可靠性,可以增大電極的電接觸面積,相應的,第4A圖為本發明實施例四提供的發光二極體元件的剖面結構示意圖,如第4A圖所示,在具有基板31、磊晶層32、透明導電層33以及第一電極35和第二電極36的實施例一至實施例三中任一實施例該的發光二極體元件基礎上,該發光二極體元件更包含:分離設置的第一金屬層41和第二金屬層42;第一金屬層41覆蓋第一電極35和部分絕緣反射層34;第二金屬層42覆蓋第二電極36和部分絕緣反射層34。 Optionally, in order to improve the reliability of the electrical connection between the electrode and the external environment, the electrical contact area of the electrode may be increased. Correspondingly, FIG. 4A is a schematic cross-sectional structural diagram of the LED component provided in Embodiment 4 of the present invention. 4A, based on the light-emitting diode element of any one of Embodiments 1 to 3 having the substrate 31, the epitaxial layer 32, the transparent conductive layer 33, and the first electrode 35 and the second electrode 36. The light emitting diode element further includes: a first metal layer 41 and a second metal layer 42 disposed separately; the first metal layer 41 covers the first electrode 35 and a portion of the insulating reflective layer 34; and the second metal layer 42 covers the second Electrode 36 and partially insulating reflective layer 34.

具體來說,第4B圖為第4A圖的俯視結構示意圖。其中,第一金屬層41和第二金屬層42可以為鈦(Ti)、鉻(Cr)、金(Au)、銀(Ag)、鋁(Al)、鉑(Pt)或鉬(Mo)等,具體材料的選擇可根據實際情況而定。優選的,第一金屬層41、第二金屬層42、第一電極35和第二電極36可以通過蒸鍍、濺鍍、印刷工藝或電鍍工藝在同一工藝環節中共同形成,以簡化工藝流程。 Specifically, FIG. 4B is a schematic plan view of the structure of FIG. 4A. The first metal layer 41 and the second metal layer 42 may be titanium (Ti), chromium (Cr), gold (Au), silver (Ag), aluminum (Al), platinum (Pt) or molybdenum (Mo). The choice of specific materials may be based on actual conditions. Preferably, the first metal layer 41, the second metal layer 42, the first electrode 35 and the second electrode 36 may be formed together in the same process step by evaporation, sputtering, printing process or electroplating process to simplify the process flow.

本實施例提供的發光二極體元件,通過設置與第一電極35連接的第一金屬層41和與第二電極36連接的第二金屬層42,能夠增大元件與外界的電接觸面積,提高元件可靠性。 The light emitting diode element provided in this embodiment can increase the electrical contact area between the component and the outside by providing the first metal layer 41 connected to the first electrode 35 and the second metal layer 42 connected to the second electrode 36. Improve component reliability.

第5A圖為本發明實施例五提供的一種發光二極體元件的俯視結構示意圖,如第5A圖所示,在具有基板、磊晶層、透明導電層以及第一電極和第二電極的實施例一至實施例三中任一實施例該的發光二極體元件基礎上,第一電極35朝第二電極36延伸出至少一個第一金屬條51;第二電極36朝第一電極35延伸出至少一個第二金屬條52;第一金屬條51和第二金屬條52交替排布。實際應用中,該發光二極體元件可以採用倒裝技術進行封裝。 FIG. 5A is a schematic top plan view of a light emitting diode device according to Embodiment 5 of the present invention. As shown in FIG. 5A, the embodiment has a substrate, an epitaxial layer, a transparent conductive layer, and first and second electrodes. In the light-emitting diode element according to any one of the first to third embodiments, the first electrode 35 extends at least one first metal strip 51 toward the second electrode 36; and the second electrode 36 extends toward the first electrode 35. At least one second metal strip 52; the first metal strip 51 and the second metal strip 52 are alternately arranged. In practical applications, the LED component can be packaged by flip chip technology.

具體來說,第一金屬條51和第二金屬條52平行。為了節省佔用面積,第一電極35和第二電極36,與第一金屬條51和第二金屬條52垂直。其中,第一金屬條51和第二金屬條52可以為鈦(Ti)、鉻(Cr)、金(Au)、銀(Ag)、鋁(Al)、鉑(Pt)或鉬(Mo)等,具體材料的選擇可根據實際情況而定。優選的,第一金屬條51、第二金屬條52、第一電極35和第二電極36可以通過蒸鍍、濺鍍、印刷工藝或電鍍工藝在同一工藝環節中共同形成,以簡化工藝流程。第一金屬條51和第二金屬條52可以幫助電流擴散,從而提高發光二極體元件的發光效率。 Specifically, the first metal strip 51 and the second metal strip 52 are parallel. In order to save the occupied area, the first electrode 35 and the second electrode 36 are perpendicular to the first metal strip 51 and the second metal strip 52. The first metal strip 51 and the second metal strip 52 may be titanium (Ti), chromium (Cr), gold (Au), silver (Ag), aluminum (Al), platinum (Pt) or molybdenum (Mo). The choice of specific materials may be based on actual conditions. Preferably, the first metal strip 51, the second metal strip 52, the first electrode 35 and the second electrode 36 may be formed together in the same process step by evaporation, sputtering, printing process or electroplating process to simplify the process flow. The first metal strip 51 and the second metal strip 52 can help the current to diffuse, thereby improving the luminous efficiency of the light emitting diode element.

為了提高發光二極體元件的穩定性和可靠性,如第5B圖所示,第5B圖為本發明實施例五提供的另一種發光二極體元件的俯視結構示意圖,在第5A圖所示實施方式的基礎上,絕緣反射層34覆蓋第一金屬條51和第二金屬條52,並且覆蓋第一電極35和第二電極36的部分區域。舉例來說,絕緣反射層34可以覆蓋第一電極35和第二電極36除其兩端以外的區域。 In order to improve the stability and reliability of the light-emitting diode element, as shown in FIG. 5B, FIG. 5B is a schematic top view of another light-emitting diode element according to Embodiment 5 of the present invention, which is shown in FIG. 5A. On the basis of the embodiment, the insulating reflective layer 34 covers the first metal strip 51 and the second metal strip 52 and covers a partial region of the first electrode 35 and the second electrode 36. For example, the insulating reflective layer 34 may cover regions of the first electrode 35 and the second electrode 36 except for both ends thereof.

上述實施方式中,在第一金屬條和第二金屬條,以及第一電極和第二電極的部分表面覆蓋絕緣反射層,能夠對電極起到保護作用,提高元件的可靠性和穩定性。 In the above embodiment, the first metal strip and the second metal strip, and the surface of the first electrode and the second electrode are covered with an insulating reflective layer, which can protect the electrode and improve the reliability and stability of the element.

如第5C圖所示,第5C圖為本發明實施例五提供的又一種發光二極體元件的俯視結構示意圖,在第5B圖所示實施方式的基礎上,發光二極體元件更包含:分離設置的第三金屬層53和第四金屬層54;第三金屬層53覆蓋第一電極35未被絕緣反射層34覆蓋的區域和部分絕緣反射層34;第四金屬層54覆蓋第二電極36未被絕緣反射層34覆蓋的區域和部分絕緣反射層34。 As shown in FIG. 5C, FIG. 5C is a schematic top view of a light emitting diode device according to Embodiment 5 of the present invention. On the basis of the embodiment shown in FIG. 5B, the LED component further includes: The third metal layer 53 and the fourth metal layer 54 are separately disposed; the third metal layer 53 covers a region of the first electrode 35 not covered by the insulating reflective layer 34 and a portion of the insulating reflective layer 34; and the fourth metal layer 54 covers the second electrode A region not covered by the insulating reflective layer 34 and a portion of the insulating reflective layer 34.

上述實施方式中,通過設置與第一電極電連接的第一金屬層,和與第二電極連接的第二金屬層,增大發光二極體元件與外界的電連接接觸面積,提高元件的電連接特性和可靠性。 In the above embodiment, by providing a first metal layer electrically connected to the first electrode and a second metal layer connected to the second electrode, the electrical connection contact area of the LED component with the outside is increased, and the electrical power of the component is improved. Connection characteristics and reliability.

本實施例提供的發光二極體元件中,第一型半導體層和第二型半導體層表面呈階梯結構,第一型半導體層和第二型半導體層的表面分別設置有第一電極和第二電極,絕緣反射層覆蓋露出的磊晶層表面,透明導電層設置在第二型半導體層和絕緣反射層之間,並且,第一電極和第二電極延伸設置有交替排布的金屬條,從而有效簡化了發光二極體元件的結構和製備流程,提高生產良率,並且有助於電流擴散,從而提高發光二極體元件的發光效率。 In the light emitting diode device provided in this embodiment, the surfaces of the first type semiconductor layer and the second type semiconductor layer have a stepped structure, and the surfaces of the first type semiconductor layer and the second type semiconductor layer are respectively provided with the first electrode and the second An electrode, an insulating reflective layer covering the exposed surface of the epitaxial layer, a transparent conductive layer disposed between the second type semiconductor layer and the insulating reflective layer, and the first electrode and the second electrode are extended with metal strips alternately arranged, thereby The structure and preparation process of the light-emitting diode element are effectively simplified, the production yield is improved, and current diffusion is facilitated, thereby improving the luminous efficiency of the light-emitting diode element.

最後應說明的是,以上各實施例僅用以說明本發明的技術手段,而非對其限制;儘管參照前述各實施例對本發 明進行了詳細的說明,本領域的普通技術人員應當理解:其依然可以對前述各實施例所記載的技術手段進行修改,或者對其中部分或者全部技術特徵進行等同替換;而這些修改或者替換,並不使相應技術手段的本質脫離本發明各實施例技術手段的範圍。 Finally, it should be noted that the above embodiments are merely illustrative of the technical means of the present invention, and are not limited thereto; although the present invention is described with reference to the foregoing embodiments. The detailed description is made by those skilled in the art, and it should be understood that the technical means described in the foregoing embodiments may be modified, or some or all of the technical features may be equivalently replaced; and these modifications or replacements, The nature of the corresponding technical means is not departed from the scope of the technical means of the embodiments of the invention.

11‧‧‧基板 11‧‧‧Substrate

12‧‧‧磊晶層 12‧‧‧ epitaxial layer

121‧‧‧第一型半導體層 121‧‧‧First type semiconductor layer

122‧‧‧第二型半導體層 122‧‧‧Second type semiconductor layer

13‧‧‧透明導電層 13‧‧‧Transparent conductive layer

14‧‧‧絕緣反射層 14‧‧‧Insulating reflective layer

15‧‧‧第一電極 15‧‧‧First electrode

16‧‧‧第二電極 16‧‧‧second electrode

Claims (10)

一種發光二極體元件,包含:一基板;一磊晶層,包含位於該基板上的一第一型半導體層和位於該第一型半導體層的一部分區域表面上的一第二型半導體層;一第一電極,位於該第一型半導體層的另一部分區域表面上;一第二電極,位於該第二型半導體層的部分區域表面上;一絕緣反射層,覆蓋該磊晶層的表面;以及一透明導電層,位於該第二型半導體層和該絕緣反射層之間。 A light emitting diode device comprising: a substrate; an epitaxial layer comprising a first type semiconductor layer on the substrate and a second type semiconductor layer on a surface of a portion of the first type semiconductor layer; a first electrode on a surface of another portion of the first type semiconductor layer; a second electrode on a surface of a portion of the second type semiconductor layer; an insulating reflective layer covering the surface of the epitaxial layer; And a transparent conductive layer between the second type semiconductor layer and the insulating reflective layer. 如請求項1所述之發光二極體元件,其中該透明導電層包含複數個分離設置的透明導電單元。 The light-emitting diode element of claim 1, wherein the transparent conductive layer comprises a plurality of transparent conductive units disposed separately. 如請求項1所述之發光二極體元件,其中該透明導電層設有複數個開孔,其中該透明導電層的開孔率不大於90%。 The light-emitting diode element according to claim 1, wherein the transparent conductive layer is provided with a plurality of openings, wherein the transparent conductive layer has an opening ratio of not more than 90%. 如請求項1-3中任一項所述之發光二極體元件,其中該透明導電層之材質包含鎳金化物(NiAu)、氧化銦錫(ITO)、氧化鋅(ZnO)、氧化鋁鋅(AZO)以及氮化鈦(TiN)中的任一種。 The light-emitting diode element according to any one of claims 1 to 3, wherein the material of the transparent conductive layer comprises nickel metal nitride (NiAu), indium tin oxide (ITO), zinc oxide (ZnO), aluminum zinc oxide. (AZO) and any of titanium nitride (TiN). 如請求項1-3中任一項所述之光二極體元件,其中該基板之材質包含藍寶石、碳化矽(SiC)、氮化鎵(GaN)以及氮化鋁(AlN)中的任一種。 The photodiode element according to any one of claims 1 to 3, wherein the material of the substrate comprises any one of sapphire, tantalum carbide (SiC), gallium nitride (GaN), and aluminum nitride (AlN). 如請求項1-3中任一項所述之發光二極體元件,其中該絕緣反射層為一分散式布拉格反射鏡(Distributed Bragg Reflectors,DBR)或一全反射鏡(Omni-Directional Reflector,ODR)。 The illuminating diode element according to any one of claims 1 to 3, wherein the insulating reflective layer is a Distributed Bragg Reflectors (DBR) or an Omni-Directional Reflector (ODR). ). 如請求項6所述之發光二極體元件,其中該分散式布拉格反射鏡之材質包含氧化鈦(TiO2)、氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鉭(Ta2O5)、氮化矽(Si3N4)、硫化鋅(ZnS)以及氟化鈣(CaF2)中的任意兩種。 The light-emitting diode element according to claim 6, wherein the material of the distributed Bragg mirror comprises titanium oxide (TiO 2 ), cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and tantalum oxide (Ta). 2 O 5 ), any of tantalum nitride (Si 3 N 4 ), zinc sulfide (ZnS), and calcium fluoride (CaF 2 ). 如請求項6所述之發光二極體元件,其中該全反射鏡包含一絕緣層和覆蓋該絕緣層的一金屬層,該金屬層之材質包含金(Au)、銀(Ag)、鋁(Al)、銅(Cu)、鈀(Pd)、銠(Rh)、鉻(Cr)以及鈦(Ti)中的至少一種。 The illuminating diode component of claim 6, wherein the total reflection mirror comprises an insulating layer and a metal layer covering the insulating layer, the metal layer material comprising gold (Au), silver (Ag), aluminum ( At least one of Al), copper (Cu), palladium (Pd), rhodium (Rh), chromium (Cr), and titanium (Ti). 如請求項1-3中任一項所述之發光二極體元件,其中該絕緣反射層之材質為矽膠與氧化鈦的一混合物。 The light-emitting diode element according to any one of claims 1 to 3, wherein the insulating reflective layer is made of a mixture of silicone and titanium oxide. 如請求項1-3中任一項所述之發光二極體元 件,其中該發光二極體元件更包含:一第一金屬層,覆蓋該第一電極和部分該絕緣反射層;以及一第二金屬層,與該第一金屬層分離設置,其中該第二金屬層覆蓋該第二電極和部分該絕緣反射層。 Illuminating diode element according to any one of claims 1-3 The light emitting diode component further includes: a first metal layer covering the first electrode and a portion of the insulating reflective layer; and a second metal layer disposed apart from the first metal layer, wherein the second A metal layer covers the second electrode and a portion of the insulating reflective layer.
TW105108147A 2016-01-21 2016-03-16 Light-emitting diode device TWI620343B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201610040528.0 2016-01-21
CN201610040528.0A CN106992234A (en) 2016-01-21 2016-01-21 LED component

Publications (2)

Publication Number Publication Date
TW201727937A true TW201727937A (en) 2017-08-01
TWI620343B TWI620343B (en) 2018-04-01

Family

ID=59413957

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105108147A TWI620343B (en) 2016-01-21 2016-03-16 Light-emitting diode device

Country Status (2)

Country Link
CN (1) CN106992234A (en)
TW (1) TWI620343B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808444A (en) * 2018-06-19 2018-11-13 扬州乾照光电有限公司 A kind of upside-down mounting VCSEL chips and production method
CN114373842B (en) * 2021-12-31 2023-12-08 厦门三安光电有限公司 Flip LED chip, lighting device and display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI373153B (en) * 2008-09-22 2012-09-21 Ind Tech Res Inst Light emitting diode, and package structure and manufacturing method therefor
TWM394564U (en) * 2010-07-02 2010-12-11 Harvatek Corp Wafer level LED package structure
CN103035787A (en) * 2011-09-29 2013-04-10 上海蓝光科技有限公司 High-luminance light-emitting diode (LED) chip and manufacture method thereof
TWI496323B (en) * 2012-04-09 2015-08-11 Delta Electronics Inc Light emitting module
JP5768759B2 (en) * 2012-04-27 2015-08-26 豊田合成株式会社 Semiconductor light emitting device
JP2014127565A (en) * 2012-12-26 2014-07-07 Toyoda Gosei Co Ltd Semiconductor light-emitting element
TWI499092B (en) * 2013-09-26 2015-09-01 Tekcore Co Ltd A kind of flip chip type light emitting diode structure

Also Published As

Publication number Publication date
CN106992234A (en) 2017-07-28
TWI620343B (en) 2018-04-01

Similar Documents

Publication Publication Date Title
US6914268B2 (en) LED device, flip-chip LED package and light reflecting structure
TWI570955B (en) Light-emitting device
US11908975B2 (en) Optoelectronic device and method for manufacturing the same
TWI681571B (en) Light emitting diode structure
EP2528116B1 (en) Semiconductor Light Emitting Device and Method of Manufacturing the Same
KR101890691B1 (en) Semiconductor light emitting element
US9209356B2 (en) Light-emitting element including a light-emitting stack with an uneven upper surface
TWI620343B (en) Light-emitting diode device
US10396248B2 (en) Semiconductor light emitting diode
TW201308672A (en) Optoelectronic device and method for manufacturing the same
US11296258B2 (en) Light-emitting diode
CN109873065B (en) Semiconductor light-emitting element
TW201719928A (en) Light-emitting element
TWI407603B (en) Package of light emitting device and fabrication thereof
US11367808B2 (en) Radiation-emitting semiconductor chip with overlapping contact layers
TWI478371B (en) Light-emitting device
JP6501845B2 (en) Light emitting element
TWI589025B (en) Light-emitting device
KR101974976B1 (en) Optoelectronic device and method for manufacturing the same
CN105322066B (en) Photoelectric element and manufacturing method thereof
TWI659545B (en) Light-emitting device
TWI758603B (en) Optoelectronic device and method for manufacturing the same
TWI659549B (en) Light-emitting device
JP6218386B2 (en) Light emitting element
JP2019114803A (en) Light-emitting element