TW201725866A - Oscillation circuit device - Google Patents

Oscillation circuit device Download PDF

Info

Publication number
TW201725866A
TW201725866A TW105134463A TW105134463A TW201725866A TW 201725866 A TW201725866 A TW 201725866A TW 105134463 A TW105134463 A TW 105134463A TW 105134463 A TW105134463 A TW 105134463A TW 201725866 A TW201725866 A TW 201725866A
Authority
TW
Taiwan
Prior art keywords
circuit
current
constant current
switch
frequency
Prior art date
Application number
TW105134463A
Other languages
Chinese (zh)
Other versions
TWI678072B (en
Inventor
高田幸輔
Original Assignee
精工半導體有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精工半導體有限公司 filed Critical 精工半導體有限公司
Publication of TW201725866A publication Critical patent/TW201725866A/en
Application granted granted Critical
Publication of TWI678072B publication Critical patent/TWI678072B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/107Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth
    • H03L7/1075Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth by changing characteristics of the loop filter, e.g. changing the gain, changing the bandwidth

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

To provide an oscillation circuit device capable of when detecting an input reference signal and making a transition from a self-running state to a PLL operation, suppressing a fluctuation in the frequency of an output signal CLK to thereby obtain a smoothly-synchronized and stable output signal CLK. There is provided an oscillation circuit device which is adapted to configure a negative feedback circuit by a V/I conversion element to which one end of a filter circuit is connected, and a buffer circuit in a self-running state, and has a configuration which enables a capacitance in the filter circuit to be charged rapidly in such a manner that an output signal CLK can be started from a frequency equal to that in the self-running state immediately after a transition to a PLL operation.

Description

振盪電路裝置Oscillating circuit device

本發明是有關於一種包含相位同步電路(鎖相廻路(phase locked loop)電路,以下稱作PLL電路)的振盪電路裝置,所述相位同步電路對所輸入的基準信號除了進行反饋(feedback)控制以外,還控制相位。The present invention relates to an oscillation circuit device including a phase synchronization circuit (phase locked loop circuit, hereinafter referred to as a PLL circuit) that performs feedback in addition to the input reference signal. In addition to control, the phase is also controlled.

以往,已知有一種振盪電路裝置,其在未輸入來自外部的基準信號的情況下,於內部生成輸出振盪信號,而在從外部輸入有基準信號的情況下,檢測所述基準信號,並以PLL電路來控制相位而輸出振盪信號。Conventionally, there has been known an oscillation circuit device that generates an output oscillation signal internally when a reference signal from the outside is not input, and detects the reference signal when a reference signal is input from the outside, and The PLL circuit controls the phase to output an oscillating signal.

圖4中示出以往的振盪電路裝置400的電路圖。 以往的振盪電路裝置400具備電源端子101、接地端子102、定電流電路171、定電流電路172、P通道金屬氧化物半導體(P channel Metal Oxide Semiconductor,PMOS)電晶體(transistor)122、開關(switch)150、開關151、開關154、反相器(inverter)電路153、電流控制振盪器113、分頻電路114、相位頻率比較器111、電荷泵(charge pump)電路112、脈波(pulse)檢測電路110以及濾波器(filter)電路174。定電流電路171具備PMOS電晶體120及第1電流源140。定電流電路172具備PMOS電晶體121及N通道金屬氧化物半導體(N channel Metal Oxide Semiconductor,NMOS)電晶體131。濾波器電路174具備電容161。A circuit diagram of a conventional oscillation circuit device 400 is shown in FIG. The conventional oscillation circuit device 400 includes a power supply terminal 101, a ground terminal 102, a constant current circuit 171, a constant current circuit 172, a P channel metal oxide semiconductor (PMOS) transistor 122, and a switch. 150, switch 151, switch 154, inverter circuit 153, current control oscillator 113, frequency dividing circuit 114, phase frequency comparator 111, charge pump circuit 112, pulse detection Circuit 110 and filter circuit 174. The constant current circuit 171 includes a PMOS transistor 120 and a first current source 140. The constant current circuit 172 includes a PMOS transistor 121 and an N-channel metal oxide semiconductor (NMOS) transistor 131. The filter circuit 174 is provided with a capacitor 161.

如上所述的振盪電路裝置400具有以如下的動作來進行振盪信號切換的功能。The oscillation circuit device 400 as described above has a function of switching the oscillation signal in the following operation.

在未從外部向REF端子103輸入基準信號REF的第1模式(mode)下,脈波檢測電路110輸出LOW,開關150、開關154導通,開關151斷開。PMOS電晶體120、PMOS電晶體122經由開關150而構成電流鏡(current mirror)電路,因此各自的汲極(drain)電流I1與電流I3為成比例的電流。而且,電流I1等於第1電流源140的電流IB1,結果,電流控制振盪器113從CLK端子輸出與電流IB1成比例的頻率的輸出信號CLK。在無從外部向REF端子103輸入的基準信號REF,而獨立於外部來振盪的狀態(定義為自由振盪狀態)下,由於開關151斷開,因此定電流電路172不會對電流I1、電流I3造成影響。而且,由於PMOS電晶體120、PMOS電晶體121經由開關150而構成電流鏡電路,因此各自的汲極電流I1與電流I2為成比例的電流。此時,由於開關154導通,因此NMOS電晶體131的閘極(gate)與汲極連接,基於電流I2的電荷被充電至電容161。隨後,在NMOS電晶體131的閘極,產生由電流I2與NMOS電晶體131的特性所決定的閘極電壓,對電容的充電結束,並且電流I2流至NMOS電晶體131。In the first mode in which the reference signal REF is not input from the outside to the REF terminal 103, the pulse wave detecting circuit 110 outputs LOW, the switch 150 and the switch 154 are turned on, and the switch 151 is turned off. The PMOS transistor 120 and the PMOS transistor 122 form a current mirror circuit via the switch 150. Therefore, each of the drain current I1 and the current I3 is a current proportional to the current. Further, the current I1 is equal to the current IB1 of the first current source 140, and as a result, the current control oscillator 113 outputs an output signal CLK of a frequency proportional to the current IB1 from the CLK terminal. In the state in which there is no reference signal REF input from the outside to the REF terminal 103 and independent of the external oscillation (defined as the free oscillation state), since the switch 151 is turned off, the constant current circuit 172 does not cause the current I1 and the current I3. influences. Further, since the PMOS transistor 120 and the PMOS transistor 121 constitute a current mirror circuit via the switch 150, each of the drain current I1 and the current I2 is a current proportional to the current. At this time, since the switch 154 is turned on, the gate of the NMOS transistor 131 is connected to the drain, and the electric charge based on the current I2 is charged to the capacitor 161. Subsequently, at the gate of the NMOS transistor 131, a gate voltage determined by the characteristics of the current I2 and the NMOS transistor 131 is generated, the charging of the capacitor is ended, and the current I2 flows to the NMOS transistor 131.

當向REF端子103輸入基準信號REF而成為第2模式時,脈波檢測電路110檢測到基準信號REF而輸出HIGH,使開關150、開關154斷開,使開關151導通。此時,利用相位頻率比較器111、電荷泵電路112、濾波器電路174、定電流電路172、電流控制振盪器113及分頻電路114,用於調整基準信號REF的相位的PLL電路開始動作。作為V/I轉換元件發揮功能的NMOS電晶體131對電荷泵電路112的輸出電壓VCP進行V/I轉換而生成汲極電流,並供給至PMOS電晶體121。由於PMOS電晶體121、PMOS電晶體122構成電流鏡電路,因此各自的汲極電流I2與電流I3為成比例的電流。恆定狀態下的電流I2藉由普遍所知的PLL電路的負反饋動作而受到控制以使基準信號REF的頻率與分頻電路114的輸出即反饋信號FB_CLK的頻率變得相等。電流控制振盪器113從CLK端子輸出與電流I2成比例的頻率的輸出信號CLK。When the reference signal REF is input to the REF terminal 103 and the second mode is entered, the pulse wave detecting circuit 110 detects the reference signal REF and outputs HIGH, turns off the switch 150 and the switch 154, and turns on the switch 151. At this time, the phase frequency comparator 111, the charge pump circuit 112, the filter circuit 174, the constant current circuit 172, the current control oscillator 113, and the frequency dividing circuit 114, the PLL circuit for adjusting the phase of the reference signal REF starts operating. The NMOS transistor 131 functioning as a V/I conversion element V/I converts the output voltage VCP of the charge pump circuit 112 to generate a drain current, and supplies it to the PMOS transistor 121. Since the PMOS transistor 121 and the PMOS transistor 122 constitute a current mirror circuit, the respective drain current I2 is a current proportional to the current I3. The current I2 in the constant state is controlled by the negative feedback action of the commonly known PLL circuit to make the frequency of the reference signal REF equal to the frequency of the output of the frequency dividing circuit 114, that is, the feedback signal FB_CLK. The current control oscillator 113 outputs an output signal CLK of a frequency proportional to the current I2 from the CLK terminal.

專利文獻1中示出了一種技術,對PLL電路附加定電流電路,對濾波器電路的電容進行充電。 現有技術文獻 專利文獻Patent Document 1 shows a technique in which a constant current circuit is added to a PLL circuit to charge a capacitor of the filter circuit. Prior art literature

專利文獻1:美國專利第8174332號說明書Patent Document 1: US Patent No. 8174332

[發明所欲解決之課題] 然而,以往的振盪電路裝置400存在下述課題,即,由於電容161的充電是以定電流來進行,因此與電容值/定電流值成比例的充電時間變長。因此,在圖4的以往的振盪電路裝置400中,當在電容的充電過程中輸入基準信號REF而從第1模式切換至第2模式時,輸出信號CLK有時會低於所需的頻率範圍,而存在接收所述信號的外部機器誤動作的危險性。[Problems to be Solved by the Invention] However, the conventional oscillation circuit device 400 has a problem that since the charging of the capacitor 161 is performed by a constant current, the charging time proportional to the capacitance value/constant current value becomes long. . Therefore, in the conventional oscillation circuit device 400 of FIG. 4, when the reference signal REF is input during the charging of the capacitor and the mode is switched from the first mode to the second mode, the output signal CLK may sometimes be lower than the desired frequency range. There is a danger that an external machine receiving the signal may malfunction.

圖5(a)至圖5(d)是用於對以往的振盪電路裝置400中的狀態變化進行說明的時序圖。 圖5(a)是對電源端子101施加的電壓VDD的時間推移,圖5(b)是電荷泵電路112的輸出電壓VCP的時間推移,圖5(c)是對REF端子103輸入的基準信號REF的頻率的時間推移,圖5(d)是從CLK端子獲得的輸出信號CLK的頻率的時間推移。5(a) to 5(d) are timing charts for explaining a state change in the conventional oscillation circuit device 400. 5(a) is a time transition of the voltage VDD applied to the power supply terminal 101, FIG. 5(b) is a time transition of the output voltage VCP of the charge pump circuit 112, and FIG. 5(c) is a reference signal input to the REF terminal 103. The time lapse of the frequency of REF, FIG. 5(d) is the time lapse of the frequency of the output signal CLK obtained from the CLK terminal.

如圖5(a)所示,當在時間t0施加電壓VDD時,圖5(b)的電壓VCP因第1模式的動作而從0 V呈直線線形地上升。隨後,如圖5(c)般,當在時間t1輸入基準信號REF時,振盪電路裝置轉變為第2模式。此時的電壓VCP為過渡狀態,因此從CLK端子獲得的輸出信號CLK將以由過渡狀態的電壓VCP的值所決定的頻率而輸出,結果,如圖5(d)所見,CLK端子的輸出信號CLK的頻率暫時急遽下降。隨後,因PLL動作而電壓VCP上升,輸出信號CLK收斂為與基準信號REF的頻率相等的頻率。As shown in FIG. 5(a), when the voltage VDD is applied at time t0, the voltage VCP of FIG. 5(b) rises linearly from 0 V due to the operation of the first mode. Subsequently, as shown in FIG. 5(c), when the reference signal REF is input at time t1, the oscillation circuit device shifts to the second mode. At this time, the voltage VCP is in a transient state, so the output signal CLK obtained from the CLK terminal is output at a frequency determined by the value of the transient state voltage VCP, and as a result, as seen in FIG. 5(d), the output signal of the CLK terminal The frequency of CLK temporarily drops sharply. Subsequently, the voltage VCP rises due to the PLL operation, and the output signal CLK converges to a frequency equal to the frequency of the reference signal REF.

