TW201724613A - Method for manufacturing organic EL device and organic EL device - Google Patents

Method for manufacturing organic EL device and organic EL device Download PDF

Info

Publication number
TW201724613A
TW201724613A TW105136409A TW105136409A TW201724613A TW 201724613 A TW201724613 A TW 201724613A TW 105136409 A TW105136409 A TW 105136409A TW 105136409 A TW105136409 A TW 105136409A TW 201724613 A TW201724613 A TW 201724613A
Authority
TW
Taiwan
Prior art keywords
organic
emitting layer
organic light
flatness
pixel
Prior art date
Application number
TW105136409A
Other languages
Chinese (zh)
Other versions
TWI714663B (en
Inventor
倉田知己
山下和貴
関口泰広
Original Assignee
住友化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化學股份有限公司 filed Critical 住友化學股份有限公司
Publication of TW201724613A publication Critical patent/TW201724613A/en
Application granted granted Critical
Publication of TWI714663B publication Critical patent/TWI714663B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

One embodiment relating to a method for manufacturing organic EL device 1 containing a step of forming an organic light-emitting layer 23 by coating on a first electrode 12 concained in bank-containing substrate 10 and provided on a pixel area 2a defined by a bank 13, a step of calculating the flatness of the organic light-emitting layer, a step of determining whether the flatness reaches the desired flatness, and a step of forming a second electrode 30. While the smallest thickness of the organic light-emitting layer being taken as d (nm), an area of the organic light-emitting layer at (d+ predetermined value) nm or less being taken as A1, an area of the pixel area being as taken as A2, the flatness is presented by (A1/A2)*100, If the flatness reaches the desived valve in the determining step, the step of forming the second electrod is performed. If the flatness is less than the desired value in the determining step, the forming conditions for organic light-emitting layer are changed to for the organic light-emitting layer.

Description

有機EL裝置的製造方法及有機EL裝置 Method for manufacturing organic EL device and organic EL device

本發明係關於有機EL裝置的製造方法及有機EL裝置。 The present invention relates to a method of producing an organic EL device and an organic EL device.

有機EL裝置,如專利文獻1般,為人所知者有藉由堤堰(bank,區隔壁)來規定複數個像素者。此有機EL裝置中,於各像素內設置有有機發光層,而讓每個像素發光。 In the organic EL device, as in Patent Document 1, it is known that a plurality of pixels are defined by a bank (bank). In this organic EL device, an organic light-emitting layer is provided in each pixel, and each pixel emits light.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

專利文獻1:日本國際公開第2008/149499號 Patent Document 1: Japanese International Publication No. 2008/149499

有機EL裝置所具有之像素內之有機發光層的厚度不均一時,像素中的亮度特性(例如亮度的均一性等)會劣化。為了使有機發光層的厚度達到均一,亦即將有機發光層形成平坦,以往係要求將成為有機發光層的底層之 層先形成平坦。然而,此時必須對每一層評估層的平坦性,使製造步驟變得繁瑣。此外,由於有機發光層的平坦性與亮度之關係不明,因此,直到於有機發光層上形成電極等先試著製造有機EL裝置後使其發光為止,並無法判別是否得到期望的亮度特性。因此,在未得到期望的亮度特性之情形,不僅須形成有機發光層,亦須形成應設置在有機發光層之電極,而使有機EL裝置的生產性降低。 When the thickness of the organic light-emitting layer in the pixel of the organic EL device is not uniform, the luminance characteristics (for example, uniformity of luminance, etc.) in the pixel are deteriorated. In order to make the thickness of the organic light-emitting layer uniform, that is, to form a flat layer of the organic light-emitting layer, it is required to be the bottom layer of the organic light-emitting layer. The layer is first formed flat. However, at this time, the flatness of the layers must be evaluated for each layer, making the manufacturing steps cumbersome. In addition, since the relationship between the flatness of the organic light-emitting layer and the brightness is unknown, it is not possible to determine whether or not a desired luminance characteristic is obtained until an organic EL device is fabricated and an organic electrode is formed on the organic light-emitting layer. Therefore, in the case where the desired luminance characteristics are not obtained, it is necessary to form not only the organic light-emitting layer but also the electrode to be provided in the organic light-emitting layer, and the productivity of the organic EL device is lowered.

因此,本發明之目的在於提供一種能夠謀求生產性的提升之有機EL裝置的製造方法及有機EL裝置。 Therefore, an object of the present invention is to provide a method for producing an organic EL device and an organic EL device which can improve productivity.

亦即,本發明的一面向之有機EL裝置的製造方法,係具備:於具備有基板、設置在上述基板且用以規定像素之堤堰、以及於上述基板中設置在對應於上述像素之像素區域上之第1電極之附堤堰之基板的上述第1電極上,藉由塗布法形成有機發光層之步驟,算出上述有機發光層的平坦度之步驟,判定上述有機發光層的平坦度是否為期望的平坦度以上之步驟,以及於上述有機發光層上形成第2電極之步驟;於上述算出平坦度之步驟中,將上述有機發光層的最小厚度設為d(nm),從上述基板的厚度方向觀看時為(d+既定值)nm以下之上述有機發光層的面積設為A1,上述像素區域的面積設為A2,上述平坦度設為α時,藉由下述式(1)算出上述平坦度,於上述判定步驟中,當上述平坦度為期望值以上時,實施上述形成第2電 極之步驟,於上述判定步驟中,當上述平坦度未達期望值時,於上述形成有機發光層之步驟中,變更上述有機發光層的形成條件來形成上述有機發光層。 In other words, the method of manufacturing an organic EL device according to the present invention includes: providing a substrate, a bank for providing a predetermined pixel on the substrate, and a pixel region corresponding to the pixel in the substrate; a step of forming an organic light-emitting layer by a coating method on the first electrode of the substrate on which the first electrode is attached, and calculating a flatness of the organic light-emitting layer, and determining whether the flatness of the organic light-emitting layer is desired And a step of forming a second electrode on the organic light-emitting layer; and in the step of calculating the flatness, setting a minimum thickness of the organic light-emitting layer to d (nm), from a thickness of the substrate The area of the organic light-emitting layer having a (d+established value) nm or less in the direction of viewing is A1, the area of the pixel region is A2, and when the flatness is α, the flatness is calculated by the following formula (1). And in the determining step, when the flatness is equal to or greater than a desired value, performing the forming of the second electric In the step of determining, when the flatness does not reach a desired value, the organic light-emitting layer is formed by changing the formation conditions of the organic light-emitting layer in the step of forming the organic light-emitting layer.

α=(A1/A2)×100‧‧‧(1) α=(A1/A2)×100‧‧‧(1)

本申請案的發明者們,在將形成於由堤堰所規定之像素內之有機發光層的平坦度如上述般地定義時,發現到平坦度與來自有機發光層的亮度狀態之間具有一定的關係性。 In the inventors of the present application, when the flatness of the organic light-emitting layer formed in the pixel defined by the bank is defined as described above, it is found that there is a certain degree between the flatness and the brightness state from the organic light-emitting layer. Relationship.

上述製造方法中,可製造出於像素內具有平坦度為期望值以上的有機發光層之有機EL裝置。此有機EL裝置中,根據本申請案的發明者們所發現到之內容,實質上可在對應於上述期望值之亮度狀態下從像素中射出光。此時,於有機EL裝置的製造中,藉由調整有機發光層的平坦度,可製造出從像素中以期望的亮度狀態射出光之有機EL裝置。因此可提升有機EL裝置的生產性。 In the above manufacturing method, an organic EL device having an organic light-emitting layer having a flatness of a desired value or more in a pixel can be manufactured. In the organic EL device, according to what has been found by the inventors of the present application, light can be emitted from a pixel substantially in a luminance state corresponding to the above-described desired value. At this time, in the production of the organic EL device, by adjusting the flatness of the organic light-emitting layer, an organic EL device that emits light from a pixel in a desired luminance state can be manufactured. Therefore, the productivity of the organic EL device can be improved.

上述期望的平坦度,係根據相對於亮度分布率算出用像素以上述式(1)所規定之平坦度與上述亮度分布率算出用像素中的亮度分布率之關係而設定者;上述亮度分布率,為於上述亮度分布率算出用像素中,上述亮度分布率算出用像素的面積中之具有最大亮度之70%以上的亮度之區域的面積之比率。 The desired flatness is set based on the relationship between the flatness defined by the above formula (1) and the luminance distribution ratio in the luminance distribution ratio calculation pixel for the luminance distribution ratio calculation pixel; the luminance distribution ratio In the luminance distribution rate calculation pixel, the ratio of the area of the region having the luminance of 70% or more of the maximum luminance among the areas of the luminance distribution ratio calculation pixels is used.

藉由此平坦度與亮度分布率之關係,將有機發光層的平坦度形成為期望值以上,可實現期望的亮度分布率。 By the relationship between the flatness and the luminance distribution ratio, the flatness of the organic light-emitting layer is formed to a desired value or more, and a desired luminance distribution ratio can be achieved.

上述期望的平坦度為70%,較佳可為80%。 The above desired flatness is 70%, preferably 80%.

此外,可更具備:於上述附堤堰之基板的上述第1電極上,形成包含至少一層有機層之有機構造體之步驟。此時,於上述形成有機發光層之步驟中,可於上述有機構造體上形成上述有機發光層。 Further, the method further includes the step of forming an organic structure including at least one organic layer on the first electrode of the substrate to which the bank is attached. In this case, in the step of forming the organic light-emitting layer, the organic light-emitting layer may be formed on the organic structure.

於具備上述形成有機發光層之步驟之形態中,於上述算出平坦度之步驟中,從上述有機構造體的厚度分布與於上述有機構造體上形成有上述有機發光層而成之積層體的厚度分布之差,算出上述有機發光層的厚度分布;可根據上述有機發光層的厚度分布算出上述平坦度。 In the aspect of the step of forming the organic light-emitting layer, in the step of calculating the flatness, the thickness of the organic structure is formed from the thickness of the organic structure and the thickness of the layered body in which the organic light-emitting layer is formed on the organic structure. The thickness distribution of the organic light-emitting layer is calculated by the difference in distribution, and the flatness can be calculated from the thickness distribution of the organic light-emitting layer.

本發明的其他層面之有機EL裝置,係具備:(A)具有基板、設置在上述基板且用以規定像素之堤堰,(B)於上述基板中設置在對應於上述像素之像素區域上之第1電極之附堤堰之基板,(C)設置在上述第1電極上之有機發光層,以及(D)設置在有機發光層上之第2電極;將上述有機發光層的最小厚度設為d(nm),從上述基板的厚度方向觀看時為(d+既定值)nm以下之上述有機發光層的面積設為A1,上述像素區域的面積設為A2,上述有機發光層的平坦度設為(A1/A2)×100[%]時,上述平坦度為70%以上。 An organic EL device according to another aspect of the present invention includes: (A) a substrate having a substrate, a bank for defining a pixel provided on the substrate, and (B) a substrate disposed on the pixel region corresponding to the pixel in the substrate a substrate to which a 1 electrode is attached, (C) an organic light-emitting layer provided on the first electrode, and (D) a second electrode provided on the organic light-emitting layer; and a minimum thickness of the organic light-emitting layer is d ( The area of the organic light-emitting layer having a (d+determined value) nm or less when viewed from the thickness direction of the substrate is A1, the area of the pixel region is A2, and the flatness of the organic light-emitting layer is (A1). When /A2) × 100 [%], the above flatness is 70% or more.

從本申請案的發明者們所發現到之上述平坦度與亮度分布率之關係來看,上述有機EL裝置中,可實現因應70%以上的平坦度之亮度分布率。此有機EL裝置,由於可藉由上述有機EL裝置的製造方法來製得,所 以可達到生產性的提升。 From the relationship between the flatness and the luminance distribution ratio found by the inventors of the present application, in the organic EL device, the luminance distribution ratio in accordance with the flatness of 70% or more can be achieved. This organic EL device can be produced by the above-described method of manufacturing an organic EL device. In order to achieve productivity improvements.

上述既定值例如可為2以上15以下。上述既定值可為10。 The predetermined value may be, for example, 2 or more and 15 or less. The above predetermined value can be 10.

根據本發明,可提供一種能夠謀求生產性的提升之有機EL裝置的製造方法及有機EL裝置。 According to the present invention, it is possible to provide a method for producing an organic EL device and an organic EL device which can improve productivity.

1‧‧‧有機EL裝置 1‧‧‧Organic EL device

2‧‧‧像素 2‧‧ ‧ pixels

2a‧‧‧像素區域 2a‧‧‧pixel area

2B‧‧‧藍色像素 2B‧‧‧Blue pixels

2G‧‧‧綠色像素 2G‧‧‧Green pixels

2R‧‧‧紅色像素 2R‧‧‧ red pixels

3‧‧‧中間構造體 3‧‧‧Intermediate structures

10‧‧‧附堤堰之基板 10‧‧‧Substrate with dam

11‧‧‧基板 11‧‧‧Substrate

11a‧‧‧表面 11a‧‧‧ surface

12‧‧‧陽極(第1電極) 12‧‧‧Anode (1st electrode)

13‧‧‧堤堰 13‧‧‧dike

13a、13b‧‧‧側面 13a, 13b‧‧‧ side

14‧‧‧凹部 14‧‧‧ recess

20‧‧‧有機EL構造部 20‧‧‧Organic EL Construction Department

21‧‧‧電洞注入層 21‧‧‧ hole injection layer

22‧‧‧電洞輸送層 22‧‧‧ hole transport layer

23‧‧‧有機發光層 23‧‧‧Organic light-emitting layer

23B‧‧‧藍色發光層 23B‧‧‧Blue light layer

23G‧‧‧綠色發光層 23G‧‧‧Green light layer

23R‧‧‧紅色發光層 23R‧‧‧Red light layer

30‧‧‧陰極 30‧‧‧ cathode

40‧‧‧有機構造體 40‧‧‧Organic structures

41‧‧‧積層體 41‧‧‧Layered body

E1至E14‧‧‧實驗例 E1 to E14‧‧‧Experimental examples

S10、S12、S14、S16、S18、S20‧‧‧步驟 S10, S12, S14, S16, S18, S20‧‧ steps

第1圖係從附堤堰之基板側觀看一實施形態之有機EL裝置時之俯視圖。 Fig. 1 is a plan view showing an organic EL device of an embodiment viewed from a substrate side of a bank.

第2圖係沿著第1圖的II-II線之剖面之部分擴大圖。 Fig. 2 is an enlarged view of a portion of the cross section taken along line II-II of Fig. 1.

第3圖係說明第1圖的有機EL裝置所具有之附堤堰之基板之圖面。 Fig. 3 is a view showing the substrate of the bank attached to the organic EL device of Fig. 1.

第4圖係一實施形態之有機EL裝置的製造方法的一例之流程圖。 Fig. 4 is a flow chart showing an example of a method of manufacturing an organic EL device according to an embodiment.

第5圖係用以說明有機構造體形成步驟之圖面。 Fig. 5 is a view for explaining the steps of forming an organic structure.

第6圖係用以說明有機發光層形成步驟之圖面。 Fig. 6 is a view for explaining the steps of the organic light-emitting layer forming step.

第7圖係用以說明乾燥速度與有機發光層的厚度分布之關係之示意圖。 Fig. 7 is a schematic view for explaining the relationship between the drying speed and the thickness distribution of the organic light-emitting layer.

第8圖係示意顯示實施例之有機EL裝置的構成之圖面,第8圖(a)示意顯示實驗例1至4之有機EL裝置的構成,第8圖(b)示意顯示實驗例5至9之有機EL裝置的構成,第8圖(c)示意顯示實驗例10至14之有機EL裝置的構成。 Fig. 8 is a view schematically showing the configuration of the organic EL device of the embodiment, Fig. 8(a) schematically showing the constitution of the organic EL devices of Experimental Examples 1 to 4, and Fig. 8(b) schematically showing Experimental Example 5 to The configuration of the organic EL device of 9 and the structure of the organic EL device of Experimental Examples 10 to 14 are schematically shown in Fig. 8(c).

第9圖係顯示實驗例1至14的實驗結果之圖面。 Fig. 9 is a view showing the experimental results of Experimental Examples 1 to 14.

第10圖係顯示實驗例1至4之有機發光層的厚度分布之圖面。 Fig. 10 is a view showing the thickness distribution of the organic light-emitting layers of Experimental Examples 1 to 4.

第11圖係顯示實驗例5至9之有機發光層的厚度分布之圖面。 Fig. 11 is a view showing the thickness distribution of the organic light-emitting layers of Experimental Examples 5 to 9.

第12圖係顯示實驗例10至14之有機發光層的厚度分布之圖面。 Fig. 12 is a view showing the thickness distribution of the organic light-emitting layers of Experimental Examples 10 to 14.

以下係參考圖面來說明本發明的實施形態。對於同一要素附加同一符號。省略重複的說明。圖面的尺寸比率不必然與說明內容一致。 Embodiments of the present invention will be described below with reference to the drawings. The same symbol is attached to the same element. Duplicate descriptions are omitted. The size ratio of the drawing is not necessarily consistent with the description.

第1圖所示之有機電激發光(有機EL)裝置1因為有機EL顯示面板,具有複數個像素2。各像素2為有機EL元件部。亦即,有機EL裝置1,具有一體地連結有複數個有機EL元件部之構成。本實施形態中,所謂「像素」,意指發出光之最小單位(或最小區域),藉由像素2的發光,使像素2具有色資訊。第1圖中,係以虛線來示意顯示像素2。 The organic electroluminescence (organic EL) device 1 shown in Fig. 1 has a plurality of pixels 2 because of an organic EL display panel. Each pixel 2 is an organic EL element portion. In other words, the organic EL device 1 has a configuration in which a plurality of organic EL element portions are integrally connected. In the present embodiment, the term "pixel" means a minimum unit (or a minimum area) in which light is emitted, and the pixel 2 has color information by the light emission of the pixel 2. In Fig. 1, the pixel 2 is schematically shown by a broken line.

複數個像素2的各者,係射出紅色、綠色、及藍色中任一種光。從此觀點來看,有機EL裝置1,具有3種像素2,亦即射出紅色的光之紅色像素2R,射出綠色的光之綠色像素2G及射出藍色的光之藍色像素2B。以下,當區分像素2所發光之色彩來說明時,有時會將像素2如上述般地稱為紅色像素2R、綠色像素2G及藍色像素 2B。 Each of the plurality of pixels 2 emits light of any one of red, green, and blue. From this point of view, the organic EL device 1 has three kinds of pixels 2, that is, a red pixel 2R that emits red light, a green pixel 2G that emits green light, and a blue pixel 2B that emits blue light. Hereinafter, when the color of the light emitted by the pixel 2 is distinguished, the pixel 2 may be referred to as a red pixel 2R, a green pixel 2G, and a blue pixel as described above. 2B.

複數個像素2係配置為二維配列(或矩陣狀)。亦將二維配列之相互正交的兩方向稱為X方向(或列方向)及Y方向(或行方向)。此時,構成複數個像素2之3種的紅色像素2R、綠色像素2G及藍色像素2B,例如,藉由將以下(i)、(ii)、(iii)之行,於Y方向上依序重複配置而分別排列配置。 The plurality of pixels 2 are arranged in a two-dimensional arrangement (or matrix). The two directions orthogonal to each other in the two-dimensional arrangement are also referred to as an X direction (or column direction) and a Y direction (or a row direction). In this case, the red pixel 2R, the green pixel 2G, and the blue pixel 2B constituting three types of the plurality of pixels 2 are, for example, in the Y direction by the following lines (i), (ii), and (iii). The configuration is repeated and the configurations are arranged separately.

(i)紅色像素2R於X方向上隔著既定間隔而配置之行。 (i) A row in which the red pixels 2R are arranged at a predetermined interval in the X direction.

(ii)綠色像素2G於X方向上隔著既定間隔而配置之行。 (ii) The green pixel 2G is arranged in the X direction at a predetermined interval.

(iii)藍色像素2B於X方向上隔著既定間隔而配置之行。 (iii) A row in which the blue pixels 2B are arranged at a predetermined interval in the X direction.

有機EL裝置1,例如以並排之紅色像素2R、綠色像素2G及藍色像素2B作為一個顯示像素單位,並藉由控制顯示像素單位所包含之紅色像素2R、綠色像素2G及藍色像素2B,可進行全彩顯示。 The organic EL device 1 is, for example, a side-by-side red pixel 2R, a green pixel 2G, and a blue pixel 2B as one display pixel unit, and by controlling the red pixel 2R, the green pixel 2G, and the blue pixel 2B included in the display pixel unit, Full color display is available.

各行中之像素2之間的間隔、各列中之像素2之間的間隔、像素2的配置例及像素2的數目等,可因應有機EL裝置1的規格來適當地設定。 The interval between the pixels 2 in each row, the interval between the pixels 2 in each column, the arrangement example of the pixels 2, and the number of the pixels 2 can be appropriately set in accordance with the specifications of the organic EL device 1.

接著詳細說明有機EL裝置1的構成。有機EL裝置1,係具備:附堤堰之基板10、複數個有機EL構造部20、以及陰極(第2電極)30。有機EL裝置1可為頂放射型的裝置或底放射型的裝置。以下,在無特別言明時,係說明底放射型,亦即從附堤堰之基板10側取光之情形。 Next, the configuration of the organic EL device 1 will be described in detail. The organic EL device 1 includes a substrate 10 with a bank, a plurality of organic EL structures 20, and a cathode (second electrode) 30. The organic EL device 1 may be a top emission type device or a bottom emission type device. Hereinafter, unless otherwise stated, the bottom emission type, that is, the case where light is taken from the side of the substrate 10 to which the bank is attached, will be described.

如第2圖及第3圖所示,附堤堰之基板10,具有:基板11、複數個陽極(第1電極)12、以及堤堰13。第3圖係對應於沿著第1圖中的II-II線之附堤堰之基板10的剖面之部分擴大圖之圖面,第2圖中,係對應於省略附堤堰之基板10以外的構成要素之圖面。 As shown in FIGS. 2 and 3, the substrate 10 having the bank has a substrate 11, a plurality of anodes (first electrodes) 12, and a bank 13. 3 is a view corresponding to a partial enlarged view of a cross section of the substrate 10 along the line II-II in FIG. 1 , and FIG. 2 corresponds to a configuration other than the substrate 10 omitting the bank. The surface of the element.

基板11為相對於可見光(波長400nm至800nm的光)具有透光性之板狀透明構件。基板11,為支撐陽極12及堤堰13之支撐體。基板11之厚度的例子,為30μm以上1100μm以下。基板11,例如可為玻璃基板及係機板等之硬性基板,或是塑膠基板及高分子膜等之可撓性基板。藉由使用可撓性基板,可使有機EL裝置1具有可撓性。 The substrate 11 is a plate-shaped transparent member that is translucent with respect to visible light (light having a wavelength of 400 nm to 800 nm). The substrate 11 is a support for supporting the anode 12 and the bank 13. An example of the thickness of the substrate 11 is 30 μm or more and 1100 μm or less. The substrate 11 may be, for example, a rigid substrate such as a glass substrate or a system board, or a flexible substrate such as a plastic substrate or a polymer film. The organic EL device 1 can be made flexible by using a flexible substrate.

於基板11上,可預先形成用以驅動各像素2之電路。於基板11上,例如可預先形成TFT(Thin Film Transistor:薄膜電晶體)或電容器等。 On the substrate 11, a circuit for driving each of the pixels 2 can be formed in advance. On the substrate 11, for example, a TFT (Thin Film Transistor), a capacitor, or the like can be formed in advance.

複數個陽極12,於基板11的表面11a上,設置在對應於各像素2之像素區域2a上。陽極12之俯視觀看形狀(從基板11的板厚方向觀看之形狀)的例子,可列舉出矩形及正方形之四角形及其他多邊形。陽極12之俯視觀看形狀,可為圓形或橢圓形。 A plurality of anodes 12 are provided on the surface 11a of the substrate 11 on the pixel region 2a corresponding to each of the pixels 2. Examples of the shape of the anode 12 viewed in a plan view (the shape viewed from the thickness direction of the substrate 11) include a square shape of a rectangle and a square, and other polygonal shapes. The shape of the anode 12 viewed from above may be circular or elliptical.

陽極12,可使用由金屬氧化物、金屬硫化物及金屬等所構成之薄膜,具體而言,可使用由氧化銦、氧化鋅、氧化錫、氧化銦錫(Indium Tin Oxide:略稱ITO)、氧化銦鋅(Indium Zinc Oxide:略稱IZO)、金、鉑、銀及銅 等所構成之薄膜。如本實施形態中所主要說明般,當有機EL裝置1從附堤堰之基板10側射出光時,係使用顯示出光穿透性之陽極12。 As the anode 12, a film made of a metal oxide, a metal sulfide, a metal, or the like can be used. Specifically, indium tin oxide, zinc oxide, tin oxide, indium tin oxide (ITO) can be used. Indium Zinc Oxide (abbreviated as IZO), gold, platinum, silver and copper The film formed by the film. As described in the present embodiment, when the organic EL device 1 emits light from the substrate 10 side of the bank, the anode 12 exhibiting light transmittance is used.

陽極12的厚度,可考量光的穿透性、電傳導率等來適當地決定。陽極12的厚度,例如為10nm至10μm,較佳為20nm至1μm,更佳為50nm至500nm。 The thickness of the anode 12 can be appropriately determined in consideration of light transmittance, electrical conductivity, and the like. The thickness of the anode 12 is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, more preferably 50 nm to 500 nm.

一實施形態中,於陽極12與基板11之間,可設置由絕緣層等所構成之層。絕緣層等之層,亦可視為基板11的一部分。 In one embodiment, a layer made of an insulating layer or the like may be provided between the anode 12 and the substrate 11. A layer such as an insulating layer may also be regarded as a part of the substrate 11.

如第2圖及第3圖所示,堤堰13係設置在各陽極12的周圍。堤堰13,亦可涵蓋相鄰接之陽極12間而設置。堤堰13的一部分,可被覆於陽極12的周緣部。堤堰13,為區隔像素2或像素區域2a之區隔壁。亦即,堤堰13於基板11的表面11a上,以具有區隔被預先設定的像素區域2a之開口之圖案,設置在基板11上。本實施形態中,如第1圖所示,由於複數個像素2以二維配列所配置,所以在基板11方格狀的堤堰13設置。 As shown in FIGS. 2 and 3, the bank 13 is provided around each anode 12. The dike 13 can also be disposed to cover the adjacent anodes 12. A part of the bank 13 can be covered on the peripheral portion of the anode 12. The bank 13 is a partition wall that partitions the pixel 2 or the pixel region 2a. That is, the bank 13 is provided on the substrate 11 on the surface 11a of the substrate 11 in a pattern having an opening which is divided by the pixel region 2a which is set in advance. In the present embodiment, as shown in Fig. 1, since a plurality of pixels 2 are arranged in two-dimensional arrangement, they are provided on the bank 13 having a grid-like shape.

堤堰13之材料的例子為樹脂。堤堰13,例如為含有撥液劑之感光性樹脂組成物的硬化物。撥液劑的例子,可列舉出含有氟樹脂之撥液劑。在由堤堰13所規定之像素區域2a上,如後述般,藉由塗布法來形成有機發光層23之有機層。因此,堤堰13,通常在利用塗布法將有機層形成於由堤堰13所規定之像素區域2a上時,係以具有可較佳地形成該有機層之特性(例如潤濕性)之方式來形 成。 An example of the material of the bank 13 is a resin. The bank 13 is, for example, a cured product of a photosensitive resin composition containing a liquid repellent. Examples of the liquid-repellent agent include a liquid-repellent containing a fluororesin. The organic layer of the organic light-emitting layer 23 is formed by a coating method on the pixel region 2a defined by the bank 13 as will be described later. Therefore, the bank 13 is generally formed in such a manner as to have characteristics (e.g., wettability) which can preferably form the organic layer when the organic layer is formed on the pixel region 2a defined by the bank 13 by a coating method. to make.

堤堰13的形狀及該配置,可因應像素2數目及解析度等之有機EL裝置1的規格或製造的容易度等來適當地設定。例如,於第2圖及第3圖中,堤堰13之面對像素區域2a的側面13a,相對於基板11的表面11a,實質上呈正交。然而,側面13a相對於表面11a,亦可傾斜為呈銳角或傾斜為呈鈍角。當側面13a與表面11a呈銳角時,堤堰13的形狀,為人所知者呈順錐型,當側面13a與表面11a呈鈍角時,堤堰13的形狀,為人所知者呈反錐型。堤堰13之厚度(高度)的例子,約為0.3μm至5μm。 The shape and the arrangement of the bank 13 can be appropriately set in accordance with the specifications of the organic EL device 1 such as the number of pixels 2 and the resolution, ease of manufacture, and the like. For example, in FIGS. 2 and 3, the side surface 13a of the bank 13 facing the pixel region 2a is substantially orthogonal to the surface 11a of the substrate 11. However, the side surface 13a may be inclined at an acute angle or inclined to an obtuse angle with respect to the surface 11a. When the side surface 13a and the surface 11a are at an acute angle, the shape of the bank 13 is a straight shape, and when the side surface 13a and the surface 11a are obtuse, the shape of the bank 13 is a reverse cone shape. An example of the thickness (height) of the bank 13 is about 0.3 μm to 5 μm.

上述附堤堰之基板10,例如在預先設定於基板11之複數個像素區域2a上形成陽極12後,形成堤堰13而製得。 The substrate 10 to which the bank is attached is formed, for example, by forming the anode 12 on a plurality of pixel regions 2a set in advance on the substrate 11, and then forming the bank 13.

陽極12可藉由蒸鍍法或塗布法來形成。藉由蒸鍍法來形成時,可在將由陽極12的材料所構成之層形成於基板11上後,將該層形成為複數個陽極12的圖案。藉由塗布法來形成時,可在將含有陽極12的材料之塗布液,以對應於複數個陽極12之圖案塗布於基板11上後,使塗布膜乾燥而形成。或者是,將由應予成為陽極12之材料所構成之塗布膜形成於基板11並乾燥後,形成為陽極12的圖案。 The anode 12 can be formed by an evaporation method or a coating method. When formed by a vapor deposition method, a layer composed of a material of the anode 12 can be formed on the substrate 11, and the layer can be formed into a pattern of a plurality of anodes 12. When it is formed by a coating method, the coating liquid containing the material of the anode 12 is applied onto the substrate 11 in a pattern corresponding to the plurality of anodes 12, and then the coating film is dried. Alternatively, a coating film made of a material to be the anode 12 is formed on the substrate 11 and dried, and then formed into a pattern of the anode 12.

於陽極12的形成中利用塗布法時,塗布法的例子可列舉出噴墨印刷法,其他亦可使用一般所知的塗布法,例如狹縫塗布法、微凹版塗布法、凹版塗布法、棒 塗布法、輥塗布法、線棒塗布法、噴霧塗布法、網版印刷法、快乾印刷法、平版印刷法、及噴嘴印刷法等。含有陽極12的材料之塗布液的溶劑,只要是可溶解陽極12的材料之溶劑即可。 When the coating method is used for forming the anode 12, an example of the coating method may be an inkjet printing method, and other known coating methods such as a slit coating method, a micro gravure coating method, a gravure coating method, and a rod may be used. Coating method, roll coating method, wire bar coating method, spray coating method, screen printing method, quick-drying printing method, lithography method, nozzle printing method, and the like. The solvent of the coating liquid containing the material of the anode 12 may be any solvent that can dissolve the material of the anode 12.

堤堰13,例如可藉由塗布法來形成。具體而言,可在將含有堤堰13的材料之塗布液塗布於形成有陽極12之基板11,並使所形成之塗布膜乾燥後,將該塗布膜形成為既定的圖案而形成。塗布法的例子可列舉出旋轉塗布法或狹縫塗布法等。含有堤堰13之塗布液的溶劑,只要是可溶解堤堰13的材料之溶劑即可。 The bank 13 can be formed, for example, by a coating method. Specifically, the coating liquid containing the material of the bank 13 is applied to the substrate 11 on which the anode 12 is formed, and the formed coating film is dried, and then the coating film is formed into a predetermined pattern. Examples of the coating method include a spin coating method, a slit coating method, and the like. The solvent containing the coating liquid of the bank 13 may be any solvent which can dissolve the material of the bank 13.

如第2圖所示,複數個有機EL構造部20,於附堤堰之基板10中,係設置在由堤堰13與陽極12所形成之凹部14(參考第2圖及第3圖)內。有機EL構造部20,係具有:電洞注入層21、電洞輸送層22及有機發光層23。 As shown in Fig. 2, a plurality of organic EL structure portions 20 are provided in the substrate 10 with the banks 13 and recesses 14 (see Figs. 2 and 3) formed by the banks 13 and the anodes 12. The organic EL structure portion 20 includes a hole injection layer 21, a hole transport layer 22, and an organic light-emitting layer 23.

電洞注入層21,為具有改善從陽極12往有機發光層23之電洞注入效率之功能的有機層。電洞注入層21的材料,例如可列舉出氧化釩、氧化鉬、氧化釕、及氧化鋁等之氧化物,苯基胺系化合物,星爆型胺系化合物,酞菁系化合物,非晶碳,聚苯胺,及聚乙烯二氧基噻吩(PEDOT)等之聚噻吩衍生物等。 The hole injection layer 21 is an organic layer having a function of improving the efficiency of injection of holes from the anode 12 to the organic light-emitting layer 23. Examples of the material of the hole injection layer 21 include oxides such as vanadium oxide, molybdenum oxide, cerium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanine compounds, and amorphous carbon. , polyaniline, and polythiophene derivatives such as polyethylene dioxythiophene (PEDOT).

電洞注入層21的厚度,因所使用之材料的不同,該最適值有所不同,可考量所要求之特性及層的形成容易度等來適當地決定。電洞注入層21的厚度,例如為1nm至1μm,較佳為2nm至500nm,更佳為5nm至200nm。 The thickness of the hole injection layer 21 varies depending on the material to be used, and can be appropriately determined in consideration of the required characteristics and the ease of formation of the layer. The thickness of the hole injection layer 21 is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.

電洞注入層21可視需要因應像素2的不同種類,亦即因應紅色像素2R、綠色像素2G及藍色像素2B,使該材料或厚度成為不同而設置。從電洞注入層21之形成步驟的簡易度之觀點來看,可由相同材料、相同厚度來形成全部的電洞注入層21。 The hole injection layer 21 may be provided depending on the type of the pixel 2, that is, the red pixel 2R, the green pixel 2G, and the blue pixel 2B, depending on the material or thickness. From the viewpoint of the simplicity of the step of forming the hole injection layer 21, all of the hole injection layers 21 can be formed of the same material and the same thickness.

電洞輸送層22為具有改善從陽極12、電洞注入層21或更接近陽極12之電洞輸送層22往有機發光層23的電洞注入之功能的層。電洞輸送層22的材料,可使用一般所知的電洞輸送材料。電洞輸送材料,可列舉出聚乙烯咔唑或其衍生物、聚矽烷或其衍生物、於側鏈或主鏈具有芳香族胺之聚矽氧烷或其衍生物、吡唑啉或其衍生物、芳胺或其衍生物、二苯代乙烯或其衍生物、三苯基二胺或其衍生物、聚苯胺或其衍生物、聚噻吩或其衍生物、聚芳胺或其衍生物、聚吡咯或其衍生物、聚(對伸苯乙烯)或其衍生物、或是聚(2,5-噻吩乙烯)或其衍生物等。此外,亦可列舉出日本特開2012-144722號公報所揭示之電洞輸送層材料。 The hole transport layer 22 is a layer having a function of improving hole injection from the anode 12, the hole injection layer 21 or the hole transport layer 22 of the anode 12 to the organic light-emitting layer 23. As the material of the hole transport layer 22, a generally known hole transport material can be used. The hole transporting material may, for example, be a polyvinyl carbazole or a derivative thereof, a polydecane or a derivative thereof, a polyoxyalkylene having an aromatic amine in a side chain or a main chain or a derivative thereof, or a pyrazoline or a derivative thereof. Or an aromatic amine or a derivative thereof, diphenylethylene or a derivative thereof, triphenyldiamine or a derivative thereof, polyaniline or a derivative thereof, polythiophene or a derivative thereof, polyarylamine or a derivative thereof, Polypyrrole or a derivative thereof, poly(p-styrene) or a derivative thereof, or poly(2,5-thiopheneethylene) or a derivative thereof. Further, a hole transport layer material disclosed in Japanese Laid-Open Patent Publication No. 2012-144722 is also mentioned.

電洞輸送層22的厚度,因所使用之材料的不同,該最適值有所不同,可使驅動電壓與發光效率成為適當值之方式來適當地設定。電洞輸送層22的厚度,例如為1nm至1μm,較佳為2nm至500nm,更佳為5nm至200nm。 The thickness of the hole transport layer 22 is different depending on the material to be used, and the optimum value can be appropriately set so that the driving voltage and the luminous efficiency are appropriate values. The thickness of the hole transport layer 22 is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.

電洞輸送層22,可視需要因應像素2的不同種類,亦即因應紅色像素2R、綠色像素2G及藍色像素2B,使該材料或厚度成為不同而設置。從電洞輸送層22 之形成步驟的簡易度之觀點來看,可由相同材料、相同厚度來形成全部電洞輸送層22。 The hole transport layer 22 may be provided depending on the type of the pixel 2, that is, the red pixel 2R, the green pixel 2G, and the blue pixel 2B, depending on the material or thickness. From the hole transport layer 22 From the viewpoint of the simplicity of the forming step, all of the hole transport layers 22 can be formed of the same material and the same thickness.

有機發光層23,係設置在電洞輸送層22上。有機發光層23,為具有發出既定波長的光之功能的有機層。有機發光層23,通常主要是由發出螢光及/或磷光之有機物,或是該有機物與輔助此之摻雜劑所形成。摻雜劑,例如為了提升發光效率或改變光波長而添加。有機發光層23所含有之有機物,可為低分子化合物或高分子化合物。構成有機發光層23之發光材料,可列舉出下述色素系材料、金屬錯合物係材料、高分子系材料、摻雜劑材料。 The organic light-emitting layer 23 is provided on the hole transport layer 22. The organic light-emitting layer 23 is an organic layer having a function of emitting light of a predetermined wavelength. The organic light-emitting layer 23 is generally formed mainly of an organic material that emits fluorescence and/or phosphorescence, or a dopant that assists the organic substance. The dopant is added, for example, to increase the luminous efficiency or to change the wavelength of light. The organic substance contained in the organic light-emitting layer 23 may be a low molecular compound or a high molecular compound. Examples of the light-emitting material constituting the organic light-emitting layer 23 include the following pigment-based materials, metal-based compound materials, polymer-based materials, and dopant materials.

色素系的發光材料,例如可列舉出環戊丙甲胺或其衍生物、四苯基丁二烯或其衍生物、三苯基胺或其衍生物、二唑或其衍生物、吡唑喹啉衍生物、二苯乙烯苯或其衍生物、二苯乙烯亞芳或其衍生物、吡咯或其衍生物、噻吩環化合物、吡啶環化合物、芘酮或其衍生物、苝或其衍生物、低聚噻吩或其衍生物、氧基二唑二聚物或其衍生物、吡唑啉二聚物或其衍生物、喹吖啶酮或其衍生物、香豆素或其衍生物等。 Examples of the pigment-based luminescent material include cyclopentylmethylamine or a derivative thereof, tetraphenylbutadiene or a derivative thereof, triphenylamine or a derivative thereof, An oxadiazole or a derivative thereof, a pyrazoloquinoline derivative, a stilbene benzene or a derivative thereof, a stilbene aroma or a derivative thereof, a pyrrole or a derivative thereof, a thiophene ring compound, a pyridine ring compound, an anthrone or an oxime a derivative thereof, hydrazine or a derivative thereof, oligothiophene or a derivative thereof, an oxy group An oxadiazole dimer or a derivative thereof, a pyrazoline dimer or a derivative thereof, a quinacridone or a derivative thereof, a coumarin or a derivative thereof, and the like.

金屬錯合物系的發光材料,例如可列舉出具有Tb、Eu、Dy等之稀土類金屬或是Al、Zn、Be、Pt、Ir等作為中心金屬,並於配位基具有二唑、噻二唑、苯基吡啶、苯基苯并咪唑、喹啉結構等之金屬錯合物。金屬錯合物,例如可列舉出銥錯合物、鉑錯合物等之具有來自三重態激發的發光之金屬錯合物、鋁喹啉錯合物、鈹苯喹 啉錯合物、鋅苯并唑錯合物、鋅苯并噻唑錯合物、鋅偶氮甲基錯合物、鋅卟啉錯合物、銪菲羅林錯合物等。 Examples of the metal complex-based light-emitting material include rare earth metals such as Tb, Eu, and Dy, and Al, Zn, Be, Pt, and Ir as center metals, and have a ligand at the ligand. A metal complex of an oxadiazole, a thiadiazole, a phenylpyridine, a phenylbenzimidazole, a quinoline structure or the like. The metal complex compound may, for example, be a metal complex having luminescence from triplet excitation, such as a ruthenium complex or a platinum complex, an aluminum quinoline complex, a quinacridol complex, or a zinc benzene. and A azole complex, a zinc benzothiazole complex, a zinc azomethyl complex, a zinc porphyrin complex, a phenanthroline complex, and the like.

高分子系的發光材料,可列舉出聚對伸苯乙烯或其衍生物、聚噻吩或其衍生物、聚對伸苯或其衍生物、聚矽烷或其衍生物、聚乙炔或其衍生物、聚茀或其衍生物、聚乙烯咔唑或其衍生物、以及使上述色素材料、金屬錯合物材料進行高分子化之材料等。 Examples of the polymer-based luminescent material include polyparaphenylene or a derivative thereof, polythiophene or a derivative thereof, polyparaphenylene or a derivative thereof, polydecane or a derivative thereof, polyacetylene or a derivative thereof, Polyfluorene or a derivative thereof, polyvinylcarbazole or a derivative thereof, and a material for polymerizing the above-mentioned pigment material or metal complex material.

上述發光材料中,發出紅色光之材料(以下稱為「紅色發光材料」),可列舉出香豆素或該衍生物、噻吩或其衍生物、以及此等的聚合物、聚對伸苯乙烯或其衍生物、聚噻吩或其衍生物、聚茀或其衍生物等。當中較佳為高分子材料的聚對伸苯乙烯或其衍生物、聚噻吩或其衍生物、聚茀或其衍生物等。紅色發光材料,亦可列舉出日本特開2011-105701號公報所揭示之材料。 Among the above-mentioned luminescent materials, a material that emits red light (hereinafter referred to as "red luminescent material") may, for example, be coumarin or the derivative, thiophene or a derivative thereof, and such a polymer, poly-p-stene styrene. Or a derivative thereof, polythiophene or a derivative thereof, polyfluorene or a derivative thereof, or the like. Among them, polyparaphenylene styrene or a derivative thereof, polythiophene or a derivative thereof, polyfluorene or a derivative thereof, or the like, which is a polymer material, is preferable. The red luminescent material may also be a material disclosed in Japanese Laid-Open Patent Publication No. 2011-105701.

發出綠色光之材料(以下稱為「綠色發光材料」),可列舉出喹吖啶酮或其衍生物、香豆素或其衍生物、以及此等的聚合物、聚對伸苯乙烯或其衍生物、聚茀或其衍生物等。當中較佳為高分子材料的聚對伸苯乙烯或其衍生物、聚茀或其衍生物。綠色發光材料,亦可列舉出日本特開2012-036388號公報所揭示之材料。 A material that emits green light (hereinafter referred to as "green light-emitting material") may, for example, be a quinacridone or a derivative thereof, a coumarin or a derivative thereof, and a polymer such as poly(p-stirene) or Derivatives, polyfluorene or its derivatives. Among them, polyparaphenylene or a derivative thereof, a polyfluorene or a derivative thereof of a polymer material is preferred. The material disclosed in Japanese Laid-Open Patent Publication No. 2012-036388 is also exemplified as the green luminescent material.

發出藍色光之材料(以下稱為「藍色發光材料」),可列舉出二苯乙烯亞芳或該衍生物、二唑或該衍生物、以及此等的聚合物、聚乙烯咔唑或其衍生物、聚對伸苯或其衍生物、聚茀或其衍生物等。當中較佳為高分子 材料的聚乙烯咔唑或該衍生物、聚對伸苯或該衍生物、以及聚茀或該衍生物等。藍色發光材料,亦可列舉出日本特開2012-144722號公報所揭示之材料。 A material that emits blue light (hereinafter referred to as "blue luminescent material"), and examples thereof include stilbene arylene or the derivative, Diazole or the derivative, and such polymers, polyvinylcarbazole or a derivative thereof, polyparaphenylene or a derivative thereof, polyfluorene or a derivative thereof, and the like. Among them, polyvinylcarbazole or a derivative of the polymer material, polyparaphenylene or the derivative, and polyfluorene or the derivative are preferable. The blue luminescent material may also be a material disclosed in Japanese Laid-Open Patent Publication No. 2012-144722.

摻雜劑材料例如可列舉出苝或其衍生物、香豆素或其衍生物、紅螢烯或其衍生物、喹吖啶酮或其衍生物、方酸菁(Squalium)或其衍生物、卟啉或其衍生物、苯乙烯基色素、四并苯或其衍生物、吡唑酮或其衍生物、十環烯或其衍生物、吩酮或其衍生物等。 Examples of the dopant material include hydrazine or a derivative thereof, coumarin or a derivative thereof, erythritol or a derivative thereof, quinacridone or a derivative thereof, Squalium or a derivative thereof, Porphyrin or a derivative thereof, a styryl dye, a tetracene or a derivative thereof, a pyrazolone or a derivative thereof, decacycloolefin or a derivative thereof, phenanthrene Ketone or its derivatives.

有機發光層23可因應像素2的不同種類,亦即因應紅色像素2R、綠色像素2G及藍色像素2B而設置。在對應於紅色像素2R之凹部14的電洞輸送層22上,設置有發出紅色光之有機發光層23,在對應於綠色像素2G之凹部14的電洞注入層21上,設置有發出綠色光之有機發光層23,在對應於藍色像素2B之凹部14的電洞輸送層22上,設置有發出藍色光之有機發光層23。以下有時亦將紅色像素2R、綠色像素2G及藍色像素2B所包含之有機發光層23,稱為紅色發光層23R、綠色發光層23G及藍色發光層23B。 The organic light-emitting layer 23 can be disposed in response to different types of the pixels 2, that is, in response to the red pixel 2R, the green pixel 2G, and the blue pixel 2B. On the hole transport layer 22 corresponding to the concave portion 14 of the red pixel 2R, an organic light-emitting layer 23 that emits red light is disposed, and on the hole injection layer 21 corresponding to the concave portion 14 of the green pixel 2G, green light is emitted. The organic light-emitting layer 23 is provided with an organic light-emitting layer 23 that emits blue light on the hole transport layer 22 corresponding to the concave portion 14 of the blue pixel 2B. Hereinafter, the organic light-emitting layer 23 included in the red pixel 2R, the green pixel 2G, and the blue pixel 2B may be referred to as a red light-emitting layer 23R, a green light-emitting layer 23G, and a blue light-emitting layer 23B.

陰極30係設置在有機發光層23上。陰極30的材料,較佳為功函數小,電子容易注入於有機發光層23,且電傳導率高之材料。此外,如本實施形態所說明般,當有機EL裝置1從陽極12側取光時,為了以陰極30將從有機發光層23所放射的光反射至陽極12側,陰極30的材料,較佳為可見光反射率高之材料。陰極30,例如可使用 鹼金屬、鹼土類金屬、過渡金屬及週期表的13族金屬等。此外,陰極30亦可使用由導電性金屬氧化物及導電性有機物等所構成之透明導電性電極。 The cathode 30 is provided on the organic light-emitting layer 23. The material of the cathode 30 is preferably a material having a small work function, easy electron injection into the organic light-emitting layer 23, and high electrical conductivity. Further, as described in the present embodiment, when the organic EL device 1 picks up light from the anode 12 side, in order to reflect the light emitted from the organic light-emitting layer 23 to the anode 12 side by the cathode 30, the material of the cathode 30 is preferably A material with high visible light reflectance. Cathode 30, for example, can be used Alkali metals, alkaline earth metals, transition metals, and Group 13 metals of the periodic table. Further, as the cathode 30, a transparent conductive electrode made of a conductive metal oxide, a conductive organic substance or the like may be used.

陰極30的厚度,可考量電傳導率及耐久性來適當地設定。陰極30的厚度,例如為10nm至10μm,較佳為20nm至1μm,更佳為50nm至500nm。 The thickness of the cathode 30 can be appropriately set in consideration of electrical conductivity and durability. The thickness of the cathode 30 is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, more preferably 50 nm to 500 nm.

本實施形態中,陰極30形成於設置有複數個像素2之顯示區域的全面上。亦即,陰極30不僅形成於有機發光層23上,亦形成於堤堰13上,並設置作為複數個像素2所共通之陽極12。 In the present embodiment, the cathode 30 is formed over the entire display area in which a plurality of pixels 2 are provided. That is, the cathode 30 is formed not only on the organic light-emitting layer 23 but also on the bank 13, and is provided as the anode 12 common to the plurality of pixels 2.

陰極30係設置在有機發光層23上,但例如可在有機發光層23與設置於該上方之陰極30之間設置特定的無機層。 The cathode 30 is provided on the organic light-emitting layer 23, but for example, a specific inorganic layer may be provided between the organic light-emitting layer 23 and the cathode 30 provided above.

於第1圖及第2圖中雖然圖示中省略,但在有機EL裝置1的陰極30上,通常設置有封合基板。此外,有機EL裝置1,例如可具備有機EL面板顯示器面板所具備之一般所知的構成。 Although not shown in the drawings in FIGS. 1 and 2, a sealing substrate is usually provided on the cathode 30 of the organic EL device 1. Further, the organic EL device 1 can have, for example, a generally known configuration of an organic EL panel display panel.

於上述構成的有機EL裝置1中,各像素2內的構造,亦即基板11中之像素區域2a的部分、陽極12、有機EL構造部20及陰極30中之像素區域2a的部分,構成有機EL元件部。因此,有機EL裝置1,係具有:由堤堰13所區隔之複數個有機EL元件部以基板11及陽極12為共通而一體地連結之構成。 In the organic EL device 1 having the above configuration, the structure in each pixel 2, that is, the portion of the pixel region 2a in the substrate 11, the anode 12, the organic EL structure portion 20, and the portion of the pixel region 2a in the cathode 30 constitute an organic EL component part. Therefore, the organic EL device 1 has a configuration in which a plurality of organic EL element portions partitioned by the bank 13 are integrally connected by the substrate 11 and the anode 12 in common.

有機EL裝置1中,如第2圖所示,將像素 2內之有機發光層23,亦即凹部14內之有機發光層23的最小厚度設為d(nm),從基板11的厚度方向觀看時為(d+既定值)[nm]以下之有機發光層23的面積設為A1,像素面積設為A2,並以下述式(1)來表示有機發光層23的平坦度α(%)時,平坦度α為70%以上。 In the organic EL device 1, as shown in FIG. 2, the pixel is used The organic light-emitting layer 23 in the second light-emitting layer 23, that is, the organic light-emitting layer 23 in the concave portion 14 has a minimum thickness of d (nm), and is an organic light-emitting layer of (d + predetermined value) [nm] or less when viewed from the thickness direction of the substrate 11. When the area of 23 is A1 and the pixel area is A2, and the flatness α (%) of the organic light-emitting layer 23 is expressed by the following formula (1), the flatness α is 70% or more.

α=(A1/A2)×100‧‧‧(1) α=(A1/A2)×100‧‧‧(1)

上述像素面積,為像素區域2a的面積,亦為在堤堰13中由面對像素區域2a之端部13b(參考第2圖及第3圖)所區隔之區域的面積。上述既定值(nm),較佳為2以上15以下。若為此範圍,則可更容易且適當地評估平坦度。上述既定值,尤佳為5以上12以下,例如可為10。 The pixel area is the area of the pixel region 2a, and is also the area of the region of the bank 13 that is separated by the end portion 13b facing the pixel region 2a (refer to FIGS. 2 and 3). The predetermined value (nm) is preferably 2 or more and 15 or less. If it is this range, the flatness can be evaluated more easily and appropriately. The above predetermined value is particularly preferably 5 or more and 12 or less, and may be, for example, 10.

紅色發光層23R、綠色發光層23G及藍色發光層23B的各層中,最小厚度d(nm)可為不同。此時,有機EL裝置1之紅色發光層23R、綠色發光層23G及藍色發光層23B各層的平坦度α為70%以上。 In each of the layers of the red light-emitting layer 23R, the green light-emitting layer 23G, and the blue light-emitting layer 23B, the minimum thickness d (nm) may be different. At this time, the flatness α of each of the red light-emitting layer 23R, the green light-emitting layer 23G, and the blue light-emitting layer 23B of the organic EL device 1 is 70% or more.

接著說明有機EL裝置1的製造方法。在此,係說明製備附堤堰之基板10後之有機EL裝置1的製造方法。有機EL裝置1的製造方法,如第4圖所示,係具備:形成有機構造體40之步驟(有機構造體形成步驟)S10、形成有機發光層23之步驟(有機發光層形成步驟)S12、算出有機發光層23的平坦度α之步驟(平坦度算出步驟)S14、判定平坦度α是否為期望值以上之步驟(判定步驟)S16、以及形成陰極30之步驟(陰極形成步驟)S18。 Next, a method of manufacturing the organic EL device 1 will be described. Here, a method of manufacturing the organic EL device 1 after the substrate 10 having the bank is prepared will be described. As shown in FIG. 4, the method of manufacturing the organic EL device 1 includes a step of forming the organic structure 40 (organic structure forming step) S10, a step of forming the organic light-emitting layer 23 (organic light-emitting layer forming step) S12, The step (flatness calculation step) S14 of calculating the flatness α of the organic light-emitting layer 23, the step (determination step) S16 for determining whether or not the flatness α is equal to or greater than the desired value, and the step (cathode formation step) S18 for forming the cathode 30 are performed.

於製造有機EL裝置1時,首先實施有機構 造體形成步驟S10。有機構造體形成步驟S10中,如第5圖所示,於設置在像素區域2a,換言之,於設置在凹部14之陽極12上,藉由塗布法依序形成電洞注入層21與電洞輸送層22,而製作出電洞注入層21與電洞輸送層22的積層體之有機構造體40。 When manufacturing the organic EL device 1, first, a mechanism is implemented. The formation step S10 is formed. In the organic structure forming step S10, as shown in FIG. 5, in the pixel region 2a, in other words, on the anode 12 provided in the concave portion 14, the hole injection layer 21 and the hole transport are sequentially formed by the coating method. The layer 22 is used to form the organic structure 40 of the laminate of the hole injection layer 21 and the hole transport layer 22.

具體而言,於凹部14的陽極12上,將含有電洞注入材料之塗布液滴入以形成塗布膜後,使塗布膜乾燥,藉此形成電洞注入層21。 Specifically, on the anode 12 of the concave portion 14, a coating containing a hole injecting material is dropped to form a coating film, and then the coating film is dried to form a hole injection layer 21.

塗布法例如可列舉出噴墨印刷法。惟只要是可於凹部14內形成層之塗布法即可,亦可為其他一般所知的塗布法,例如可使用微凹版塗布法、凹版塗布法、棒塗布法、輥塗布法、線棒塗布法、噴霧塗布法、網版印刷法、快乾印刷法、平版印刷法、及噴嘴印刷法,較佳為網版印刷法、快乾印刷法、平版印刷法、及噴嘴印刷法。 The coating method is, for example, an inkjet printing method. However, as long as it is a coating method capable of forming a layer in the concave portion 14, it may be another commonly known coating method, and for example, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, or a bar coating method may be used. The method, the spray coating method, the screen printing method, the quick-drying printing method, the lithographic printing method, and the nozzle printing method are preferably a screen printing method, a quick-drying printing method, a lithographic printing method, and a nozzle printing method.

塗布液所使用之溶劑,只要是可溶解電洞注入材料即可,並無特別限定,例如可列舉出氯仿、氯化甲烷、二氯乙烷等之氯化物溶劑;四氫呋喃等之醚溶劑;甲苯、二甲苯等之芳香族烴溶劑;丙酮、丁酮等之酮溶劑;乙酸乙酯、乙酸丁酯、乙基溶纖劑乙酸酯等之酯溶劑等。 The solvent to be used for the coating liquid is not particularly limited as long as it is a soluble hole injecting material, and examples thereof include a chloride solvent such as chloroform, methyl chloride or dichloroethane; an ether solvent such as tetrahydrofuran; and toluene. An aromatic hydrocarbon solvent such as xylene; a ketone solvent such as acetone or methyl ketone; an ester solvent such as ethyl acetate, butyl acetate or ethyl cellosolve acetate.

塗布膜的乾燥方法,只要是可使塗布膜乾燥者即可,並無特別限定,可列舉出真空乾燥及加熱乾燥等。 The method of drying the coating film is not particularly limited as long as it can dry the coating film, and examples thereof include vacuum drying, heat drying, and the like.

接著將含有電洞輸送材料之塗布液滴入於凹部14內的電洞注入層21上以形成塗布膜後,藉由使塗 布膜乾燥,來形成電洞輸送層22。溶劑及乾燥方法的例子,可與電洞注入層21時相同。 Then, the coating containing the hole transporting material is dropped onto the hole injection layer 21 in the recess 14 to form a coating film, and then coated. The film is dried to form the hole transport layer 22. Examples of the solvent and the drying method may be the same as those in the hole injection layer 21.

將經過有機構造體形成步驟S10所得之構造體,亦即具備附堤堰之基板10與形成於凹部14內之有機構造體40之構造體,稱為中間構造體3。有機構造體形成步驟S10中,係製作2個中間構造體3,並預先測定一方的中間構造體3所具有之有機構造體40的厚度分布,用以取得有機發光層23的厚度。 The structure obtained by the organic structure forming step S10, that is, the structure including the substrate 10 having the bank and the organic structure 40 formed in the recess 14 is referred to as the intermediate structure 3. In the organic structure forming step S10, two intermediate structures 3 are produced, and the thickness distribution of the organic structures 40 included in one of the intermediate structures 3 is measured in advance to obtain the thickness of the organic light-emitting layer 23.

如第4圖所示,在實施有機構造體形成步驟S10後,實施有機發光層形成步驟S12。有機發光層形成步驟S12中,如第6圖所示,藉由塗布法,於有機構造體40上形成有機發光層23。具體而言,將含有應成為有機發光層23之發光材料之塗布液滴入於凹部14內以形成塗布膜後(塗布膜形成步驟),藉由使塗布膜乾燥(乾燥步驟),來形成有機發光層23。於對應於紅色像素2R、綠色像素2G及藍色像素2B之凹部14,分別使用含有紅色用發光材料、綠色用發光材料、及藍色用發光材料之塗布液,來形成紅色發光層23R、綠色發光層23G及藍色發光層23B。 As shown in FIG. 4, after the organic structure forming step S10 is performed, the organic light-emitting layer forming step S12 is performed. In the organic light-emitting layer forming step S12, as shown in Fig. 6, the organic light-emitting layer 23 is formed on the organic structure 40 by a coating method. Specifically, after the coating containing the luminescent material to be the organic light-emitting layer 23 is dropped into the concave portion 14 to form a coating film (coating film forming step), the coating film is dried (drying step) to form an organic film. Light-emitting layer 23. The red light-emitting layer 23R and the green light are used in the concave portion 14 corresponding to the red pixel 2R, the green pixel 2G, and the blue pixel 2B, respectively, using a coating liquid containing a red light-emitting material, a green light-emitting material, and a blue light-emitting material. The light emitting layer 23G and the blue light emitting layer 23B.

塗布法,可例示出噴墨印刷法,亦可利用與電洞注入層21時所例示之其他一般所知的塗布法。塗布液所使用之溶劑,只要是可溶解發光材料者即可,可與電洞注入層21的形成時所例示之溶劑相同。 The coating method may, for example, be an inkjet printing method, or may be any other known coating method exemplified when the hole injection layer 21 is used. The solvent used for the coating liquid may be the same as the solvent exemplified when the hole injection layer 21 is formed as long as it can dissolve the luminescent material.

塗布膜的乾燥方法,與電洞注入層21時相同,只要是可使塗布膜乾燥者即可,並無特別限定,可列 舉出真空乾燥及加熱乾燥等。 The drying method of the coating film is the same as that in the case of the hole injection layer 21, and it is not particularly limited as long as the coating film can be dried. Vacuum drying, heat drying and the like are mentioned.

藉由上述有機發光層形成步驟S12,於凹部14內,在陽極12上形成有由有機構造體40與有機發光層23所構成之積層體41。 In the organic light-emitting layer forming step S12, the layered body 41 composed of the organic structure 40 and the organic light-emitting layer 23 is formed on the anode 12 in the recess portion 14.

有機發光層形成步驟S12中,係於在有機構造體形成步驟S10中所製作之2個中間構造體3的各個所具有之有機構造體40上,形成有機發光層23。然後測定被使用在有機構造體40的厚度測定之中間構造體3上所形成之積層體41的厚度,並取得積層體41的厚度分布。 In the organic light-emitting layer forming step S12, the organic light-emitting layer 23 is formed on the organic structure 40 included in each of the two intermediate structures 3 produced in the organic structure forming step S10. Then, the thickness of the layered body 41 formed on the intermediate structure 3 used for measuring the thickness of the organic structure 40 is measured, and the thickness distribution of the layered body 41 is obtained.

如第4圖所示,於實施有機發光層形成步驟S12後,實施平坦度算出步驟S14。平坦度算出步驟S14中,首先算出有機發光層23的厚度分布。具體而言,根據有機構造體形成步驟S10中所取得之有機構造體40的厚度分布,與有機發光層形成步驟S12中所取得之積層體41的厚度分布,算出有機發光層23的厚度分布。亦即,從基板11的厚度方向觀看時,從凹部14內的各位置上之積層體41的厚度中,算出與有機構造體40之厚度的差,而得到有機發光層23的厚度分布。接著利用所算出之有機發光層23的厚度分布與式(1),來算出平坦度α。 As shown in FIG. 4, after the organic light-emitting layer forming step S12 is performed, the flatness calculating step S14 is performed. In the flatness calculation step S14, the thickness distribution of the organic light-emitting layer 23 is first calculated. Specifically, the thickness distribution of the organic structure 40 obtained in the organic structure forming step S10 and the thickness distribution of the layered body 41 obtained in the organic light-emitting layer forming step S12 are calculated, and the thickness distribution of the organic light-emitting layer 23 is calculated. In other words, when viewed from the thickness direction of the substrate 11, the difference from the thickness of the organic structure 40 is calculated from the thickness of the laminated body 41 at each position in the concave portion 14, and the thickness distribution of the organic light-emitting layer 23 is obtained. Next, the flatness α is calculated by using the calculated thickness distribution of the organic light-emitting layer 23 and the formula (1).

如第4圖所示,於實施平坦度算出步驟S14後,實施判定步驟S16。判定步驟S16中,係判定平坦度α是否為期望值以上。本實施形態中,「期望值」為70%。此時,紅色發光層23R、綠色發光層23G及藍色發光層23B中,平坦度α為不同時,係以紅色發光層23R、綠色發光 層23G及藍色發光層23B中之平坦度α中的最小平坦度α之值來判定。對應於相同色彩(紅色、綠色或藍色)之複數個有機發光層23的平坦度α,由於塗布液的材料等之形成條件為相同,所以可視為相同平坦度α。因此,例如相對於一個色彩,只要可算出一個有機發光層23的平坦度α即可。惟與不同色彩時相同,亦可取樣複數個有機發光層23,並將當中最小的平坦度α用於判定。 As shown in FIG. 4, after the flatness calculation step S14 is performed, the determination step S16 is performed. In the determination step S16, it is determined whether or not the flatness α is equal to or greater than a desired value. In the present embodiment, the "expected value" is 70%. At this time, in the red light-emitting layer 23R, the green light-emitting layer 23G, and the blue light-emitting layer 23B, when the flatness α is different, the red light-emitting layer 23R and the green light are emitted. The value of the minimum flatness α in the flatness α in the layer 23G and the blue light-emitting layer 23B is determined. The flatness α of the plurality of organic light-emitting layers 23 corresponding to the same color (red, green, or blue) can be regarded as the same flatness α because the conditions for forming the material of the coating liquid and the like are the same. Therefore, for example, the flatness α of one organic light-emitting layer 23 can be calculated with respect to one color. However, as in the case of different colors, a plurality of organic light-emitting layers 23 may be sampled, and the smallest flatness α among them may be used for the determination.

判定步驟S16中,平坦度α為70%(期望值)以上時(第4圖的S16中為「Yes」時),係實施將陰極30形成於有機發光層23上之步驟(陰極形成步驟)S18。陰極30的形成方法,例如可列舉出與陽極12時相同之蒸鍍法及塗布法。此步驟中,係涵蓋形成於複數個凹部14之有機發光層23上而形成陰極30。藉此可得到第1圖及第2圖所示之有機EL裝置1。 In the determination step S16, when the flatness α is 70% (expected value) or more (in the case of "Yes" in S16 of FIG. 4), the step of forming the cathode 30 on the organic light-emitting layer 23 (cathode forming step) S18 is performed. . The method of forming the cathode 30 is, for example, the same vapor deposition method and coating method as in the case of the anode 12. In this step, the cathode 30 is formed on the organic light-emitting layer 23 formed on the plurality of recesses 14. Thereby, the organic EL device 1 shown in Figs. 1 and 2 can be obtained.

判定步驟S16中,平坦度α未達70%(期望值)時(第4圖的S16中為「No」時),係實施變更有機發光層23的形成條件之步驟(形成條件變更步驟)S20。例如,所變更之形成條件的例子,於有機發光層形成步驟S12中,為使藉由塗布法將發光材料滴入於凹部14所形成之塗布膜乾燥之步驟中的乾燥速度。 In the determination step S16, when the flatness α is less than 70% (expected value) (in the case of "No" in S16 of FIG. 4), the step (formation condition changing step) S20 of changing the formation conditions of the organic light-emitting layer 23 is performed. For example, in the organic light-emitting layer forming step S12, the drying rate in the step of drying the coating film formed by dropping the light-emitting material into the concave portion 14 by the coating method is used.

在此,係利用第7圖來說明乾燥速度與有機發光層的厚度分布之關係。第7圖中,係示意顯示乾燥速度與有機發光層的厚度分布之關係。具體而言,係示意顯示提高乾燥速度時之厚度分布的一例、降低乾燥速度時之 厚度分布的一例、以及此等之間之厚度分布的一例。上述3個厚度分布中,橫軸表示凹部14的剖面上之位置,x1及x2分別表示區隔凹部14之堤堰13之側面13a、13a的位置。上述3個厚度分布中,縱軸表示厚度。 Here, the relationship between the drying speed and the thickness distribution of the organic light-emitting layer will be described using FIG. In Fig. 7, the relationship between the drying speed and the thickness distribution of the organic light-emitting layer is schematically shown. Specifically, it shows an example of the thickness distribution when the drying speed is increased, and when the drying speed is lowered. An example of the thickness distribution and an example of the thickness distribution between these. Among the above three thickness distributions, the horizontal axis represents the position on the cross section of the recessed portion 14, and x1 and x2 respectively indicate the positions of the side faces 13a and 13a of the bank 13 of the partition recessed portion 14. Among the above three thickness distributions, the vertical axis represents the thickness.

根據本申請案的發明者們之發現,乾燥速度快時,如第7圖中左側的厚度分布所示意顯示般,有機發光層23之中央部的厚度變薄而容易成為凹狀,乾燥速度慢時,如第7圖中右側的厚度分布所示意顯示般,有機發光層23之中央部的厚度變厚而容易成為凸狀。因此,根據判定步驟S16中所使用之有機發光層23的厚度分布,藉由調整乾燥速度,可調整有機發光層23的厚度分布,而實現如第7圖中左側的厚度分布所示意顯示般,有機發光層23之中央部的厚度變薄而容易成為凹狀,乾燥速度慢時,如第7圖中之中央所示的厚度分布般之具有平坦的厚度分布之有機發光層23。 According to the findings of the inventors of the present application, when the drying speed is fast, as shown by the thickness distribution on the left side in Fig. 7, the thickness of the central portion of the organic light-emitting layer 23 is thin and easily becomes concave, and the drying speed is slow. In the case where the thickness distribution on the right side in Fig. 7 is intended to be displayed, the thickness of the central portion of the organic light-emitting layer 23 is increased to be convex. Therefore, according to the thickness distribution of the organic light-emitting layer 23 used in the determination step S16, by adjusting the drying speed, the thickness distribution of the organic light-emitting layer 23 can be adjusted to achieve the thickness distribution as shown in the left side of FIG. The thickness of the central portion of the organic light-emitting layer 23 is reduced to be concave, and when the drying speed is slow, the organic light-emitting layer 23 having a flat thickness distribution as shown in the center of FIG. 7 has a thickness distribution.

其他,作為有機發光層23的形成條件中所能夠變更之參數,例如可列舉出塗布液的組成比率等。 In addition, as a parameter which can be changed in the formation conditions of the organic light-emitting layer 23, the composition ratio of the coating liquid, etc. are mentioned, for example.

於實施形成條件變更步驟S20後,以變更後的形成條件再次形成有機發光層23。第4圖中,作為一例,可例示出於形成條件變更步驟S20後返回有機發光層形成步驟S12之情形。若是該流程圖,則可於有機構造體形成步驟S10中預先製作複數個中間構造體3,並返回有機發光層形成步驟S12,然後於未形成有機發光層23之中間構造體3所具有之有機構造體40上,形成有機發光層23即 可。或者是在形成條件變更步驟S20後返回有機構造體形成步驟S10。 After the formation condition changing step S20 is performed, the organic light-emitting layer 23 is formed again under the changed formation conditions. In the fourth embodiment, as an example, the case where the organic light-emitting layer forming step S12 is returned after the formation condition changing step S20 can be exemplified. According to this flowchart, a plurality of intermediate structures 3 can be prepared in advance in the organic structure forming step S10, and the organic light-emitting layer forming step S12 can be returned, and then the organic structure of the intermediate structure 3 in which the organic light-emitting layer 23 is not formed can be organic. On the structure 40, the organic light-emitting layer 23 is formed. can. Alternatively, after the formation condition changing step S20, the organic structure forming step S10 is returned.

本申請案的發明者們係進行精心研究,發現到有機發光層的平坦度α與亮度分布率β具有一定的關係。亮度分布率β,在使亮度分布率算出用(或試驗用)之有機EL裝置的像素(亮度分布率算出用像素)發光時,將像素的最大亮度設為IMAX,具有(IMAX×0.7)以上的亮度之面積設為A3,像素面積設為A4時,係由下述式(II)所定義。 The inventors of the present application conducted intensive studies and found that the flatness α of the organic light-emitting layer has a certain relationship with the luminance distribution ratio β. When the pixel (luminance distribution ratio calculation pixel) of the organic EL device for calculating the luminance distribution ratio (or the test) is used to emit light, the maximum luminance of the pixel is set to I MAX and has (I MAX × 0.7). The area of the above luminance is A3, and when the pixel area is A4, it is defined by the following formula (II).

β=(A3/A4)×100‧‧‧(II) β=(A3/A4)×100‧‧‧(II)

像素面積A4的定義,係與利用在亮度分布率β的算出之有機EL裝置1中的像素面積A3相同。 The definition of the pixel area A4 is the same as the pixel area A3 in the organic EL device 1 calculated by the luminance distribution ratio β.

有機發光層的平坦度α與亮度分布率β之關係,係根據實驗例1至15來說明。實驗例1至15的說明中,為了說明,係對相當於有機EL裝置1的構成要素之構成要素,簡便地賦予相同符號來說明。實驗例1至15中,用以規定平坦度α算出用的面積A1之上述既定值,為10。亦即,實驗例1至15中,係使用(d+10)nm以下之有機發光層23的面積A1。 The relationship between the flatness α of the organic light-emitting layer and the luminance distribution ratio β is explained in accordance with Experimental Examples 1 to 15. In the description of the experimental examples 1 to 15, the constituent elements corresponding to the constituent elements of the organic EL device 1 are simply given the same reference numerals for explanation. In Experimental Examples 1 to 15, the predetermined value of the area A1 for calculating the flatness α was defined as 10. That is, in Experimental Examples 1 to 15, the area A1 of the organic light-emitting layer 23 of (d + 10) nm or less was used.

實驗例1至4中,係製作第8圖(a)所示之有機EL裝置E1至E4。亦即,於附堤堰之基板10的凹部14,從陽極12側形成電洞注入層21、電洞輸送層22及有機發光層23,並於有機發光層23上形成陰極30。電洞注入層21、電洞輸送層22及有機發光層23,係藉由噴墨印刷法,使用對應於各層之塗布液來形成塗布膜,並進行真 空乾燥而形成。各凹部14內的有機發光層23,係使用藍色發光層23B。因此,有機EL裝置E1至E4為發出藍色光之有機EL裝置1。 In Experimental Examples 1 to 4, the organic EL devices E1 to E4 shown in Fig. 8(a) were produced. That is, the hole injection layer 21, the hole transport layer 22, and the organic light-emitting layer 23 are formed from the anode 12 side in the concave portion 14 of the substrate 10 to which the bank is attached, and the cathode 30 is formed on the organic light-emitting layer 23. The hole injection layer 21, the hole transport layer 22, and the organic light-emitting layer 23 are formed by using an inkjet printing method using a coating liquid corresponding to each layer to form a coating film. It is formed by drying. The organic light-emitting layer 23 in each of the concave portions 14 is a blue light-emitting layer 23B. Therefore, the organic EL devices E1 to E4 are organic EL devices 1 that emit blue light.

有機EL裝置E1至E4中的電洞注入層21、電洞輸送層22及有機發光層23,係使用相同的電洞注入材料、電洞輸送材料及藍色發光材料。惟於有機EL裝置E1至E4中,形成所對應之電洞注入層21、電洞輸送層22及有機發光層23時之塗布液的組成比率等為不同。於形成有機EL裝置E1至E4的有機發光層23時所進行之真空乾燥中,真空室內的溫度為13℃至30℃。真空乾燥中,塗布膜的乾燥速度,係依照有機EL裝置E1、有機EL裝置E2、有機EL裝置E3及有機EL裝置E4的順序變慢。 The hole injection layer 21, the hole transport layer 22, and the organic light-emitting layer 23 in the organic EL devices E1 to E4 use the same hole injection material, hole transport material, and blue light-emitting material. In the organic EL devices E1 to E4, the composition ratios of the coating liquids when the corresponding hole injection layer 21, the hole transport layer 22, and the organic light-emitting layer 23 are formed are different. In the vacuum drying performed when the organic light-emitting layer 23 of the organic EL devices E1 to E4 is formed, the temperature in the vacuum chamber is 13 ° C to 30 ° C. In the vacuum drying, the drying speed of the coating film is slowed in accordance with the order of the organic EL device E1, the organic EL device E2, the organic EL device E3, and the organic EL device E4.

有機EL裝置E1至E4所具有之有機發光層23的平坦度α,如表1所示。以相同條件使有機EL裝置E1至E4發光時之亮度分布率β,如表1所示。平坦度α及亮度分布率β的算出中所使用之像素面積A2、A4係相同。 The flatness α of the organic light-emitting layer 23 which the organic EL devices E1 to E4 have is shown in Table 1. The luminance distribution ratio β when the organic EL devices E1 to E4 emit light under the same conditions is shown in Table 1. The pixel areas A2 and A4 used for the calculation of the flatness α and the luminance distribution ratio β are the same.

實驗例5至9中,係製作第8圖(b)所示之有機EL裝置E5至E9。有機EL裝置E5至E9的構成,除了使用綠色發光層23G來取代藍色發光層23B作為有機發光層23之外,其他具有與有機EL裝置E1至E4相同之構成。有機EL裝置E5至E9為發出綠色光之有機EL裝置1。有機EL裝置E5至E9的製造中亦同。電洞注入層21、電洞輸送層22及有機發光層23,亦藉由噴墨印刷法,使用對應於各層之塗布液來形成塗布膜,並進行真空乾燥而形成。於形成有機發光層23時所進行之真空乾燥中,真空室內的溫度為13℃至30℃。 In Experimental Examples 5 to 9, the organic EL devices E5 to E9 shown in Fig. 8(b) were produced. The configuration of the organic EL devices E5 to E9 has the same configuration as that of the organic EL devices E1 to E4 except that the green light-emitting layer 23G is used instead of the blue light-emitting layer 23B as the organic light-emitting layer 23. The organic EL devices E5 to E9 are organic EL devices 1 that emit green light. The same applies to the manufacture of the organic EL devices E5 to E9. The hole injection layer 21, the hole transport layer 22, and the organic light-emitting layer 23 are also formed by a liquid-jet printing method using a coating liquid corresponding to each layer to form a coating film, and vacuum drying. In the vacuum drying performed in forming the organic light-emitting layer 23, the temperature in the vacuum chamber is from 13 ° C to 30 ° C.

有機EL裝置E5至E9中的電洞注入層21及電洞輸送層22,係使用與有機EL裝置E1至E4時相同之電洞注入材料及電洞輸送材料。惟於有機EL裝置E5至E9中,形成電洞注入層21、電洞輸送層22及有機發光層23時之塗布液的組成比率等為不同。於形成有機EL裝置E5至E9的有機發光層23時之真空乾燥中,塗布膜的乾燥速度,係依照有機EL裝置E5、有機EL裝置E6、有機EL 裝置E7、有機EL裝置E8及有機EL裝置E9的順序變快。 The hole injection layer 21 and the hole transport layer 22 in the organic EL devices E5 to E9 use the same hole injection material and hole transport material as those of the organic EL devices E1 to E4. In the organic EL devices E5 to E9, the composition ratios of the coating liquids when the hole injection layer 21, the hole transport layer 22, and the organic light-emitting layer 23 are formed are different. In the vacuum drying in the case of forming the organic light-emitting layer 23 of the organic EL devices E5 to E9, the drying speed of the coating film is in accordance with the organic EL device E5, the organic EL device E6, and the organic EL. The order of the device E7, the organic EL device E8, and the organic EL device E9 becomes faster.

有機EL裝置E5至E9所具有之有機發光層23的平坦度α,如表2所示。以與有機EL裝置E1至E4相同之條件使有機EL裝置E5至E9發光時之亮度分布率β,如表2所示。平坦度α及亮度分布率β的算出中所使用之像素面積A2、A4係相同。 The flatness α of the organic light-emitting layer 23 which the organic EL devices E5 to E9 have is shown in Table 2. The luminance distribution ratio β when the organic EL devices E5 to E9 emit light under the same conditions as those of the organic EL devices E1 to E4 is as shown in Table 2. The pixel areas A2 and A4 used for the calculation of the flatness α and the luminance distribution ratio β are the same.

實驗例10至14中,係製作第8圖(c)所示之有機EL裝置E10至E14。有機EL裝置E10至E14的構成,除了使用紅色發光層23R來取代藍色發光層23B作為有機發光層23之外,其他具有與有機EL裝置E1至E4相同之構成。有機EL裝置E10至E14為發出紅色光之有機EL裝置。電洞注入層21、電洞輸送層22及有機發光層23(紅色發光層23R),與有機EL裝置E1至E4時相同,藉由噴墨印刷法,使用對應於各層之塗布液來形成塗布膜後,進行真空乾燥而形成。於形成有機發光層23時所進行之真空乾燥中,真空室內的溫度為13℃至30℃。 In Experimental Examples 10 to 14, the organic EL devices E10 to E14 shown in Fig. 8(c) were produced. The configuration of the organic EL devices E10 to E14 has the same configuration as that of the organic EL devices E1 to E4 except that the red light-emitting layer 23R is used instead of the blue light-emitting layer 23B as the organic light-emitting layer 23. The organic EL devices E10 to E14 are organic EL devices that emit red light. The hole injection layer 21, the hole transport layer 22, and the organic light-emitting layer 23 (red light-emitting layer 23R) are formed by coating using a coating liquid corresponding to each layer by the inkjet printing method as in the case of the organic EL devices E1 to E4. After the film, it was formed by vacuum drying. In the vacuum drying performed in forming the organic light-emitting layer 23, the temperature in the vacuum chamber is from 13 ° C to 30 ° C.

有機EL裝置E10至E14中的電洞注入層21及電洞輸送層22,係使用與有機EL裝置E1至E4時相同之電洞注入材料及電洞輸送材料。於有機EL裝置E10至E14中,形成電洞注入層21、電洞輸送層22及有機發光層23時之塗布液的組成比率為不同。於形成有機EL裝置E10至E14的有機發光層23時之真空乾燥中,塗布膜的乾燥速度,係依照有機EL裝置E10、有機EL裝置E11、有機EL裝置E12、有機EL裝置E13及有機EL裝置E14的順序變慢。 The hole injection layer 21 and the hole transport layer 22 in the organic EL devices E10 to E14 use the same hole injection material and hole transport material as those of the organic EL devices E1 to E4. In the organic EL devices E10 to E14, the composition ratios of the coating liquids when the hole injection layer 21, the hole transport layer 22, and the organic light-emitting layer 23 are formed are different. In the vacuum drying in the case of forming the organic light-emitting layer 23 of the organic EL devices E10 to E14, the drying speed of the coating film is in accordance with the organic EL device E10, the organic EL device E11, the organic EL device E12, the organic EL device E13, and the organic EL device. The order of E14 is slower.

有機EL裝置E10至E14所具有之有機發光層23的平坦度α,如表3所示。以與有機EL裝置E1至E4相同之條件使有機EL裝置E10至E14發光時之亮度分布率β,如表3所示。平坦度α及亮度分布率β的算出中所使用之像素面積A2、A4係相同。 The flatness α of the organic light-emitting layer 23 which the organic EL devices E10 to E14 have is shown in Table 3. The luminance distribution ratio β when the organic EL devices E10 to E14 emit light under the same conditions as those of the organic EL devices E1 to E4 is as shown in Table 3. The pixel areas A2 and A4 used for the calculation of the flatness α and the luminance distribution ratio β are the same.

第9圖係顯示表1至表3所示之平坦度α(%)與亮度分布率β(%)的關係之圖表。第9圖中,橫軸表示平 坦度(%),縱軸表示亮度分布率(%)。第9圖中,點繪出對應於表1至表3所示之平坦度α(%)的各值之亮度分布率β(%)之記號,係對每個色彩採用相同記號(四角形及三角形等)。然後,附加於各記號之號碼,係表示實驗例的號碼。 Fig. 9 is a graph showing the relationship between the flatness α (%) shown in Tables 1 to 3 and the luminance distribution ratio β (%). In Fig. 9, the horizontal axis represents flat Tan (%), the vertical axis represents the luminance distribution rate (%). In Fig. 9, the points corresponding to the luminance distribution ratios β (%) of the respective values of the flatness α (%) shown in Tables 1 to 3 are plotted, and the same marks (tetragonal and triangular) are used for each color. Wait). Then, the number attached to each symbol indicates the number of the experimental example.

第10圖係顯示有機EL裝置E1至E4之有機發光層23(藍色發光層23B)的厚度分布之圖面。第11圖係顯示有機EL裝置E5至E9之有機發光層23(綠色發光層23G)之凹部14內的厚度分布之圖面。第12圖係顯示有機EL裝置E10至E14之有機發光層23(紅色發光層23R)之凹部14內的厚度分布之圖面。第10圖至第12圖中,橫軸表示凹部14的剖面上之位置,x1及x2的位置分別表示規定凹部14之堤堰13之側面13a、13a的位置。惟因實驗誤差及點繪等關係,x1及x2的位置產生變動,但於第10圖至第12圖中,係將x1及x2配置在概略地對應於側面13a、13a之位置附近。第10圖至第12圖的縱軸,表示有機發光層23的厚度。 Fig. 10 is a view showing a thickness distribution of the organic light-emitting layer 23 (blue light-emitting layer 23B) of the organic EL devices E1 to E4. Fig. 11 is a view showing a thickness distribution in the concave portion 14 of the organic light-emitting layer 23 (green light-emitting layer 23G) of the organic EL devices E5 to E9. Fig. 12 is a view showing a thickness distribution in the concave portion 14 of the organic light-emitting layer 23 (red light-emitting layer 23R) of the organic EL devices E10 to E14. In Figs. 10 to 12, the horizontal axis represents the position on the cross section of the recessed portion 14, and the positions of x1 and x2 respectively indicate the positions of the side faces 13a and 13a of the bank 13 defining the recessed portion 14. However, the positions of x1 and x2 vary depending on the experimental error and the dot drawing. However, in FIGS. 10 to 12, x1 and x2 are arranged in the vicinity of the positions roughly corresponding to the side faces 13a and 13a. The vertical axes of Figs. 10 to 12 show the thickness of the organic light-emitting layer 23.

從第9圖所示之結果中,可理解到對於每個藍色、綠色及紅色,平坦度α與亮度分布率β實質上呈線形,亦即對應於1對1。因此,藉由判定平坦度α,可調整亮度分布率β。藍色發光層23B、綠色發光層23G及紅色發光層23R的材料為不同。因此,不與有機發光層23的材料相依,可滿足上述平坦度α與亮度分布率β之關係。 From the results shown in Fig. 9, it can be understood that for each of blue, green, and red, the flatness α and the luminance distribution ratio β are substantially linear, that is, corresponding to one to one. Therefore, by determining the flatness α, the luminance distribution ratio β can be adjusted. The materials of the blue light-emitting layer 23B, the green light-emitting layer 23G, and the red light-emitting layer 23R are different. Therefore, the relationship between the flatness α and the luminance distribution ratio β can be satisfied without depending on the material of the organic light-emitting layer 23.

如此,由於平坦度α與亮度分布率β具有一定的關係,所以如有機EL裝置1的製造方法中所說明 般,若調整有機發光層23的平坦度α,則可實現亮度分布率β成為一定值以上。例如,若平坦度α為70%以上,則可實現實質上70%以上的亮度分布率β。因此,與測定位於較有機發光層23更下側之層(第2圖所示之例子中,為電洞注入層21及電洞輸送層22)的厚度,且為了將材料不同之各層形成平坦而對每層調整製造條件之情形相比,可顯著提升有機EL裝置1的生產性。 Thus, since the flatness α has a certain relationship with the luminance distribution ratio β, it is explained in the manufacturing method of the organic EL device 1. When the flatness α of the organic light-emitting layer 23 is adjusted, the luminance distribution ratio β can be made constant or higher. For example, when the flatness α is 70% or more, a luminance distribution ratio β of substantially 70% or more can be achieved. Therefore, the thickness of the layer located below the organic light-emitting layer 23 (in the example shown in FIG. 2, the hole injection layer 21 and the hole transport layer 22) is measured, and the layers are formed to be flat in order to flatten the material. The productivity of the organic EL device 1 can be remarkably improved as compared with the case where the manufacturing conditions are adjusted for each layer.

根據平坦度α與亮度分布率β之關係,藉由平坦度α的評估,可推測出製造後之有機EL裝置1的亮度分布率β。因此,亦可降低有機EL裝置1的製造成本。關於此點,係與在有機發光層上形成陰極以先製造出有機EL裝置後,測定亮度分布率,並回饋至有機發光層的形成條件之情形進行比較來說明。 According to the relationship between the flatness α and the luminance distribution ratio β, the luminance distribution ratio β of the organic EL device 1 after the production can be estimated by the evaluation of the flatness α. Therefore, the manufacturing cost of the organic EL device 1 can also be reduced. In this regard, a case is described in which a cathode is formed on the organic light-emitting layer to produce an organic EL device, and then the luminance distribution ratio is measured and fed back to the formation conditions of the organic light-emitting layer.

為了在有機發光層上形成陰極以先製造出有機EL裝置,必須至少於有機發光層上形成陰極。因此,於製造後算出有機EL裝置的亮度分布率β,若該結果必須變更有機發光層的形成條件,則須再一次形成陰極。相對於此,有機EL裝置1的製造方法中,於形成有機發光層23之階段中,根據平坦度α與亮度分布率β之關係,可推測有機EL裝置1的亮度分布率β。該結果可省略不必要的陰極形成,而謀求製造成本的降低。 In order to form a cathode on the organic light-emitting layer to first fabricate an organic EL device, it is necessary to form a cathode on at least the organic light-emitting layer. Therefore, the luminance distribution ratio β of the organic EL device is calculated after the production, and if it is necessary to change the formation conditions of the organic light-emitting layer, the cathode must be formed again. On the other hand, in the manufacturing method of the organic EL device 1, in the stage of forming the organic light-emitting layer 23, the luminance distribution ratio β of the organic EL device 1 can be estimated from the relationship between the flatness α and the luminance distribution ratio β. This result can omit unnecessary cathode formation and seek a reduction in manufacturing cost.

第1圖所示之有機EL裝置1,可藉由第4圖所示之製造方法製得。因此,有機EL裝置1的構成可成為有助於生產性的提升之構成。此外,有機EL裝置1 所具有之有機發光層23的平坦度α為70%以上,所以有機EL裝置1可實現70%以上的亮度分布率β。 The organic EL device 1 shown in Fig. 1 can be obtained by the production method shown in Fig. 4. Therefore, the configuration of the organic EL device 1 can be configured to contribute to the improvement of productivity. In addition, the organic EL device 1 Since the flatness α of the organic light-emitting layer 23 is 70% or more, the organic EL device 1 can achieve a luminance distribution ratio β of 70% or more.

如前述般,於形成有機EL裝置E1至E4的藍色發光層23B時,塗布膜的乾燥速度依照有機EL裝置E1至E4的順序變慢。於形成有機EL裝置E5至E9的綠色發光層23G時,塗布膜的乾燥速度依照有機EL裝置E5至E9的順序變快。於形成有機EL裝置E10至E14的紅色發光層23R時,塗布膜的乾燥速度依照有機EL裝置E10至E14的順序變慢。此外,從第10圖至第12圖中,如第7圖所示,可得知當應成為有機發光層23之塗布膜的乾燥速度快時,會有使中央部成為凹狀之方式形成有機發光層23之傾向,隨著上述塗布膜的乾燥速度變慢,而有使中央部成為凸狀之方式形成有機發光層23之傾向。因此,例如藉由調整乾燥速度,可調整有機發光層23的平坦度α。 As described above, when the blue light-emitting layer 23B of the organic EL devices E1 to E4 is formed, the drying speed of the coating film becomes slow in accordance with the order of the organic EL devices E1 to E4. When the green light-emitting layer 23G of the organic EL devices E5 to E9 is formed, the drying speed of the coating film becomes faster in accordance with the order of the organic EL devices E5 to E9. When the red light-emitting layer 23R of the organic EL devices E10 to E14 is formed, the drying speed of the coating film becomes slow in accordance with the order of the organic EL devices E10 to E14. Further, from Fig. 10 to Fig. 12, as shown in Fig. 7, it can be seen that when the drying speed of the coating film to be the organic light-emitting layer 23 is fast, the central portion is formed into a concave shape to form an organic The tendency of the light-emitting layer 23 tends to form the organic light-emitting layer 23 so that the center portion becomes convex as the drying speed of the coating film becomes slow. Therefore, the flatness α of the organic light-emitting layer 23 can be adjusted, for example, by adjusting the drying speed.

以上說明本發明之實施形態,但本發明並不限定於上述實施形態,在不脫離發明的主旨之範圍內,可進行種種的變更。例如,於有機發光層與附堤堰之基板所具有之電極之間,形成電洞注入層及電洞輸送層,但亦可不形成此等。例如,可與附堤堰之基板所具有之電極相鄰接而形成有機發光層。或者是不形成電洞輸送層,且與電洞注入層相鄰接而形成有機發光層。 The embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit and scope of the invention. For example, a hole injection layer and a hole transport layer are formed between the organic light-emitting layer and the electrode of the substrate on which the bank is attached, but these may not be formed. For example, the organic light-emitting layer may be formed adjacent to the electrode of the substrate to which the bank is attached. Alternatively, the hole transport layer is not formed, and the organic light-emitting layer is formed adjacent to the hole injection layer.

於有機發光層與陰極之間,可設置電子注入層。電子注入層,為具有改善從陰極往有機發光層之電子注入效率之功能的層。電子注入層可使用一般所知的電 子注入材料。如此地設置電子注入層時,於電子注入層與有機發光層之間,可設置電子輸送層。電子輸送層,為具有改善來自陰極、電子注入層或更接近陰極之電子輸送層的電子注入之功能的層。電子輸送層可使用一般所知的電子輸送材料。 An electron injecting layer may be disposed between the organic light emitting layer and the cathode. The electron injecting layer is a layer having a function of improving electron injection efficiency from the cathode to the organic light emitting layer. The electron injection layer can use generally known electricity Sub-injection material. When the electron injecting layer is provided in this manner, an electron transporting layer may be provided between the electron injecting layer and the organic light emitting layer. The electron transport layer is a layer having a function of improving electron injection from the cathode, the electron injection layer, or the electron transport layer close to the cathode. As the electron transport layer, a generally known electron transport material can be used.

至目前為止的說明中,係將附堤堰之基板所具有之第1電極設為陽極,第2電極設為陰極。然而,第1電極亦可設為陰極,第2電極設為陽極。此外,至目前為止的說明中,有機EL裝置具有紅色像素2R、綠色像素2G及藍色像素2B的3種像素,但色彩的種類並無特別限定,全部的像素亦可射出相同色彩。 In the description so far, the first electrode of the substrate to which the bank is attached is an anode, and the second electrode is a cathode. However, the first electrode may be a cathode and the second electrode may be an anode. Further, in the above description, the organic EL device has three types of pixels of the red pixel 2R, the green pixel 2G, and the blue pixel 2B. However, the type of the color is not particularly limited, and all of the pixels may emit the same color.

以上係說明判定步驟S16中的期望值為70%者,但上述期望值並不限於70%。可因應有機EL裝置中所要求之性能來設定。期望值較佳為70%以上,超過70%的期望值,較佳為80%。有機EL裝置的例子,並不限定於有機顯示面板,只要是有機發光裝置即可。 The above description has been made to determine that the expected value in step S16 is 70%, but the above-described expected value is not limited to 70%. It can be set in accordance with the performance required in the organic EL device. The expected value is preferably 70% or more, more than 70% of the desired value, preferably 80%. The example of the organic EL device is not limited to the organic display panel, and may be any organic light-emitting device.

S10、S12、S14、S16、S18、S20‧‧‧步驟 S10, S12, S14, S16, S18, S20‧‧ steps

Claims (10)

一種有機EL裝置的製造方法,其係具備:於具備有基板、設置在前述基板且用以規定像素之堤堰、以及於前述基板中設置在對應於前述像素之像素區域上之第1電極之附堤堰之基板的前述第1電極上,藉由塗布法形成有機發光層之步驟,算出前述有機發光層的平坦度之步驟,判定前述有機發光層的平坦度是否為期望的平坦度以上之步驟,以及於前述有機發光層上形成第2電極之步驟;於前述算出平坦度之步驟中,將前述有機發光層的最小厚度設為d(nm),從前述基板的厚度方向觀看時為(d+既定值)nm以下之前述有機發光層的面積設為A1,前述像素區域的面積設為A2,前述平坦度設為α時,藉由下述式(1)算出前述平坦度,於前述判定步驟中,當前述平坦度為期望值以上時,實施前述形成第2電極之步驟,於前述判定步驟中,當前述平坦度未達期望值時,於前述形成有機發光層之步驟中,變更前述有機發光層的形成條件來形成前述有機發光層,α=(A1/A2)×100‧‧‧(1)。 A method of manufacturing an organic EL device, comprising: a substrate; a bank provided on the substrate and defining a pixel; and a first electrode provided on a pixel region corresponding to the pixel in the substrate a step of forming an organic light-emitting layer by a coating method on the first electrode of the substrate of the bank, calculating a flatness of the organic light-emitting layer, and determining whether the flatness of the organic light-emitting layer is equal to or higher than a desired flatness And a step of forming a second electrode on the organic light-emitting layer; and in the step of calculating the flatness, the minimum thickness of the organic light-emitting layer is d (nm), and when viewed from the thickness direction of the substrate, (d+ is predetermined) The area of the organic light-emitting layer having a value of nm or less is A1, the area of the pixel region is A2, and when the flatness is α, the flatness is calculated by the following formula (1). When the flatness is equal to or greater than a desired value, the step of forming the second electrode is performed, and in the determining step, when the flatness does not reach a desired value, the shape is The organic light emitting layer in the step of changing the conditions of forming the organic light emitting layer to form the organic light emitting layer, α = (A1 / A2) × 100‧‧‧ (1). 如申請專利範圍第1項所述之有機EL裝置的製造方法,其中前述既定值為2以上15以下。 The method for producing an organic EL device according to claim 1, wherein the predetermined value is 2 or more and 15 or less. 如申請專利範圍第1項所述之有機EL裝置的製造方 法,其中前述既定值為10。 The manufacturer of the organic EL device as described in claim 1 The method wherein the aforementioned value is 10. 如申請專利範圍第1至3中任一項所述之有機EL裝置的製造方法,其中前述期望的平坦度,係根據相對於亮度分布率算出用像素以前述式(1)所規定之平坦度與前述亮度分布率算出用像素中的亮度分布率之關係而設定者;前述亮度分布率,為於前述亮度分布率算出用像素中,前述亮度分布率算出用像素的面積中之具有最大亮度之70%以上的亮度之區域的面積之比率。 The method of manufacturing an organic EL device according to any one of claims 1 to 3, wherein the desired flatness is based on a flatness defined by the above formula (1) with respect to a luminance distribution ratio calculation pixel. In the luminance distribution ratio calculation pixel, the luminance distribution rate calculation pixel has the maximum luminance among the pixels of the luminance distribution ratio calculation pixel. The ratio of the area of the region of brightness of 70% or more. 如申請專利範圍第1至4項中任一項所述之有機EL裝置的製造方法,其中前述期望的平坦度為70%。 The method for producing an organic EL device according to any one of claims 1 to 4, wherein the aforementioned desired flatness is 70%. 如申請專利範圍第1至5項中任一項所述之有機EL裝置的製造方法,更具備:於前述附堤堰之基板的前述第1電極上,形成包含至少一層有機層之有機構造體之步驟;於前述形成有機發光層之步驟中,於前述有機構造體上形成前述有機發光層。 The method for producing an organic EL device according to any one of claims 1 to 5, further comprising: forming an organic structure including at least one organic layer on the first electrode of the substrate with the bank a step of forming the organic light-emitting layer on the organic structure in the step of forming the organic light-emitting layer. 如申請專利範圍第6項所述之有機EL裝置的製造方法,其中於前述算出平坦度之步驟中,從前述有機構造體的厚度分布與於前述有機構造體上形成有前述有機發光層而成之積層體的厚度分布之差,算出前述有機發光層的厚度分布;根據前述有機發光層的厚度分布算出前述平坦度。 The method for producing an organic EL device according to claim 6, wherein in the step of calculating the flatness, the organic light-emitting layer is formed from the thickness distribution of the organic structure and the organic structure. The thickness distribution of the organic light-emitting layer is calculated from the difference in thickness distribution of the laminate, and the flatness is calculated from the thickness distribution of the organic light-emitting layer. 一種有機EL裝置,係具備:具有基板、設置在前述基板且用以規定像素之堤堰、以及於前述基板中設置在對應於前述像素之像素區域上之第1電極之附堤堰之基板,設置在第1電極上之有機發光層,以及設置在前述有機發光層上之第2電極;將前述有機發光層的最小厚度設為d(nm),從前述基板的厚度方向觀看時為(d+既定值)nm以下之前述有機發光層的面積設為A1,前述像素區域的面積設為A2,前述有機發光層的平坦度設為(A1/A2)×100[%]時,前述平坦度為70%以上。 An organic EL device comprising: a substrate; a substrate provided on the substrate and defining a pixel; and a substrate provided on the substrate with a first electrode corresponding to the first electrode in the pixel region of the pixel, An organic light-emitting layer on the first electrode; and a second electrode provided on the organic light-emitting layer; a minimum thickness of the organic light-emitting layer is d (nm), and is (d + a predetermined value when viewed from a thickness direction of the substrate The area of the organic light-emitting layer of nm or less is A1, the area of the pixel region is A2, and the flatness of the organic light-emitting layer is (A1/A2)×100 [%], and the flatness is 70%. the above. 如申請專利範圍第8項所述之有機EL裝置,其中前述既定值為2以上15以下。 The organic EL device according to claim 8, wherein the predetermined value is 2 or more and 15 or less. 如申請專利範圍第8項所述之有機EL裝置,其中前述既定值為10。 The organic EL device according to claim 8, wherein the aforementioned value is 10.
TW105136409A 2015-11-13 2016-11-09 Method for manufactaring organic el device TWI714663B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015223320 2015-11-13
JP2015-223320 2015-11-13

Publications (2)

Publication Number Publication Date
TW201724613A true TW201724613A (en) 2017-07-01
TWI714663B TWI714663B (en) 2021-01-01

Family

ID=58696071

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105136409A TWI714663B (en) 2015-11-13 2016-11-09 Method for manufactaring organic el device

Country Status (5)

Country Link
JP (1) JP6814742B2 (en)
KR (1) KR20180082497A (en)
CN (1) CN108353480B (en)
TW (1) TWI714663B (en)
WO (1) WO2017082173A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193953B2 (en) * 2018-08-24 2022-12-21 住友化学株式会社 Organic EL device manufacturing method and organic EL device
CN113193034B (en) * 2021-04-30 2024-05-24 京东方科技集团股份有限公司 Display backboard, manufacturing method thereof and display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857161B2 (en) * 2002-03-14 2006-12-13 大日本印刷株式会社 Functional element manufacturing method and manufacturing apparatus thereof
JP2005118752A (en) * 2003-10-20 2005-05-12 Seiko Epson Corp Thin film formation method and droplet discharge device
JP4837295B2 (en) * 2005-03-02 2011-12-14 株式会社沖データ Semiconductor device, LED device, LED head, and image forming apparatus
KR101472771B1 (en) * 2008-12-01 2014-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP2011023668A (en) * 2009-07-17 2011-02-03 Sumitomo Chemical Co Ltd Liquid column coating ink, method of manufacturing organic el element, and organic el display device with organic el element
WO2012011456A1 (en) * 2010-07-21 2012-01-26 住友化学株式会社 Organic electroluminescence display device manufacturing method and organic electroluminescence display device
KR101900960B1 (en) * 2011-09-28 2018-09-20 가부시키가이샤 제이올레드 Ink for organic light emitting device, and method for manufacturing the ink
JP5938669B2 (en) * 2011-09-28 2016-06-22 株式会社Joled Organic light emitting device manufacturing method, organic light emitting device, organic display device, organic light emitting device, functional layer forming method, functional member, display device, and light emitting device
US20140335639A1 (en) * 2011-12-15 2014-11-13 Panasonic Corporation Method for producing organic el display panel
JP6535977B2 (en) * 2014-03-27 2019-07-03 セイコーエプソン株式会社 Method of manufacturing light emitting device

Also Published As

Publication number Publication date
KR20180082497A (en) 2018-07-18
WO2017082173A1 (en) 2017-05-18
CN108353480A (en) 2018-07-31
TWI714663B (en) 2021-01-01
JPWO2017082173A1 (en) 2018-08-30
JP6814742B2 (en) 2021-01-20
CN108353480B (en) 2020-12-22

Similar Documents

Publication Publication Date Title
US8729534B2 (en) Organic EL display panel
KR20120123406A (en) Light-emitting device
TWI549562B (en) Method for producting organic electroluminescent device
WO2011040238A1 (en) Organic electroluminescent element, display device using same, and method for manufacturing organic electroluminescent element
JP2012160388A (en) Organic el display device and method of manufacturing the same
TWI714663B (en) Method for manufactaring organic el device
WO2011007849A1 (en) Liquid column coating ink, organic el element production method, and organic el device provided with said organic el element
JP2010146894A (en) Organic electroluminescence element
JP2009238708A (en) Manufacturing method for organic electroluminescent apparatus
JP2012216810A (en) Organic el element and method of manufacturing the same
JP7193953B2 (en) Organic EL device manufacturing method and organic EL device
JP2010160946A (en) Method for manufacturing organic electroluminescence device
WO2013133090A1 (en) Display device
JP2010160945A (en) Method for manufacturing organic electroluminescence device
JP7330779B2 (en) Organic EL device and its manufacturing method
JP2021005541A (en) Production method for organic el device
JP2012069876A (en) Organic el element and manufacturing method therefor
JP2013207206A (en) Organic electroluminescent display and manufacturing method thereof
JP6945983B2 (en) Manufacturing method of organic EL device, display element and organic EL device
WO2011065288A1 (en) Manufacturing method of light emitting device
JP6155548B2 (en) Organic EL element manufacturing method, display device, illumination device, and organic EL element manufacturing apparatus
TW201320433A (en) Light-emitting device
JP2012074237A (en) Organic el element and manufacturing method thereof
JP2017204403A (en) Transparent electrode and organic electroluminescent element
JP2014067533A (en) Organic el display device and manufacturing method of the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees