TWI499092B - A kind of flip chip type light emitting diode structure - Google Patents
A kind of flip chip type light emitting diode structure Download PDFInfo
- Publication number
- TWI499092B TWI499092B TW102134725A TW102134725A TWI499092B TW I499092 B TWI499092 B TW I499092B TW 102134725 A TW102134725 A TW 102134725A TW 102134725 A TW102134725 A TW 102134725A TW I499092 B TWI499092 B TW I499092B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- electrode
- light emitting
- flip
- emitting diode
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Description
本創作有關覆晶式發光二極體,特別有關於提升光取出率的覆晶式發光二極體結構。 The present invention relates to a flip-chip type light-emitting diode, and particularly relates to a flip-chip type light-emitting diode structure for improving light extraction rate.
請參閱「圖1」所示,其為美國公告第US07554126號專利,其為一覆晶式發光二極體,其主要是包含一N型半導體層1與一P型半導體層2所構成的P-N接面,該N型半導體層1與該P型半導體層2分別透過一N極電極3與一P極電極4各連接一銲墊5(solder),且該N極電極3與該P極電極4分別透過一絕緣層6(insulation)的隔離而分開。該銲墊5為供與電路板7的固定電極8電性連接,以提供該覆晶式發光二極體所需的電壓。 Please refer to FIG. 1 which is a flip-chip light-emitting diode mainly comprising a PN composed of an N-type semiconductor layer 1 and a P-type semiconductor layer 2, as disclosed in US Pat. No. US07554126. The N-type semiconductor layer 1 and the P-type semiconductor layer 2 are respectively connected to a pad 5 through a N-electrode 3 and a P-electrode 4, and the N-electrode 3 and the P-electrode are connected to each other. 4 are separated by isolation of an insulating layer 6 respectively. The pad 5 is electrically connected to the fixed electrode 8 of the circuit board 7 to provide the voltage required for the flip-chip light-emitting diode.
如上所述的結構,其讓N極電極3與P極電極4設置於覆晶式發光二極體的同一面,因而可以解決金屬遮蔽所造成的光耗損,有效提高光取出率,而增加發光效能。 According to the configuration described above, the N-electrode electrode 3 and the P-pole electrode 4 are disposed on the same surface of the flip-chip light-emitting diode, thereby solving the light loss caused by the metal shielding, effectively improving the light extraction rate, and increasing the light emission. efficacy.
然而,上述結構僅能有效利用單一方向(朝上)的出光,因此於P-N接面下方,一般仍會設置一金屬反射層,該金屬反射層一般為採用銀,以利用銀的高反射率(約97%),來有效反射朝下的出光,然而要於P-N接面下方直接鍍上銀層,其需要使用高成本的濺鍍設備,且銀層易有剝落的問題,因而製造良率與成本皆不佳,難以滿足使用上的需要。 However, the above structure can only effectively utilize the light in a single direction (upward). Therefore, under the PN junction, a metal reflective layer is generally disposed. The metal reflective layer is generally made of silver to utilize the high reflectivity of silver ( About 97%), to effectively reflect the downward light, but to directly plate the silver layer under the PN junction, it requires the use of high-cost sputtering equipment, and the silver layer is prone to peeling problems, thus manufacturing yield and The cost is not good enough to meet the needs of use.
本創作之主要目的在於揭露一種低製造成本且可進一步增加光取出率,並具高良率的覆晶式發光二極體結構。 The main purpose of this creation is to disclose a flip-chip light-emitting diode structure with low manufacturing cost and further increased light extraction rate and high yield.
基於上述目的,本創作為一種覆晶式發光二極體結構,其包含一第一型半導體層、一發光層、一第二型半導體層、一透明導電層、一反射介電層、一金屬反射層、一隔離層與一電極層,其中該發光層堆疊於該第一型半導體層上,該第二型半導體層堆疊於該發光層上,該透明導電層堆疊於該第二型半導體層上,該反射介電層堆疊於該透明導電層上,該金屬反射層堆疊於該反射介電層上,且該反射介電層具有電性導通該金屬反射層與該透明導電層的一導通柱。 Based on the above object, the present invention is a flip-chip light emitting diode structure comprising a first type semiconductor layer, a light emitting layer, a second type semiconductor layer, a transparent conductive layer, a reflective dielectric layer, and a metal. a reflective layer, an isolation layer and an electrode layer, wherein the light emitting layer is stacked on the first type semiconductor layer, the second type semiconductor layer is stacked on the light emitting layer, and the transparent conductive layer is stacked on the second type semiconductor layer The reflective dielectric layer is stacked on the transparent conductive layer, the metal reflective layer is stacked on the reflective dielectric layer, and the reflective dielectric layer has a conductive conduction between the metal reflective layer and the transparent conductive layer. column.
而該隔離層堆疊於該金屬反射層上,且該隔離層上形成一第一通道與一第二通道,該第一通道貫穿該隔離層、該金屬反射層、該反射介電層、該透明導電層、該第二型半導體層、該發光層而接觸該第一型半導體層,該第二通道貫穿該隔離層而接觸該金屬反射層,該電極層則堆疊於該隔離層,該電極層具有分隔開來的一第一電極與一第二電極,且該第一電極伸入該第一通道與該第一型半導體層導通,該第二電極伸入該第二通道與該金屬反射層導通。 The isolation layer is stacked on the metal reflective layer, and a first channel and a second channel are formed on the isolation layer. The first channel penetrates the isolation layer, the metal reflective layer, the reflective dielectric layer, and the transparent layer. The conductive layer, the second semiconductor layer, and the light emitting layer contact the first type semiconductor layer, the second channel penetrates the isolation layer to contact the metal reflective layer, and the electrode layer is stacked on the isolation layer, the electrode layer Separating a first electrode and a second electrode, and the first electrode extends into the first channel to be electrically connected to the first type semiconductor layer, and the second electrode extends into the second channel and the metal reflection The layer is turned on.
據此,本創作結合該反射介電層與該金屬反射層使用,其所形成的複合反射結構最高可以達到99%的反射率,因而可有效反射該發光層的激發光,其製程容易無需使用濺鍍設備來鍍銀而成本低廉,且可避免銀易剝離的問題,可有效降低覆晶式發光二極體的製造成本,滿足製造上的需求。 Accordingly, the present invention is combined with the reflective dielectric layer and the metal reflective layer, and the composite reflective structure formed by the present invention can achieve a reflectance of up to 99%, thereby effectively reflecting the excitation light of the luminescent layer, and the process is easy to use without using the process. The sputtering device is silver-plated and low in cost, and can avoid the problem that the silver is easily peeled off, can effectively reduce the manufacturing cost of the flip-chip light-emitting diode, and meet the manufacturing requirements.
習知 Conventional knowledge
1‧‧‧N型半導體層 1‧‧‧N-type semiconductor layer
2‧‧‧P型半導體層 2‧‧‧P type semiconductor layer
3‧‧‧N極電極 3‧‧‧N pole electrode
4‧‧‧P極電極 4‧‧‧P pole electrode
5‧‧‧銲墊 5‧‧‧ solder pads
6‧‧‧絕緣層 6‧‧‧Insulation
7‧‧‧電路板 7‧‧‧ boards
8‧‧‧固定電極 8‧‧‧Fixed electrode
本創作 This creation
A、B、C‧‧‧曲線 A, B, C‧‧‧ curves
10‧‧‧第一型半導體層 10‧‧‧First type semiconductor layer
20‧‧‧發光層 20‧‧‧Lighting layer
30‧‧‧第二型半導體層 30‧‧‧Second type semiconductor layer
40‧‧‧透明導電層 40‧‧‧Transparent conductive layer
41‧‧‧穿孔 41‧‧‧Perforation
50‧‧‧反射介電層 50‧‧‧Reflective dielectric layer
51‧‧‧導通柱 51‧‧‧Connecting column
60‧‧‧金屬反射層 60‧‧‧Metal reflector
70‧‧‧隔離層 70‧‧‧Isolation
80‧‧‧第一通道 80‧‧‧First Passage
81‧‧‧第二通道 81‧‧‧second channel
90‧‧‧電極層 90‧‧‧electrode layer
91‧‧‧第一電極 91‧‧‧First electrode
92‧‧‧第二電極 92‧‧‧second electrode
圖1,為習知覆晶式發光二極體結構圖。 FIG. 1 is a structural diagram of a conventional flip-chip light-emitting diode.
圖2,為本創作結構圖。 Figure 2 is the structure diagram of the creation.
圖3,為本創作電極層鳥瞰圖。 Figure 3 is a bird's eye view of the electrode layer of the creation.
圖4,為本創作電極層另一實施方式鳥瞰圖。 4 is a bird's eye view of another embodiment of the electrode layer of the present invention.
圖5,為本創作電極層又一實施方式鳥瞰圖。 Fig. 5 is a bird's eye view of still another embodiment of the electrode layer of the present invention.
圖6A~圖6D,為本創作光學模擬數據曲線圖。 6A to 6D are graphs of the optical analog data of the present invention.
茲有關本創作的詳細內容及技術說明,現以實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本創作實施之限制。 The detailed description of the present invention and the technical description thereof are now described in the following examples, but it should be understood that these examples are for illustrative purposes only and are not to be construed as limiting.
請再參閱「圖2」所示,本創作包含一第一型半導體層10、一發光層20、一第二型半導體層30、一透明導電層40、一反射介電層50、一金屬反射層60、一隔離層70與一電極層90,其中該發光層20堆疊於該第一型半導體層10上,該第二型半導體層30堆疊於該發光層20上,該透明導電層40堆疊於該第二型半導體層30上,該反射介電層50堆疊於該透明導電層40上,該金屬反射層60堆疊於該反射介電層50上,且該反射介電層50具有電性導通該金屬反射層60與該透明導電層40的一導通柱51,其中該第一型半導體層10與該第二型半導體層30分別為N型半導體層與P型半導體層。 Please refer to FIG. 2 again. The present invention includes a first type semiconductor layer 10, a light emitting layer 20, a second type semiconductor layer 30, a transparent conductive layer 40, a reflective dielectric layer 50, and a metal reflection. a layer 60, an isolation layer 70 and an electrode layer 90, wherein the light-emitting layer 20 is stacked on the first-type semiconductor layer 10, and the second-type semiconductor layer 30 is stacked on the light-emitting layer 20, and the transparent conductive layer 40 is stacked. On the second type semiconductor layer 30, the reflective dielectric layer 50 is stacked on the transparent conductive layer 40. The metal reflective layer 60 is stacked on the reflective dielectric layer 50, and the reflective dielectric layer 50 has electrical properties. A conductive pillar 51 of the metal reflective layer 60 and the transparent conductive layer 40 is turned on, wherein the first semiconductor layer 10 and the second semiconductor layer 30 are an N-type semiconductor layer and a P-type semiconductor layer, respectively.
而該隔離層70堆疊於該金屬反射層60上,且該隔離層70上形成一第一通道80與一第二通道81,該第一通道80貫穿該隔離層70、該金屬反射層60、該反射介電層50、該透明導電層40、該第二型半導體層30、該發光層20而接觸該第一型半導體層10,該第二通道81貫穿該隔離層70而接觸該金屬反射層60,該電極層90則堆疊於 該隔離層70,該電極層90具有分隔開來的一第一電極91與一第二電極92,且該第一電極91伸入該第一通道80與該第一型半導體層10導通,該第二電極92伸入該第二通道81與該金屬反射層60導通。 The isolation layer 70 is stacked on the metal reflective layer 60, and a first channel 80 and a second channel 81 are formed on the isolation layer 70. The first channel 80 extends through the isolation layer 70 and the metal reflective layer 60. The reflective dielectric layer 50, the transparent conductive layer 40, the second semiconductor layer 30, and the light emitting layer 20 contact the first semiconductor layer 10, and the second channel 81 penetrates the isolation layer 70 to contact the metal reflection. Layer 60, the electrode layer 90 is stacked on In the isolation layer 70, the electrode layer 90 has a first electrode 91 and a second electrode 92 separated from each other, and the first electrode 91 extends into the first channel 80 to be electrically connected to the first type semiconductor layer 10. The second electrode 92 extends into the second channel 81 and is electrically connected to the metal reflective layer 60.
請再一併參閱「圖3」所示,為本創作之電極層90的鳥瞰圖形,其中該第一電極91的鳥瞰圖形可以為八角形,而該第二電極92的可以鳥瞰圖形為圓形,且位於該第一電極91之中心處。然而,並排排列的八角形,無法有效利用空間,請再一併參閱「圖4」所示,本創作該第一電極91的鳥瞰圖形亦可為蜂巢狀六角形,其可達最佳的效果。或者請參閱「圖5」所示,該第一電極91的鳥瞰圖形亦可為菱形,該第二電極92的鳥瞰圖形為圓形,且位於該第一電極91之中心處。 Please refer to FIG. 3 again, which is a bird's eye view of the electrode layer 90 of the present invention, wherein the bird's eye view of the first electrode 91 may be octagonal, and the second electrode 92 may have a bird's eye view. And located at the center of the first electrode 91. However, the octagonal arrays arranged side by side cannot effectively utilize the space. Please refer to FIG. 4 again. The bird's-eye view of the first electrode 91 can also be a honeycomb-shaped hexagon, which can achieve the best effect. . Or, as shown in FIG. 5 , the bird's-eye view of the first electrode 91 may also be a diamond shape, and the bird's-eye view of the second electrode 92 is circular and located at the center of the first electrode 91 .
又,該透明導電層40為具有些微吸光的特性,為了有效利用該發光層20的激發光,可以讓該透明導電層40具有複數穿孔41,該複數穿孔41供置入該反射介電層50,以減少該透明導電層40的吸光,又該透明導電層40一般為使用氧化銦錫(ITO),而其較佳的厚度為為30~200奈米,該透明導電層40主要是作為歐姆接觸用,以降低電性阻抗,並有效分散電流。 Moreover, the transparent conductive layer 40 has a characteristic of slightly absorbing light. In order to effectively utilize the excitation light of the luminescent layer 20, the transparent conductive layer 40 can have a plurality of through holes 41 for the reflective dielectric layer 50 to be placed. In order to reduce the light absorption of the transparent conductive layer 40, the transparent conductive layer 40 is generally made of indium tin oxide (ITO), and its preferred thickness is 30-200 nm. The transparent conductive layer 40 is mainly used as an ohm. Used in contact to reduce electrical impedance and effectively dissipate current.
而該反射介電層50亦可為複數層結構,且為選自二氧化鈦(TiO2)、二氧化矽(SiO2)與三氧化二鋁(Al2O3)的任一,交互堆積而成,其可形成布拉格(DBR)反射結構,而進一步增加反射效果,且該反射介電層50接觸該金屬反射層60的一層可以為三氧化二鋁,該三氧化二鋁具有良好的銀附著性,可滿足後續製程的鍍銀需求。 The reflective dielectric layer 50 can also be a plurality of layers, and is selected from the group consisting of titanium dioxide (TiO2), cerium oxide (SiO2) and aluminum oxide (Al2O3), which are alternately stacked and can form Prague. The (DBR) reflective structure further increases the reflection effect, and the layer of the reflective dielectric layer 50 contacting the metal reflective layer 60 may be aluminum oxide, and the aluminum oxide has good silver adhesion and can satisfy the subsequent process. Silver plating needs.
該金屬反射層60一般為選自銀(Ag)與鋁(Al)的任一種,唯若該反 射介電層50接觸該金屬反射層60的一層不是三氧化二鋁時,則該金屬反射層60選擇鋁,為較佳的選擇,可避免銀易剝離的問題。 The metal reflective layer 60 is generally selected from any one of silver (Ag) and aluminum (Al), if the reverse When the layer of the dielectric layer 50 contacting the metal reflective layer 60 is not aluminum oxide, the metal reflective layer 60 is made of aluminum, which is a preferred choice to avoid the problem of easy peeling of silver.
又請參閱「圖6A」、「圖6B」、「圖6C」與「圖6D」所示,為本創作的光學模擬結果,其中曲線A、曲線B與曲線C分別代表氮化鎵(GaN)-銀(Ag)、氮化鎵(GaN)-布拉格(DBR)-銀(Ag)與氮化鎵(GaN)-布拉格(DBR)-鋁(Al)等三種界面,入射光以0度、30度、60度與80度入射角入射後的反射率曲線圖,由圖可知在可見光區域(400-700nm),本案創作曲線B的反射率,幾乎皆高於習知曲線A,而曲線C(使用鋁),其部分角度雖然不及曲線A,然而這是因為銀與鋁本身特性使然。 Please also refer to "Fig. 6A", "Fig. 6B", "Fig. 6C" and "Fig. 6D" for the optical simulation results of the creation, in which curve A, curve B and curve C represent gallium nitride (GaN), respectively. - Silver (Ag), gallium nitride (GaN)-Prague (DBR)-silver (Ag) and gallium nitride (GaN)-Prague (DBR)-aluminum (Al) interface, the incident light at 0 degrees, 30 The reflectance curve after incident, 60 degree and 80 degree incident angle, it can be seen from the figure that in the visible light region (400-700nm), the reflectance of the creation curve B in this case is almost higher than the conventional curve A, and the curve C ( The use of aluminum), although its partial angle is not as good as curve A, however, this is due to the characteristics of silver and aluminum itself.
由上面的說明,可知該反射介電層50與該金屬反射層60所形成的複合反射結構可以達到極高的反射率,對於氮化鎵(GaN)來說,利用本創作的複合反射結構,在不同的入射角度(0 TO 90)與波長(400~700奈米)之下,其反射率幾乎可達99%(如曲線B),可超過單純使用銀作為反射層的反射率(97%)該隔離層70可以為選自二氧化矽(SiO2)、氮化矽(SiNx)、三氧化二鋁(Al2O3)、類金剛石碳(DLC;Diamond-like carbon)與多晶鑽石燒結體(PCD;Polycrystalline diamond)的任一種,其中選用多晶鑽石燒結體(PCD;Polycrystalline diamond)具有較佳的散熱能力,為較佳的選擇。 From the above description, it can be seen that the composite reflective structure formed by the reflective dielectric layer 50 and the metal reflective layer 60 can achieve extremely high reflectivity, and for gallium nitride (GaN), the composite reflective structure of the present invention is utilized. At different incident angles (0 TO 90) and wavelengths (400~700 nm), the reflectivity is almost 99% (as curve B), which can exceed the reflectivity of simply using silver as the reflective layer (97%). The isolation layer 70 may be selected from the group consisting of cerium oxide (SiO2), cerium nitride (SiNx), aluminum oxide (Al2O3), diamond-like carbon (DLC), and polycrystalline diamond sintered body (PCD). Any of the polycrystalline diamonds, in which a polycrystalline diamond sintered body (PCD) has a better heat dissipation capability, is a preferred choice.
如上所述,本創作的光反射結構為結合該反射介電層與該金屬反射層使用,因而其所形成的複合反射結構最高可以達到99%的反射率,換句話說,可有效反射該發光層的激發光,且其製程容易無需使用濺鍍設備來鍍銀,因而成本低廉,且可避免銀易剝離的問題,可有效降低覆晶式發光二極體的製造成本,滿足製造上的 需求。 As described above, the light reflecting structure of the present invention is used in combination with the reflective dielectric layer and the metal reflective layer, so that the composite reflective structure formed can achieve a reflectance of up to 99%, in other words, the light can be effectively reflected. The excitation light of the layer, and the process thereof is easy to use silver plating without using a sputtering device, so the cost is low, and the problem that the silver is easily peeled off can be avoided, and the manufacturing cost of the flip-chip light-emitting diode can be effectively reduced, and the manufacturing cost can be satisfied. demand.
惟上述僅為本創作之較佳實施例而已,並非用來限定本創作實施之範圍。即凡依本創作申請專利範圍所做的均等變化與修飾,皆為本創作專利範圍所涵蓋。 However, the foregoing is only a preferred embodiment of the present invention and is not intended to limit the scope of the present invention. That is, the equal changes and modifications made by the patent application scope of this creation are covered by the scope of the creation patent.
10‧‧‧第一型半導體層 10‧‧‧First type semiconductor layer
20‧‧‧發光層 20‧‧‧Lighting layer
30‧‧‧第二型半導體層 30‧‧‧Second type semiconductor layer
40‧‧‧透明導電層 40‧‧‧Transparent conductive layer
41‧‧‧穿孔 41‧‧‧Perforation
50‧‧‧反射介電層 50‧‧‧Reflective dielectric layer
51‧‧‧導通柱 51‧‧‧Connecting column
60‧‧‧金屬反射層 60‧‧‧Metal reflector
70‧‧‧隔離層 70‧‧‧Isolation
80‧‧‧第一通道 80‧‧‧First Passage
81‧‧‧第二通道 81‧‧‧second channel
90‧‧‧電極層 90‧‧‧electrode layer
91‧‧‧第一電極 91‧‧‧First electrode
92‧‧‧第二電極 92‧‧‧second electrode
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102134725A TWI499092B (en) | 2013-09-26 | 2013-09-26 | A kind of flip chip type light emitting diode structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102134725A TWI499092B (en) | 2013-09-26 | 2013-09-26 | A kind of flip chip type light emitting diode structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201513398A TW201513398A (en) | 2015-04-01 |
TWI499092B true TWI499092B (en) | 2015-09-01 |
Family
ID=53437260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102134725A TWI499092B (en) | 2013-09-26 | 2013-09-26 | A kind of flip chip type light emitting diode structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI499092B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9859483B2 (en) | 2015-02-17 | 2018-01-02 | Hsiu Chang HUANG | Flip-chip light emitting diode and method for manufacturing the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106992234A (en) * | 2016-01-21 | 2017-07-28 | 宏齐科技股份有限公司 | LED component |
CN113707036A (en) * | 2020-05-22 | 2021-11-26 | 北京芯海视界三维科技有限公司 | Light-emitting module, display screen and display |
CN113193090B (en) * | 2021-04-27 | 2023-06-06 | 錼创显示科技股份有限公司 | Micro light-emitting diode structure and micro light-emitting diode display panel using same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201108467A (en) * | 2009-08-27 | 2011-03-01 | Edison Opto Corp | Method for manufacturing light emitting diode assembly |
US8466478B2 (en) * | 2010-09-07 | 2013-06-18 | Chi Mei Lighting Technology Corporation | Light emitting device utilizing rod structure |
-
2013
- 2013-09-26 TW TW102134725A patent/TWI499092B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201108467A (en) * | 2009-08-27 | 2011-03-01 | Edison Opto Corp | Method for manufacturing light emitting diode assembly |
US8466478B2 (en) * | 2010-09-07 | 2013-06-18 | Chi Mei Lighting Technology Corporation | Light emitting device utilizing rod structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9859483B2 (en) | 2015-02-17 | 2018-01-02 | Hsiu Chang HUANG | Flip-chip light emitting diode and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TW201513398A (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI766356B (en) | Light emitting diode chip | |
TWI544658B (en) | Light emitting diode structure | |
TWI681571B (en) | Light emitting diode structure | |
TWI520378B (en) | Flip-chip light emitting diode and application thereof | |
WO2009119640A1 (en) | Semiconductor light emitting element and illuminating apparatus using the same | |
CN110649131B (en) | Flip chip type light emitting diode chip and light emitting device including the same | |
TWI473298B (en) | Semiconductor light emitting device and flip chip package device | |
US9048165B2 (en) | Light-emitting diode device | |
TWI499092B (en) | A kind of flip chip type light emitting diode structure | |
CN204668358U (en) | Light-emitting diode and light-emitting device | |
JP2011166146A (en) | Light-emitting diode chip having distributed bragg reflector and method of fabricating the same | |
US9548424B2 (en) | Light emitting diode | |
CN107068831A (en) | Light-emitting device | |
JP2014236038A (en) | Light-emitting device | |
KR20160065349A (en) | Nitride semiconductor light emitting chip and light emitting device having the same | |
CN104576874B (en) | A kind of crystal-coated light-emitting diodes structure | |
TWM521810U (en) | Light emitting device | |
TWI754617B (en) | Light-emitting element | |
KR20200114133A (en) | Flip chip type light emitting diode chip | |
CN203386789U (en) | Light-emitting element | |
TWI456800B (en) | Electrode coplanar light-emitting diode component, flip-chip light-emitting diode package structure and light-reflecting structure | |
CN111446338B (en) | Light emitting diode | |
CN102339923A (en) | Light emitting diode (LED) chip | |
JP2013038450A (en) | Semiconductor light-emitting element and light device using the same | |
JP2016122814A (en) | Substrate for light-emitting device and light-emitting device |