本發明是鑒於所述課題而完成,提供一種振盪電路裝置,當檢測出所輸入的基準信號REF而從自由振盪狀態轉變為PLL動作時,可抑制輸出信號CLK的頻率變動而順利地同步。 [解決課題之手段]The present invention has been made in view of the above problems, and provides an oscillation circuit device capable of suppressing a frequency fluctuation of an output signal CLK and smoothly synchronizing when a change from a free oscillation state to a PLL operation is detected when the input reference signal REF is detected. [Means for solving the problem]

為了解決以往的課題,本發明的振盪電路裝置採用如下所述的構成。 本發明採用下述構成,即,在自由振盪狀態下,由連接濾波器電路的一端的V/I轉換元件與緩衝器電路構成負反饋電路,從而可對濾波器電路內的電容進行急速充電,以使得在剛剛轉變為PLL動作之後,輸出信號CLK便可從與自由振盪狀態下的頻率相等的頻率開始。 [發明的效果]In order to solve the conventional problems, the oscillation circuit device of the present invention has the following configuration. The present invention adopts a configuration in which, in a free-running state, a V/I conversion element connected to one end of the filter circuit and a buffer circuit form a negative feedback circuit, so that the capacitance in the filter circuit can be rapidly charged. So that after the transition to the PLL action, the output signal CLK can start from a frequency equal to the frequency in the free-running state. [Effects of the Invention]

本發明的振盪電路裝置可縮短對自由振盪狀態下的濾波器電路內的電容的充電時間,因此可抑制剛剛從自由振盪狀態切換為PLL動作之後的輸出信號的頻率變動。Since the oscillation circuit device of the present invention can shorten the charging time of the capacitance in the filter circuit in the free oscillation state, it is possible to suppress the frequency variation of the output signal immediately after switching from the free oscillation state to the PLL operation.

以下,參照圖式來說明本發明的實施形態。 圖1是本實施形態的振盪電路裝置100的電路圖。 本實施形態的振盪電路裝置100具備電源端子101、接地端子102、REF端子103、CLK端子104、定電流電路171、定電流電路172、PMOS電晶體122、開關150及開關152、反相器電路153、電流控制振盪器113、分頻電路114、相位頻率比較器111、電荷泵電路112、脈波檢測電路110、濾波器電路174以及緩衝器電路175。定電流電路171具備PMOS電晶體120及第1電流源140。定電流電路172具備PMOS電晶體121、開關151及NMOS電晶體131。濾波器電路174具備電容161。緩衝器電路175具備NMOS電晶體130及第2電流源141。Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig. 1 is a circuit diagram of an oscillation circuit device 100 of the present embodiment. The oscillation circuit device 100 of the present embodiment includes a power supply terminal 101, a ground terminal 102, a REF terminal 103, a CLK terminal 104, a constant current circuit 171, a constant current circuit 172, a PMOS transistor 122, a switch 150 and a switch 152, and an inverter circuit. 153. A current control oscillator 113, a frequency dividing circuit 114, a phase frequency comparator 111, a charge pump circuit 112, a pulse wave detecting circuit 110, a filter circuit 174, and a buffer circuit 175. The constant current circuit 171 includes a PMOS transistor 120 and a first current source 140. The constant current circuit 172 includes a PMOS transistor 121, a switch 151, and an NMOS transistor 131. The filter circuit 174 is provided with a capacitor 161. The snubber circuit 175 includes an NMOS transistor 130 and a second current source 141.

脈波檢測器110檢測是否向REF端子103輸入有基準信號REF,並輸出信號DET。電流控制振盪器113輸出與所輸入的振盪用電流成比例的振盪頻率的信號。相位頻率比較器111對基準信號REF與反饋信號FB_CLK進行比較,並輸出其結果。電荷泵電路112基於相位頻率比較器111的輸出信號來輸出電壓VCP。緩衝器電路175使電容161更快地充電,即,將電壓VCP更快地提升至所需的值並使其穩定。相位頻率比較器111、電荷泵電路112、濾波器電路174、緩衝器電路175、定電流電路172、電流控制振盪器113及分頻電路114構成PLL電路,所述PLL電路用於對輸入至REF端子103的基準信號REF的相位進行調整。The pulse wave detector 110 detects whether or not the reference signal REF is input to the REF terminal 103, and outputs the signal DET. The current control oscillator 113 outputs a signal of an oscillation frequency proportional to the input oscillation current. The phase frequency comparator 111 compares the reference signal REF with the feedback signal FB_CLK and outputs the result. The charge pump circuit 112 outputs a voltage VCP based on an output signal of the phase frequency comparator 111. Buffer circuit 175 causes capacitor 161 to charge faster, i.e., boosts voltage VCP to a desired value and stabilizes it. The phase frequency comparator 111, the charge pump circuit 112, the filter circuit 174, the buffer circuit 175, the constant current circuit 172, the current control oscillator 113, and the frequency dividing circuit 114 constitute a PLL circuit for inputting a pair to REF The phase of the reference signal REF of the terminal 103 is adjusted.

接下來,對本實施形態的振盪電路裝置100的連接進行說明。 脈波檢測電路110的輸入端子連接於REF端子103,輸出端子連接於開關150、開關152的控制端子與反相器電路153的輸入端子。反相器電路153的輸出端子連接於開關151的控制端子。相位頻率比較器111的第1輸入端子連接於REF端子103,第2輸入端子連接於分頻電路114的輸出端子,輸出端子連接於電荷泵電路112的輸入端子。構成濾波器電路174的電容161的一端連接於電荷泵電路112的輸出端子,另一端連接於接地端子102。NMOS電晶體130的閘極連接於NMOS電晶體131的汲極與PMOS電晶體121的汲極,汲極連接於電源端子101,源極連接於開關152的一端與第2電流源141的一端。第2電流源141的另一端連接於接地端子102。開關152的另一端連接於電荷泵電路112的輸出端子。NMOS電晶體131的閘極連接於電荷泵電路112的輸出端子,源極連接於接地端子102。PMOS電晶體120的源極連接於電源端子101,閘極與汲極連接於開關150的一端與第1電流源140的一端。第1電流源140的另一端連接於接地端子102。PMOS電晶體121的源極連接於電源端子101,閘極連接於開關150的另一端。開關151的一端連接於PMOS電晶體121的閘極,另一端連接於PMOS電晶體121的汲極。PMOS電晶體122的源極連接於電源端子101,閘極連接於PMOS電晶體121的閘極,汲極連接於電流控制振盪器113的輸入端子。電流控制振盪器113的輸出端子連接於分頻電路114的輸入端子。Next, the connection of the oscillation circuit device 100 of the present embodiment will be described. The input terminal of the pulse wave detecting circuit 110 is connected to the REF terminal 103, and the output terminal is connected to the switch 150, the control terminal of the switch 152, and the input terminal of the inverter circuit 153. An output terminal of the inverter circuit 153 is connected to a control terminal of the switch 151. The first input terminal of the phase frequency comparator 111 is connected to the REF terminal 103, the second input terminal is connected to the output terminal of the frequency dividing circuit 114, and the output terminal is connected to the input terminal of the charge pump circuit 112. One end of the capacitor 161 constituting the filter circuit 174 is connected to the output terminal of the charge pump circuit 112, and the other end is connected to the ground terminal 102. The gate of the NMOS transistor 130 is connected to the drain of the NMOS transistor 131 and the drain of the PMOS transistor 121, the drain is connected to the power supply terminal 101, and the source is connected to one end of the switch 152 and one end of the second current source 141. The other end of the second current source 141 is connected to the ground terminal 102. The other end of the switch 152 is connected to the output terminal of the charge pump circuit 112. The gate of the NMOS transistor 131 is connected to the output terminal of the charge pump circuit 112, and the source is connected to the ground terminal 102. The source of the PMOS transistor 120 is connected to the power supply terminal 101, and the gate and the drain are connected to one end of the switch 150 and one end of the first current source 140. The other end of the first current source 140 is connected to the ground terminal 102. The source of the PMOS transistor 121 is connected to the power supply terminal 101, and the gate is connected to the other end of the switch 150. One end of the switch 151 is connected to the gate of the PMOS transistor 121, and the other end is connected to the drain of the PMOS transistor 121. The source of the PMOS transistor 122 is connected to the power supply terminal 101, the gate is connected to the gate of the PMOS transistor 121, and the drain is connected to the input terminal of the current controlled oscillator 113. An output terminal of the current control oscillator 113 is connected to an input terminal of the frequency dividing circuit 114.

接下來,對本實施形態的振盪電路裝置100的動作進行說明。 首先,對未向REF端子103輸入基準信號REF的狀態的第1模式進行說明。Next, the operation of the oscillation circuit device 100 of the present embodiment will be described. First, a first mode in which the reference signal REF is not input to the REF terminal 103 will be described.

在第1模式下,脈波檢測電路110輸出表示未檢測到的信號DET,開關150、開關152導通,開關151斷開。定電流電路171使第一定電流源140的定電流IB1流動。由於PMOS電晶體122與PMOS電晶體120構成電流鏡電路,因此各自的汲極電流I1與電流I3為成比例的電流。例如,在PMOS電晶體120與PMOS電晶體122的尺寸比為1:1的情況下,電流I1與電流I3相等。電流控制振盪器113從CLK端子輸出與所輸入的電流I3即電流IB1成比例的頻率的輸出信號CLK。即,輸出信號CLK的頻率是由電流IB1的電流值或者PMOS電晶體120、PMOS電晶體122的尺寸比來任意決定。In the first mode, the pulse wave detecting circuit 110 outputs a signal DET indicating that it is not detected, the switch 150 and the switch 152 are turned on, and the switch 151 is turned off. The constant current circuit 171 causes the constant current IB1 of the first constant current source 140 to flow. Since the PMOS transistor 122 and the PMOS transistor 120 constitute a current mirror circuit, the respective drain current I1 is proportional to the current I3. For example, in the case where the size ratio of the PMOS transistor 120 to the PMOS transistor 122 is 1:1, the current I1 is equal to the current I3. The current control oscillator 113 outputs an output signal CLK of a frequency proportional to the input current I3, that is, the current IB1, from the CLK terminal. That is, the frequency of the output signal CLK is arbitrarily determined by the current value of the current IB1 or the size ratio of the PMOS transistor 120 and the PMOS transistor 122.

而且,由於PMOS電晶體121與PMOS電晶體120構成電流鏡電路,因此各自的汲極電流I1與電流I2為成比例的電流。例如,在PMOS電晶體120與PMOS電晶體121的尺寸比為1:1的情況下,電流I1與電流I2相等。藉由該電流I2,NMOS電晶體130的閘極電壓VX上升,NMOS電晶體130導通。並且,藉由NMOS電晶體130的源極電流,電容161受到充電而電壓VCP上升。藉此,當利用閘極接收電壓VCP的NMOS電晶體131導通時,定電流電路172與緩衝器電路175構成負反饋電路。因此,成為NMOS電晶體131的閘極電壓的電壓VCP急遽被提升,以使NMOS電晶體131的汲極電流與電流I2變得相等。在隨後的恆定狀態下,緩衝器電路175的NMOS電晶體130的汲極電流與第二定電流源141的定電流IB2相等,第二定電流源141作為下拉元件進行動作。Moreover, since the PMOS transistor 121 and the PMOS transistor 120 constitute a current mirror circuit, the respective drain current I1 and the current I2 are proportional currents. For example, in the case where the size ratio of the PMOS transistor 120 to the PMOS transistor 121 is 1:1, the current I1 is equal to the current I2. By the current I2, the gate voltage VX of the NMOS transistor 130 rises, and the NMOS transistor 130 is turned on. Further, by the source current of the NMOS transistor 130, the capacitor 161 is charged and the voltage VCP rises. Thereby, when the NMOS transistor 131 using the gate receiving voltage VCP is turned on, the constant current circuit 172 and the buffer circuit 175 constitute a negative feedback circuit. Therefore, the voltage VCP which becomes the gate voltage of the NMOS transistor 131 is rapidly increased so that the drain current of the NMOS transistor 131 becomes equal to the current I2. In the subsequent constant state, the drain current of the NMOS transistor 130 of the buffer circuit 175 is equal to the constant current IB2 of the second constant current source 141, and the second constant current source 141 operates as a pull-down element.

如以上所說明般,本實施形態的振盪電路裝置100具備緩衝器電路175,因此在第1模式下,可更快地對電容161進行充電,即,可將電壓VCP更快地提升至所需的電壓值,因此可迅速使輸出信號CLK的頻率穩定。As described above, since the oscillating circuit device 100 of the present embodiment includes the snubber circuit 175, the capacitor 161 can be charged faster in the first mode, that is, the voltage VCP can be quickly increased to a desired level. The voltage value can therefore quickly stabilize the frequency of the output signal CLK.

接下來,對向REF端子103輸入有基準信號REF的狀態的第2模式進行說明。 當從第1模式變為第2模式時,脈波檢測電路110輸出表示檢測到的信號DET,使開關150、開關152斷開,並經由反相器電路153來使開關151導通。由於開關150斷開,因此定電流電路171從振盪電路裝置100分離。由於開關151斷開,因此緩衝器電路175從濾波器電路174分離。並且,由於開關151導通,因此PMOS電晶體121與PMOS電晶體122構成電流鏡電路,各自的汲極電流I2與電流I3為成比例的電流。例如,在PMOS電晶體121與PMOS電晶體122的尺寸比為1:1的情況下,電流I2與電流I3相等。Next, a second mode in which the reference signal REF is input to the REF terminal 103 will be described. When changing from the first mode to the second mode, the pulse wave detecting circuit 110 outputs a signal DET indicating that the switch 150 and the switch 152 are turned off, and turns on the switch 151 via the inverter circuit 153. Since the switch 150 is turned off, the constant current circuit 171 is separated from the oscillation circuit device 100. Since the switch 151 is turned off, the buffer circuit 175 is separated from the filter circuit 174. Moreover, since the switch 151 is turned on, the PMOS transistor 121 and the PMOS transistor 122 constitute a current mirror circuit, and each of the drain current I2 is a current proportional to the current I3. For example, in the case where the size ratio of the PMOS transistor 121 to the PMOS transistor 122 is 1:1, the current I2 is equal to the current I3.

作為V/I轉換元件發揮功能的NMOS電晶體131對基於基準信號REF的振盪頻率而輸出的電荷泵電路112的輸出電壓VCP進行V/I轉換而生成汲極電流,並供給至PMOS電晶體121。恆定狀態下的電流I2藉由PLL電路的負反饋動作而受到控制,以使基準信號REF的頻率與分頻電路114的輸出即反饋信號FB_CLK的頻率變得相等。更具體而言,由相位頻率比較器111來對基準信號REF與反饋信號FB_CLK進行比較,從電荷泵電路112及濾波器電路174輸出電壓VCP,由NMOS電晶體131生成電流I2。因而,電流控制振盪器113從CLK端子輸出基於電壓VCP的頻率的輸出信號CLK。由於開關150斷開,因此定電流電路171不會對電流I2、電流I3造成影響。The NMOS transistor 131 functioning as a V/I conversion element V/I converts the output voltage VCP of the charge pump circuit 112 output based on the oscillation frequency of the reference signal REF to generate a drain current, and supplies it to the PMOS transistor 121. . The current I2 in the constant state is controlled by the negative feedback action of the PLL circuit so that the frequency of the reference signal REF and the output of the frequency dividing circuit 114, that is, the frequency of the feedback signal FB_CLK, become equal. More specifically, the phase frequency comparator 111 compares the reference signal REF with the feedback signal FB_CLK, outputs a voltage VCP from the charge pump circuit 112 and the filter circuit 174, and generates a current I2 from the NMOS transistor 131. Thus, the current control oscillator 113 outputs an output signal CLK based on the frequency of the voltage VCP from the CLK terminal. Since the switch 150 is turned off, the constant current circuit 171 does not affect the current I2 and the current I3.

圖2(a)至圖2(d)是用於對本實施形態的振盪電路裝置100中的狀態變化進行說明的時序圖,使用該圖2(a)至圖2(d)來說明本實施形態的效果。 圖2(a)是對電源端子101施加的電壓VDD的時間推移,圖2(b)是電荷泵電路112的輸出電壓VCP的時間推移,圖2(c)是對REF端子103輸入的基準信號REF的頻率的時間推移,圖2(d)是從CLK端子獲得的輸出信號CLK的頻率的時間推移。2(a) to 2(d) are timing charts for explaining a state change in the oscillation circuit device 100 of the present embodiment, and the present embodiment will be described using Figs. 2(a) to 2(d). Effect. 2(a) is a time transition of the voltage VDD applied to the power supply terminal 101, FIG. 2(b) is a time transition of the output voltage VCP of the charge pump circuit 112, and FIG. 2(c) is a reference signal input to the REF terminal 103. The time lapse of the frequency of REF, Fig. 2(d) is the time lapse of the frequency of the output signal CLK obtained from the CLK terminal.

如圖2(a)所示,當在時間t0施加電壓VDD時,由於未向REF端子103輸入基準信號REF,因此振盪電路裝置100以第1模式進行動作,藉由定電流電路172與緩衝器電路175的負反饋動作,輸出電壓VCP從0 V開始急速上升。As shown in FIG. 2(a), when the voltage VDD is applied at time t0, since the reference signal REF is not input to the REF terminal 103, the oscillation circuit device 100 operates in the first mode by the constant current circuit 172 and the buffer. The negative feedback action of circuit 175 causes the output voltage VCP to rise rapidly from 0 V.

隨後,如圖2(c)般,當在時間t1輸入基準信號REF時,振盪電路裝置100轉變為第2模式。此時,電流控制振盪器113是藉由與已達到恆定值的電壓VCP相應的電流來動作,因此CLK端子的輸出信號CLK不會發生急遽的頻率下降。隨後,藉由PLL動作,輸出信號CLK的頻率收斂為與基準信號REF相等的頻率。Subsequently, as shown in FIG. 2(c), when the reference signal REF is input at time t1, the oscillation circuit device 100 shifts to the second mode. At this time, since the current control oscillator 113 operates by a current corresponding to the voltage VCP that has reached a constant value, the output signal CLK of the CLK terminal does not cause a sharp frequency drop. Subsequently, by the PLL action, the frequency of the output signal CLK converges to a frequency equal to the reference signal REF.

如以上所說明般,本實施形態的振盪電路裝置100採用下述構成,即,藉由利用定電流電路172來進行負反饋動作的緩衝器電路175的輸出,來提升濾波器電路174內的電容161的電壓,因此可縮短對電容161的充電期間,可抑制從自由振盪狀態剛剛切換為PLL動作之後的輸出頻率變動。As described above, the oscillation circuit device 100 of the present embodiment has a configuration in which the capacitance of the filter circuit 174 is increased by the output of the buffer circuit 175 that performs the negative feedback operation by the constant current circuit 172. Since the voltage of 161 is shortened, the charging period of the capacitor 161 can be shortened, and the output frequency fluctuation immediately after switching from the free oscillation state to the PLL operation can be suppressed.

圖3是表示本實施形態的振盪電路裝置的另一構成的電路圖。 振盪電路裝置300是在濾波器電路174中具備電阻160的構成。 電阻160的一端連接於電荷泵電路112的輸出端子,另一端連接於電容161與開關152的另一端。Fig. 3 is a circuit diagram showing another configuration of the oscillation circuit device of the embodiment. The oscillation circuit device 300 has a configuration in which the filter circuit 174 includes a resistor 160. One end of the resistor 160 is connected to the output terminal of the charge pump circuit 112, and the other end is connected to the other end of the capacitor 161 and the switch 152.

如此,作為PLL電路的相位補償,有時在濾波器電路174中設置電阻160。在此種濾波器電路174中,藉由將緩衝器電路175的輸出端子經由開關152而連接於電容161與電阻160之間,從而亦可獲得與所述同樣的效果。As described above, as the phase compensation of the PLL circuit, the resistor 160 may be provided in the filter circuit 174. In the filter circuit 174, the output terminal of the buffer circuit 175 is connected between the capacitor 161 and the resistor 160 via the switch 152, and the same effect as described above can be obtained.

如以上所說明般,本實施形態的振盪電路裝置可藉由相位補償電阻160的插入來改善頻率特性,並且藉由將緩衝器電路175的輸出端子連接於電容161,從而亦可容易地兼顧電容161的充電時間的縮短。藉此,可抑制從自由振盪狀態剛剛切換為PLL動作之後的輸出頻率的急遽下降,可防止連接於CLK端子的外部機器的誤動作。 另外,相對於該電容161,並不限於連接電阻,在連接其他元件的任何電路構成中,皆可獲得同樣的效果。As described above, the oscillation circuit device of the present embodiment can improve the frequency characteristics by the insertion of the phase compensation resistor 160, and can easily balance the capacitance by connecting the output terminal of the buffer circuit 175 to the capacitor 161. The charging time of 161 is shortened. Thereby, it is possible to suppress a sudden drop in the output frequency immediately after switching from the free oscillation state to the PLL operation, and it is possible to prevent malfunction of an external device connected to the CLK terminal. Further, the capacitance 161 is not limited to the connection resistance, and the same effect can be obtained in any circuit configuration in which other elements are connected.

而且,當然,可將本發明的振盪電路裝置適用於使自由振盪狀態與從外部輸入的基準信號REF進行切換而動作的各種電子機器中。例如,在欲採用使直流/直流(Direct Current/Direct Current,DC/DC)轉換器(converter)的振盪頻率從外部自由變化的構成的情況下,藉由採用本發明的振盪電路裝置,可實現振盪信號的順利轉變,從而可提供穩定動作的DC/DC轉換器。Further, of course, the oscillation circuit device of the present invention can be applied to various electronic devices that operate in a free-oscillation state and a reference signal REF input from the outside. For example, in a case where a configuration in which an oscillation frequency of a direct current/direct current (DC/DC) converter is freely changed from the outside is adopted, by using the oscillation circuit device of the present invention, A smooth transition of the oscillating signal provides a stable action DC/DC converter.

100、300‧‧‧振盪電路裝置
101‧‧‧電源端子
102‧‧‧接地端子
103‧‧‧REF端子
104‧‧‧CLK端子
110‧‧‧脈波檢測電路
111‧‧‧相位頻率比較器
112‧‧‧電荷泵電路
113‧‧‧電流控制振盪器
114‧‧‧分頻電路
120、121、122‧‧‧PMOS電晶體
130、131‧‧‧NMOS電晶體
140、141‧‧‧電流源
150、151、152、154‧‧‧開關
153‧‧‧反相器電路
160‧‧‧電阻
161‧‧‧電容
171、172‧‧‧定電流電路
174‧‧‧濾波器電路
175‧‧‧緩衝器電路
CLK‧‧‧輸出信號
DET‧‧‧信號
FB_CLK‧‧‧反饋信號
I1、I2、I3‧‧‧電流
IB1、IB2‧‧‧定電流
REF‧‧‧基準信號
t0、t1‧‧‧時間
VCP、VDD‧‧‧電壓
VX‧‧‧閘極電壓
100,300‧‧‧Oscillation circuit device
101‧‧‧Power terminal
102‧‧‧ Grounding terminal
103‧‧‧REF terminal
104‧‧‧CLK terminal
110‧‧‧ Pulse detection circuit
111‧‧‧ phase frequency comparator
112‧‧‧Charge pump circuit
113‧‧‧ Current Controlled Oscillator
114‧‧‧dividing circuit
120, 121, 122‧‧‧ PMOS transistors
130, 131‧‧‧ NMOS transistor
140, 141‧‧‧ current source
150, 151, 152, 154‧ ‧ switch
153‧‧‧Inverter circuit
160‧‧‧resistance
161‧‧‧ Capacitance
171, 172‧‧‧ constant current circuit
174‧‧‧Filter circuit
175‧‧‧buffer circuit
CLK‧‧‧ output signal
DET‧‧ signal
FB_CLK‧‧‧ feedback signal
I1, I2, I3‧‧‧ current
IB1, IB2‧‧‧ constant current
REF‧‧‧ reference signal
T0, t1‧‧‧ time
VCP, VDD‧‧‧ voltage
VX‧‧‧ gate voltage

圖1是表示本實施形態的振盪電路裝置的構成的電路圖。 圖2(a)至圖2(d)是表示本實施形態的振盪電路裝置中的輸出信號的時序圖。 圖3是表示本實施形態的振盪電路裝置的另一構成的電路圖。 圖4是表示以往的振盪電路裝置的構成的電路圖。 圖5(a)至圖5(d)是表示以往的振盪電路裝置中的輸出信號的時序圖。Fig. 1 is a circuit diagram showing a configuration of an oscillation circuit device of the embodiment. 2(a) to 2(d) are timing charts showing output signals in the oscillation circuit device of the embodiment. Fig. 3 is a circuit diagram showing another configuration of the oscillation circuit device of the embodiment. 4 is a circuit diagram showing a configuration of a conventional oscillation circuit device. 5(a) to 5(d) are timing charts showing output signals in the conventional oscillation circuit device.

100‧‧‧振盪電路裝置 100‧‧‧Oscillation circuit device

101‧‧‧電源端子 101‧‧‧Power terminal

102‧‧‧接地端子 102‧‧‧ Grounding terminal

103‧‧‧REF端子 103‧‧‧REF terminal

104‧‧‧CLK端子 104‧‧‧CLK terminal

110‧‧‧脈波檢測電路 110‧‧‧ Pulse detection circuit

111‧‧‧相位頻率比較器 111‧‧‧ phase frequency comparator

112‧‧‧電荷泵電路 112‧‧‧Charge pump circuit

113‧‧‧電流控制振盪器 113‧‧‧ Current Controlled Oscillator

114‧‧‧分頻電路 114‧‧‧dividing circuit

120、121、122‧‧‧PMOS電晶體 120, 121, 122‧‧‧ PMOS transistors

130、131‧‧‧NMOS電晶體 130, 131‧‧‧ NMOS transistor

140、141‧‧‧電流源 140, 141‧‧‧ current source

150、151、152‧‧‧開關 150, 151, 152‧ ‧ switch

153‧‧‧反相器電路 153‧‧‧Inverter circuit

161‧‧‧電容 161‧‧‧ Capacitance

171、172‧‧‧定電流電路 171, 172‧‧‧ constant current circuit

174‧‧‧濾波器電路 174‧‧‧Filter circuit

175‧‧‧緩衝器電路 175‧‧‧buffer circuit

CLK‧‧‧輸出信號 CLK‧‧‧ output signal

DET‧‧‧信號 DET‧‧ signal

FB_CLK‧‧‧反饋信號 FB_CLK‧‧‧ feedback signal

I1、I2、I3‧‧‧電流 I1, I2, I3‧‧‧ current

IB1、IB2‧‧‧定電流 IB1, IB2‧‧‧ constant current

REF‧‧‧基準信號 REF‧‧‧ reference signal

VCP、VDD‧‧‧電壓 VCP, VDD‧‧‧ voltage

VX‧‧‧閘極電壓 VX‧‧‧ gate voltage

Claims (3)

一種振盪電路裝置,包括: 振盪器,包含第一定電流電路、第二定電流電路、電流鏡電路及電流控制振盪器,所述第一定電流電路使第一定電流流動,所述第二定電流電路使第二定電流流動,所述電流鏡電路使與所述第一定電流或所述第二定電流成比例的振盪用電流流動,所述電流控制振盪器所輸出的振盪信號的頻率對應於所輸入的所述振盪用電流的電流值而發生變化; 鎖相廻路電路,包含相位頻率比較器、電荷泵電路、濾波器電路及分頻電路,且藉由所述電荷泵電路的輸出電壓來控制所述第二定電流,所述相位頻率比較器對從外部輸入的基準信號與所述振盪信號的相位進行比較,所述電荷泵電路輸入所述相位頻率比較器的輸出,所述濾波器電路包含輸入所述電荷泵電路的輸出的電容,所述分頻電路對所述電流控制振盪器的輸出進行分頻;以及 緩衝器電路,將所述第二定電流電路的輸出電壓設為輸入電壓,經由第一開關來對所述濾波器電路的所述電容進行充電, 所述振盪電路裝置在未輸入所述基準信號的第一模式下,輸出基於所述振盪器的所述第一定電流的振盪信號,在輸入有所述基準信號的第二模式下,輸出基於所述振盪器的所述第二定電流的振盪信號, 所述振盪電路裝置在所述第一模式下,使所述第一開關導通,藉此,所述電容藉由所述緩衝器電路的輸出電壓而受到充電, 在所述第二模式下,使所述第一開關斷開。An oscillating circuit device comprising: an oscillator comprising a first constant current circuit, a second constant current circuit, a current mirror circuit and a current controlled oscillator, wherein the first constant current circuit causes a first constant current to flow, the second The constant current circuit causes a second constant current to flow, the current mirror circuit flowing an oscillating current proportional to the first constant current or the second constant current, the current controlling the oscillating signal output by the oscillator The frequency changes according to the input current value of the oscillation current; the phase locked loop circuit includes a phase frequency comparator, a charge pump circuit, a filter circuit, and a frequency dividing circuit, and the charge pump circuit An output voltage for controlling the second constant current, the phase frequency comparator comparing a reference signal input from the outside with a phase of the oscillating signal, the charge pump circuit inputting an output of the phase frequency comparator, The filter circuit includes a capacitance input to an output of the charge pump circuit, the frequency dividing circuit dividing an output of the current controlled oscillator; a buffer circuit that sets an output voltage of the second constant current circuit as an input voltage, and charges the capacitor of the filter circuit via a first switch, wherein the oscillating circuit device does not input the reference signal In the first mode, outputting an oscillating signal based on the first constant current of the oscillator, and outputting, in a second mode in which the reference signal is input, outputting the second constant current based on the oscillator An oscillating signal, wherein the oscillating circuit device turns on the first switch in the first mode, whereby the capacitor is charged by an output voltage of the snubber circuit, in the second mode Next, the first switch is turned off. 如申請專利範圍第1項所述的振盪電路裝置,其中 所述第一定電流電路包括串聯連接的第一P通道金屬氧化物半導體電晶體與定電流元件, 所述第二定電流電路包括串聯連接的第二P通道金屬氧化物半導體電晶體與第一N通道金屬氧化物半導體電晶體, 所述第一P通道金屬氧化物半導體電晶體的閘極經由第二開關而與所述第二P通道金屬氧化物半導體電晶體連接,所述第一N通道金屬氧化物半導體電晶體的閘極連接於所述濾波器電路, 在所述第一模式下,所述第二開關導通,藉此,所述第二定電流電路生成與所述第一定電流電路的電流成比例的電流, 在所述第二模式下,所述第二開關斷開,藉此,生成基於所述基準信號的頻率與所述振盪信號的頻率的相位差的電流。The oscillating circuit device of claim 1, wherein the first constant current circuit comprises a first P-channel metal oxide semiconductor transistor and a constant current element connected in series, and the second constant current circuit comprises a series connection a second P-channel metal oxide semiconductor transistor connected to the first N-channel metal oxide semiconductor transistor, the gate of the first P-channel metal oxide semiconductor transistor being connected to the second P via a second switch a channel metal oxide semiconductor transistor, wherein a gate of the first N-channel metal oxide semiconductor transistor is connected to the filter circuit, and in the first mode, the second switch is turned on, thereby The second constant current circuit generates a current proportional to a current of the first constant current circuit, and in the second mode, the second switch is turned off, thereby generating a frequency based on the reference signal A current that is out of phase with the frequency of the oscillating signal. 如申請專利範圍第2項所述的振盪電路裝置,包括: 脈波檢測電路,對輸入有所述基準信號的情況進行檢測, 所述脈波檢測電路根據輸出信號來控制所述第一開關與所述第二開關。The oscillating circuit device according to claim 2, comprising: a pulse wave detecting circuit that detects a case where the reference signal is input, wherein the pulse wave detecting circuit controls the first switch according to an output signal The second switch.
TW105134463A 2015-11-11 2016-10-26 Oscillation circuit device TWI678072B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-221430 2015-11-11
JP2015221430A JP6559548B2 (en) 2015-11-11 2015-11-11 Oscillator circuit device

Publications (2)

Publication Number Publication Date
TW201725866A true TW201725866A (en) 2017-07-16
TWI678072B TWI678072B (en) 2019-11-21

Family

ID=58664324

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134463A TWI678072B (en) 2015-11-11 2016-10-26 Oscillation circuit device

Country Status (5)

Country Link
US (1) US10056910B2 (en)
JP (1) JP6559548B2 (en)
KR (1) KR20170055422A (en)
CN (1) CN106685416A (en)
TW (1) TWI678072B (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197014A (en) * 1992-12-25 1994-07-15 Mitsubishi Electric Corp Phase locked loop circuit
JPH07170178A (en) * 1993-09-10 1995-07-04 Sun Microsyst Inc Pll damping circuit
JP3356136B2 (en) * 1999-10-19 2002-12-09 日本電気株式会社 PLL circuit
JP2001156759A (en) * 1999-11-24 2001-06-08 Hitachi Ltd Serial transmission reception circuit
US6300838B1 (en) * 1999-12-22 2001-10-09 International Business Machines Corporation Method and apparatus for derivative controlled phase locked loop systems
US7019569B2 (en) * 2004-07-09 2006-03-28 Faraday Technology Corp. Method of implementing multi-transfer curve phase lock loop
US7636019B1 (en) * 2005-06-07 2009-12-22 Cypress Semiconductor Corporation Phase lock loop pre-charging system and method
US8143957B2 (en) * 2006-01-11 2012-03-27 Qualcomm, Incorporated Current-mode gain-splitting dual-path VCO
JP2008042339A (en) * 2006-08-02 2008-02-21 Renesas Technology Corp Semiconductor device
JP2008072166A (en) * 2006-09-12 2008-03-27 Sony Corp Phase synchronization circuit and electronic equipment
JP2008072272A (en) * 2006-09-13 2008-03-27 Nec Electronics Corp Pll circuit
CN101361271B (en) * 2006-10-12 2012-07-25 松下电器产业株式会社 Pll circuit
JP2008278016A (en) * 2007-04-26 2008-11-13 Nec Electronics Corp Pll circuit and frequency setting circuit using same
JP4991385B2 (en) * 2007-05-09 2012-08-01 セイコーNpc株式会社 PLL circuit
JP2010035098A (en) * 2008-07-31 2010-02-12 Sony Corp Phase synchronization circuit, recording and reproducing device, and electronic device
JP2010252094A (en) * 2009-04-16 2010-11-04 Renesas Electronics Corp Pll circuit
US8169265B2 (en) * 2009-04-29 2012-05-01 Mediatek Inc. Phase lock loop circuits
CN101944910B (en) * 2009-07-07 2017-03-22 晨星软件研发(深圳)有限公司 Double-phase-locked loop circuit and control method thereof
JP2011078054A (en) * 2009-10-02 2011-04-14 Sony Corp Current source, electronic apparatus, and integrated circuit
US8432204B1 (en) * 2012-01-06 2013-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Current-controlled oscillator (CCO) based PLL
CN103731099A (en) * 2012-10-11 2014-04-16 联发科技(新加坡)私人有限公司 Voltage-to-current converter and voltage controlled oscillator
JP2015167346A (en) * 2014-02-17 2015-09-24 凸版印刷株式会社 PLL circuit
US9374099B2 (en) * 2014-03-25 2016-06-21 Mediatek Inc. Oscillating signal generator, phase-lock loop circuit using the oscillating signal generator and control method of the oscillating signal generator

Also Published As

Publication number Publication date
JP2017092738A (en) 2017-05-25
TWI678072B (en) 2019-11-21
CN106685416A (en) 2017-05-17
KR20170055422A (en) 2017-05-19
US20170134029A1 (en) 2017-05-11
US10056910B2 (en) 2018-08-21
JP6559548B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JP5448870B2 (en) PLL circuit
KR102247121B1 (en) Dc/dc converter
US8786334B2 (en) Lock detection circuit and phase-locked loop circuit including the same
KR101208565B1 (en) Voltage controlled oscillator capable of reducing phase noise and jitter with high startup gain and method thereof
TWI680640B (en) Oscillation circuit
JP2005123944A (en) Pll circuit
JP2006165680A (en) Pll circuit
JP2001274682A (en) Phase locked loop circuit
KR20120012386A (en) Lock detection circuit and phase-locked loop circuit including the same
WO2024051178A1 (en) Oscillator circuit
JP2013009032A (en) Oscillation circuit
JP2009152734A (en) Pll circuit
TWI678072B (en) Oscillation circuit device
EP2974020A1 (en) Current-mode buffer with output swing detector for high frequency clock interconnect
CN106330142B (en) clock phase shift circuit
US10581416B2 (en) External and dual ramp clock synchronization
JP2002330067A (en) Charge pump circuit and phase synchronizing loop circuit
JP2005176570A (en) Dc-dc converter
US10483845B2 (en) Charge pump having level-shifting mechanism
US6954112B2 (en) Method of forming a variable frequency oscillator and structure therefor
TW201304424A (en) Oscillating signal generating apparatus and control signal generator of the oscillating signal generating apparatus
TW202015342A (en) Two-steps switching method of circuit switch
JP2011097410A (en) Oscillation circuit
KR20130032455A (en) Semiconductor device
JP2009284428A (en) Method of controlling phase locked loop circuit, and phase locked loop circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees