TW201721234A - 光學隔離模組 - Google Patents

光學隔離模組 Download PDF

Info

Publication number
TW201721234A
TW201721234A TW105131493A TW105131493A TW201721234A TW 201721234 A TW201721234 A TW 201721234A TW 105131493 A TW105131493 A TW 105131493A TW 105131493 A TW105131493 A TW 105131493A TW 201721234 A TW201721234 A TW 201721234A
Authority
TW
Taiwan
Prior art keywords
optical
light
source
modulator
amplified
Prior art date
Application number
TW105131493A
Other languages
English (en)
Other versions
TWI724032B (zh
Inventor
業爭 陶
丹尼爾 約翰 威廉 布朗
亞歷山大 安東尼 夏夫根斯
柏拉許 寶利捷 達斯
Original Assignee
Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml荷蘭公司 filed Critical Asml荷蘭公司
Publication of TW201721234A publication Critical patent/TW201721234A/zh
Application granted granted Critical
Publication of TWI724032B publication Critical patent/TWI724032B/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA

Abstract

一種用於一光微影工具之光學源包括:一源,其經組態以發射一第一光束及一第二光束,該第一光束具有一第一波長,且該第二光束具有一第二波長,該第一波長與該第二波長不同;一放大器,其經組態以放大該第一光束及該第二光束以分別產生一第一經放大光束及一第二經放大光束;及介於該源與該放大器之間的一光學隔離器,該光學隔離器包括:複數個二向色光學元件,及介於該等二向色光學元件中之兩者之間的一光學調變器。

Description

光學隔離模組
本發明係關於一種光學隔離模組。該光學隔離模組可用於極紫外線(EUV)光源中。
極紫外線(EUV)光(例如,具有為大約50奈米或更小之波長之電磁輻射(有時亦被稱作軟x射線)且包括處於約13奈米之波長之光)可用於光微影程序中以在基板(例如,矽晶圓)中產生極小特徵。 用以產生EUV光之方法包括但未必限於運用在EUV範圍內之發射譜線而將具有一元素(例如,氙、鋰或錫)之材料轉換成電漿狀態。在一種此類方法(常常被稱為雷射產生電漿「LPP」)中,可藉由運用可被稱作驅動雷射之經放大光束來輻照目標材料(例如,呈材料之小滴、板、帶、串流或叢集之形式)而產生所需電漿。對於此程序,通常在例如真空腔室之密封容器中產生電漿,且使用各種類型之度量衡設備來監視電漿。
在一個通用態樣中,一種用於一光微影工具之光學源包括:一源,其經組態以發射一第一光束及一第二光束,該第一光束具有一第一波長,且該第二光束具有一第二波長,該第一波長與該第二波長不同;一放大器,其經組態以放大該第一光束及該第二光束以分別產生一第一經放大光束及一第二經放大光束;及介於該源與該放大器之間的一光學隔離器,該光學隔離器包括:複數個二向色光學元件,及介於該等二向色光學元件中之兩者之間的一光學調變器。 實施可包括以下特徵中之一或多者。該光學調變器可包括一聲光調變器。該等二向色光學元件中之每一者可經組態以反射具有該第一波長之光且透射具有該第二波長之光;且該聲光調變器可經定位於該等二向色光學元件中之兩者之間的一光束路徑上,該聲光調變器可經定位以接收自該等二向色光學元件中之該兩者反射之光,該聲光調變器可經組態以在該所接收光在相對於該聲光調變器之一第一方向上傳播時透射該所接收光且在該所接收光在相對於該聲光調變器之一第二方向上傳播時使該所接收光偏轉遠離該光束路徑,該第二方向不同於該第一方向。該第一光束及該第二光束可為脈衝式光束。該第一經放大光束之一能量可小於該第二經放大光束之一能量。該第一經放大光束可具有足以使一目標材料小滴中之目標材料變形成一經修改目標之一能量,該經修改目標包括呈不同於該目標材料小滴中之該目標材料之一分佈的一幾何分佈之目標材料,該目標材料包括當處於一電漿狀態中時發射極紫外線(EUV)光之材料,且該第二經放大光束具有足以將該經修改目標中之該目標材料中的至少一些轉換成發射EUV光之該電漿之一能量。 該聲光調變器可經定位於該等二向色光學元件中之兩者之間的一光束路徑上且可經定位以接收自該等二向色光學元件中之該兩者反射之光,該聲光調變器可經組態以接收一觸發信號,且該聲光調變器可回應於接收到該觸發信號而使所接收光自該光束路徑偏轉,及以另外方式將所接收光透射至該光束路徑上。 該光學源亦可包括介於該源與該放大器之間的一第二光學調變器。該第二光學調變器係介於該等二向色光學元件中之兩者之間,且該第二光學調變器與該光學調變器處於一不同一光束路徑上。 該源可包括一雷射源。該源可包括複數個源,該第一光束係由該等源中之一者產生,且該第二光束係由該等源中之另一者產生。該源可包括一或多個前置放大器。 在另一通用態樣中,一種用於一極紫外線(EUV)光源之裝置包括:複數個二向色光學元件,該等二向色光學元件中之每一者經組態以反射具有在一第一波長帶內的一波長之光且透射具有在一第二波長帶內的一波長之光;及一光學調變器,其定位於該等二向色光學元件中之兩者之間的一光束路徑上,該光學調變器經定位以接收自該兩個二向色光學元件反射之光,且該光學調變器經組態以在該所接收光在該光束路徑上在一第一方向上傳播時透射該所接收光且在該所接收光在該光束路徑上在一第二方向上傳播時使該所接收光偏轉遠離該光束路徑,該第二方向不同於該第一方向,其中該第一波長帶包括一預脈衝光束之一波長,且該第二波長帶包括一主光束之一波長。 實施可包括以下特徵中之一或多者。該光學調變器可為一聲光調變器。該裝置亦可包括一控制系統,該控制系統經組態以將一觸發信號提供至該聲光調變器,且該聲光調變器可經組態以回應於接收到該觸發信號而使光偏轉遠離該光束路徑及以另外方式將光透射至該光束路徑上。 該裝置亦可包括一第二光學調變器,其中該第二光學調變器係介於該等二向色光學元件中之兩者之間,且該第二光學調變器經定位以接收由該兩個二向色光學元件透射之光。該光學調變器及該第二光學調變器可介於該相同兩個二向色光學元件之間,且該第二光學調變器可在不同於該光束路徑的一第二光束路徑上。 在另一通用態樣中,一種方法包括:在一第一二向色光學元件處反射一第一光束,該經反射第一光束傳遞通過一光學調變器及一放大器以產生一經放大第一光束;將一第二光束透射通過該第一二向色光學元件、一第二二向色光學元件及該放大器以產生一經放大第二光束;在該第二二向色光學元件處接收該經放大第一光束之一反射光,其中該經放大第一光束之該反射光與該第二二向色光學元件之間的一相互作用會將該經反射經放大第一光束導向至該光學調變器;及在該光學調變器處使該經放大第一光束之該反射光偏轉以藉此將該經放大第一光束之該反射光導向遠離該第一光束之一源。 實施可包括以下特徵中之一或多者。可在該第一光束傳遞通過該光學調變器之後及在該經放大第一光束之該反射光處於該光學調變器處之前將一觸發信號提供至該光學調變器。 該觸發信號可使該光學調變器處於該光學調變器使入射光偏轉之一狀態中。 該經放大第一光束可朝向一初始目標區傳播。可經由該第一經放大光束與該初始目標區中之一目標材料小滴之間的一相互作用而產生該第一經放大光束之該反射光。該第二經放大光束可朝向一目標區傳播,且目標材料與該第二經放大光束之間的一相互作用可產生該第二經放大光束之一反射光,該方法進一步包括:將該第二經放大光束之該反射光透射通過該第二二向色光學元件;及在一第二光學調變器處使該第二經放大光束之該反射光偏轉以藉此將該第二經放大光束之該反射光導向遠離該第二光束之一源。該第一光束之該源及該第二光束之該源可為同一源。該第一光束之該源可為該源中之一第一光學子系統,且該第二光束之該源可為該源中之一第二光學子系統。 上文所描述之該等技術中的任一者之實施可包括用於修整一現有EUV光源之一方法、一程序、一光學隔離器、一套組或預組裝系統,或一裝置。以下隨附圖式及描述中闡述一或多個實施之細節。其他特徵將自描述及圖式及自申請專利範圍而顯而易見。
相關申請案之交叉參考 本申請案主張2015年10月1日申請且題為「光學隔離模組(OPTICAL ISOLATION MODULE)」之美國臨時申請案第62/236,056號及2015年12月15日申請之名為「光學隔離模組(OPTICAL ISOLATION MODULE)」之美國序列號14/970,402之權利,該等申請案兩者以引用方式併入本文中。 參看圖1,其展示例示性光學系統100之方塊圖。該光學系統100為極紫外線(EUV)光源之部件。該光學系統100包括產生光束110之光學源102。光束110係自光學源102發射且沿著路徑112在方向z上朝向目標區115傳播。 目標區115收納目標120,目標120包括當經轉換成電漿時發射EUV光之材料。目標120在光束110之一或若干波長下反射。因為當光束110與目標120相互作用時目標120為反射的,所以光束110之全部或部分可沿著路徑112在不同於z方向之方向上反射。光束110之經反射部分被標註為反射光113。反射光113可在路徑112上在與z方向相對之方向上行進且返回行進至光學源102中。向前光束(自光學源102朝向目標區115傳播之光束)之反射光(諸如反射光113)被稱作「背向反射光」。 光學源102包括光產生模組104、光學隔離器106,及光學放大器108。光產生模組104為光之來源(諸如,一或多個雷射、燈或此等元件之任何組合)。光學放大器108具有處於光束路徑112上的增益介質(圖中未繪示)。當激發增益介質時,增益介質將光子提供至光束110,以放大光束110以產生經放大光束110。光學放大器108可包括經配置成在路徑112上具有各別增益介質之多於一個光學放大器。光學放大器108可為驅動雷射系統(諸如,圖8B之驅動雷射系統880)之全部或部分。 光產生模組104將光束110在光束路徑112上發射朝向光學隔離器106。光學隔離器106將光束110在z方向上傳遞至光學放大器108且傳遞朝向目標區115。然而,光學隔離器106阻擋背向反射光113。因此,且如下文更詳細地論述,光學隔離器106防止背向反射光進入光產生模組104。藉由防止背向反射光進入光產生模組104,可將額外光學功率遞送至目標120,此情形可導致所產生EUV光之量增加。 參看圖2,展示包括例示性光學源202的EUV光源200之方塊圖。可使用光學源202來代替光學系統100 (圖1)中之光學源102。光學源202包括:光產生模組204,其包括兩個光學子系統204a、204b;光學放大器108;及光學隔離器106。光學隔離器106在路徑112上且介於光學放大器108與光產生模組204之間。 光學子系統204a、204b分別產生第一光束210a及第二光束210b。在圖2之實例中,第一光束210a係由實線表示且第二光束210b係由虛線表示。光學子系統204a、204b可為(例如)兩個雷射。在圖2之實例中,光學子系統204a、204b為兩個二氧化碳(CO2 )雷射。然而,在其他實施中,光學子系統204a、204b為不同類型之雷射。舉例而言,光學子系統204a可為固態雷射,且光學子系統204b可為CO2 雷射。 第一光束210a及第二光束210b具有不同波長。舉例而言,在光學子系統204a、204b包括兩個CO2 雷射之實施中,第一光束210a之波長可為約10.26微米(µm)且第二光束210b之波長可介於10.18 µm與10.26 µm之間。第二光束210b之波長可為約10.59 µm。在此等實施中,自CO2 雷射之不同線產生光束210a、210b,從而導致該等光束210a、210b具有不同波長,儘管兩個光束皆自同一類型之源產生。光束210a、210b亦可具有不同能量。 光產生模組204亦包括光束組合器209,光束組合器209將第一光束210a及第二光束210b導向至光束路徑112上。光束組合器209可為能夠將第一光束210a及第二光束210b導向至光束路徑112上之任何光學元件或光學元件之集合。舉例而言,光束組合器209可為鏡面之集合,鏡面中之一些經定位成將第一光束210a導向至光束路徑112上,且鏡面中之其他者經定位成將第二光束210b導向至光束路徑112上。光產生模組204亦可包括前置放大器207,前置放大器207在光產生模組204放大第一光束210a及第二光束210b。 第一光束210a及第二光束210b可在不同時間在路徑112上傳播,但第一光束210a及第二光束210b遵循路徑112且光束210a、210b兩者橫穿實質上相同空間區而到達光學隔離器106,且通過光學放大器108。如關於圖3及圖6所論述,第一光束210a及第二光束210b在光學隔離器106內分離,且接著在路徑112上傳播至光學放大器108。 第一光束210a及第二光束210b係由光束遞送系統225有角度地分配使得第一光束210a經導向初始目標區215a,且第二光束210b經導向經修改目標區215b,該經修改目標區215b在y方向上相對於初始目標區215a位移。在一些實施中,光束遞送系統225亦將第一光束210a及第二光束210b分別聚焦至初始目標區215a及經修改目標區215b內或附近的部位。 在圖2中所展示之實例中,初始目標區215a收納初始目標220a且接收第一光束210a。第一光束210a具有足以修改初始目標220a中之目標材料之幾何分佈至經收納於經修改目標區215b中的經修改目標(或足以起始目標材料之空間重新組態)之能量。亦在經修改目標區215b中接收第二光束210b。第二光束210b具有足以將經修改目標220b中之目標材料中的至少一些轉換成發射EUV光之電漿之能量。在此實例中,第一光束210a可被稱作「預脈衝」,且第二光束210b可被稱作「主脈衝」。 第一光束210a可自初始目標220a反射,以引起背向反射光213a,背向反射光213a可沿著路徑112在除z方向之外的方向上傳播且傳播至光學放大器108中。因為第一光束210a用以修改初始目標220a之空間特性且並不意欲將初始目標220a轉換成發射EUV光之電漿,所以第一光束210a具有低於第二光束210b之能量。然而,第一光束210a之反射光相比於第二光束201b之反射光可具有更多能量。 第一光束210a (及反射光213a)在第二光束210b之前傳播通過光學放大器108。因此,當反射光213a傳遞通過光學放大器108之增益介質時,仍可激發光學放大器108之增益介質。結果,反射光213a可由放大器108放大。另外,初始目標220a可在形狀上為實質上球形、緻密的且高反射,而經修改目標220b可為類圓盤形狀(或其他非球形形狀)、較不緻密且具較小反射性。歸因於非球形形狀,經修改目標220b可經定位成縮減歸因於第二光束210b與經修改目標220b之間的相互作用而反射回至路徑112上之光之量。舉例而言,經修改目標220b可在x-z及/或y-z平面上相對於光束210b之傳播方向傾斜,或經修改目標220b可遠離第二光束210b之焦點。 在一些實施中,經修改目標220b並不在x-z及/或y-z平面上傾斜,且經修改目標220b代替地經定向使得具有最大空間範圍之經修改目標220b之側處於垂直於第二光束210b之傳播方向的平面中。以此方式定向經修改目標220b (其可被稱作「扁平」目標定向)可增強第二光束210b之吸收率。在一些實施中,相比於之經修改目標220b相對於垂直於第二光束210b之傳播方向的平面傾斜20度(°)之實例,此定向可增加第二光束210b之吸收率達約10%。以扁平定向來定向經修改目標220b可增加傳播回至光學源202中之經反射光之量。然而,因為光學源202包括光學隔離器106,所以經修改目標220b可具有扁平定向,此係因為光學隔離器106用以縮減可起因於處於扁平定向之經修改目標220b之反射的影響。 最後,因為第二光束210b具有相對大能量,所以第二光束210b通過放大器108之前向傳播使增益介質飽和,從而使放大器108可將極小能量提供至第二光束210b之背向反射光。因而,儘管第一光束210a具有低於第二光束210b之能量,但起因於第一光束210a之背向反射光213a可相當大且可大於起因於第二光束210b之背向反射光。 如下文所論述,光學隔離器106防止起因於第一光束210a之背向反射進入光產生模組204。光學隔離器106亦可防止起因於第二光束210b之背向反射進入光產生模組204,且圖6中展示此實施之實例。因為光學隔離器106潛在地防止損害之背向反射光到達光產生模組204,所以可自光產生模組204產生較高能量光束,從而引起較多能量經遞送至經修改目標220b且引起較多EUV光。在一些實施中,藉由使用光學隔離器106,所產生之EUV光之平均量可增加達約20%。 參看圖3,其展示例示性光學隔離器306之方塊圖。光學隔離器306可用作光學源102 (圖1)、光學源202 (圖2)中之光學隔離器106或任何其他光學源中之光學隔離器。關於光學源202來論述光學隔離器306。 光學隔離器306包括二向色光學元件331、反射元件332、光學調變器335及二向色元件336。光學隔離器306亦可包括光學配置333、334。二向色元件331及336處於光束路徑112上。二向色元件331及336可為能夠將光根據其波長而分離或進行濾光的任何光學組件。舉例而言,二向色元件331及336可為二向色鏡、二向色濾光片、二向色光束分裂器,或此等元件之組合。二向色元件331及336可彼此相同,或其可具有不同組態。在圖3之實例中,二向色元件331及336反射第一光束210a之一波長(或若干波長)且透射第二光束210b之一波長(或若干波長)。 第一光束210a自二向色元件331反射至光束路徑314上,光束路徑314介於二向色元件331與336之間且具有由反射元件332界定之空間範圍及形式。光束路徑314不同於光束路徑112。因此,在光學隔離器306中,第一光束210a不保持在光束路徑112上,且第一光束210a及第二光束210b空間上彼此分離。第一光束210a在光束路徑314上傳播通過光學配置333、334及光學調變器335,之後到達二向色元件336,二向色元件336將光束210a反射回至光束路徑112上。第二光束210b傳遞通過二向色元件331且通過二向色元件336,其在傳播通過光學隔離器306的同時保持在光束路徑112上。 光學調變器335係介於二向色元件331與336之間的光束路徑314上。光學調變器335為能夠使入射光偏轉遠離路徑314之光學元件。光學調變器335在開啟狀態與閉合狀態之間可調整使得光學調變器335可透射第一光束210a且阻擋反射光213a (來自初始目標220a之第一光束210a之反射光)。 光學調變器335可為(例如)聲光調變器(AOM)。聲光調變器包括連接至轉換器(諸如,壓電轉換器)之介質(諸如,石英或玻璃)。轉換器之運動使得在介質中形成聲波,從而產生介質中之空間上變化之折射率。當介質包括聲波時,使入射於介質上之光偏轉。當聲波不存在於介質中時,聲光調變器透射不具有偏轉之入射光。其他光學調變器可用作調變器335。舉例而言,光學調變器335可為法拉第旋轉器或電光調變器(EOM)。調變器335可為此等器件之組合,且可包括相同類型之器件中的多於一者。 在光學調變器335為聲光調變器之實施中,轉換器在預期反射光213a進入路徑314時移動。在其他時間,轉換器並不移動或振動。因此,光束210a (向前「預脈衝」)傳遞通過光學調變器335,而保持在路徑314上且最終與路徑112重新接合。然而,反射光213a經偏轉(被展示為圖3中之偏轉光217a)遠離路徑314。結果,反射光213a並未到達光產生模組204 (圖2)。 因為光學調變器335可經組態以僅在某些時間透射入射光,所以光學隔離器306提供以時間閘為基礎之隔離技術(相對於基於偏振之隔離技術)。另外,光學隔離器306可結合以偏振為基礎之隔離技術來使用。舉例而言,背向反射光之偏振可不同於向前光束210a、210b之偏振,且包括偏振元件(諸如薄膜偏振器)之偏振隔離器303可置放於光學隔離器306與光學放大器108 (圖1及圖2)之間以提供背向反射之額外阻擋。偏振隔離器303之偏振元件可經組態以主要拒絕第二光束210b之反射光,以允許修整光學隔離器306以拒絕第一光束210a之反射光。藉由使用不同技術以拒絕第一光束210a及第二光束210b之反射光,可縮減自任何源到達光產生模組204之反射光之總量。 在一些實施中,光學隔離器306包括第一光學配置333及第二光學配置334。第一光束210a在到達光學調變器335之前傳遞通過第一光學配置333。第一光學配置333可為縮減第一光束210a之光束直徑之任何光學元件或光學元件之集合。在傳遞通過光學調變器335之後,第一光束210a傳遞通過第二光學配置334。第二光學配置334可為擴大第二光束210b之光束直徑之任何光學元件或光學元件之集合。光學調變器335可在開啟(在入射光由光學調變器335透射之狀態中)或閉合(在入射光由光學調變器335偏轉或阻擋之狀態中)之間轉變之速度隨著光束直徑減低而增加。因此,藉由縮減第一光束210a之直徑,相比於在不具有第一光學配置333之實施中,第一光學配置333允許光學調變器335在開啟與閉合之間更快速地切換,且反之亦然。在一些實施中,光束210a之光束直徑可縮減至約3毫米(mm)。 第二光學配置334在將第一光束210a導向至路徑112上之前擴大第一光束210a之直徑。另外,第二光學配置334在反射光213a到達光學調變器335之前縮減反射光213a之光束直徑。藉由縮減反射光213a之光束直徑,縮減了光學調變器335為了阻擋反射光213a必須在開啟狀態與閉合狀態之間轉變之速度。 參看圖4A及圖4B,分別展示例示性光學配置433及434之方塊圖。光學配置433、434可分別用作光學隔離器306 (圖3)中之光學配置333、334。光學配置433、434為伽利略望遠鏡,其具有一個凸透鏡及一個凹透鏡。在光學配置433中,凹透鏡442係介於凸透鏡441與光學調變器335之間。在光學配置434中,凹透鏡443係介於光學調變器335與凸透鏡444之間。配置433、434兩者縮減朝向光學調變器335傳播之光束之直徑。當光學配置433、434一起在圖3中所展示之組態中使用時,在光束210a入射於光學調變器335上之前縮減光束210a之光束直徑,且在光束210a傳遞通過光學調變器335之後由光學配置434擴大光束210a之光束直徑。在反射光213a到達光學調變器335之前由光學配置434縮減反射光213a之光束直徑。反射光213a並不傳遞通過光學配置433,此係因為光學調變器335使反射光213a自光束路徑314偏轉。 光學配置433及434可為相同伽利略望遠鏡,或配置433及434可包括具有不同特性(諸如不同焦距)之透鏡。 參看圖5A,展示一展示隨時間變化的光學調變器335之狀態之例示性標繪圖。圖5B展示光束510a及反射光513a之脈衝在圖5A中所展示之同一時間軸線之相對置放。脈衝510a為當系統200 (圖2)經組態以使用光學隔離器306 (圖3)作為光學隔離器106時傳播通過該系統200之光束之脈衝,且反射光513a為脈衝513a自初始目標220a之反射光。脈衝510a為用作用以塑形初始目標220a之「預脈衝」之脈衝光束的脈衝。 光學調變器335自時間t1至時間t2閉合(使光自路徑314偏轉或以另外方式防止入射光保持在路徑314上)。在時間t2時,光學調變器335開始轉變成開啟狀態。光學調變器335在時間t2與t3之間開啟,且在此時間範圍期間,光學調變器335透射入射光。光學調變器335在時間t3時轉變為閉合的,且在時間t4時變得再次閉合。如上文所論述,可藉由縮減由光學調變器335閘控之光之光束直徑而縮減轉變時間(時間t2與t3之間的時間及t3與t4之間的時間)。 亦參看圖5B,時間t2及t3經選擇為使得脈衝510a在調變器335開啟時入射於光學調變器335上。因此,脈衝510a傳遞通過光學調變器335以到達初始目標220a。時間t3及t4經選擇為使得光學調變器335在透射脈衝510a之後開始閉合,且在反射光513a入射於光學調變器335上時閉合。以此方式,光學調變器335提供預脈衝反射光513a之以時間閘為基礎之隔離。 在一些實施中,預脈衝510a及反射光513a之光束直徑可為3毫米。在光學調變器335為聲光調變器之實施中,光學調變器自開啟轉變至閉合(且反之亦然)所花費的時間係藉由入射光之光束直徑及光學調變器之材料中之聲速予以判定。材料可為(例如)鍺(Ge),其具有為5500公尺/秒(m/s)之聲波速度。在此實例中,轉變時間(光學調變器自閉合轉變至開啟之時間)為375奈秒(ns)。預脈衝510a與反射光513a之間的延遲可為(例如)400 ns。因此,預脈衝510a係由光學調變器335透射且反射光513a偏離路徑314。 在一些實施中,光學調變器335閉合,惟脈衝510a被預期之時間段除外。藉由在其他時間保持閉合,光學調變器335防止反射光513a進入光產生模組204。另外,藉由保持閉合,調變器335亦防止或縮減脈衝510a之二次反射光之影響。路徑112上之諸如濾光片、針孔、透鏡及導管之元件為閃爍來源且反射入射光。此等元件可反射脈衝510b且造成傳播於路徑112及路徑314上之二次反射,且此等二次反射光為除了反射光513a以外的反射光。藉由將調變器335保持閉合(惟當脈衝510a入射於調變器335上除外),亦防止二次反射光進入光產生模組204。此外,自路徑314移除二次反射光且因此防止二次反射光傳播回至路徑112上。以此方式,二次反射光無法到達初始目標區215a、經修改目標區215b或區215a與215b之間的區。若二次反射光能夠到達此等區,則反射光可藉由在目標到達經修改目標區215b之前使目標分裂開而損害目標。二次反射光可被稱作由反向脈衝激發之前向脈衝(FER)。光學隔離器306可幫助減輕自雷射作用,此可限制關於遞送至目標區215b之光學功率之最大值。 參看圖6,其展示另一例示性光學隔離器606之方塊圖。可使用光學隔離器606來代替系統100 (圖1)或系統200 (圖2)中之光學隔離器106。另外,光學隔離器606可用於需要防止背向反射光之任何其他光學系統中。關於其中光學隔離器606用作系統200 (圖2)中之光學隔離器106之組態來論述光學隔離器606。可使用光學隔離器606與上文關於圖3所論述之偏振隔離器303。在包括偏振隔離器303之實施中,偏振隔離器303係介於光學隔離器606與光學放大器108 (圖1及圖2)之間以提供背向反射光之額外阻擋。 光學隔離器606相似於光學隔離器306 (圖3),惟光學隔離器606包括第二光學調變器637除外。第二光學調變器637係在路徑112上,且經定位於二向色光學元件331與二向色光學元件336之間。相似於光學調變器335,第二光學調變器637在處於開啟狀態中時透射入射光或在處於閉合狀態中時偏轉或阻擋入射光。第二光束210b係自光產生模組204發射且在路徑112上傳播至二向色光學元件331。 如上文所論述,二向色光學元件331透射第二光束210b之波長。因此,第二光束210b傳遞通過二向色光學元件331且入射於第二光學調變器637上。第二光學調變器637在第二光束210b入射於調變器637上、及第二光束210b傳遞通過調變器637及二向色光學元件336,以保持在路徑112上且到達經修改目標區215b (圖2)時受控制為處於開啟狀態中。第二光束210b之部分自經修改目標220b反射(除了經修改目標220b將目標材料中之至少一些轉換成發射EUV光之電漿以外)且可作為反射光213b沿著路徑112在除z方向之外之方向上傳播。 反射光213b係由二向色光學元件336透射且保持在路徑112上。光學調變器637在反射光213b入射於調變器637上時閉合,且反射光213b作為經偏轉光217b自路徑112偏轉。因此,第二調變器637防止反射光213b到達光產生模組204或縮減到達光產生模組204之反射光213b之量,以縮減或消除自光產生模組404之自雷射作用且允許第二光束210b具有較大能量。在一些實施中,光學調變器637使30%至40%的反射光213b偏轉。期間光學調變器637開啟之時間可縮減以進一步縮減自雷射作用之量。舉例而言,將開啟時間自20微秒(µs)縮減至2 µs可縮減自雷射作用達90%。 第二調變器637閉合,惟光束210b被預期之時間段除外。藉由在其他時間保持閉合,第二調變器637防止反射光213b進入光產生模組204。另外,藉由保持閉合,第二調變器637亦防止或縮減自第二光束210b之二次反射光之影響。路徑112上之諸如濾光片、針孔、透鏡及導管之元件為閃爍來源且反射入射光。此等元件可反射第二光束210b且造成為除了反射光213b以外的二次反射光(其係藉由第二光束210b與經修改目標220b之間的相互作用造成)。藉由將調變器637保持閉合(惟在第二光束210b入射於調變器637上時除外),亦防止二次反射光進入光產生模組204且自路徑112移除二次反射光。 第二光學調變器637可相同於調變器335,或第二光學調變器637及調變器335可為不同類型之調變器。 參看圖7,展示系統700之方塊圖。系統700包括光產生模組704、控制系統740及光學調變器735。光產生模組704可為光產生模組104 (圖1)、光產生模組204 (圖2),或產生具有不同波長之光束之任何其他系統。光學調變器735可為光學調變器335 (圖3)及/或光學調變器637 (圖6)。 控制系統740將觸發信號747提供至光學調變器735。觸發信號747足以致使光學調變器735改變狀態或開始改變狀態。舉例而言,在光學調變器735為聲光調變器之實施中,觸發信號747可藉由使轉換器振動以在調變器中形成聲波而致使調變器轉變成閉合狀態。控制系統740亦可自光產生模組704經由信號741接收資料,且可將資料經由信號742提供至光產生模組704。另外,控制系統740亦可自光學模組735經由信號742接收資料。 控制系統740包括電子儲存裝置743、電子處理器744,及輸入/輸出(I/O)介面745。電子處理器744包括適合於執行電腦程式之一或多個處理器,諸如一般或特殊用途微處理器,及具有任何種類數位電腦之任一或多個處理器。通常,處理器自唯讀記憶體或隨機存取記憶體或此兩者接收指令及資料。電子處理器744可為任何類型之電子處理器。 電子儲存裝置743可為諸如RAM之揮發性記憶體,或非揮發性記憶體。在一些實施中,且電子儲存裝置743可包括非揮發性部件或組件及揮發性部件或組件兩者。電子儲存裝置743可儲存用於光學調變器735之操作中之資料及資訊。舉例而言,電子儲存裝置743可儲存指定預期第一光束210a及第二光束210b何時傳播通過系統200 (圖2)之時序資訊。電子儲存裝置743亦可儲存指令可能作為電腦程式,該等指令在經執行時致使處理器744與控制系統740、光產生模組704及/或光學調變器735中之其他組件通信。舉例而言,該等指令可為使電子處理器744在藉由儲存於電子儲存裝置743上之時序資訊指定之某些時間將觸發信號747提供至光學調變器735之指令。 I/O介面745為允許控制系統740運用操作員、光產生模組704、光學調變器735及/或執行於另一電子器件上之自動化程序而接收及/或提供資料及信號的任何種類之電子介面。舉例而言,I/O介面745可包括視覺顯示器、鍵盤,或通信介面中之一或多者。 參看圖8A,展示LPP EUV光源800。光學系統100及200可為EUV光源(諸如,源800)之部分。藉由運用經放大光束810輻照目標部位805處之目標混合物814而形成LPP EUV光源800,該經放大光束810沿著朝向目標混合物814之光束路徑行進。亦被稱作輻照位點之目標部位805係在真空腔室830之內部807內。當經放大光束810撞擊目標混合物814時,該目標混合物814內之目標材料轉換成具有在EUV範圍內之發射譜線之元素的電漿狀態。所產生電漿具有取決於目標混合物814內之目標材料之組合物之某些特性。此等特性可包括由電漿產生之EUV光之波長,以及自電漿釋放之碎屑之類型及量。 光源800亦包括目標材料遞送系統825,目標材料遞送系統825遞送、控制及導向呈液滴、液體串流、固體粒子或叢集、液滴內所含有之固體粒子或液體串流內所含有之固體粒子之形式的目標混合物814。目標混合物814包括目標材料,諸如,水、錫、鋰、氙,或在經轉換成電漿狀態時具有在EUV範圍內之發射譜線的任何材料。舉例而言,元素錫可用作純錫(Sn);用作錫化合物,例如SnBr4 、SnBr2 、SnH4 ;用作錫合金,例如錫-鎵合金、錫-銦合金、錫-銦-鎵合金或此等合金之任何組合。目標混合物814亦可包括諸如非目標粒子之雜質。因此,在不存在雜質之情形下,目標混合物814係僅由目標材料製成。目標混合物814係由目標材料遞送系統825遞送至腔室630之內部607中且遞送至目標部位605。 光源800包括驅動雷射系統815,驅動雷射系統815歸因於雷射系統815之一或若干增益介質內之粒子數反轉而產生經放大光束810。光源800包括雷射系統815與目標部位805之間的光束遞送系統,該光束遞送系統包括光束傳送系統820及聚焦總成822。光束傳送系統820自雷射系統815接收經放大光束810,且視需要轉向及調整經放大光束810且將經放大光束810輸出至聚焦總成822。聚焦總成822接收經放大光束810且將光束810聚焦至目標部位805。 在一些實施中,雷射系統815可包括用於提供一或多個主脈衝且在一些狀況下提供一或多個預脈衝之一或多個光學放大器、雷射及/或燈。每一光學放大器包括能夠以高增益光學地放大所要波長之增益介質、激發源及內部光學件。光學放大器可具有或可不具有形成雷射空腔之雷射鏡面或其他回饋器件。因此,雷射系統815即使在不存在雷射空腔的情況下歸因於雷射放大器之增益介質中之粒子數反轉亦會產生經放大光束810。此外,雷射系統815可在存在雷射空腔以將足夠回饋提供至雷射系統815的情況下產生為相干雷射光束之經放大光束810。術語「經放大光束」涵蓋如下各者中之一或多者:來自雷射系統815之僅僅經放大但未必為相干雷射振盪的光,及來自雷射系統815之經放大且亦為相干雷射振盪的光。 雷射系統815中之光學放大器可包括作為增益介質之填充氣體,填充氣體包括CO2 且可以大於或等於800之增益放大處於約9100奈米與約11000奈米之間且特別處於約10600奈米之波長之光。用於雷射系統815中之合適放大器及雷射可包括脈衝式雷射器件,例如運用在相對高功率(例如,10 kW或更高)及高脈衝重複率(例如,40 kHz或更大)下操作的DC或RF激發產生處於約9300奈米或約10600奈米之輻射的脈衝式氣體放電CO2 雷射器件。雷射系統815中之光學放大器亦可包括可在較高功率下操作雷射系統815時可使用的冷卻系統,諸如水。 圖8B展示實例驅動雷射系統880之方塊圖。驅動雷射系統880可用作源800中之驅動雷射系統815之部件。驅動雷射系統880包括三個功率放大器881、882及883。功率放大器881、882及883中之任一者或全部可包括內部光學元件(圖中未繪示)。 光884自功率放大器881通過輸出窗口885射出且自彎曲鏡面886反射。在反射之後,光884傳遞通過空間濾光器887、自彎曲鏡面888反射,且通過輸入窗口889進入功率放大器882。光884在功率放大器882中經放大且作為光891通過輸出窗口890而重新導向出功率放大器882。運用摺疊鏡面892將光891導向放大器883且光891通過輸入窗口893進入放大器883。放大器883放大光891且將光891作為輸出光束895通過輸出窗口894而導向出放大器883。摺疊鏡面896向上(在頁面外)導向輸出光束895且將輸出光束895導向光束傳送系統820 (圖8A)。 再次參看圖8B,空間濾光器887界定孔徑897,孔徑897可為(例如)直徑介於約2.2毫米與3毫米之間的圓圈。彎曲鏡面886及888可為(例如)焦距分別為約1.7公尺及2.3公尺的離軸拋物線鏡面。空間濾光器887可經定位成使得孔徑897與驅動雷射系統880之焦點重合。 再次參看圖8A,光源800包括收集器鏡面835,收集器鏡面835具有用以允許經放大光束810傳遞通過且到達目標部位805之孔徑840。收集器鏡面835可為(例如)具有處於目標部位805之主焦點及處於中間部位845之次級焦點(亦被稱為中間焦點)之橢球形鏡面,其中EUV光可自光源800輸出且可經輸入至(例如)積體電路微影工具(圖中未繪示)。光源800亦可包括開端式中空圓錐形護罩850 (例如,氣體錐體),該圓錐形護罩自收集器鏡面835朝向目標部位805漸狹以縮減進入聚焦總成822及/或光束傳送系統820的電漿產生之碎屑之量,同時允許經放大光束810到達目標部位805。出於此目的,可將氣流提供於護罩中,該氣流經導向朝向目標部位805。 光源800亦可包括主控控制器855,主控控制器855連接至小滴位置偵測回饋系統856、雷射控制系統857及光束控制系統858。光源800可包括一或多個目標或小滴成像器860,該一或多個目標或小滴成像器860提供指示小滴(例如)相對於目標部位805之位置之輸出且將此輸出提供至小滴位置偵測回饋系統856,小滴位置偵測回饋系統856可(例如)計算小滴位置及軌跡,自該小滴位置及軌跡可基於逐小滴地或平均地計算出小滴位置誤差。因此,小滴位置偵測回饋系統856將小滴位置誤差作為輸入提供至主控控制器855。因此,主控控制器855可將(例如)雷射位置、方向及時序校正信號提供至可用以(例如)控制雷射時序電路之雷射控制系統857及/或提供至光束控制系統858,光束控制系統858用以控制經放大光束位置及光束傳送系統820之塑形以改變光束聚焦光點在腔室830內之部位及/或焦度。 目標材料遞送系統825包括目標材料遞送控制系統826,該目標材料遞送控制系統826可操作以回應於(例如)來自主控控制器855之信號以修改如由目標材料供應裝置827釋放之小滴之釋放點,以校正到達所要目標部位805處之小滴中的誤差。 另外,光源800可包括光源偵測器865及870,該等光源偵測器量測一或多個EUV光參數,包括但不限於脈衝能量、依據波長而變化的能量分佈、特定波長帶內之能量、特定波長帶外部之能量,及EUV強度之角度分佈及/或平均功率。光源偵測器865產生回饋信號以供主控控制器855使用。回饋信號可(例如)指示為了有效及有效率EUV光產生而在恰當地點及時間適當地截取小滴的諸如雷射脈衝之時序及焦點之參數之誤差。 光源800亦可包括導引雷射875,導引雷射875可用以將光源800之各種區段對準或輔助將經放大光束810轉向至目標部位805。結合導引雷射875,光源800包括度量衡系統824,度量衡系統824被置放於聚焦總成822內以對來自導引雷射875之光之一部分及經放大光束810進行取樣。在其他實施中,度量衡系統824被置放於光束傳送系統820內。度量衡系統824可包括對光之子集進行取樣或重新導向光之子集之光學元件,此光學元件係由可耐受導引雷射光束及經放大光束810之功率之任何材料製造。光束分析系統係由度量衡系統824及主控控制器855形成,此係因為主控控制器855分析自導引雷射875取樣之光且使用此資訊以經由光束控制系統858調整聚焦總成822內之組件。 因此,概言之,光源800產生經放大光束810,該經放大光束沿著光束路徑經導向以輻照目標部位805處之目標混合物814以將混合物814內之目標材料轉換成發射在EUV範圍內之光之電漿。經放大光束810在基於雷射系統815之設計及屬性而判定之特定波長(其亦被稱作驅動雷射波長)下操作。另外,經放大光束810在目標材料將足夠回饋提供回至雷射系統815中以產生相干雷射光時或在驅動雷射系統815包括合適光學回饋以形成雷射空腔的情況下可為雷射光束。 參看圖9,展示用於光學隔離器(諸如光學隔離器306 (圖3))之實例測試資料的標繪圖900。標繪圖900展示在光學隔離器處於接通狀態中及處於關斷狀態中的情況下隨時間變化的反向預脈衝光束之經量測功率。反向預脈衝光束可為諸如反射光213a (圖2)之光束,其起因於如上文所論述之第一光束210a (圖2)與初始目標220a (圖2)之間的相互作用。在接通狀態中,光學隔離器藉由使反射光213a之全部或部分自光束路徑314偏轉使得縮減或消除到達光產生模組204之反射光213a而阻擋或縮減反射光213a之效應。在接通狀態中,光學隔離器可(例如)如關於圖5A及圖5B所論述而操作。在關斷狀態中,光學隔離器並不起作用且系統操作為好像光學隔離器不存在一樣。 在圖9之實例中,光學隔離器在時間905與910之間處於關斷狀態中,且在另外時間處於接通狀態中。當光學隔離器處於接通狀態中時,到達光產生模組204之反射光213a之功率極低且接近為零瓦特(W)。舉例而言,到達光產生模組204之反射光213a之功率可為約0.1 W或低於0.1 W。如上文所論述,需要縮減到達光產生模組204之反射光213a之功率。與此對比,當光學隔離器處於關斷狀態中時,到達光產生模組204之反射光213a之功率大於0且可介於約4.2 W與18.2 W之間。此外,當光學隔離器處於關斷狀態中時,到達光產生模組204之反射光213a之功率變化相當多,此可導致系統中之不穩定性。因此,除了縮減反射光213a中之功率之量以外,光學隔離器亦縮減反射光之功率之變化,從而導致較穩定系統。 參看圖10A及圖10B,展示額外實例測試資料。圖10A展示當光學隔離器(諸如光學隔離器306)不存在於系統中時依據脈衝數目而變化的所產生EUV光之能量,且圖10B展示當光學隔離器存在於系統中時依據脈衝數目而變化的所產生EUV光之能量。當光學隔離器不存在時,EUV光之平均能量為3.4毫焦耳(mJ)。當光學隔離器存在時,平均EUV能量增加至4.1 mJ。 亦參看圖11A及圖11B,當光學隔離器存在於系統中時,所產生EUV光亦較穩定。圖11A展示當光學隔離器不存在時所產生EUV光之能量之特定值的分佈,且圖11B展示當光學隔離器存在時所產生EUV光之能量之特定值的分佈。圖11B之能量值之分佈(當使用光學隔離器時)展示相比於不使用光學隔離器之系統而更常地出現較高能量值且在更小範圍內含有所有能量值。因此,使用光學隔離器(諸如光學隔離器306)會引起較高能量之EUV光,且亦引起較穩定(變化較小)之EUV光。 參看圖12A至圖12C及圖13A至圖13C,展示額外實例測試資料。圖12A至圖12C展示在不具有諸如光學隔離器306之光學隔離器之系統中的在三個時間下之目標1200,且圖13A至圖13C展示在包括諸如光學隔離器306之光學隔離器之系統中的在三個時間下之目標1300。目標1200及1300包括當處於電漿狀態中時發射EUV光之目標材料。目標1200及1300在與處於接收預脈衝之部位(諸如圖2之初始目標區215a)及接收主脈衝之部位(諸如圖2之經修改目標區215b)中之目標1200及1300重合之時間下被展示。 如上文關於圖5A及圖5B所論述,光學隔離器可縮減或消除來自諸如針孔、透鏡、導管及光學元件之物件之二次反射光。當存在時,二次反射光可在目標自初始目標區215a移動至經修改目標區215b時到達目標。圖12A至圖12C展示隨著時間推移與目標1200相互作用的二次反射光之實例。如圖12B及圖12C相比於圖12A中所展示,目標1200隨著時間經過在空間上展開及分裂開。圖13A至圖13C展示使用光學隔離器(諸如光學隔離器306)以縮減或消除二次反射光之系統之實例。相比於目標1200 (圖12A至圖12C),目標1300 (圖13A至圖13C)具有較清潔空間剖面,此可導致入射光束之吸收率增加且更多目標材料可用於與第二光束210b之相互作用(且因此產生更多EUV光)。另外,因為目標1300係供包括光學隔離器之光學源使用,所以目標1300可具有相對於入射光束之傳播方向之扁平定向,同時仍縮減或消除光學源上之背向反射光及二次反射光之效應。 其他實施係在申請專利範圍之範疇內。 在光學子系統204a、204b (圖2)為不同類型之光學子系統之實施中,光學子系統204a可為摻稀土固態雷射(諸如,Nd:YAG或摻鉺光纖(Er:玻璃)),且第一光束210a之波長可為1.06 µm。光學子系統204b可為CO2 雷射,且光束210b之波長可為(例如)10.26 µm。在此等實施中,第一光束210a及第二光束210b可在分離光學放大器中經放大且可遵循經由系統200之分離路徑。又,可使用兩個分離的光學隔離器,一個光學隔離器用於第一光束210a及其對應反射光,且另一光學隔離器用於光束210b及其對應反射光。 前置放大器207 (圖2)可具有多個階段。換言之,前置放大器207可包括串聯且被置放於路徑112上之多於一個放大器。 光束110、210a及210b可為脈衝式光束。第一光束210a之脈衝(或脈衝510a)之功率可為(例如)20瓦特 (W)至40瓦特 (W)。第二光束210b之脈衝之功率可為(例如)300 W至500 W。 第一光束210a可為可對初始目標220a起作用以形成經修改目標220b的任何類型之輻射。舉例而言,第一光束210可為由雷射產生之脈衝式光束。第一光束210可具有約1 μm至10.6 μm之波長。第一光束210a之脈衝之持續時間可為(例如) 20奈秒(ns)至70奈秒(ns)、小於1 ns、300皮秒(ps)、介於100 ps至300 ps之間、介於10 ps至50 ps之間,或介於10 ps至100 ps之間。第一光束210a之脈衝之能量可為(例如)15毫焦耳(mJ)至60毫焦耳(mJ)。當第一光束210a之脈衝具有為1奈秒或更小之持續時間時,該脈衝之能量可為2 mJ。第一光束210a之脈衝與第二光束210b之脈衝之間的時間可為(例如)1 微秒(μs)至3微秒(μs)。 初始目標220a及目標115可具有目標混合物814之任何特性。舉例而言,初始目標220a及目標115可包括錫。 光學系統100及200可包括偏振隔離器303。在光學系統100之此等實施中,偏振隔離器303係介於光學隔離器106與光學放大器108之間。
100‧‧‧光學系統
102‧‧‧光學源
104‧‧‧光產生模組
106‧‧‧光學隔離器
108‧‧‧光學放大器
110 ‧‧‧光束
112 ‧‧‧光束路徑
113 ‧‧‧背向反射光
115 ‧‧‧目標區
120‧‧‧目標
200‧‧‧極紫外線(EUV)光源/光學系統
202‧‧‧光學源
204‧‧‧光產生模組
204a‧‧‧光學子系統
204b‧‧‧光學子系統
207‧‧‧前置放大器
209‧‧‧光束組合器
210a‧‧‧第一光束
210b‧‧‧第二光束
213a‧‧‧背向反射光
213b‧‧‧反射光
215a‧‧‧初始目標區
215b‧‧‧經修改目標區
217a‧‧‧偏轉光
217b‧‧‧經偏轉光
220a‧‧‧初始目標
220b‧‧‧經修改目標
225‧‧‧光束遞送系統
303‧‧‧偏振隔離器
306‧‧‧光學隔離器
314‧‧‧光束路徑
331‧‧‧二向色光學元件
332‧‧‧反射元件
333‧‧‧第一光學配置
334‧‧‧第二光學配置
335‧‧‧光學調變器
336‧‧‧二向色光學元件
433‧‧‧光學配置
434‧‧‧光學配置
441‧‧‧凸透鏡
442‧‧‧凹透鏡
443‧‧‧凹透鏡
444‧‧‧凸透鏡
510a‧‧‧光束/預脈衝
513a‧‧‧預脈衝反射光/脈衝
606‧‧‧光學隔離器
637‧‧‧第二光學調變器
700‧‧‧系統
704‧‧‧光產生模組
735‧‧‧光學調變器
740‧‧‧控制系統
741‧‧‧信號
742‧‧‧信號
743‧‧‧電子儲存裝置
744‧‧‧電子處理器
745‧‧‧輸入/輸出(I/O)介面
747‧‧‧觸發信號
800‧‧‧雷射產生電漿極紫外線(LPP EUV)光源
805‧‧‧目標部位
807‧‧‧內部
810‧‧‧經放大光束
814‧‧‧目標混合物
815‧‧‧驅動雷射系統
820‧‧‧光束傳送系統
822‧‧‧聚焦總成
825‧‧‧目標材料遞送系統
826‧‧‧目標材料遞送控制系統
827‧‧‧目標材料供應裝置
830‧‧‧真空腔室
835‧‧‧收集器鏡面
840‧‧‧孔徑
845‧‧‧中間部位
850‧‧‧開端式中空圓錐形護罩
855‧‧‧主控控制器
856‧‧‧小滴位置偵測回饋系統
857‧‧‧雷射控制系統
858‧‧‧光束控制系統
860‧‧‧目標或小滴成像器
865‧‧‧光源偵測器
870‧‧‧光源偵測器
875‧‧‧導引雷射
880‧‧‧驅動雷射系統
881‧‧‧功率放大器
882‧‧‧功率放大器
883‧‧‧功率放大器
884‧‧‧光
885‧‧‧輸出窗口
886‧‧‧彎曲鏡面
887‧‧‧空間濾光器
888‧‧‧彎曲鏡面
889‧‧‧輸入窗口
890‧‧‧輸出窗口
891‧‧‧光
892‧‧‧摺疊鏡面
893‧‧‧輸入窗口
894‧‧‧輸出窗口
895‧‧‧輸出光束
896‧‧‧摺疊鏡面
897‧‧‧孔徑
900‧‧‧標繪圖
905‧‧‧時間
910‧‧‧時間
1200‧‧‧目標
1300‧‧‧目標
圖1及圖2為例示性光學系統之方塊圖。 圖3及圖6為例示性光學隔離器之方塊圖。 圖4A及圖4B為可用於圖3及圖6之光學隔離器中的例示性光學配置之方塊圖。 圖5A及圖5B為與例示性光學調變器相關聯之時序標繪圖。 圖7為例示性控制系統之方塊圖。 圖8A及圖8B為用於極紫外線(EUV)光源之驅動雷射系統的方塊圖。 圖9、圖10A、圖10B、圖11A、圖11B、圖12A至圖12C及圖13A至圖13C為運用及不運用光學隔離器而收集的實驗資料之實例。
700‧‧‧系統
704‧‧‧光產生模組
735‧‧‧光學調變器
740‧‧‧控制系統
741‧‧‧信號
742‧‧‧信號
743‧‧‧電子儲存裝置
744‧‧‧電子處理器
745‧‧‧輸入/輸出(I/O)介面
747‧‧‧觸發信號

Claims (25)

  1. 一種用於一光微影工具之光學源,該光學源包含: 一源,其經組態以發射一第一光束及一第二光束,該第一光束具有一第一波長,且該第二光束具有一第二波長,該第一波長與該第二波長不同; 一放大器,其經組態以放大該第一光束及該第二光束以分別產生一第一經放大光束及一第二經放大光束;及 介於該源與該放大器之間的一光學隔離器,該光學隔離器包含: 複數個二向色光學元件,及 介於該等二向色光學元件中之兩者之間的一光學調變器。
  2. 如請求項1之光學源,其中該光學調變器包含一聲光調變器。
  3. 如請求項2之光學源,其中 該等二向色光學元件中之每一者經組態以反射具有該第一波長之光且透射具有該第二波長之光;且 該聲光調變器經定位於該等二向色光學元件中之兩者之間的一光束路徑上,該聲光調變器經定位以接收自該等二向色光學元件中之該兩者反射之光,該聲光調變器經組態以在該所接收光在相對於該聲光調變器之一第一方向上傳播時透射該所接收光且在該所接收光在相對於該聲光調變器之一第二方向上傳播時使該所接收光偏轉遠離該光束路徑,該第二方向不同於該第一方向。
  4. 如請求項3之光學源,其中該第一光束為一脈衝式光束,且該第二光束為一脈衝式光束。
  5. 如請求項4之光學源,其中該第一經放大光束之一能量小於該第二經放大光束之一能量。
  6. 如請求項5之光學源,其中 該第一經放大光束具有足以使一目標材料小滴中之目標材料變形成一經修改目標之一能量,該經修改目標包含呈不同於該目標材料小滴中之該目標材料之一分佈的一幾何分佈之目標材料,該目標材料包含當處於一電漿狀態中時發射極紫外線(EUV)光之材料,且 該第二經放大光束具有足以將該經修改目標中之該目標材料中的至少一些轉換成發射EUV光之該電漿之一能量。
  7. 如請求項2之光學源,其中 該聲光調變器經定位於該等二向色光學元件中之兩者之間的一光束路徑上且經定位以接收自該等二向色光學元件中之該兩者反射之光, 該聲光調變器經組態以接收一觸發信號,且 該聲光調變器回應於接收到該觸發信號而使所接收光自該光束路徑偏轉,及以另外方式將所接收光透射至該光束路徑上。
  8. 如請求項1之光學源,其進一步包含介於該源與該放大器之間的一第二光學調變器。
  9. 如請求項8之光學源,其中該第二光學調變器係介於該等二向色光學元件中之兩者之間,且該第二光學調變器與該光學調變器處於一不同光束路徑上。
  10. 如請求項1之光學源,其中該源包含一雷射源。
  11. 如請求項1之光學源,其中該源包含複數個源,該第一光束係由該等源中之一者產生,且該第二光束係由該等源中之另一者產生。
  12. 如請求項1之光學源,其中該源包含一或多個前置放大器。
  13. 一種用於一極紫外線(EUV)光源之裝置,該裝置包含: 複數個二向色光學元件,該等二向色光學元件中之每一者經組態以反射具有在一第一波長帶內的一波長之光且透射具有在一第二波長帶內的一波長之光;及 一光學調變器,其定位於該等二向色光學元件中之兩者之間的一光束路徑上,該光學調變器經定位以接收自該等二向色光學元件中之該兩者反射之光,且該光學調變器經組態以在該所接收光該光束路徑上於一第一方向上傳播時透射該所接收光且在該所接收光在該光束路徑上於一第二方向上傳播時使該所接收光偏轉遠離該光束路徑,該第二方向不同於該第一方向,其中 該第一波長帶包含一預脈衝光束之一波長,且 該第二波長帶包含一主光束之一波長。
  14. 如請求項13之裝置,其中該光學調變器包含一聲光調變器。
  15. 如請求項14之裝置,其中該裝置進一步包含一控制系統,該控制系統經組態以將一觸發信號提供至該聲光調變器,且其中該聲光調變器回應於接收到該觸發信號而使光偏轉遠離該光束路徑及以另外方式將光透射至該光束路徑上。
  16. 如請求項13之裝置,其進一步包含一第二光學調變器,其中 該第二光學調變器係介於該等二向色光學元件中之兩者之間,且 該第二光學調變器經定位以接收由該兩個二向色光學元件透射之光。
  17. 如請求項16之裝置,其中該光學調變器及該第二光學調變器係介於該相同兩個二向色光學元件之間,且該第二光學調變器係在不同於該光束路徑的一第二光束路徑上。
  18. 一種方法,其包含: 在一第一二向色光學元件處反射一第一光束,該經反射第一光束傳遞通過一光學調變器及一放大器以產生一經放大第一光束; 將一第二光束透射通過該第一二向色光學元件、一第二二向色光學元件及該放大器以產生一經放大第二光束; 在該第二二向色光學元件處接收該經放大第一光束之一反射光,其中該經放大第一光束之該反射光與該第二二向色光學元件之間的一相互作用會將該經反射經放大第一光束導向至該光學調變器;及 在該光學調變器處使該經放大第一光束之該反射光偏轉以藉此將該經放大第一光束之該反射光導向遠離該第一光束之一源。
  19. 如請求項18之方法,其進一步包含在該第一光束傳遞通過該光學調變器之後及在該經放大第一光束之該反射光處於該光學調變器處之前將一觸發信號提供至該光學調變器。
  20. 如請求項19之方法,其中該觸發信號使該光學調變器處於該光學調變器使入射光偏轉之一狀態中。
  21. 如請求項18之方法,其中該經放大第一光束朝向一初始目標區傳播。
  22. 如請求項21之方法,其中經由該第一經放大光束與該初始目標區中之一目標材料小滴之間的一相互作用而產生該第一經放大光束之該反射光。
  23. 如請求項22之方法,其中該第二經放大光束朝向一目標區傳播,且目標材料與該第二經放大光束之間的一相互作用會產生該第二經放大光束之一反射光,該方法進一步包含: 將該第二經放大光束之該反射光透射通過該第二二向色光學元件;及 在一第二光學調變器處使該第二經放大光束之該反射光偏轉以藉此將該第二經放大光束之該反射光導向遠離該第二光束之一源。
  24. 如請求項23之方法,其中該第一光束之該源及該第二光束之該源為同一源。
  25. 如請求項24之方法,其中該第一光束之該源為該源中之一第一光學子系統,且該第二光束之該源為該源中之一第二光學子系統。
TW105131493A 2015-10-01 2016-09-30 極紫外線(euv)光學源、用於euv光源之裝置、及光學隔離方法 TWI724032B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562236056P 2015-10-01 2015-10-01
US62/236,056 2015-10-01
US14/970,402 US9832855B2 (en) 2015-10-01 2015-12-15 Optical isolation module
US14/970,402 2015-12-15

Publications (2)

Publication Number Publication Date
TW201721234A true TW201721234A (zh) 2017-06-16
TWI724032B TWI724032B (zh) 2021-04-11

Family

ID=58447865

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105131493A TWI724032B (zh) 2015-10-01 2016-09-30 極紫外線(euv)光學源、用於euv光源之裝置、及光學隔離方法
TW110112183A TWI788814B (zh) 2015-10-01 2016-09-30 極紫外線(euv)光學源、用於euv光源之裝置、及光學隔離方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110112183A TWI788814B (zh) 2015-10-01 2016-09-30 極紫外線(euv)光學源、用於euv光源之裝置、及光學隔離方法

Country Status (5)

Country Link
US (4) US9832855B2 (zh)
JP (3) JP6967509B2 (zh)
KR (2) KR102548316B1 (zh)
CN (2) CN117806136A (zh)
TW (2) TWI724032B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781301B (zh) * 2018-03-19 2022-10-21 美商克萊譚克公司 用於激發雷射持續等離子體及增強輸出照明之選定波長之系統及用於產生寬頻照明之系統及方法
TWI825198B (zh) * 2018-10-18 2023-12-11 荷蘭商Asml荷蘭公司 極紫外線(euv)光源及用於euv光源之設備、用於形成光學脈衝之設備及調整光學脈衝之性質的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9832855B2 (en) 2015-10-01 2017-11-28 Asml Netherlands B.V. Optical isolation module
US10663866B2 (en) 2016-09-20 2020-05-26 Asml Netherlands B.V. Wavelength-based optical filtering
US10401704B2 (en) 2016-11-11 2019-09-03 Asml Netherlands B.V. Compensating for a physical effect in an optical system
US9904068B1 (en) 2017-01-09 2018-02-27 Asml Netherlands B.V. Reducing an optical power of a reflected light beam
NL2021836A (en) * 2017-10-26 2019-05-01 Asml Netherlands Bv System for monitoring a plasma
CN113164026A (zh) * 2018-12-04 2021-07-23 奥林巴斯株式会社 光源装置
KR20240004590A (ko) * 2021-04-26 2024-01-11 트럼프 레이저시스템즈 포 세미컨덕터 매뉴팩처링 게엠베하 분리 장치를 구비한 euv 광원
WO2023131536A1 (en) * 2022-01-07 2023-07-13 Asml Netherlands B.V. Laser beam amplification system

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767971A (en) 1994-12-20 1998-06-16 Nikon Corporation Apparatus for measuring refractive index of medium using light, displacement measuring system using the same apparatus, and direction-of-polarization rotating unit
JPH1026747A (ja) * 1996-07-09 1998-01-27 Nikon Corp 光変調装置
US6141030A (en) * 1997-04-24 2000-10-31 Konica Corporation Laser exposure unit including plural laser beam sources differing in wavelength
US6084706A (en) * 1997-07-09 2000-07-04 Etec Systems, Inc. High efficiency laser pattern generator
JP2000158728A (ja) * 1998-09-21 2000-06-13 Konica Corp 画像記録システム及び網点画像デ―タ記憶装置
US7491954B2 (en) * 2006-10-13 2009-02-17 Cymer, Inc. Drive laser delivery systems for EUV light source
US8653437B2 (en) 2010-10-04 2014-02-18 Cymer, Llc EUV light source with subsystem(s) for maintaining LPP drive laser output during EUV non-output periods
US8654438B2 (en) 2010-06-24 2014-02-18 Cymer, Llc Master oscillator-power amplifier drive laser with pre-pulse for EUV light source
US7239686B2 (en) * 2002-05-13 2007-07-03 Jettec Ab Method and arrangement for producing radiation
US7885309B2 (en) * 2005-11-01 2011-02-08 Cymer, Inc. Laser system
WO2008113165A1 (en) * 2007-03-16 2008-09-25 Herman Peter R Multipulse system for writing waveguides. gratings, and integrated optical circuits
JP5536401B2 (ja) * 2008-10-16 2014-07-02 ギガフォトン株式会社 レーザ装置および極端紫外光光源装置
JP5711326B2 (ja) * 2008-11-06 2015-04-30 ギガフォトン株式会社 極端紫外光生成装置
US20100283978A1 (en) * 2009-05-07 2010-11-11 Ultratech,Inc. LED-based UV illuminators and lithography systems using same
JP2013065804A (ja) 2010-12-20 2013-04-11 Gigaphoton Inc レーザ装置およびそれを備える極端紫外光生成システム
US8958705B2 (en) 2012-01-13 2015-02-17 Esi-Pyrophotonics Lasers Inc. Methods and systems for a pulsed laser source emitting a predetermined output pulse profile
FR2986916A1 (fr) * 2012-02-09 2013-08-16 Eolite Systems Systeme amplificateur optique et laser a impulsion limites en energie par impulsion.
US8681427B2 (en) * 2012-05-31 2014-03-25 Cymer, Inc. System and method for separating a main pulse and a pre-pulse beam from a laser source
US8848277B2 (en) * 2012-05-31 2014-09-30 Asml Netherlands B.V. System and method for protecting a seed laser in an EUV light source with a Bragg AOM
DE102012209837A1 (de) * 2012-06-12 2013-12-12 Trumpf Laser- Und Systemtechnik Gmbh EUV-Anregungslichtquelle mit einer Laserstrahlquelle und einer Strahlführungsvorrichtung zum Manipulieren des Laserstrahls
US8811440B2 (en) 2012-09-07 2014-08-19 Asml Netherlands B.V. System and method for seed laser mode stabilization
JPWO2014119198A1 (ja) * 2013-01-31 2017-01-26 ギガフォトン株式会社 レーザ装置及び極端紫外光生成装置
KR20140112856A (ko) * 2013-03-14 2014-09-24 삼성전자주식회사 극자외선 광 발생 장치 및 방법
JP6364002B2 (ja) * 2013-05-31 2018-07-25 ギガフォトン株式会社 極端紫外光生成システム
US9127981B2 (en) * 2013-08-06 2015-09-08 Cymer, Llc System and method for return beam metrology with optical switch
WO2015031395A1 (en) * 2013-08-26 2015-03-05 The Regents Of The University Of Colorado Imaging through scattering media with high signal to noise ratio and resolution
US9232623B2 (en) 2014-01-22 2016-01-05 Asml Netherlands B.V. Extreme ultraviolet light source
CN114236823A (zh) * 2014-07-31 2022-03-25 伊奎蒂公司 通过漫射介质的图像及波场投影
US9516729B2 (en) * 2014-12-16 2016-12-06 Asml Netherlands B.V. Variable radius mirror dichroic beam splitter module for extreme ultraviolet source
JP2018507437A (ja) 2015-02-19 2018-03-15 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
NL2016111A (en) * 2015-02-19 2016-09-30 Asml Netherlands Bv Radiation Source.
US9832855B2 (en) 2015-10-01 2017-11-28 Asml Netherlands B.V. Optical isolation module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781301B (zh) * 2018-03-19 2022-10-21 美商克萊譚克公司 用於激發雷射持續等離子體及增強輸出照明之選定波長之系統及用於產生寬頻照明之系統及方法
TWI825198B (zh) * 2018-10-18 2023-12-11 荷蘭商Asml荷蘭公司 極紫外線(euv)光源及用於euv光源之設備、用於形成光學脈衝之設備及調整光學脈衝之性質的方法

Also Published As

Publication number Publication date
JP2022023906A (ja) 2022-02-08
JP2024003000A (ja) 2024-01-11
US20200305263A1 (en) 2020-09-24
US11553582B2 (en) 2023-01-10
US20170099721A1 (en) 2017-04-06
US9832855B2 (en) 2017-11-28
TWI724032B (zh) 2021-04-11
US20180063935A1 (en) 2018-03-01
KR102548316B1 (ko) 2023-06-26
CN108351529A (zh) 2018-07-31
TWI788814B (zh) 2023-01-01
US20230139746A1 (en) 2023-05-04
CN117806136A (zh) 2024-04-02
US10645789B2 (en) 2020-05-05
JP2018533753A (ja) 2018-11-15
KR20180063232A (ko) 2018-06-11
JP7366979B2 (ja) 2023-10-23
JP6967509B2 (ja) 2021-11-17
TW202127151A (zh) 2021-07-16
KR20230098702A (ko) 2023-07-04

Similar Documents

Publication Publication Date Title
TWI788814B (zh) 極紫外線(euv)光學源、用於euv光源之裝置、及光學隔離方法
KR102109396B1 (ko) 레이저 광원으로부터 메인펄스와 프리펄스 빔을 분리하는 시스템 및 방법
JP6952844B2 (ja) 極端紫外光源におけるターゲット膨張率制御
US10674591B2 (en) Target expansion rate control in an extreme ultraviolet light source
TW201603650A (zh) 極紫外光源
JP2021168423A (ja) レーザシステム内の利得エレメントを隔離するためのシステム及び方法
US20180246338A1 (en) Reducing an optical power of a reflected light beam
WO2017059314A1 (en) Optical isolation module
TWI825198B (zh) 極紫外線(euv)光源及用於euv光源之設備、用於形成光學脈衝之設備及調整光學脈衝之性質的方法