TW201712851A - Semiconductor device and power gate switching system - Google Patents

Semiconductor device and power gate switching system Download PDF

Info

Publication number
TW201712851A
TW201712851A TW105125362A TW105125362A TW201712851A TW 201712851 A TW201712851 A TW 201712851A TW 105125362 A TW105125362 A TW 105125362A TW 105125362 A TW105125362 A TW 105125362A TW 201712851 A TW201712851 A TW 201712851A
Authority
TW
Taiwan
Prior art keywords
cell
power
tap
power gate
gate
Prior art date
Application number
TW105125362A
Other languages
Chinese (zh)
Other versions
TWI684263B (en
Inventor
李會鎭
Original Assignee
三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星電子股份有限公司 filed Critical 三星電子股份有限公司
Priority to KR1020160107890A priority Critical patent/KR102533244B1/en
Priority to US15/247,439 priority patent/US9786685B2/en
Publication of TW201712851A publication Critical patent/TW201712851A/en
Priority to US15/713,779 priority patent/US10141336B2/en
Priority to US16/191,674 priority patent/US10680015B2/en
Application granted granted Critical
Publication of TWI684263B publication Critical patent/TWI684263B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

A semiconductor device and a power gate switching system are provided. The semiconductor device includes: a virtual power line extended in a first direction; an n-well extended in the first direction, wherein the virtual power line and the n-well are disposed in a row; a first power gate switch cell disposed in the n-well; a second power gate switch cell disposed in the n-well, wherein the first and second power gate switch cells are first type cells; and a third power gate switch cell disposed in the n-well between the first and second power gate switch cells, wherein the third power gate switch cell is a second type cell different from the first type cells.

Description

電源閘切換系統Power brake switching system

本發明概念是有關於一種用以將虛擬電源電壓供應至標準胞元的電源閘切換系統。The inventive concept relates to a power gate switching system for supplying a virtual power supply voltage to a standard cell.

一般而言,為操作半導體裝置的標準胞元,電源電壓經由電源閘開關自所述半導體裝置的外部被供應至標準胞元。自所述電源閘開關輸出的電壓可被稱作虛擬電源電壓。為實現所述半導體裝置的穩定運作,應將所述虛擬電源電壓均等地施加至所述標準胞元中的每一者。然而,所述半導體裝置可在相對遠離所述電源閘開關的區處具有大的壓降(voltage drop)。舉例而言,遠離所述電源閘開關的標準胞元可能接收不到與靠近所述電源閘開關的標準胞元相同位準的電源電壓。在此種情形中,較遠的標準胞元可發生故障。In general, to operate a standard cell of a semiconductor device, a power supply voltage is supplied to a standard cell from the outside of the semiconductor device via a power gate switch. The voltage output from the power gate switch can be referred to as a virtual power source voltage. To achieve stable operation of the semiconductor device, the virtual supply voltage should be equally applied to each of the standard cells. However, the semiconductor device can have a large voltage drop at a region relatively far from the power gate switch. For example, a standard cell remote from the power gate switch may not receive a power supply voltage that is at the same level as a standard cell near the power gate switch. In this case, the farther standard cell can fail.

根據本發明概念的示例性實施例,提供一種半導體裝置,包括:虛擬電源線,在第一方向上延伸;n井,在所述第一方向上延伸,其中所述虛擬電源線及所述n井安置於一列中;第一電源閘開關胞元,安置於所述n井中;第二電源閘開關胞元,安置於所述n井中,其中所述第一電源閘開關胞元及所述第二電源閘開關胞元是第一類型胞元;以及第三電源閘開關胞元,在所述第一電源閘開關胞元與所述第二電源閘開關胞元之間安置於所述n井中,其中所述第三電源閘開關胞元是不同於所述第一類型胞元的第二類型胞元。According to an exemplary embodiment of the inventive concept, there is provided a semiconductor device comprising: a dummy power line extending in a first direction; a n-well extending in the first direction, wherein the virtual power line and the n The wells are disposed in a column; the first power gate switch cell is disposed in the n well; the second power gate switch cell is disposed in the n well, wherein the first power gate switch cell and the first The second power gate switch cell is a first type of cell; and the third power gate switch cell is disposed in the n well between the first power gate switch cell and the second power gate switch cell And wherein the third power gate switch cell is a second type of cell different from the first type of cell.

根據本發明概念的示例性實施例,提供一種電源閘切換系統,包括:第一虛擬電源線,在第一方向上延伸;第一電源閘胞元,連接至所述第一虛擬電源線;第二電源閘胞元,連接至所述第一虛擬電源線,其中所述第一電源閘胞元及所述第二電源閘胞元分別包括至少一個抽頭;以及第三電源閘胞元,連接至所述第一虛擬電源線且安置於所述第一電源閘胞元與所述第二電源閘胞元之間,其中所述第三電源閘胞元不包括抽頭,且其中所述第一電源閘胞元至所述第三電源閘胞元以及所述第一虛擬電源線排列於第一列中。According to an exemplary embodiment of the inventive concept, a power gate switching system is provided, including: a first virtual power line extending in a first direction; a first power gate cell connected to the first virtual power line; a second power gate cell connected to the first virtual power line, wherein the first power gate cell and the second power gate cell respectively comprise at least one tap; and a third power gate cell connected to The first virtual power line is disposed between the first power gate cell and the second power gate cell, wherein the third power gate cell does not include a tap, and wherein the first power source The gate cell to the third power gate cell and the first virtual power line are arranged in the first column.

根據本發明概念的示例性實施例,提供一種電源閘切換系統,包括:第一列,包括第一虛擬電源線、第一電源閘胞元及第二電源閘胞元,其中所述第一電源閘胞元包括安置於第一擴散區與第二擴散區之間的第一閘電極、及至少一個抽頭,其中所述第二電源閘胞元包括安置於第三擴散區與第四擴散區之間的第二閘電極且不包括抽頭;以及第二列,包括第二虛擬電源線、第三電源閘胞元及第四電源閘胞元,其中所述第三電源閘胞元包括安置於第五擴散區與第六擴散區之間的第三閘電極、及至少一個抽頭,且所述第四電源閘胞元包括安置於第七擴散區與第八擴散區之間的第四閘電極且不包括抽頭,且其中所述第四電源閘胞元連接至所述第二電源閘胞元。According to an exemplary embodiment of the inventive concept, a power gate switching system includes: a first column including a first virtual power line, a first power gate cell, and a second power gate cell, wherein the first power source The gate cell includes a first gate electrode disposed between the first diffusion region and the second diffusion region, and at least one tap, wherein the second power gate cell includes a third diffusion region and a fourth diffusion region a second gate electrode and not including a tap; and a second column comprising a second virtual power line, a third power gate cell, and a fourth power gate cell, wherein the third power gate cell includes a a third gate electrode between the fifth diffusion region and the sixth diffusion region, and at least one tap, and the fourth power gate cell includes a fourth gate electrode disposed between the seventh diffusion region and the eighth diffusion region The tap is not included, and wherein the fourth power gate cell is coupled to the second power gate cell.

圖1是說明根據本發明概念的示例性實施例的電源閘切換系統100的平面圖。圖2是根據本發明概念的示例性實施例的沿圖1所示的線A-A'截取的剖視圖。FIG. 1 is a plan view illustrating a power gate switching system 100 in accordance with an exemplary embodiment of the inventive concept. 2 is a cross-sectional view taken along line AA' of FIG. 1 according to an exemplary embodiment of the inventive concept.

參照圖1及圖2,電源閘切換系統100可包括:p型基板P-sub;N井,形成於p型基板P-sub中;第一擴散區至第六擴散區101、102、103、104、105及106,形成於N井中;第一閘電極G1,形成於N井上且形成於第一擴散區101與第二擴散區102之間;第二閘電極G2,形成於N井上且形成於第三擴散區103與第四擴散區104之間;第三閘電極G3,形成於N井上且形成於第五擴散區105與第六擴散區106之間;第一p抽頭P-tab1,鄰近第一擴散區101形成於N井中;第二p抽頭P-tab2,鄰近第二擴散區102形成於N井中;第三p抽頭P-tab3,鄰近第三擴散區103形成於N井中;及第四p抽頭P-tab4,鄰近第四擴散區104形成於N井中。Referring to FIGS. 1 and 2, the power gate switching system 100 may include: a p-type substrate P-sub; N well formed in the p-type substrate P-sub; first to sixth diffusion regions 101, 102, 103, 104, 105 and 106 are formed in the N well; the first gate electrode G1 is formed on the N well and formed between the first diffusion region 101 and the second diffusion region 102; the second gate electrode G2 is formed on the N well and formed Between the third diffusion region 103 and the fourth diffusion region 104; a third gate electrode G3 is formed on the N well and formed between the fifth diffusion region 105 and the sixth diffusion region 106; the first p tap P-tab1, Adjacent to the first diffusion region 101 formed in the N well; a second p tap P-tab2 adjacent to the second diffusion region 102 formed in the N well; a third p tap P-tab3 adjacent to the third diffusion region 103 formed in the N well; A fourth p-tap P-tab4 is formed adjacent to the fourth diffusion region 104 in the N-well.

N井可在第一方向D1上延伸。舉例而言,N井可為摻雜有n型雜質的區。The N well can extend in the first direction D1. For example, the N well can be a region doped with an n-type impurity.

第一擴散區101至第六擴散區106可在N井中被形成為在第一方向D1上延伸。第一擴散區101及第二擴散區102可彼此間隔開,且第一閘電極G1可設置於第一擴散區101與第二擴散區102之間的區上。第三擴散區103及第四擴散區104可彼此間隔開,且第二閘電極G2可設置於第三擴散區103與第四擴散區104之間的區上。第五擴散區105及第六擴散區106可形成於第二擴散區102與第三擴散區103之間。第五擴散區105及第六擴散區106可彼此間隔開,且第三閘電極G3可設置於第五擴散區105與第六擴散區106之間的區上。第一擴散區101至第六擴散區106中的每一者可摻雜有p型雜質。The first to sixth diffusion regions 101 to 106 may be formed to extend in the first direction D1 in the N well. The first diffusion region 101 and the second diffusion region 102 may be spaced apart from each other, and the first gate electrode G1 may be disposed on a region between the first diffusion region 101 and the second diffusion region 102. The third diffusion region 103 and the fourth diffusion region 104 may be spaced apart from each other, and the second gate electrode G2 may be disposed on a region between the third diffusion region 103 and the fourth diffusion region 104. The fifth diffusion region 105 and the sixth diffusion region 106 may be formed between the second diffusion region 102 and the third diffusion region 103. The fifth diffusion region 105 and the sixth diffusion region 106 may be spaced apart from each other, and the third gate electrode G3 may be disposed on a region between the fifth diffusion region 105 and the sixth diffusion region 106. Each of the first to sixth diffusion regions 101 to 106 may be doped with a p-type impurity.

舉例而言,第五擴散區105及第六擴散區106中的每一者的大小可小於第一擴散區101至第四擴散區104中的每一者的大小。另外,第三閘電極G3的大小(例如,在第一方向D1上的寬度)可小於第一閘電極G1或第二閘電極G2的大小(例如,在第一方向D1上的寬度)。For example, the size of each of the fifth diffusion region 105 and the sixth diffusion region 106 may be smaller than the size of each of the first diffusion region 101 to the fourth diffusion region 104. In addition, the size of the third gate electrode G3 (for example, the width in the first direction D1) may be smaller than the size of the first gate electrode G1 or the second gate electrode G2 (for example, the width in the first direction D1).

電源電壓VDD 可被供應至第一擴散區101。在閘電壓Gate_CTRL被施加至第一閘電極G1以形成第一擴散區101與第二擴散區102之間的第一通道的情形中,被施加至第一擴散區101的電源電壓VDD 可經由所述第一通道及第二擴散區102以虛擬電源電壓Virtual_VDD 的形式輸出。虛擬電源電壓Virtual_VDD 可被供應至用於實現邏輯電路的標準胞元。The power supply voltage V DD may be supplied to the first diffusion region 101. In the case where the gate voltage Gate_CTRL is applied to the first gate electrode G1 to form the first channel between the first diffusion region 101 and the second diffusion region 102, the power supply voltage V DD applied to the first diffusion region 101 may be via The first channel and the second diffusion region 102 are output in the form of a virtual power supply voltage Virtual_V DD . The virtual supply voltage Virtual_V DD can be supplied to a standard cell for implementing the logic circuit.

電源電壓VDD 可被供應至第三擴散區103。在閘電壓Gate_CTRL被施加至第二閘電極G2以形成第三擴散區103與第四擴散區104之間的第二通道的情形中,被施加至第四擴散區104的電源電壓VDD 可經由所述第二通道及第四擴散區104以虛擬電源電壓Virtual_VDD 的形式輸出。虛擬電源電壓Virtual_VDD 可被供應至用於實現所述邏輯電路的所述標準胞元。The power supply voltage V DD may be supplied to the third diffusion region 103. In the case where the gate voltage Gate_CTRL is applied to the second gate electrode G2 to form the second channel between the third diffusion region 103 and the fourth diffusion region 104, the power supply voltage V DD applied to the fourth diffusion region 104 may be via The second channel and the fourth diffusion region 104 are output in the form of a virtual power supply voltage Virtual_V DD . A virtual power supply voltage Virtual_V DD may be supplied to the standard cell for implementing the logic circuit.

電源電壓VDD 可被供應至第五擴散區105。在閘電壓Gate_CTRL被施加至第三閘電極G3以形成第五擴散區105與第六擴散區106之間的第三通道的情形中,被施加至第五擴散區105的電源電壓VDD 可經由所述第三通道及第六擴散區106被輸出為虛擬電源電壓Virtual_VDD 。虛擬電源電壓Virtual_VDD 可被供應至用於實現所述邏輯電路的所述標準胞元。The power supply voltage V DD may be supplied to the fifth diffusion region 105. In the case where the gate voltage Gate_CTRL is applied to the third gate electrode G3 to form a third channel between the fifth diffusion region 105 and the sixth diffusion region 106, the power supply voltage V DD applied to the fifth diffusion region 105 may be via The third channel and the sixth diffusion region 106 are output as a virtual power supply voltage Virtual_V DD . A virtual power supply voltage Virtual_V DD may be supplied to the standard cell for implementing the logic circuit.

在第一閘電極G1與N井之間、第二閘電極G2與N井之間、及第三閘電極G3與N井之間可進一步形成絕緣層。An insulating layer may be further formed between the first gate electrode G1 and the N well, between the second gate electrode G2 and the N well, and between the third gate electrode G3 and the N well.

第一p抽頭P-tab1及第二p抽頭P-tab2可分別鄰近第一擴散區101及第二擴散區102形成。第三p抽頭P-tab3及第四p抽頭P-tab4可分別鄰近第三擴散區103及第四擴散區104形成。舉例而言,第一p抽頭P-tab1至第四p抽頭P-tab4中的每一者可為摻雜有n型雜質的區。第一p抽頭P-tab1至第四p抽頭P-tab4可具有與N井的摻雜濃度不同的摻雜濃度。第一p抽頭P-tab1至第四p抽頭P-tab4可在第二方向D2上延伸。此外,儘管第一p抽頭P-tab1被示出為不與第一擴散區101直接接觸,然而第一p抽頭P-tab1可與第一擴散區101直接接觸。第二p抽頭P-tab2至第四p抽頭P-tab4可以相似於第一p抽頭P-tab1的方式形成。The first p-tap P-tab1 and the second p-tap P-tab2 may be formed adjacent to the first diffusion region 101 and the second diffusion region 102, respectively. The third p-tap P-tab3 and the fourth p-tap P-tab4 may be formed adjacent to the third diffusion region 103 and the fourth diffusion region 104, respectively. For example, each of the first p-tap P-tab1 to the fourth p-tap P-tab4 may be a region doped with an n-type impurity. The first p-tap to the fourth p-tap P-tab4 may have a different doping concentration than the doping concentration of the N-well. The first p-tap P-tab1 to the fourth p-tap P-tab4 may extend in the second direction D2. Further, although the first p-tap P-tab1 is shown not to be in direct contact with the first diffusion region 101, the first p-tap P-tab1 may be in direct contact with the first diffusion region 101. The second p-tap P-tab2 to the fourth p-tap P-tab4 may be formed in a manner similar to the first p-tap P-tab1.

偏電壓Vbias可被施加至第一p抽頭P-tab1至第四p抽頭P-tab4。偏電壓Vbias可防止在電源閘切換系統100中發生閂鎖(latch-up)現象。儘管偏電壓Vbias被示出為單獨地施加至第一p抽頭P-tab1至第四p抽頭P-tab4,然而電源電壓VDD 可替代偏電壓VDD 被施加至第一p抽頭P-tab1至第四p抽頭P-tab4。The bias voltage Vbias can be applied to the first p-tap P-tab1 to the fourth p-tap P-tab4. The bias voltage Vbias prevents a latch-up phenomenon from occurring in the power gate switching system 100. Although the bias voltage Vbias is shown to be applied separately to the first p-tap P-tab1 to the fourth p-tap P-tab4, the power supply voltage V DD may be applied to the first p-tap P-tab1 instead of the bias voltage V DD The fourth p tap P-tab4.

第二p抽頭P-tab2與第三p抽頭P-tab3之間的距離可慮及N井的摻雜濃度來確定。舉例而言,第二p抽頭P-tab2及第三p抽頭P-tab3可以適於防止在電源閘切換系統100中發生所述閂鎖現象的距離彼此間隔開。舉例而言,在10奈米的邏輯處理中,該些抽頭之間的距離可約為50微米。若第二p抽頭P-tab2與第三p抽頭P-tab3之間的距離大於臨界距離(例如,可防止所述閂鎖現象的距離),則可接近第五擴散區105或第六擴散區106設置至少一個附加p抽頭。即使當第二p抽頭P-tab2與第三p抽頭P-tab3之間的距離處於適於防止所述閂鎖現象的範圍內時,位於第二擴散區102與第三擴散區103之間的標準胞元中的一者亦可能接收不到足夠的電源電壓VDD 。因此,藉由設置第五擴散區105、第六擴散區106、及第三閘電極G3,可將穩定的電源電壓VDD 供應至位於第二擴散區102與第三擴散區103之間的標準胞元而無需設置附加p抽頭。The distance between the second p-tap P-tab2 and the third p-tap P-tab3 can be determined by considering the doping concentration of the N-well. For example, the second p-tap P-tab2 and the third p-tap P-tab3 may be adapted to prevent distances at which the latch-up phenomenon occurs in the power gate switching system 100 from being spaced apart from one another. For example, in a 10 nanometer logic process, the distance between the taps can be about 50 microns. If the distance between the second p-tap P-tab2 and the third p-tap P-tab3 is greater than a critical distance (eg, the distance at which the latch-up phenomenon can be prevented), the fifth diffusion region 105 or the sixth diffusion region can be accessed. 106 sets at least one additional p tap. Even when the distance between the second p-tap P-tab2 and the third p-tap P-tab3 is within a range suitable for preventing the latch-up phenomenon, between the second diffusion region 102 and the third diffusion region 103 One of the standard cells may not receive enough power supply voltage V DD . Therefore, by providing the fifth diffusion region 105, the sixth diffusion region 106, and the third gate electrode G3, the stable power supply voltage V DD can be supplied to the standard between the second diffusion region 102 and the third diffusion region 103. Cells do not need to set additional p-tap.

再次參照圖1及圖2,第一閘電極G1與第三閘電極G3之間的距離(例如,s1)被示出為第一閘電極G1與第二閘電極G2之間的距離(例如,s2)的一半。然而,在本發明概念的示例性實施例中,第一閘電極G1與第三閘電極G3之間的距離(例如,s1)可處於第一閘電極G1與第二閘電極G2之間的距離(例如,s2)的1/4倍至3/4倍的範圍內。在本發明概念的示例性實施例中,為使所述第三通道能夠形成於第三閘電極G3與N井之間的重疊區處,第五擴散區105及第六擴散區106可被安置於慮及第三閘電極G3的位置而經適當地調整的位置處。Referring again to FIGS. 1 and 2, the distance (eg, s1) between the first gate electrode G1 and the third gate electrode G3 is shown as the distance between the first gate electrode G1 and the second gate electrode G2 (for example, Half of s2). However, in an exemplary embodiment of the inventive concept, a distance (eg, s1) between the first gate electrode G1 and the third gate electrode G3 may be at a distance between the first gate electrode G1 and the second gate electrode G2 (for example, s2) is in the range of 1/4 times to 3/4 times. In an exemplary embodiment of the inventive concept, in order to enable the third channel to be formed at an overlap region between the third gate electrode G3 and the N well, the fifth diffusion region 105 and the sixth diffusion region 106 may be disposed The position is appropriately adjusted in consideration of the position of the third gate electrode G3.

如圖1及圖2中所示,四個p抽頭可形成於電源閘切換系統100中。然而,本發明概念可並非僅限於此;舉例而言,如圖3中所示,電源閘切換系統100可包括兩個p抽頭。圖3中與圖1及圖2中的參考編號相同的參考編號可指示相同或相似的元件。作為實例,如圖3中所示,可鄰近第一擴散區101設置p抽頭P-tab1且可鄰近第四擴散區104設置p抽頭P-tab4。作為另一實例,可鄰近第一擴散區101設置p抽頭P-tab1且可鄰近第三擴散區103設置p抽頭P-tab3。作為又一實例,可鄰近第二擴散區102設置p抽頭P-tab2且可鄰近104設置p抽頭P-tab4。As shown in FIGS. 1 and 2, four p taps may be formed in the power gate switching system 100. However, the inventive concept may not be limited thereto; for example, as shown in FIG. 3, the power gate switching system 100 may include two p taps. The same reference numerals in FIG. 3 as those in FIGS. 1 and 2 may denote the same or similar elements. As an example, as shown in FIG. 3, the p-tap P-tab1 may be disposed adjacent to the first diffusion region 101 and the p-tap P-tab4 may be disposed adjacent to the fourth diffusion region 104. As another example, the p-tap P-tab1 may be disposed adjacent to the first diffusion region 101 and the p-tap P-tab3 may be disposed adjacent to the third diffusion region 103. As a further example, the p-tap P-tab2 can be disposed adjacent to the second diffusion region 102 and the p-tap P-tab4 can be disposed adjacent to 104.

圖4是說明根據本發明概念的示例性實施例的電源閘切換系統100的平面圖。圖5是根據本發明概念的示例性實施例的沿圖4所示的線A-A'截取的剖視圖。圖4及圖5中與圖1及圖2中的參考編號相同的參考編號可指示相同或相似的元件。FIG. 4 is a plan view illustrating a power gate switching system 100 in accordance with an exemplary embodiment of the inventive concept. FIG. 5 is a cross-sectional view taken along line AA' of FIG. 4, according to an exemplary embodiment of the inventive concept. The same reference numerals in FIGS. 4 and 5 as those in FIGS. 1 and 2 may denote the same or similar elements.

電源閘切換系統100可包括裝置隔離層STI,所述裝置隔離層STI可利用淺溝槽隔離技術來形成。可設置裝置隔離層STI以隔離位於第二p抽頭P-tap2與第五擴散區105之間或位於第六擴散區106與第三p抽頭P-tab3之間的標準胞元。裝置隔離層STI中的每一者可鄰近p抽頭中的對應一者並在第二方向D2上延伸。裝置隔離層STI被示出為不與p抽頭直接接觸,然而在本發明概念的示例性實施例中,裝置隔離層STI可與p抽頭直接接觸。The power gate switching system 100 can include a device isolation layer STI that can be formed using shallow trench isolation techniques. A device isolation layer STI may be provided to isolate a standard cell located between the second p-tap P-tap2 and the fifth diffusion region 105 or between the sixth diffusion region 106 and the third p-tap P-tab3. Each of the device isolation layers STI may be adjacent to a corresponding one of the p taps and extend in the second direction D2. The device isolation layer STI is shown not in direct contact with the p-tap, however in an exemplary embodiment of the inventive concept, the device isolation layer STI may be in direct contact with the p-tap.

在本發明概念的示例性實施例中,裝置隔離層STI可由氧化矽層形成或可包括氧化矽層。舉例而言,裝置隔離層STI可由高密度電漿(high-density plasma,HDP)氧化物、正矽酸四乙酯(TetraEthylOrthoSilicate,TEOS)、電漿加強正矽酸四乙酯(plasma-enhanced tetraethylorthosilicate,PE-TEOS)、臭氧-正矽酸四乙酯(O3 -TEOS)、未經摻雜的矽酸鹽玻璃(Undoped Silicate Glass,USG)、磷矽酸鹽玻璃(PhosphoSilicate Glass,PSG)、硼矽酸鹽玻璃(Borosilicate Glass,BSG)、硼磷矽酸鹽玻璃(BoroPhosphoSilicate Glass,BPSG)、氟矽酸鹽玻璃(Fluoride Silicate Glass,FSG)、旋塗玻璃(Spin On Glass,SOG)中的至少一者或其任意組合形成。In an exemplary embodiment of the inventive concept, the device isolation layer STI may be formed of a hafnium oxide layer or may include a hafnium oxide layer. For example, the device isolation layer STI can be enhanced by high-density plasma (HDP) oxide, TetraEthyl OrthoSilicate (TEOS), and plasma-enhanced tetraethylorthosilicate. , PE-TEOS), ozone-tetraethyl orthosilicate (O 3 -TEOS), undoped Silicate Glass (USG), PhosphoSilicate Glass (PSG), Borosilicate Glass (BSG), BoroPhosphoSilicate Glass (BPSG), Fluoride Silicate Glass (FSG), Spin On Glass (SOG) At least one or any combination thereof is formed.

圖6是說明根據本發明概念的示例性實施例的電源閘切換系統200的平面圖。圖7是根據本發明概念的示例性實施例的沿圖6所示的線B-B'截取的剖視圖。將自圖7省略沿圖6所示的線A-A'截取的剖視圖,乃因其實質上相同於圖2所示者。FIG. 6 is a plan view illustrating a power gate switching system 200 in accordance with an exemplary embodiment of the inventive concept. FIG. 7 is a cross-sectional view taken along line BB' of FIG. 6 according to an exemplary embodiment of the inventive concept. A cross-sectional view taken along line A-A' shown in Fig. 6 will be omitted from Fig. 7 because it is substantially the same as that shown in Fig. 2.

參照圖6及圖7,電源閘切換系統200可包括p型基板P-sub,p型基板P-sub中可形成N井。Referring to FIGS. 6 and 7, the power gate switching system 200 may include a p-type substrate P-sub, and an N-well may be formed in the p-type substrate P-sub.

電源閘切換系統200可包括形成於N井中的第一擴散區201、第二擴散區202、第三擴散區203、第四擴散區204、第五擴散區205、及第六擴散區206。電源閘切換系統200可包括:第一閘電極G1,形成於N井上且形成於第一擴散區201與第二擴散區202之間;第二閘電極G2,形成於N井上且形成於第三擴散區203與第四擴散區204之間;及第三閘電極G3,形成於N井上且形成於第五擴散區205與第六擴散區206之間。The power gate switching system 200 can include a first diffusion region 201, a second diffusion region 202, a third diffusion region 203, a fourth diffusion region 204, a fifth diffusion region 205, and a sixth diffusion region 206 formed in the N-well. The power gate switching system 200 may include: a first gate electrode G1 formed on the N well and formed between the first diffusion region 201 and the second diffusion region 202; and a second gate electrode G2 formed on the N well and formed in the third The diffusion region 203 and the fourth diffusion region 204; and the third gate electrode G3 are formed on the N well and formed between the fifth diffusion region 205 and the sixth diffusion region 206.

舉例而言,第一閘電極G1與第三閘電極G3之間的距離(例如,s1)可為第一閘電極G1與第二閘電極G2之間的距離(例如,s2)的一半。然而,第一閘電極G1與第三閘電極G3之間的距離(例如,s1)可處於第一閘電極G1與第二閘電極G2之間的距離(例如,s2)的1/4倍至3/4倍的範圍內。在本發明概念的示例性實施例中,為使所述第三通道能夠形成於第三閘電極G3與N井之間的重疊區處,第五擴散區205及第六擴散區206可被安置於慮及第三閘電極G3的位置而經適當地調整的位置處。For example, the distance between the first gate electrode G1 and the third gate electrode G3 (eg, s1) may be half the distance between the first gate electrode G1 and the second gate electrode G2 (eg, s2). However, the distance (eg, s1) between the first gate electrode G1 and the third gate electrode G3 may be 1/4 times the distance (eg, s2) between the first gate electrode G1 and the second gate electrode G2 to 3/4 times the range. In an exemplary embodiment of the inventive concept, in order to enable the third channel to be formed at an overlap region between the third gate electrode G3 and the N well, the fifth diffusion region 205 and the sixth diffusion region 206 may be disposed The position is appropriately adjusted in consideration of the position of the third gate electrode G3.

舉例而言,第一擴散區201至第六擴散區206可摻雜有p型雜質。電源電壓VDD (例如,圖2所示者)可被供應至第一擴散區201、第三擴散區203及第五擴散區205。視欲被施加至第一閘電極G1、第二閘電極G2及第三閘電極G3的電壓Gate_CTRL而定,被施加至第一擴散區201、第三擴散區203及第五擴散區205的電源電壓VDD 可被用作虛擬電源電壓Virtual_VDD 而經由第二擴散區202、第四擴散區204及第六擴散區206被輸出。For example, the first to sixth diffusion regions 201 to 206 may be doped with a p-type impurity. The power supply voltage V DD (for example, as shown in FIG. 2) may be supplied to the first diffusion region 201, the third diffusion region 203, and the fifth diffusion region 205. The power applied to the first diffusion region 201, the third diffusion region 203, and the fifth diffusion region 205 is determined depending on the voltage Gate_CTRL applied to the first gate electrode G1, the second gate electrode G2, and the third gate electrode G3. The voltage V DD can be used as the virtual power supply voltage Virtual_V DD to be output via the second diffusion region 202, the fourth diffusion region 204, and the sixth diffusion region 206.

舉例而言,第五擴散區205及第六擴散區206中的每一者的大小可小於第一擴散區201至第四擴散區204中的每一者的大小。另外,第三閘電極G3的大小(例如,在第一方向D1上的寬度)可小於第一閘電極G1或第二閘電極G2的大小(例如,在第一方向D1上的寬度)。For example, the size of each of the fifth diffusion region 205 and the sixth diffusion region 206 may be smaller than the size of each of the first diffusion region 201 to the fourth diffusion region 204. In addition, the size of the third gate electrode G3 (for example, the width in the first direction D1) may be smaller than the size of the first gate electrode G1 or the second gate electrode G2 (for example, the width in the first direction D1).

電源閘切換系統200可包括設置於N井中的第一p抽頭P-tab1至第四p抽頭P-tab4。第一p抽頭P-tab1至第四p抽頭P-tab4可在第二方向D2上延伸且可在第一方向D1上彼此間隔開。第一p抽頭P-tab1可鄰近第一擴散區201。第二p抽頭P-tab2可鄰近第二擴散區202。第三p抽頭P-tab3可鄰近第三擴散區203。第四p抽頭P-tab4可鄰近第四擴散區204。所述各p抽頭被示出為不與所述各擴散區直接接觸,然而在本發明概念的示例性實施例中,所述各p抽頭可與所述擴散區直接接觸。The power gate switching system 200 can include first p taps P-tab1 through fourth p taps P-tab4 disposed in the N-well. The first p-tap P-tab1 to the fourth p-tap P-tab4 may extend in the second direction D2 and may be spaced apart from each other in the first direction D1. The first p-tap P-tab1 may be adjacent to the first diffusion region 201. The second p-tap P-tab2 may be adjacent to the second diffusion region 202. The third p-tap P-tab3 may be adjacent to the third diffusion region 203. The fourth p-tap P-tab4 may be adjacent to the fourth diffusion region 204. The p taps are shown not to be in direct contact with the respective diffusion regions, however in an exemplary embodiment of the inventive concept, the p taps may be in direct contact with the diffusion regions.

舉例而言,第一p抽頭P-tab1至第四p抽頭P-tab4可摻雜有n型雜質且可具有與N井的摻雜濃度不同的摻雜濃度。偏電壓Vbias(例如,圖2所示者)可被施加至第一p抽頭P-tab1至第四p抽頭P-tab4以防止發生所述閂鎖現象。For example, the first p-tap P-tab1 to the fourth p-tap P-tab4 may be doped with an n-type impurity and may have a different doping concentration than the doping concentration of the N-well. A bias voltage Vbias (for example, as shown in FIG. 2) may be applied to the first p-tap P-tab1 to the fourth p-tap P-tab4 to prevent the latch-up phenomenon from occurring.

電源閘切換系統200可更包括第一n抽頭N-tab1至第四n抽頭N-tab4,第一n抽頭N-tab1至第四n抽頭N-tab4在p型基板P-sub中被形成為在第二方向D2上延伸且被形成為在第一方向D1上彼此間隔開。在p型基板P-sub中,第一n抽頭N-tab1可平行於第二方向D2且與第一p抽頭P-tab1同軸。在p型基板P-sub中,第二n抽頭N-tab2可平行於第二方向D2且與第二p抽頭P-tab2同軸。在p型基板P-sub中,第三n抽頭N-tab3可平行於第二方向D2且與第三p抽頭P-tab3同軸。在p型基板P-sub中,第四n抽頭N-tab4可平行於第二方向D2且與第四p抽頭P-tab4同軸。The power gate switching system 200 may further include first n-tap N-tab1 to fourth n-tap N-tab4, the first n-tap N-tab1 to the fourth n-tap N-tab4 being formed in the p-type substrate P-sub as The second direction D2 extends and is formed to be spaced apart from each other in the first direction D1. In the p-type substrate P-sub, the first n-tap N-tab1 may be parallel to the second direction D2 and coaxial with the first p-tap P-tab1. In the p-type substrate P-sub, the second n-tap N-tab2 may be parallel to the second direction D2 and coaxial with the second p-tap P-tab2. In the p-type substrate P-sub, the third n-tap N-tab3 may be parallel to the second direction D2 and coaxial with the third p-tap P-tab3. In the p-type substrate P-sub, the fourth n-tap N-tab4 may be parallel to the second direction D2 and coaxial with the fourth p-tap P-tab4.

舉例而言,第一n抽頭N-tab1至第四n抽頭N-tab4可摻雜有p型雜質,且第一n抽頭N-tab1至第四n抽頭N-tab4可具有與p型基板P-sub的摻雜濃度不同的摻雜濃度。偏電壓Vbias2可被施加至第一n抽頭N-tab1至第四n抽頭N-tab4以防止發生所述閂鎖現象。在本發明概念的示例性實施例中,被施加至第一n抽頭N-tab1至第四n抽頭N-tab4的偏電壓Vbias2可為接地電壓。For example, the first n-tap N-tab1 to the fourth n-tap N-tab4 may be doped with a p-type impurity, and the first n-tap N-tab1 to the fourth n-tap N-tab4 may have a p-type substrate P The doping concentration of -sub is different. The bias voltage Vbias2 may be applied to the first n-tap N-tab1 to the fourth n-tap N-tab4 to prevent the latch-up phenomenon from occurring. In an exemplary embodiment of the inventive concept, the bias voltage Vbias2 applied to the first n-tap N-tab1 to the fourth n-tap N-tab4 may be a ground voltage.

如圖6中所示,第一n抽頭N-tab1至第四n抽頭N-tab4可與第一p抽頭P-tab1至第四p抽頭P-tab4間隔開。然而,第一n抽頭N-tab1至第四n抽頭N-tab4中的每一者可在p型基板P-sub與N井之間的界線處與第一p抽頭P-tab1至第四p抽頭P-tab4中的對應一者接觸。As shown in FIG. 6, the first n-tap N-tab1 to the fourth n-tap N-tab4 may be spaced apart from the first p-tap P-tab1 to the fourth p-tap P-tab4. However, each of the first n-tap N-tab1 to the fourth n-tap N-tab4 may be at a boundary between the p-type substrate P-sub and the N-well with the first p-tap P-tab1 to the fourth p A corresponding one of the taps P-tab4 is in contact.

第二p抽頭P-tab2與第三p抽頭P-tab3之間的距離及第二n抽頭N-tab2與第三n抽頭N-tab3之間的距離可慮及N井的摻雜濃度、p型基板P-sub的摻雜濃度或其組合來確定。舉例而言,第二p抽頭P-tab2與第三p抽頭P-tab3之間的距離及第二n抽頭N-tab2與第三n抽頭N-tab3之間的距離可處於能夠防止在電源閘切換系統200中發生所述閂鎖現象的範圍內。The distance between the second p-tap P-tab2 and the third p-tap P-tab3 and the distance between the second n-tap N-tab2 and the third n-tap N-tab3 may take into account the doping concentration of the N-well, p The doping concentration of the type substrate P-sub or a combination thereof is determined. For example, the distance between the second p-tap P-tab2 and the third p-tap P-tab3 and the distance between the second n-tap N-tab2 and the third n-tap N-tab3 may be at a power gate Within the range of the latching phenomenon occurring in the switching system 200.

與參照圖3所闡述者相似,所述p抽頭可僅由第一p抽頭P-tab1及第三p抽頭P-tab3或僅由第一p抽頭P-tab1及第四p抽頭P-tab4組成。進而,所述n抽頭可僅由第一n抽頭N-tab1及第三n抽頭N-tab3或僅由第一n抽頭N-tab1及第四n抽頭N-tab4組成。另外,電源閘切換系統200可更包括如圖4及圖5中所示的多個裝置隔離層STI。Similar to the one described with reference to FIG. 3, the p-tap can be composed only of the first p-tap P-tab1 and the third p-tap P-tab3 or only the first p-tap P-tab1 and the fourth p-tap P-tab4 . Furthermore, the n-tap may consist of only the first n-tap N-tab1 and the third n-tap N-tab3 or only the first n-tap N-tab1 and the fourth n-tap N-tab4. In addition, the power gate switching system 200 may further include a plurality of device isolation layers STI as shown in FIGS. 4 and 5.

重新參照圖6,多個標準胞元STD Cells可設置於第二p抽頭P-tab2與第三p抽頭P-tab3之間及第二n抽頭N-tab2與第三n抽頭N-tab3之間。虛擬電源電壓Virtual_VDD 及接地電壓VSS 可被供應至多個標準胞元STD Cells。在經由第二擴散區202及第四擴散區204輸出虛擬電源電壓Virtual_VDD 的情形中,虛擬電源電壓Virtual_VDD 可被充分地供應至多個標準胞元STD Cells中的鄰近第二擴散區202及第四擴散區204安置的某些標準胞元STD Cells。然而虛擬電源電壓Virtual_VDD 可能不被充分地供應至位於第二擴散區202與第四擴散區204之間的某些標準胞元STD Cells。對於未充分地供應以虛擬電源電壓Virtual_VDD 的標準胞元而言,可進一步設置第五擴散區205及第六擴散區206以及第三閘電極G3。在此種情形中,經由第六擴散區206輸出的虛擬電源電壓Virtual_VDD 可被供應至相鄰的標準胞元,且因此,該些位置更靠近第二擴散區202與第四擴散區204之間的中點的標準胞元可被穩定地操作。Referring back to FIG. 6, a plurality of standard cells STD Cells may be disposed between the second p-tap P-tab2 and the third p-tap P-tab3 and between the second n-tap N-tab2 and the third n-tap N-tab3 . The virtual power supply voltage Virtual_V DD and the ground voltage V SS can be supplied to a plurality of standard cells STD Cells. In the case of virtual power voltage Virtual_V DD via the output 202 and the fourth diffusion region of the second diffusion region 204, the virtual power voltage Virtual_V DD can be sufficiently supplied to the plurality of standard cells in membered STD Cells adjacent to the second diffusion region 202 and the second Some standard cells STD Cells are placed in the four diffusion regions 204. However, the virtual power supply voltage Virtual_V DD may not be sufficiently supplied to some of the standard cells STD Cells located between the second diffusion region 202 and the fourth diffusion region 204. For the standard cells that are not sufficiently supplied with the virtual power supply voltage Virtual_V DD , the fifth diffusion region 205 and the sixth diffusion region 206 and the third gate electrode G3 may be further provided. In this case, the virtual power supply voltage Virtual_V DD outputted through the sixth diffusion region 206 may be supplied to adjacent standard cells, and thus, the positions are closer to the second diffusion region 202 and the fourth diffusion region 204. The standard cell at the midpoint between them can be stably operated.

根據本發明概念的示例性實施例,藉由設置第五擴散區205及第六擴散區206以及第三閘電極G3,可達成虛擬電源電壓Virtual_VDD 的附加供應而無需設置任何附加p抽頭。因此,可有效地且穩定地將虛擬電源電壓Virtual_VDD 供應至標準胞元STD Cells而無需增大晶片大小。According to an exemplary embodiment of the inventive concept, by providing the fifth diffusion region 205 and the sixth diffusion region 206 and the third gate electrode G3, an additional supply of the virtual power supply voltage Virtual_V DD can be achieved without setting any additional p-tap. Therefore, the virtual power supply voltage Virtual_V DD can be efficiently and stably supplied to the standard cell STD Cells without increasing the chip size.

圖8是說明根據本發明概念的示例性實施例的電源閘切換系統300的平面圖。圖9是根據本發明概念的示例性實施例的沿圖8所示的線B-B'截取的剖視圖。將自圖9省略沿圖8所示的線A-A'截取的剖視圖,乃因其實質上相同於圖2所示者。FIG. 8 is a plan view illustrating a power gate switching system 300 in accordance with an exemplary embodiment of the inventive concept. FIG. 9 is a cross-sectional view taken along line BB' of FIG. 8 according to an exemplary embodiment of the inventive concept. A cross-sectional view taken along line A-A' shown in Fig. 8 will be omitted from Fig. 9 because it is substantially the same as that shown in Fig. 2.

參照圖8及圖9,N井可在p型基板P-sub中被形成為在第一方向D1上延伸。可鄰近第二方向D2上的N井形成在第一方向上延伸的P井。如圖8中所示,N井及P井可在第二方向D2上彼此間隔開,然而在本發明概念的示例性實施例中,N井及P井可在第二方向D2上彼此接觸。Referring to FIGS. 8 and 9, the N well may be formed to extend in the first direction D1 in the p-type substrate P-sub. A P well extending in the first direction may be formed adjacent to the N well in the second direction D2. As shown in FIG. 8, the N and P wells may be spaced apart from each other in the second direction D2, however in an exemplary embodiment of the inventive concept, the N and P wells may be in contact with each other in the second direction D2.

第一擴散區301至第六擴散區306及第一p抽頭P-tab1至第四p抽頭P-tab4可形成於N井中,且第一閘電極G1至第三閘電極G3可形成於N井上。舉例而言,第一擴散區301至第六擴散區306、第一p抽頭P-tab1至第四p抽頭P-tab4、及第一閘電極G1至第三閘電極G3可被配置成具有與參照圖6至圖7所闡述的特徵實質上相同的特徵,且因此,將不再對其予以贅述。The first to sixth diffusion regions 301 to 306 and the first p-tap P-tab1 to the fourth p-tap P-tab4 may be formed in the N-well, and the first to third gate electrodes G1 to G3 may be formed on the N-well . For example, the first to sixth diffusion regions 301 to 306, the first p-tap P-tab1 to the fourth p-tap P-tab4, and the first to third gate electrodes G1 to G3 may be configured to have The features set forth with reference to Figures 6 through 7 are substantially identical and, therefore, will not be described again.

如圖8及圖9中所示,在第二方向D2上延伸且在第一方向D1上彼此間隔開的第一n抽頭N-tab1至第四n抽頭N-tab4可設置於P井中。在P井中,第一n抽頭N-tab1可平行於第二方向D2且與第一p抽頭P-tab1同軸。在P井中,第二n抽頭N-tab2可平行於第二方向D2且與第二p抽頭P-tab2同軸。在P井中,第三n抽頭N-tab3可平行於第二方向D2且與第三p抽頭P-tab3同軸。在P井中,第四n抽頭N-tab4可平行於第二方向D2且與第四p抽頭P-tab4同軸。As shown in FIGS. 8 and 9, the first n-tap N-tab1 to the fourth n-tap N-tab4 extending in the second direction D2 and spaced apart from each other in the first direction D1 may be disposed in the P-well. In the P well, the first n tap N-tab1 may be parallel to the second direction D2 and coaxial with the first p tap P-tab1. In the P well, the second n-tap N-tab2 may be parallel to the second direction D2 and coaxial with the second p-tap P-tab2. In the P well, the third n-tap N-tab3 may be parallel to the second direction D2 and coaxial with the third p-tap P-tab3. In the P well, the fourth n-tap N-tab4 may be parallel to the second direction D2 and coaxial with the fourth p-tap P-tab4.

在本發明概念的示例性實施例中,第一n抽頭N-tab1至第四n抽頭N-tab4可摻雜有p型雜質,且第一n抽頭N-tab1至第四n抽頭N-tab4的摻雜濃度可不同於P井的摻雜濃度。偏電壓Vbias2可被施加至第一n抽頭N-tab1至第四n抽頭N-tab4以防止發生所述閂鎖現象。在本發明概念的示例性實施例中,被施加至第一n抽頭N-tab1至第四n抽頭N-tab4的偏電壓Vbias2可為接地電壓。In an exemplary embodiment of the inventive concept, the first n-tap N-tab1 to the fourth n-tap N-tab4 may be doped with a p-type impurity, and the first n-tap N-tab1 to the fourth n-tap N-tab4 The doping concentration can be different from the doping concentration of the P well. The bias voltage Vbias2 may be applied to the first n-tap N-tab1 to the fourth n-tap N-tab4 to prevent the latch-up phenomenon from occurring. In an exemplary embodiment of the inventive concept, the bias voltage Vbias2 applied to the first n-tap N-tab1 to the fourth n-tap N-tab4 may be a ground voltage.

如圖8中所示,第一n抽頭N-tab1至第四n抽頭N-tab4可與第一p抽頭P-tab1至第四p抽頭P-tab4間隔開。然而,N井與P井可彼此接觸,且第一n抽頭N-tab1至第四n抽頭N-tab4中的每一者可在N井與P井之間的界線處與第一p抽頭P-tab1至第四p抽頭P-tab4中的對應一者接觸。As shown in FIG. 8, the first n-tap N-tab1 to the fourth n-tap N-tab4 may be spaced apart from the first p-tap P-tab1 to the fourth p-tap P-tab4. However, the N and P wells may be in contact with each other, and each of the first n-tap N-tab1 to the fourth n-tap N-tab4 may be at the boundary between the N-well and the P-well with the first p-tap P The corresponding one of the -tab1 to the fourth p tap P-tab4 is in contact.

第二p抽頭P-tab2與第三p抽頭P-tab3之間的距離及第二n抽頭N-tab2與第三n抽頭N-tab3之間的距離可慮及N井的摻雜濃度、P井的摻雜濃度或其組合來確定。舉例而言,第二p抽頭P-tab2與第三p抽頭P-tab3之間的距離及第二n抽頭N-tab2與第三n抽頭N-tab3之間的距離可處於能夠防止在電源閘切換系統300中發生所述閂鎖現象的範圍內。The distance between the second p-tap P-tab2 and the third p-tap P-tab3 and the distance between the second n-tap N-tab2 and the third n-tap N-tab3 may take into account the doping concentration of the N-well, P The doping concentration of the well or a combination thereof is determined. For example, the distance between the second p-tap P-tab2 and the third p-tap P-tab3 and the distance between the second n-tap N-tab2 and the third n-tap N-tab3 may be at a power gate Within the range of the latching phenomenon occurring in the switching system 300.

與參照圖3所闡述者相似,所述p抽頭可僅由第一p抽頭P-tab1及第三p抽頭P-tab3或僅由第一p抽頭P-tab1及第四p抽頭P-tab4組成。進而,所述n抽頭可僅由第一n抽頭N-tab1及第三n抽頭N-tab3或僅由第一n抽頭N-tab1及第四n抽頭N-tab4組成。另外,電源閘切換系統300可更包括如圖4及圖5中所示的多個裝置隔離層STI。Similar to the one described with reference to FIG. 3, the p-tap can be composed only of the first p-tap P-tab1 and the third p-tap P-tab3 or only the first p-tap P-tab1 and the fourth p-tap P-tab4 . Furthermore, the n-tap may consist of only the first n-tap N-tab1 and the third n-tap N-tab3 or only the first n-tap N-tab1 and the fourth n-tap N-tab4. In addition, the power gate switching system 300 may further include a plurality of device isolation layers STI as shown in FIGS. 4 and 5.

圖10是說明根據本發明概念的示例性實施例的電源閘切換系統400的平面圖。圖11是根據本發明概念的示例性實施例的沿圖10所示的線B-B'截取的剖視圖。將自圖11省略沿圖10所示的線A-A'截取的剖視圖,乃因其實質上相同於圖2所示者。FIG. 10 is a plan view illustrating a power gate switching system 400 in accordance with an exemplary embodiment of the inventive concept. FIG. 11 is a cross-sectional view taken along line BB' of FIG. 10, according to an exemplary embodiment of the inventive concept. A cross-sectional view taken along line A-A' shown in Fig. 10 will be omitted from Fig. 11 because it is substantially the same as that shown in Fig. 2.

參照圖10及圖11,以下將對電源閘切換系統400進行詳細闡述。電源閘切換系統400可包括:N井,形成為在第一方向D1上延伸;第一擴散區401至第六擴散區406及第一p抽頭P-tab1至第四p抽頭P-tab4,形成於N井中;及第一閘電極G1至第三閘電極G3,形成於N井上。第一擴散區401至第六擴散區406可摻雜有p型雜質,且第一p抽頭P-tab1至第四p抽頭P-tab4可摻雜有n型雜質。第一p抽頭P-tab1至第四p抽頭P-tab4可具有與N井的摻雜濃度不同的摻雜濃度。Referring to Figures 10 and 11, the power gate switching system 400 will be described in detail below. The power gate switching system 400 may include: an N well formed to extend in the first direction D1; a first diffusion region 401 to a sixth diffusion region 406 and first p taps P-tab1 to fourth p taps P-tab4, forming In the N well; and the first gate electrode G1 to the third gate electrode G3 are formed on the N well. The first to sixth diffusion regions 401 to 406 may be doped with p-type impurities, and the first p-tap P-tab1 to the fourth p-tap P-tab4 may be doped with an n-type impurity. The first p-tap to the fourth p-tap P-tab4 may have a different doping concentration than the doping concentration of the N-well.

第一閘電極G1與第二閘電極G2之間的距離可慮及N井的摻雜濃度來確定。換言之,第一閘電極G1與第二閘電極G2可以能夠防止在電源閘切換系統400中發生所述閂鎖現象的距離彼此間隔開。舉例而言,第一閘電極G1與第三閘電極G3之間的距離s1可處於第一閘電極G1與第二閘電極G2之間的距離s2的1/4倍至3/4倍的範圍內。The distance between the first gate electrode G1 and the second gate electrode G2 can be determined by considering the doping concentration of the N well. In other words, the first gate electrode G1 and the second gate electrode G2 may be capable of preventing the distances at which the latch-up phenomenon occurs in the power gate switching system 400 from being spaced apart from each other. For example, the distance s1 between the first gate electrode G1 and the third gate electrode G3 may be in the range of 1/4 to 3/4 times the distance s2 between the first gate electrode G1 and the second gate electrode G2. Inside.

設置於N井中或設置於N井上的元件可具有與參照圖1、圖2及圖6所闡述的特徵實質上相同的特徵,且因此,將不再對其予以贅述。Elements disposed in the N-well or disposed on the N-well may have substantially the same features as those illustrated with reference to Figures 1, 2, and 6, and thus, will not be described again.

電源閘切換系統400可包括第七擴散區407至第十二擴散區412,第七擴散區407至第十二擴散區412 在p型基板P-sub中被形成為在第二方向D2上延伸且被形成為在第一方向D1上彼此間隔開。第一擴散區401及第七擴散區407可被形成為彼此同軸,藉此形成行。第七擴散區407可摻雜有n型雜質。相似地,第八擴散區408至第十二擴散區412中的每一者可被形成為與第二擴散區402至第六擴散區406中的對應一者同軸,藉此形成個別的行。The power gate switching system 400 may include a seventh diffusion region 407 to a twelfth diffusion region 412 formed in the p-type substrate P-sub to extend in the second direction D2 And formed to be spaced apart from each other in the first direction D1. The first diffusion region 401 and the seventh diffusion region 407 may be formed to be coaxial with each other, thereby forming a row. The seventh diffusion region 407 may be doped with an n-type impurity. Similarly, each of the eighth diffusion region 408 to the twelfth diffusion region 412 may be formed to be coaxial with a corresponding one of the second diffusion region 402 to the sixth diffusion region 406, thereby forming individual rows.

第四閘電極G4可形成於p型基板P-sub上且形成於第七擴散區407與第八擴散區408之間。第五閘電極G5可形成於p型基板P-sub上且形成於第九擴散區409與第十擴散區410之間。第六閘電極G6可形成於p型基板P-sub上且形成於第十一擴散區411與第十二擴散區412之間。在第四閘電極G4、第五閘電極G5、第六閘電極G6與p型基板P-sub之間可進一步設置絕緣層。舉例而言,第七擴散區407至第十二擴散區412可摻雜有n型雜質。The fourth gate electrode G4 may be formed on the p-type substrate P-sub and formed between the seventh diffusion region 407 and the eighth diffusion region 408. The fifth gate electrode G5 may be formed on the p-type substrate P-sub and formed between the ninth diffusion region 409 and the tenth diffusion region 410. The sixth gate electrode G6 may be formed on the p-type substrate P-sub and formed between the eleventh diffusion region 411 and the twelfth diffusion region 412. An insulating layer may be further disposed between the fourth gate electrode G4, the fifth gate electrode G5, the sixth gate electrode G6, and the p-type substrate P-sub. For example, the seventh to twelfth diffusion regions 407 to 412 may be doped with an n-type impurity.

第一n抽頭N-tab1及第二n抽頭N-tab2可分別鄰近第七擴散區407及第八擴散區408形成於p型基板P-sub中。儘管第一n抽頭N-tab1及第二n抽頭N-tab2被示出為不與第七擴散區407及第八擴散區408直接接觸,然而第一n抽頭N-tab1及第二n抽頭N-tab2可分別與第七擴散區407及第八擴散區408直接接觸。第一n抽頭N-tab1至第四n抽頭N-tab4可摻雜有p型雜質。第一n抽頭N-tab1至第四n抽頭N-tab4可具有與p型基板P-sub的摻雜濃度不同的摻雜濃度。The first n-tap N-tab1 and the second n-tap N-tab2 may be formed in the p-type substrate P-sub adjacent to the seventh diffusion region 407 and the eighth diffusion region 408, respectively. Although the first n-tap N-tab1 and the second n-tap N-tab2 are shown not in direct contact with the seventh diffusion region 407 and the eighth diffusion region 408, the first n-tap N-tab1 and the second n-tap N -tab2 may be in direct contact with the seventh diffusion region 407 and the eighth diffusion region 408, respectively. The first n-tap N-tab1 to the fourth n-tap N-tab4 may be doped with a p-type impurity. The first n-tap N-tab1 to the fourth n-tap N-tab4 may have a different doping concentration than the doping concentration of the p-type substrate P-sub.

接地電壓VSS 可被施加至第七擴散區407。視被施加至第四閘電極G4的電壓Gate_CTRL而定,接地電壓VSS 可被用作虛擬接地電壓Virtual_VSS 而經由第八擴散區408被輸出。虛擬接地電壓Virtual_VSS 可被供應至位置與其鄰近的至少一個標準胞元。接地電壓VSS 亦可被供應至位置與其鄰近的至少一個標準胞元。A ground voltage V SS may be applied to the seventh diffusion region 407. Depending on the voltage Gate_CTRL applied to the fourth gate electrode G4, the ground voltage V SS can be used as the virtual ground voltage Virtual_V SS to be output via the eighth diffusion region 408. The virtual ground voltage Virtual_V SS can be supplied to at least one standard cell adjacent to the location. The ground voltage Vss can also be supplied to at least one standard cell adjacent to the location.

為防止在電源閘切換系統400中發生所述閂鎖現象,偏電壓Vbias2可被施加至第一n抽頭N-tab1及第二n抽頭N-tab2。儘管偏電壓Vbias2被示出為單獨地施加至第一n抽頭N-tab1及第二n抽頭N-tab2,然而接地電壓VSS 可替代偏電壓Vbias2被施加至第一n抽頭N-tab1及第二n抽頭N-tab2。To prevent the latch-up phenomenon from occurring in the power gate switching system 400, a bias voltage Vbias2 can be applied to the first n-tap N-tab1 and the second n-tap N-tab2. Although the bias voltage Vbias2 is shown to be applied separately to the first n-tap N-tab1 and the second n-tap N-tab2, the ground voltage V SS may be applied to the first n-tap N-tab1 and the second instead of the bias voltage Vbias2 Two n taps N-tab2.

第三n抽頭N-tab3及第四n抽頭N-tab4可分別鄰近第九擴散區409及第十擴散區410形成於p型基板P-sub中。儘管第三n抽頭N-tab3及第四n抽頭N-tab4被示出為分別不與第九擴散區409及第十擴散區410直接接觸,然而第三n抽頭N-tab3及第四n抽頭N-tab4可形成為分別與第九擴散區409及第十擴散區410直接接觸。The third n-tap N-tab3 and the fourth n-tap N-tab4 may be formed in the p-type substrate P-sub adjacent to the ninth diffusion region 409 and the tenth diffusion region 410, respectively. Although the third n-tap N-tab3 and the fourth n-tap N-tab4 are shown not in direct contact with the ninth diffusion region 409 and the tenth diffusion region 410, respectively, the third n-tap N-tab3 and the fourth n-tap N-tab 4 may be formed to be in direct contact with the ninth diffusion region 409 and the tenth diffusion region 410, respectively.

接地電壓VSS 可被施加至第九擴散區409。視被施加至第五閘電極G5的電壓Gate_CTRL而定,接地電壓VSS 可被用作虛擬接地電壓Virtual_VSS 而經由第十擴散區410被輸出。虛擬接地電壓Virtual_VSS 可被供應至位置與其鄰近的至少一個標準胞元。接地電壓VSS 亦可被供應至位置與其鄰近的至少一個標準胞元。A ground voltage V SS may be applied to the ninth diffusion region 409. Depending on the voltage Gate_CTRL applied to the fifth gate electrode G5, the ground voltage V SS can be used as the virtual ground voltage Virtual_V SS to be output via the tenth diffusion region 410. The virtual ground voltage Virtual_V SS can be supplied to at least one standard cell adjacent to the location. The ground voltage Vss can also be supplied to at least one standard cell adjacent to the location.

偏電壓Vbias2可被施加至第三n抽頭N-tab3及第四n抽頭N-tab4。儘管偏電壓Vbias2被示出為單獨地施加至第三n抽頭N-tab3及第四n抽頭N-tab4,然而接地電壓VSS 可替代偏電壓Vbias2被施加至第三n抽頭N-tab3及第四n抽頭N-tab4。The bias voltage Vbias2 can be applied to the third n-tap N-tab3 and the fourth n-tap N-tab4. Although the bias voltage Vbias2 is shown as being applied separately to the third n-tap N-tab3 and the fourth n-tap N-tab4, the ground voltage Vss can be applied to the third n-tap N-tab3 instead of the bias voltage Vbias2 and Four n taps N-tab4.

在經由第八擴散區408或第十擴散區410輸出虛擬接地電壓Virtual_VSS 的情形中,虛擬接地電壓Virtual_VSS 可被充分地供應至鄰近第八擴散區408或第十擴散區410的標準胞元。然而虛擬接地電壓Virtual_VSS 可能不被充分地供應至其他位於第八擴散區408與第十擴散區410之間的其他標準胞元。對於此類未充分地供應以虛擬接地電壓Virtual_VSS 的標準胞元而言,可進一步設置第十一擴散區411及第十二擴散區412以及第六閘電極G6。In the case of a virtual ground voltage via the output Virtual_V SS eighth or tenth diffusion region 408 in the diffusion region 410, the virtual ground voltage Virtual_V SS can be sufficiently supplied to the standard cell adjacent to the eighth or tenth diffusion region 408 of the element diffusion region 410 . However, the virtual ground voltage Virtual_V SS may not be sufficiently supplied to other standard cells located between the eighth diffusion region 408 and the tenth diffusion region 410. For such a standard cell that is not sufficiently supplied with the virtual ground voltage Virtual_V SS , the eleventh diffusion region 411 and the twelfth diffusion region 412 and the sixth gate electrode G6 may be further provided.

舉例而言,第十一擴散區411及第十二擴散區412的大小(例如,在第一方向D1上的寬度)可小於第七擴散區407至第十擴散區410的大小(例如,在第一方向D1上的寬度)。第六閘電極G6的大小(例如,在第一方向D1上的寬度)可亦小於第四閘電極G4或第五閘電極G5的大小(例如,在第一方向D1上的寬度)。For example, the sizes of the eleventh diffusion region 411 and the twelfth diffusion region 412 (eg, the width in the first direction D1) may be smaller than the size of the seventh diffusion region 407 to the tenth diffusion region 410 (for example, at The width in the first direction D1). The size of the sixth gate electrode G6 (for example, the width in the first direction D1) may also be smaller than the size of the fourth gate electrode G4 or the fifth gate electrode G5 (for example, the width in the first direction D1).

根據本發明概念的示例性實施例,由於設置了第五擴散區405及第六擴散區406、第三閘電極G3、第十一擴散區411及第十二擴散區412以及第六閘電極G6,因此可穩定地將虛擬電源電壓Virtual_VDD 供應至位於弱區(例如,擴散區402及擴散區404之間或擴散區408及擴散區410之間)上的未被充分地供應虛擬接地電壓Virtual_VSS 的標準胞元。另外,藉由添加未附加p抽頭或n抽頭的相對小的組件,可減小半導體晶片的大小。According to an exemplary embodiment of the inventive concept, the fifth diffusion region 405 and the sixth diffusion region 406, the third gate electrode G3, the eleventh diffusion region 411 and the twelfth diffusion region 412, and the sixth gate electrode G6 are disposed. Therefore, the virtual power supply voltage Virtual_V DD can be stably supplied to the insufficiently supplied virtual ground voltage Virtual_V located in the weak region (for example, between the diffusion region 402 and the diffusion region 404 or between the diffusion region 408 and the diffusion region 410) The standard cell of SS . In addition, the size of the semiconductor wafer can be reduced by adding a relatively small component without an additional p-tap or n-tap.

圖12是說明根據本發明概念的示例性實施例的電源閘切換系統500的平面圖。圖13是根據本發明概念的示例性實施例的沿圖12所示的線B-B'截取的剖視圖。將自圖13省略沿圖12所示的線A-A'截取的剖視圖,乃因其實質上相同於圖2所示者。FIG. 12 is a plan view illustrating a power gate switching system 500 in accordance with an exemplary embodiment of the inventive concept. FIG. 13 is a cross-sectional view taken along line BB' of FIG. 12, according to an exemplary embodiment of the inventive concept. A cross-sectional view taken along line A-A' shown in Fig. 12 will be omitted from Fig. 13 because it is substantially the same as that shown in Fig. 2.

參照圖12及圖13,以下將對電源閘切換系統500進行詳細闡述。圖12及圖13所示的電源閘切換系統500可包括p型基板P-sub,p型基板P-sub中形成有N井及P井。N井與P井可在第二方向D2上彼此鄰近且可在第一方向D1上延伸。Referring to Figures 12 and 13, the power gate switching system 500 will be described in detail below. The power gate switching system 500 shown in FIGS. 12 and 13 may include a p-type substrate P-sub, and a p-well and a P-well are formed in the p-type substrate P-sub. The N and P wells may be adjacent to each other in the second direction D2 and may extend in the first direction D1.

電源閘切換系統500可包括:形成於P井中的第七擴散區507至第十二擴散區512及第一n抽頭N-tab1至第四n抽頭N-tab4,及形成於P井上的第四閘電極G4至第六閘電極G6。除此之外,電源閘切換系統500可與圖10及圖11所示者相似。舉例而言,電源閘切換系統500可包括形成於N井中的第一擴散區501至第六擴散區506及第一p抽頭P-tab1至第四p抽頭P-tab4,及形成於N井上的第一閘電極G1至第三閘電極G3。因此,將不再對其予以贅述。The power gate switching system 500 may include: a seventh diffusion region 507 to a twelfth diffusion region 512 formed in the P well, and first n-tap N-tab1 to fourth n-tap N-tab4, and a fourth formed on the P-well Gate electrode G4 to sixth gate electrode G6. In addition, the power gate switching system 500 can be similar to that shown in FIGS. 10 and 11. For example, the power gate switching system 500 can include first to sixth diffusion regions 501 to 506 formed in the N-well and first to fourth p-tap-P1 to P-tab4, and formed on the N-well. The first gate electrode G1 to the third gate electrode G3. Therefore, it will not be repeated.

在本發明概念的示例性實施例中,第一閘電極G1與第三閘電極G3之間的距離s1可處於第一閘電極G1與第二閘電極G2之間的距離s2的1/4倍至3/4倍的範圍內,且第四閘電極G4與第六閘電極G6之間的距離s1可處於第四閘電極G4與第五閘電極G5之間的距離s2的1/4倍至3/4倍的範圍內。擴散區505、506、511、及512中的每一者的大小(例如,在第一方向D1上的寬度)可小於擴散區501至504或507至510中的每一者大小(例如,在第一方向D1上的寬度)。閘電極G3及閘電極G6中的每一者的大小(例如,在第一方向D1上的寬度)亦可小於閘電極G1、G2、G4及G5中的每一者的大小(例如,在第一方向D1上的寬度)。In an exemplary embodiment of the inventive concept, the distance s1 between the first gate electrode G1 and the third gate electrode G3 may be 1/4 times the distance s2 between the first gate electrode G1 and the second gate electrode G2. Up to 3/4 times, and the distance s1 between the fourth gate electrode G4 and the sixth gate electrode G6 may be 1/4 times the distance s2 between the fourth gate electrode G4 and the fifth gate electrode G5 3/4 times the range. The size of each of the diffusion regions 505, 506, 511, and 512 (eg, the width in the first direction D1) may be smaller than each of the diffusion regions 501 to 504 or 507 to 510 (eg, at The width in the first direction D1). The size of each of the gate electrode G3 and the gate electrode G6 (for example, the width in the first direction D1) may also be smaller than the size of each of the gate electrodes G1, G2, G4, and G5 (for example, at the The width in one direction D1).

圖14是說明根據本發明概念的示例性實施例的應用至電源閘切換系統的半導體裝置的佈局的平面圖。為簡潔起見,自圖14省略裝置隔離層(例如,圖4所示的STI)。FIG. 14 is a plan view illustrating a layout of a semiconductor device applied to a power gate switching system, according to an exemplary embodiment of the inventive concept. For the sake of brevity, the device isolation layer (eg, the STI shown in Figure 4) is omitted from Figure 14.

參照圖14,在第一方向D1上延伸且在第二方向D2上彼此間隔開的多個N井可形成於p型基板P-sub中。舉例而言,N井可平行於第一列Row1、第三列Row3、及第五列Row5延伸。在圖14中,藉由交叉影線示出N井。如圖14中所示,虛擬電源線Virtual_VDD 可被安置成在第一方向D1上跨越N井,且接地線VSS 可被安置成在第一方向D1上跨越p型基板P-sub。在第二方向D2上量測的虛擬電源線Virtual_VDD 與接地線VSS 之間的距離被稱作1H。Referring to FIG. 14, a plurality of N wells extending in the first direction D1 and spaced apart from each other in the second direction D2 may be formed in the p-type substrate P-sub. For example, the N well may extend parallel to the first column Row1, the third column Row3, and the fifth column Row5. In Figure 14, the N well is shown by cross hatching. As shown in FIG. 14, the virtual power line Virtual_V DD may be disposed to span the N well in the first direction D1, and the ground line V SS may be disposed to span the p-type substrate P-sub in the first direction D1. The distance between the virtual power line Virtual_V DD measured in the second direction D2 and the ground line V SS is referred to as 1H.

構成半導體邏輯電路的各種標準胞元及用於將虛擬電源Virtual_VDD 供應至所述標準胞元的電源閘開關系統可安置於p型基板P-sub上及N井上。所述電源閘胞元及與其鄰近的p抽頭可藉由利用佈局設計工具均勻地安置。Various standard cells constituting the semiconductor logic circuit and a power gate switching system for supplying the virtual power source Virtual_V DD to the standard cell may be disposed on the p-type substrate P-sub and on the N-well. The power gate cell and its adjacent p-tap can be evenly placed by utilizing a layout design tool.

舉例而言,第一胞元601可與位於第一列Row1上的N井重疊。第一胞元601可包括至少一個閘電極及至少一個擴散區。第一胞元601的至少兩個擴散區可為摻雜有p型雜質的區。可鄰近第一胞元601設置兩個p抽頭。如圖14中所示,所述兩個p抽頭可與第一胞元601直接接觸或不與第一胞元601直接接觸。儘管示出了兩個p抽頭,然而如上所述,p抽頭可單個地形成。舉例而言,p抽頭可摻雜有n型雜質,且p抽頭的摻雜濃度可不同於N井的摻雜濃度。For example, the first cell 601 can overlap with the N well located on the first column Row1. The first cell 601 can include at least one gate electrode and at least one diffusion region. The at least two diffusion regions of the first cell 601 may be regions doped with p-type impurities. Two p taps can be placed adjacent to the first cell 601. As shown in FIG. 14, the two p taps may or may not be in direct contact with the first cell 601. Although two p taps are shown, as described above, the p taps may be formed individually. For example, the p-tap can be doped with an n-type impurity, and the doping concentration of the p-tap can be different than the doping concentration of the N-well.

第二胞元602可以距離s3與第一胞元601間隔開且可與位於第一列Row上的N井重疊。相似於第一胞元601,第二胞元602可包括至少一個閘電極及至少兩個擴散區。第一胞元601及第二胞元602之間的距離(例如,s3)可慮及N井的摻雜濃度來確定。舉例而言,第一胞元601及第二胞元602可以能夠防止發生所述閂鎖現象的距離彼此間隔開。第二胞元602及第一胞元601可被配置成具有除其位置之外實質上相同的特徵,且因此,將不再對其予以贅述。The second cell 602 may be spaced apart from the first cell 601 by a distance s3 and may overlap with the N well located on the first column Row. Similar to the first cell 601, the second cell 602 can include at least one gate electrode and at least two diffusion regions. The distance between the first cell 601 and the second cell 602 (e.g., s3) can be determined by considering the doping concentration of the N well. For example, the first cell 601 and the second cell 602 may be capable of preventing the distance at which the latch-up phenomenon occurs from being spaced apart from each other. The second cell 602 and the first cell 601 can be configured to have substantially the same features except for their locations, and thus, will not be described again.

第三胞元603可與位於第三列Row3上的N井重疊。如圖14中所示,第三胞元603可被定位於第一胞元601與第二胞元602之間。第三胞元603及第一胞元601可被配置成具有除其位置之外實質上相同的特徵,且因此,將不再對其予以贅述。The third cell 603 can overlap with the N well located on the third column Row3. As shown in FIG. 14, the third cell 603 can be positioned between the first cell 601 and the second cell 602. The third cell 603 and the first cell 601 can be configured to have substantially the same features except for their locations, and thus, a detailed description thereof will not be repeated.

第四胞元604及第五胞元605可與位於第五列Row5上的N井重疊。第四胞元604、第五胞元605及第一胞元601可被配置成具有除其位置之外實質上相同的特徵,且因此,將不再對其予以贅述。The fourth cell 604 and the fifth cell 605 may overlap with the N well located on the fifth column Row5. The fourth cell 604, the fifth cell 605, and the first cell 601 may be configured to have substantially the same features except for their positions, and thus, a detailed description thereof will not be repeated.

如圖14所示,即使第一胞元601至第五胞元605被均勻地安置,但安置於所述各胞元之間的至少一個標準胞元可存在虛擬電源電壓Virtual_VDD 的短缺或壓降。在此類壓降大的情形中,安置於各胞元之間的至少一個標準胞元可能異常地運作。藉由設置第一附加胞元611至第三附加胞元613,可防止其中發生大的壓降的至少一個標準胞元異常地運作。舉例而言,附加胞元611至附加胞元613的位置處的壓降可不為大的。As shown in FIG. 14, even if the first cell 601 to the fifth cell 605 are uniformly disposed, at least one standard cell disposed between the cells may have a shortage or pressure of the virtual power source voltage Virtual_V DD . drop. In the case of such a large pressure drop, at least one standard cell disposed between each cell may operate abnormally. By setting the first additional cell 611 to the third additional cell 613, at least one standard cell in which a large voltage drop occurs can be prevented from operating abnormally. For example, the pressure drop at the location of the additional cell 611 to the additional cell 613 may not be large.

第一附加胞元611可與位於第一列Row1上的N井重疊。第一附加胞元611可包括至少一個閘電極及至少兩個擴散區。第一附加胞元611的至少兩個擴散區可摻雜有p型雜質。然而,與第一胞元601至第五胞元605不同,於第一附加胞元611中可不設置所述p抽頭。第一附加胞元611的大小可小於第一胞元601至第五胞元605中的至少一者的大小。舉例而言,第一附加胞元611的所述閘電極的大小(例如,在第一方向D1上的寬度)可等於或小於第一胞元601至第五胞元605中的至少一者的大小。另外,第一附加胞元611的擴散區的大小(例如,在第一方向D1上的寬度)可等於或小於第一胞元601至第五胞元605中的至少一者的大小。此外,第一胞元601及第一附加胞元611之間的距離s1可處於第一胞元601及第二胞元602之間的距離s3的1/4倍至3/4倍的範圍內。The first additional cell 611 can overlap with the N well located on the first column Row1. The first additional cell 611 can include at least one gate electrode and at least two diffusion regions. At least two diffusion regions of the first additional cell 611 may be doped with a p-type impurity. However, unlike the first cell 601 to the fifth cell 605, the p tap may not be provided in the first additional cell 611. The size of the first additional cell 611 may be smaller than the size of at least one of the first cell 601 to the fifth cell 605. For example, the size of the gate electrode of the first additional cell 611 (eg, the width in the first direction D1) may be equal to or smaller than at least one of the first cell 601 to the fifth cell 605. size. In addition, the size of the diffusion region of the first additional cell 611 (eg, the width in the first direction D1) may be equal to or smaller than the size of at least one of the first cell 601 to the fifth cell 605. In addition, the distance s1 between the first cell 601 and the first additional cell 611 may be in the range of 1/4 to 3/4 times the distance s3 between the first cell 601 and the second cell 602. .

第二附加胞元612可與位於第三列Row3及第五列Row5上的N井重疊。第二附加胞元612可包括至少一個閘電極及至少四個擴散區。換言之,第三列Row3及第五列Row5的擴散區可被配置成共享所述閘電極。第二附加胞元612的所述至少四個擴散區可摻雜有p型雜質。與第一胞元601至第五胞元605不同,於第二附加胞元612中可不設置所述p抽頭。第二附加胞元612的大小可等於或小於第一胞元601至第五胞元605中的至少一者的大小。換言之,第二附加胞元612的所述閘電極的大小(例如,在第一方向D1上的寬度)可等於或小於第一胞元601至第五胞元605中的至少一者的大小。第二附加胞元612的擴散區的大小(例如,在第一方向D1上的寬度)可等於或小於第一胞元601至第五胞元605中的至少一者的大小。儘管第二附加胞元612被示出為在第二方向D2上具有長度3H,然而本發明概念並非僅限於此。The second additional cell 612 can overlap with the N well located in the third column Row3 and the fifth column Row5. The second additional cell 612 can include at least one gate electrode and at least four diffusion regions. In other words, the diffusion regions of the third column Row3 and the fifth column Row5 may be configured to share the gate electrode. The at least four diffusion regions of the second additional cell 612 may be doped with a p-type impurity. Unlike the first cell 601 to the fifth cell 605, the p tap may not be provided in the second additional cell 612. The size of the second additional cell 612 may be equal to or smaller than the size of at least one of the first cell 601 to the fifth cell 605. In other words, the size of the gate electrode of the second additional cell 612 (eg, the width in the first direction D1) may be equal to or smaller than the size of at least one of the first cell 601 to the fifth cell 605. The size of the diffusion region of the second additional cell 612 (eg, the width in the first direction D1) may be equal to or smaller than the size of at least one of the first cell 601 to the fifth cell 605. Although the second additional cell 612 is shown to have a length 3H in the second direction D2, the inventive concept is not limited thereto.

第三附加胞元613可與位於第三列Row3上的N井重疊。第三附加胞元613可包括至少一個閘電極及至少兩個擴散區。第三附加胞元613及第二胞元602可被配置成共享相同的閘電極(例如,所述至少一個閘電極)。第三附加胞元613及第五胞元605可被配置成共享相同的閘電極(例如,所述至少一個閘電極)。The third additional cell 613 may overlap with the N well located on the third column Row3. The third additional cell 613 can include at least one gate electrode and at least two diffusion regions. The third additional cell 613 and the second cell 602 can be configured to share the same gate electrode (eg, the at least one gate electrode). The third additional cell 613 and the fifth cell 605 can be configured to share the same gate electrode (eg, the at least one gate electrode).

第三附加胞元613的所述至少兩個擴散區可摻雜有p型雜質。與第一胞元601至第五胞元605不同,於第三附加胞元613中可不設置所述p抽頭。第三附加胞元613可具有等於或小於第一胞元601至第五胞元605中的至少一者的大小。換言之,第三附加胞元613的閘電極的大小(例如,在第一方向D1上的寬度)可等於或小於第一胞元601至第五胞元605的大小。第三附加胞元613的擴散區的大小(例如,在第一方向D1上的寬度)可等於或小於第一胞元601至第五胞元605的大小。The at least two diffusion regions of the third additional cell 613 may be doped with a p-type impurity. Unlike the first cell 601 to the fifth cell 605, the p tap may not be provided in the third additional cell 613. The third additional cell 613 may have a size equal to or smaller than at least one of the first cell 601 to the fifth cell 605. In other words, the size of the gate electrode of the third additional cell 613 (for example, the width in the first direction D1) may be equal to or smaller than the size of the first cell 601 to the fifth cell 605. The size of the diffusion region of the third additional cell 613 (for example, the width in the first direction D1) may be equal to or smaller than the size of the first cell 601 to the fifth cell 605.

如參照圖14所闡述,藉由設置多個胞元601至605及多個附加胞元611至613,可將虛擬電源電壓Virtual_VDD 充分地供應至安置於可存在大的壓降的區處的標準胞元。另外,由於附加胞元611至附加胞元613中的每一者具有較胞元601至胞元605中的每一者小的大小,因此可減小半導體晶片的大小且可策略性地安置所述標準胞元。As explained with reference to FIG. 14, by providing a plurality of cells 601 to 605 and a plurality of additional cells 611 to 613, the virtual power supply voltage Virtual_V DD can be sufficiently supplied to be disposed at a region where a large voltage drop can exist. Standard cell. In addition, since each of the additional cell 611 to the additional cell 613 has a smaller size than each of the cell 601 to the cell 605, the size of the semiconductor wafer can be reduced and the placement can be strategically placed. Standard cell.

圖15是說明根據本發明概念的示例性實施例的應用至電源閘切換系統的半導體裝置的佈局的平面圖。為簡潔起見,自圖15省略所述裝置隔離層(例如,圖4所示的STI)。在圖15中所示出的所述半導體裝置的佈局可被配置成具有除設置有多個n抽頭之外與圖14所示的特徵實質上相同或相似的特徵,且因此,可不再對先前參照圖14所闡述的元件進行闡述。舉例而言,圖15示出與圖14所示的第一胞元601至第五胞元605相似的第一胞元701至第五胞元705、及與圖14所示的附加胞元611至附加胞元613相似的附加胞元711至附加胞元713。FIG. 15 is a plan view illustrating a layout of a semiconductor device applied to a power gate switching system, according to an exemplary embodiment of the inventive concept. For the sake of brevity, the device isolation layer (eg, the STI shown in FIG. 4) is omitted from FIG. The layout of the semiconductor device illustrated in FIG. 15 may be configured to have substantially the same or similar features as the features illustrated in FIG. 14 except that a plurality of n taps are provided, and thus, may no longer be on the previous The elements set forth in Figure 14 are set forth. For example, FIG. 15 shows first to fifth cells 701 to 705 which are similar to the first to fifth cells 601 to 605 shown in FIG. 14, and additional cells 611 shown in FIG. Additional cells 711 to additional cells 713 are added to additional cells 613.

多個n抽頭可被安置成與p型基板P-sub重疊。舉例而言,所述n抽頭中的每一者可被安置成在第二方向D2上延伸,且所述n抽頭中的至少一者可鄰近所述p抽頭中的對應一者。儘管鄰近的一對p抽頭與n抽頭被示出為彼此間隔開,然而其可在N井與p型基板P-sub之間的界線處彼此直接接觸。所述多個n抽頭可摻雜有p型雜質,且n抽頭的摻雜濃度可不同於p型基板P-sub的摻雜濃度。此外,摻雜有p型雜質的P井可與p型基板P-sub重疊。在此種情形中,n抽頭可與P井重疊。A plurality of n taps may be disposed to overlap the p-type substrate P-sub. For example, each of the n taps can be positioned to extend in a second direction D2, and at least one of the n taps can be adjacent to a corresponding one of the p taps. Although the adjacent pair of p taps and n taps are shown as being spaced apart from each other, they may be in direct contact with each other at the boundary between the N well and the p-type substrate P-sub. The plurality of n taps may be doped with p-type impurities, and the doping concentration of the n-tap may be different from the doping concentration of the p-type substrate P-sub. Further, the P well doped with the p-type impurity may overlap with the p-type substrate P-sub. In this case, the n tap can overlap with the P well.

圖16是說明根據本發明概念的示例性實施例的應用至電源閘切換系統的半導體裝置的佈局的平面圖。為簡潔起見,自圖16省略裝置隔離層(例如,圖4所示的STI)。FIG. 16 is a plan view illustrating a layout of a semiconductor device applied to a power gate switching system, according to an exemplary embodiment of the inventive concept. For the sake of brevity, the device isolation layer (e.g., the STI shown in Figure 4) is omitted from Figure 16.

圖16所示的半導體裝置可包括與N井重疊的元件且具有與圖14及圖15所示的特徵實質上相同的特徵,且因此,為簡潔起見,將不再對其予以贅述。另外,圖16所示的半導體裝置可包括n抽頭,所述n抽頭與p型基板P-sub或P井重疊且具有與圖15所示的特徵實質上相同的特徵,且因此,為簡潔起見,將不再對其予以贅述。舉例而言,圖16示出與圖14所示的第一胞元601至第五胞元605相似的第一胞元801至第五胞元805。The semiconductor device shown in FIG. 16 may include elements that overlap with the N well and have substantially the same features as those shown in FIGS. 14 and 15, and thus, for the sake of brevity, they will not be described again. In addition, the semiconductor device shown in FIG. 16 may include an n-tap that overlaps with the p-type substrate P-sub or P well and has substantially the same features as those shown in FIG. 15, and thus, for the sake of brevity See, we will not repeat them. For example, FIG. 16 shows first to fifth cells 801 to 805 similar to the first to fifth cells 601 to 605 shown in FIG.

參照圖16,第六胞元821至第十胞元825可被設置於p型基板P-sub上。第六胞元821至第十胞元825中的每一者可包括至少一個閘電極及至少兩個擴散區。如圖16中所示,第六胞元821至第十胞元825中的每一者可被設置於兩個n抽頭之間。Referring to FIG. 16, the sixth cell 821 to the tenth cell 825 may be disposed on the p-type substrate P-sub. Each of the sixth cell 821 to the tenth cell 825 may include at least one gate electrode and at least two diffusion regions. As shown in FIG. 16, each of the sixth cell 821 to the tenth cell 825 can be disposed between two n taps.

第一附加胞元811可被配置成具有與圖15所示的第一附加胞元711實質上相同的特徵,且因此,為簡潔起見,將不再對其予以贅述。The first additional cell 811 can be configured to have substantially the same features as the first additional cell 711 shown in FIG. 15, and thus, for the sake of brevity, it will not be described again.

第二附加胞元812可在第二方向D2上自第二列Row2延伸至第四列Row4。舉例而言,如圖16中所示,第二附加胞元812可具有長度2H。第二附加胞元812可包括形成於第二列Row2的p型基板P-sub中的至少兩個擴散區、形成於第三列Row3的N井中的至少兩個擴散區、形成於第三列Row3的p型基板P-sub中的至少兩個擴散區、及至少一個閘電極。在此種情形中,所述擴散區可被配置成共享所述至少一個閘電極。然而,在設置有二或更多個閘電極的情形中,擴散區可不共享單個閘電極。舉例而言,形成於N井中的擴散區可摻雜有p型雜質,且形成於p型基板P-sub中的擴散區可摻雜有n型雜質。The second additional cell 812 can extend from the second column Row2 to the fourth column Row4 in the second direction D2. For example, as shown in FIG. 16, the second additional cell 812 can have a length 2H. The second additional cell 812 may include at least two diffusion regions formed in the p-type substrate P-sub of the second column Row2, at least two diffusion regions formed in the N well of the third column Row3, formed in the third column At least two diffusion regions of the p-type substrate P-sub of Row3, and at least one gate electrode. In this case, the diffusion region may be configured to share the at least one gate electrode. However, in the case where two or more gate electrodes are provided, the diffusion regions may not share a single gate electrode. For example, the diffusion region formed in the N well may be doped with a p-type impurity, and the diffusion region formed in the p-type substrate P-sub may be doped with an n-type impurity.

第三附加胞元813可在第二方向D2上自第二列Row2延伸至第四列Row4。舉例而言,如圖16中所示,第二附加胞元812可具有長度2H。第三附加胞元813可包括形成於第二列Row2的p型基板P-sub中的至少兩個擴散區、形成於第三列Row3的N井中的至少兩個擴散區、形成於第三列Row3的p型基板P-sub中的至少兩個擴散區、及至少一個閘電極。The third additional cell 813 can extend from the second column Row2 to the fourth column Row4 in the second direction D2. For example, as shown in FIG. 16, the second additional cell 812 can have a length 2H. The third additional cell 813 may include at least two diffusion regions formed in the p-type substrate P-sub of the second column Row2, at least two diffusion regions formed in the N well of the third column Row3, formed in the third column At least two diffusion regions of the p-type substrate P-sub of Row3, and at least one gate electrode.

舉例而言,第三附加胞元813在第二列Row2中的擴散區可被配置成共享第七胞元822的擴散區及閘電極。進而,第三附加胞元813在第四列Row4中的擴散區可被配置成共享第十胞元825的擴散區及閘電極。換言之,第三附加胞元813的擴散區的至少一部分或全部可被配置成共享第七胞元822及第十胞元825中的至少一者的閘電極。For example, the diffusion region of the third additional cell 813 in the second column Row2 can be configured to share the diffusion region of the seventh cell 822 and the gate electrode. Further, the diffusion region of the third additional cell 813 in the fourth column Row4 can be configured to share the diffusion region of the tenth cell 825 and the gate electrode. In other words, at least a portion or all of the diffusion regions of the third additional cell 813 can be configured to share the gate electrodes of at least one of the seventh cell 822 and the tenth cell 825.

圖17A是說明根據本發明概念的示例性實施例的電源閘切換系統的平面圖。圖17A所示的平面圖與圖10所示的平面圖相似。因此,將主要對此兩個圖式之間的差異進行闡述。FIG. 17A is a plan view illustrating a power gate switching system according to an exemplary embodiment of the inventive concept. The plan view shown in Fig. 17A is similar to the plan view shown in Fig. 10. Therefore, the differences between the two schemas will be mainly explained.

舉例而言,如圖17A中所示,電源閘切換系統1100可包括上部列、中間列、及底部列。For example, as shown in FIG. 17A, the power gate switching system 1100 can include an upper column, a middle column, and a bottom column.

所述上部列可包括安置於虛擬VDD與VSS(或虛擬VSS)之間且連接至虛擬VDD及VSS(或虛擬VSS)的第一電源閘胞元(P-tab1、1101、G1、1102、P-tab2)、第二電源閘胞元(1105、G3、1106)及第三電源閘胞元(P-tab3、1103、G2、1104、P-tab4)。換言之,上部列示出在虛擬VDD與VSS(或虛擬VSS)之間連接的P通道金屬氧化物半導體(p-channel metal oxide semi-conductor,PMOS)電源閘胞元。所述上部列可更包括安置於虛擬VDD與VSS(或虛擬VSS)之間且連接至虛擬VDD及VSS(或虛擬VSS)的多個標準胞元(Std)。所述多個標準胞元(Std)可在上部列中安置於各PMOS電源閘胞元之間。所述多個標準胞元(Std)中的每一者可包括N井上的PMOS電晶體及P-sub上的n通道金屬氧化物半導體(n-channel metal oxide semi-conductor, NMOS)電晶體。如圖17A中所示,所述多個標準胞元中的每一者的PMOS電晶體的N井可與上部列中的PMOS電源閘胞元的N井合併。安置有PMOS電源胞元的經合併的N井的形狀可與圖10中N井的形狀不同,乃因安置於PMOS電源閘胞元G1、G2及G3之間的所述多個標準胞元中的一者包括P-sub上的NMOS電晶體。The upper column may include first power gate cells (P-tab1, 1101, G1, 1102, P) disposed between virtual VDD and VSS (or virtual VSS) and connected to virtual VDD and VSS (or virtual VSS) -tab2), the second power gate cell (1105, G3, 1106) and the third power gate cell (P-tab3, 1103, G2, 1104, P-tab4). In other words, the upper column shows a p-channel metal oxide semi-conductor (PMOS) power supply gate cell connected between virtual VDD and VSS (or virtual VSS). The upper column may further include a plurality of standard cells (Std) disposed between the virtual VDD and VSS (or virtual VSS) and connected to the virtual VDD and VSS (or virtual VSS). The plurality of standard cells (Std) may be disposed between the PMOS power gate cells in the upper column. Each of the plurality of standard cells (Std) may include a PMOS transistor on the N well and an n-channel metal oxide semi-conductor (NMOS) transistor on the P-sub. As shown in Figure 17A, the N-well of the PMOS transistor of each of the plurality of standard cells can be merged with the N-well of the PMOS power gate cell in the upper column. The shape of the merged N well in which the PMOS power supply cells are placed may be different from the shape of the N well in FIG. 10 due to being disposed in the plurality of standard cells between the PMOS power supply gate cells G1, G2, and G3. One of them includes an NMOS transistor on the P-sub.

所述底部列可包括安置於虛擬VSS與VDD(或虛擬VDD)之間且連接至虛擬VSS及VDD(或虛擬VDD)的第一電源閘胞元(N-tab1、1107、G4、1108、N-tab2)、第二電源閘胞元(1111、G6、1112)及第三電源閘胞元(N-tab3、1109、G5、1110、N-tab4)。換言之,所述底部列示出在虛擬VSS與虛擬VDD(或VDD)之間連接的NMOS電源閘胞元。所述底部列可更包括安置於VDD(或虛擬VDD)與虛擬VSS之間且連接至VDD(或虛擬VDD)及虛擬VSS的多個標準胞元(Std)。所述多個標準胞元(Std)可在底部列中安置於各NMOS電源閘胞元之間。所述多個標準胞元(Std)中的每一者可包括N井上的PMOS電晶體及P-sub上的NMOS電晶體。因此,安置於底部列中的各NMOS電源閘胞元之間的標準胞元的PMOS電晶體的N井可在底部列中安置於P-sub上。如圖17A中所示,所述多個標準胞元中的每一者的PMOS電晶體的N井可與中間列中的多個標準胞元的N井合併。The bottom column may include first power gate cells (N-tab1, 1107, G4, 1108, N) disposed between virtual VSS and VDD (or virtual VDD) and connected to virtual VSS and VDD (or virtual VDD) -tab2), the second power gate cell (1111, G6, 1112) and the third power gate cell (N-tab3, 1109, G5, 1110, N-tab4). In other words, the bottom column shows the NMOS power supply gate cells connected between virtual VSS and virtual VDD (or VDD). The bottom column may further include a plurality of standard cells (Std) disposed between VDD (or virtual VDD) and virtual VSS and connected to VDD (or virtual VDD) and virtual VSS. The plurality of standard cells (Std) may be disposed between the NMOS power gate cells in the bottom column. Each of the plurality of standard cells (Std) may include a PMOS transistor on the N well and an NMOS transistor on the P-sub. Therefore, the N well of the PMOS transistor of the standard cell disposed between the NMOS power gate cells in the bottom column can be placed on the P-sub in the bottom column. As shown in Figure 17A, the N-well of the PMOS transistor of each of the plurality of standard cells can be combined with the N-well of a plurality of standard cells in the middle column.

所述中間列可包括安置於一對虛擬VSS與VDD之間、一對虛擬VDD與VSS之間或一對虛擬VDD與虛擬VSS之間且連接至一對虛擬VSS及VDD、一對虛擬VDD及VSS或一對虛擬VDD及虛擬VSS的標準胞元(Std)。The intermediate column may be disposed between a pair of virtual VSS and VDD, between a pair of virtual VDD and VSS or between a pair of virtual VDD and virtual VSS and connected to a pair of virtual VSS and VDD, a pair of virtual VDD and VSS or a pair of virtual VDD and virtual VSS standard cells (Std).

電源閘切換系統1100可更包括連接至虛擬VSS或虛擬VDD的多個中間列。所述多個中間列中的一者可連接至與NMOS電源閘胞元連接的虛擬VSS或可連接至VSS。多個中間列中的其他中間列可連接至與PMOS電源閘胞元連接的虛擬VDD或可連接至VDD。此處,電源閘胞元G1至G6中的一者可延長至所述中間列中的至少一者以將虛擬VDD節點或虛擬VSS節點提供至所述中間列中的至少一者中的所述多個標準胞元。The power gate switching system 1100 can further include a plurality of intermediate columns connected to virtual VSS or virtual VDD. One of the plurality of intermediate columns may be connected to a virtual VSS connected to an NMOS power supply gate cell or may be connected to VSS. The other of the plurality of intermediate columns may be connected to a virtual VDD connected to the PMOS power gate cell or may be connected to VDD. Here, one of the power gate cells G1 to G6 may be extended to at least one of the intermediate columns to provide the virtual VDD node or the virtual VSS node to the at least one of the intermediate columns Multiple standard cells.

圖17B是根據本發明概念的示例性實施例的沿圖17A所示的線A-A'截取的剖視圖。圖17B所示的元件對應於圖12所示的元件。因此,將主要對此兩個圖式之間的差異進行闡述。舉例而言,圖17B示出P-sub上的在D1方向上不連續的N井。標準胞元的NMOS電晶體可在電源閘胞元G1、G2及G3之間安置於P-sub上。FIG. 17B is a cross-sectional view taken along line AA′ shown in FIG. 17A, according to an exemplary embodiment of the inventive concept. The element shown in Fig. 17B corresponds to the element shown in Fig. 12. Therefore, the differences between the two schemas will be mainly explained. For example, Figure 17B shows an N-well on the P-sub that is discontinuous in the D1 direction. The NMOS transistor of the standard cell can be placed on the P-sub between the power supply gate cells G1, G2 and G3.

圖17C是根據本發明概念的示例性實施例的沿圖17A所示的線B-B'截取的剖視圖。圖17C所示的元件對應於圖11所示的元件。因此,將主要對此兩個圖式之間的差異進行闡述。舉例而言,圖17B示出連接至VSS及虛擬VSS的NMOS電源閘胞元。標準胞元的PMOS電晶體的N井可在P-sub上安置於電源閘胞元G4、G5及G6之間。FIG. 17C is a cross-sectional view taken along line BB' of FIG. 17A, according to an exemplary embodiment of the inventive concept. The element shown in Fig. 17C corresponds to the element shown in Fig. 11. Therefore, the differences between the two schemas will be mainly explained. For example, Figure 17B shows NMOS power supply gate cells connected to VSS and virtual VSS. The N well of the PMOS transistor of the standard cell can be placed between the power gate cells G4, G5 and G6 on the P-sub.

圖18A是說明根據本發明概念的示例性實施例的電源閘切換系統的平面圖。圖18A所示的平面圖與圖12所示的平面圖相似。因此,將主要對此兩個圖式之間的差異進行闡述。FIG. 18A is a plan view illustrating a power gate switching system according to an exemplary embodiment of the inventive concept. The plan view shown in Fig. 18A is similar to the plan view shown in Fig. 12. Therefore, the differences between the two schemas will be mainly explained.

舉例而言,如圖18A所示,電源閘切換系統1200可包括上部列、中間列及底部列。For example, as shown in FIG. 18A, the power gate switching system 1200 can include an upper column, a middle column, and a bottom column.

所述上部列包括安置於虛擬VDD與虛擬VSS(或VSS)之間且連接至虛擬VDD及虛擬VSS(或VSS)的第一電源閘胞元(P-tab1、1201、G1、1202、P-tab2)、第二電源閘胞元(1205、G3、1206)及第三電源閘胞元(P-tab3、1203、G2、1204、P-tab4)。換言之,上部列示出在虛擬VDD與虛擬VSS(或VSS)之間連接的PMOS電源閘胞元。所述上部列可更包括安置於虛擬VDD與VSS(或虛擬VSS)之間且連接至虛擬VDD及VSS(或虛擬VSS)的多個標準胞元(Std)。所述多個標準胞元(Std)可在上部列中安置於各PMOS電源閘胞元之間。所述多個標準胞元(Std)中的每一者可包括N井上的PMOS電晶體及P井上的NMOS電晶體。如圖18A中所示,上部列中的多個標準胞元中的每一者的PMOS電晶體的N井可與上部列中的PMOS電源閘胞元的N井合併。安置有PMOS電源胞元的經合併的N井的形狀可與圖12中N井的形狀不同,乃因安置於PMOS電源閘胞元G1、G2及G3之間的多個標準胞元中的一者包括P井上的NMOS電晶體。The upper column includes first power gate cells (P-tab1, 1201, G1, 1202, P-) disposed between virtual VDD and virtual VSS (or VSS) and connected to virtual VDD and virtual VSS (or VSS) Tab2), the second power gate cell (1205, G3, 1206) and the third power gate cell (P-tab3, 1203, G2, 1204, P-tab4). In other words, the upper column shows the PMOS power gate cells connected between virtual VDD and virtual VSS (or VSS). The upper column may further include a plurality of standard cells (Std) disposed between the virtual VDD and VSS (or virtual VSS) and connected to the virtual VDD and VSS (or virtual VSS). The plurality of standard cells (Std) may be disposed between the PMOS power gate cells in the upper column. Each of the plurality of standard cells (Std) may include a PMOS transistor on the N well and an NMOS transistor on the P well. As shown in Figure 18A, the N-well of the PMOS transistor of each of the plurality of standard cells in the upper column can be merged with the N-well of the PMOS power gate cell in the upper column. The shape of the merged N well in which the PMOS power supply cells are placed may be different from the shape of the N well in FIG. 12 due to one of a plurality of standard cells disposed between the PMOS power supply gate cells G1, G2, and G3. The NMOS transistor on the P well is included.

所述底部列包括安置於虛擬VSS與VDD(或虛擬VDD)之間且連接至虛擬VSS及VDD(或虛擬VDD)的第一電源閘胞元(N-tab1、1207、G4、1208、N-tab2)、第二電源閘胞元(1211、G6、1212)及第三電源閘胞元(N-tab3、1209、G5、1210、N-tab4)。換言之,所述底部列示出在虛擬VSS與虛擬VDD(或VDD)之間連接的NMOS電源閘胞元。所述底部列更包括安置於VDD(或虛擬VDD)與虛擬VSS之間且連接至VDD(或虛擬VDD)及虛擬VSS的多個標準胞元(Std)。所述多個標準胞元(Std)可在底部列中安置於各NMOS電源閘胞元之間。所述多個標準胞元(Std)中的每一者可包括N井上的PMOS電晶體及P井上的NMOS電晶體。因此,安置於底部列中的NMOS電源閘胞元G4、G5及G6之間的標準胞元的PMOS電晶體的N井可在底部列中遠離P井安置於P-sub上。如圖18A中所示,底部列中的多個標準胞元中的每一者的PMOS電晶體的N井可與中間列中的多個標準胞元的N井合併。The bottom column includes first power gate cells (N-tab1, 1207, G4, 1208, N-) disposed between virtual VSS and VDD (or virtual VDD) and connected to virtual VSS and VDD (or virtual VDD) Tab2), the second power gate cell (1211, G6, 1212) and the third power gate cell (N-tab3, 1209, G5, 1210, N-tab4). In other words, the bottom column shows the NMOS power supply gate cells connected between virtual VSS and virtual VDD (or VDD). The bottom column further includes a plurality of standard cells (Std) disposed between VDD (or virtual VDD) and virtual VSS and connected to VDD (or virtual VDD) and virtual VSS. The plurality of standard cells (Std) may be disposed between the NMOS power gate cells in the bottom column. Each of the plurality of standard cells (Std) may include a PMOS transistor on the N well and an NMOS transistor on the P well. Therefore, the N well of the PMOS transistor of the standard cell disposed between the NMOS power gate cells G4, G5, and G6 in the bottom column can be placed on the P-sub away from the P well in the bottom column. As shown in Figure 18A, the N-well of the PMOS transistor of each of the plurality of standard cells in the bottom column can be merged with the N-well of the plurality of standard cells in the middle column.

所述中間列可包括安置於一對虛擬VSS與VDD之間、一對虛擬VDD與VSS之間或一對虛擬VDD與虛擬VSS之間且連接至一對虛擬VSS及VDD、一對虛擬VDD及VSS或一對虛擬VDD及虛擬VSS的標準胞元(Std)。電源閘切換系統1200可更包括連接至虛擬VSS或虛擬VDD的多個中間列。所述多個中間列中的一者可連接至與NMOS電源閘胞元連接的虛擬VSS或可連接至VSS。所述多個中間列中的其他中間列可連接至與PMOS電源閘胞元連接的虛擬VDD或可連接至VDD。此處,電源閘胞元G1至G6中的一者可延長至所述中間列中的至少一者以將虛擬VDD節點或虛擬VSS節點提供至所述中間列中的至少一者中的所述多個標準胞元。The intermediate column may be disposed between a pair of virtual VSS and VDD, between a pair of virtual VDD and VSS or between a pair of virtual VDD and virtual VSS and connected to a pair of virtual VSS and VDD, a pair of virtual VDD and VSS or a pair of virtual VDD and virtual VSS standard cells (Std). The power gate switching system 1200 can further include a plurality of intermediate columns connected to virtual VSS or virtual VDD. One of the plurality of intermediate columns may be connected to a virtual VSS connected to an NMOS power supply gate cell or may be connected to VSS. The other of the plurality of intermediate columns may be connected to a virtual VDD connected to a PMOS power supply gate or may be connected to VDD. Here, one of the power gate cells G1 to G6 may be extended to at least one of the intermediate columns to provide the virtual VDD node or the virtual VSS node to the at least one of the intermediate columns Multiple standard cells.

圖18B是根據本發明概念的示例性實施例的沿圖18A所示的線A-A'截取的剖視圖。圖18B所示的元件對應於圖12所示的元件。因此,將參照圖2及圖12主要對此兩個圖式之間的差異進行闡述。舉例而言,圖18B以剖視圖示出P-sub上的、PMOS電源閘胞元G1、G2及G3的在D1方向上不連續的N井及所述標準胞元中的一者的NMOS電晶體的安置於不連續的N井之間的P井。標準胞元的NMOS電晶體可形成於P井上。FIG. 18B is a cross-sectional view taken along line AA′ shown in FIG. 18A, according to an exemplary embodiment of the inventive concept. The element shown in Fig. 18B corresponds to the element shown in Fig. 12. Therefore, the difference between the two drawings will be mainly explained with reference to FIGS. 2 and 12. For example, FIG. 18B shows, in a cross-sectional view, the NMOS transistor of the N well in the D1 direction and one of the standard cells of the PMOS power supply gate cells G1, G2, and G3 on the P-sub. Placed in the P well between the discontinuous N wells. An NMOS transistor of a standard cell can be formed on the P well.

圖18C是根據本發明概念的示例性實施例的沿圖18A所示的線B-B'截取的剖視圖。圖18C所示的元件對應於圖13所示的元件。因此,將參照圖18A及圖13主要對此兩個圖式之間的差異進行闡述。舉例而言,圖18C以剖視圖示出P-sub上的、NMOS電源閘胞元G4、G5及G6的在D1方向上不連續的P井及標準胞元中的一者的PMOS電晶體的安置於不連續的P井之間的N井。標準胞元的PMOS電晶體可形成於N井上。FIG. 18C is a cross-sectional view taken along line BB' of FIG. 18A, according to an exemplary embodiment of the inventive concept. The element shown in Fig. 18C corresponds to the element shown in Fig. 13. Therefore, the difference between the two drawings will be mainly explained with reference to FIGS. 18A and 13. For example, FIG. 18C shows, in a cross-sectional view, the placement of PMOS transistors of one of the P wells and the standard cells that are discontinuous in the D1 direction of the NMOS power supply gate cells G4, G5, and G6 on the P-sub. N well between discontinuous P wells. A PMOS transistor of a standard cell can be formed on the N well.

圖19是說明根據本發明概念的示例性實施例的應用至電源閘切換系統的半導體裝置的佈局的平面圖。19 is a plan view illustrating a layout of a semiconductor device applied to a power gate switching system, according to an exemplary embodiment of the inventive concept.

具體而言,圖19示出連接至多個金屬電源線虛擬VDD及VSS(或虛擬VSS)的多個PMOS電源閘胞元。PMOS電源閘胞元中的每一者可在兩側上具有至少一個p抽頭且可在兩側上具有至少一個n抽頭。此可參見圖19,在圖19中將PMOS抽頭(或抽頭)標識為「PT」,將NMOS抽頭(或抽頭)標識為「NT」,將擴散中斷(diffusion break)標識為「DB」且將標準胞元標識為「Std.Cells」。圖19進一步示出沿PMOS電源閘胞元的列的頂部及底部縱向延伸的VSS(或虛擬VSS)。另外,金屬電源線虛擬VDD及VSS(或虛擬VSS)中的一者穿過PMOS電源閘胞元的每一列的中間縱向延伸。距離W_pg2pg可為各電源胞元之間所需的最小距離。Specifically, FIG. 19 illustrates a plurality of PMOS power supply gate cells connected to a plurality of metal power supply lines, virtual VDD and VSS (or virtual VSS). Each of the PMOS power supply gate cells can have at least one p tap on both sides and can have at least one n tap on both sides. Referring to FIG. 19, in FIG. 19, the PMOS tap (or tap) is identified as "PT", the NMOS tap (or tap) is identified as "NT", the diffusion break is identified as "DB" and The standard cell identifier is "Std.Cells". Figure 19 further illustrates VSS (or virtual VSS) extending longitudinally along the top and bottom of the columns of PMOS power supply gate cells. Additionally, one of the metal power lines virtual VDD and VSS (or virtual VSS) extends longitudinally through the middle of each column of PMOS power supply gate cells. The distance W_pg2pg can be the minimum distance required between the power cells.

更應理解,在標準胞元區中(例如,圖19中的Region I)可存在P井。另外,在鄰近於Region I的區Region II 中可存在N井。Region II中的N井可由金屬電源線虛擬VDD貫穿。此外,安置於NMOS抽頭NT之間的線可為電源線NVSS以使各NMOS抽頭NT彼此連接。It will be further appreciated that a P well may be present in the standard cell region (e.g., Region I in Figure 19). In addition, the N well may be present in the Region II adjacent to Region I. The N well in Region II can be penetrated by the metal power line virtual VDD. Further, the line disposed between the NMOS taps NT may be the power supply line NVSS to connect the respective NMOS taps NT to each other.

參照圖19,半導體裝置1300可包括多種類型的電源閘胞元。舉例而言,第一類型的PMOS電源閘胞元可在PMOS電源閘胞元中的PMOS電源閘電晶體的兩側上包括p抽頭PT。第一類型的PMOS電源閘胞元可在PMOS電源閘胞元的兩端上包括n抽頭NT。PMOS電源閘胞元可包括在虛擬VDD與虛擬VSS(或VSS)之間平行地連接的一或多個PMOS電晶體。第二類型的PMOS電源閘胞元可包括在虛擬VDD及虛擬VSS(或VSS)之間平行地連接的一或多個PMOS電晶體而不在PMOS電源閘胞元的兩端上包括p抽頭PT或n抽頭NT。PMOS電晶體的數目可與PMOS電源閘胞元的電流驅動能力成比例。Referring to FIG. 19, the semiconductor device 1300 may include various types of power supply gate cells. For example, a first type of PMOS power thyristor cell can include a p-tap PT on both sides of a PMOS power gate transistor in a PMOS power gate cell. The first type of PMOS power supply gate cell can include an n-tap NT on both ends of the PMOS power supply gate cell. The PMOS power thyristor cell can include one or more PMOS transistors connected in parallel between virtual VDD and virtual VSS (or VSS). The second type of PMOS power thyristor cell may include one or more PMOS transistors connected in parallel between virtual VDD and virtual VSS (or VSS) without including a p-tap PT or on both ends of the PMOS power supply gate cell n tap NT. The number of PMOS transistors can be proportional to the current drive capability of the PMOS power supply gate cells.

第一類型的PMOS電源閘胞元可在包括多個虛擬電源線Virtual_VDD 的豎直區域中對齊且第二類型的PMOS電源閘胞元可在包括多個虛擬電源線Virtual_VDD 的豎直區域中對齊。PMOS電源閘胞元在半導體裝置1300的平面佈置圖中的位置、類型或數目可根據由PMOS電源閘胞元提供的電源而變化。The first type of PMOS power thyristor cells may be aligned in a vertical region including a plurality of dummy power supply lines Virtual_V DD and the second type of PMOS power thyristor cells may be in a vertical region including a plurality of virtual power supply lines Virtual_V DD Align. The position, type or number of PMOS power gate cells in the floor plan of the semiconductor device 1300 may vary depending on the power source provided by the PMOS power supply gate cells.

根據本發明概念的示例性實施例,可提供用以將虛擬電源電壓有效地供應至半導體裝置的可發生大的壓降的區的電源閘切換系統。According to an exemplary embodiment of the inventive concept, a power gate switching system for efficiently supplying a virtual power source voltage to a region where a large voltage drop of a semiconductor device can occur may be provided.

根據本發明概念的示例性實施例,可藉由改良的區域效率來實現電源閘切換系統。According to an exemplary embodiment of the inventive concept, the power gate switching system can be implemented by improved area efficiency.

儘管已參照本發明概念的示例性實施例具體示出並闡述了本發明概念,然而此項技術中具有通常知識者應理解,在不背離隨附申請專利範圍的精神及範圍的條件下可作出形式及細節上的各種變化。Although the present invention has been particularly shown and described with reference to the exemplary embodiments of the present invention, it should be understood by those of ordinary skill in the art Various changes in form and detail.

100、200、300、400、500、1100、1200‧‧‧電源閘切換系統
101、201、301、401、501‧‧‧第一擴散區
102、202、302、402、502‧‧‧第二擴散區
103、203、303、403、503‧‧‧第三擴散區
104、204、304、404、504‧‧‧第四擴散區
105、205、305、405、505‧‧‧第五擴散區
106、206、306、406、506‧‧‧第六擴散區
407、507‧‧‧第七擴散區
408、508‧‧‧第八擴散區
409、509‧‧‧第九擴散區
410、510‧‧‧第十擴散區
411、511‧‧‧第十一擴散區
412、512‧‧‧第十二擴散區
601、701、801‧‧‧第一胞元
602、702、802‧‧‧第二胞元
603、703、803‧‧‧第三胞元
604、704、804‧‧‧第四胞元
605、705、805‧‧‧第五胞元
611、711、811‧‧‧第一附加胞元
612、712、812‧‧‧第二附加胞元
613、713、813‧‧‧第三附加胞元
821‧‧‧第六胞元
822‧‧‧第七胞元
823‧‧‧第八胞元
824‧‧‧第九胞元
825‧‧‧第十胞元
1101、1102、1103、1104、1105、1106、1107、1108、1109、1110、1111、1112、1201、1202、1203、1204、1205、1206、1207、1208、1209、1210、1211、1212‧‧‧擴散區
1300‧‧‧半導體裝置
D1‧‧‧第一方向
D2‧‧‧第二方向
D3‧‧‧第三方向
DB‧‧‧擴散中斷
G1‧‧‧第一閘電極
G2‧‧‧第二閘電極
G3‧‧‧第三閘電極
G4‧‧‧第四閘電極
G5‧‧‧第五閘電極
G6‧‧‧第六閘電極
Gate_CTRL‧‧‧閘電壓、電壓
N-tab‧‧‧n抽頭
N-tab1‧‧‧第一n抽頭
N-tab2‧‧‧第二n抽頭
N-tab3‧‧‧第三n抽頭
N-tab4‧‧‧第四n抽頭
NT‧‧‧NMOS抽頭
NVSS‧‧‧電源線
N-well‧‧‧N井
PMOS‧‧‧P通道金屬氧化物半導體
P-sub‧‧‧p型基板
P-tab1‧‧‧第一p抽頭
P-tab2‧‧‧第二p抽頭
P-tab3‧‧‧第三p抽頭
P-tab4‧‧‧第四p抽頭
PT‧‧‧PMOS抽頭
P-well‧‧‧P井
Region I‧‧‧標準胞元區
Region II‧‧‧區
Row1‧‧‧第一列
Row2‧‧‧第二列
Row3‧‧‧第三列
Row4‧‧‧第四列
Row5‧‧‧第五列
s1、s2、s3、W_pg2pg‧‧‧距離
Std1、Std2、Std3、Std4、Std5、Std6、STD Cells、Std.cells‧‧‧標準胞元
STI‧‧‧裝置隔離層
Vbias、Vbias2‧‧‧偏電壓
VDD‧‧‧電源電壓/電源線
VSS‧‧‧接地電壓/接地線
Virtual_VDD‧‧‧虛擬電源電壓/虛擬電源線
Virtual_VSS‧‧‧虛擬接地電壓/虛擬接地線
100, 200, 300, 400, 500, 1100, 1200‧‧‧ power gate switching system
101, 201, 301, 401, 501‧‧‧ first diffusion zone
102, 202, 302, 402, 502‧‧‧ second diffusion zone
103, 203, 303, 403, 503‧‧‧ third diffusion zone
104, 204, 304, 404, 504‧‧‧ fourth diffusion zone
105, 205, 305, 405, 505‧‧‧ fifth diffusion zone
106, 206, 306, 406, 506‧‧‧ sixth diffusion zone
407, 507‧‧‧ seventh diffusion zone
408, 508‧‧‧ eighth diffusion zone
409, 509‧‧‧ ninth diffusion zone
410, 510‧‧‧ Tenth Diffusion Zone
411, 511‧‧‧ eleventh diffusion zone
412, 512‧‧‧ twelfth diffusion zone
601, 701, 801‧‧‧ first cell
602, 702, 802‧‧‧ second cell
603, 703, 803‧‧‧ third cell
604, 704, 804‧‧‧ fourth cell
605, 705, 805‧‧‧ fifth cell
611, 711, 811‧‧‧ first additional cells
612, 712, 812‧‧‧ second additional cells
613, 713, 813‧‧‧ third additional cells
821‧‧‧ sixth cell
822‧‧‧ seventh cell
823‧‧‧ eighth cell
824‧‧‧ ninth cell
825‧‧‧ tenth cell
1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212‧‧ Diffusion zone
1300‧‧‧ semiconductor device
D1‧‧‧ first direction
D2‧‧‧ second direction
D3‧‧‧ third direction
DB‧‧‧Diffusion Interruption
G1‧‧‧first gate electrode
G2‧‧‧second gate electrode
G3‧‧‧third gate electrode
G4‧‧‧fourth gate electrode
G5‧‧‧ fifth gate electrode
G6‧‧‧ sixth gate electrode
Gate_CTRL‧‧‧gate voltage, voltage
N-tab‧‧‧n tap
N-tab1‧‧‧first n tap
N-tab2‧‧‧second n tap
N-tab3‧‧‧ third n tap
N-tab4‧‧‧fourth tap
NT‧‧‧NMOS tap
NVSS‧‧‧Power cord
N-well‧‧‧N well
PMOS‧‧‧P channel metal oxide semiconductor
P-sub‧‧‧p type substrate
P-tab1‧‧‧first p tap
P-tab2‧‧‧second p tap
P-tab3‧‧‧ third p tap
P-tab4‧‧‧4th p tap
PT‧‧‧ PMOS tap
P-well‧‧‧P well
Region I‧‧‧Standard Cell Area
Region II‧‧‧
Row1‧‧‧first column
Row2‧‧‧Second column
Row3‧‧‧ third column
Row4‧‧‧ fourth column
Row5‧‧‧ fifth column
S1, s2, s3, W_pg2pg‧‧‧ distance
Std1, Std2, Std3, Std4, Std5, Std6, STD Cells, Std.cells‧‧‧ standard cells
STI‧‧‧ device isolation layer
Vbias, Vbias2‧‧‧ partial voltage
V DD ‧‧‧Power supply voltage / power cord
V SS ‧‧‧ Grounding voltage / grounding wire
Virtual_V DD ‧‧‧Virtual Power Supply Voltage / Virtual Power Cord
Virtual_V SS ‧‧‧Virtual Ground Voltage / Virtual Ground Wire

藉由參照附圖詳細闡述本發明概念的示例性實施例,將更清楚地理解本發明概念的上述及其他特徵。The above and other features of the inventive concept will be more clearly understood from the exemplary embodiments of the invention.

圖1是說明根據本發明概念的示例性實施例的電源閘切換系統的平面圖。FIG. 1 is a plan view illustrating a power gate switching system according to an exemplary embodiment of the inventive concept.

圖2是根據本發明概念的示例性實施例的沿圖1所示的線A-A'截取的剖視圖。2 is a cross-sectional view taken along line AA' of FIG. 1 according to an exemplary embodiment of the inventive concept.

圖3是根據本發明概念的示例性實施例的沿圖1所示的線A-A'截取的剖視圖。FIG. 3 is a cross-sectional view taken along line AA' of FIG. 1 according to an exemplary embodiment of the inventive concept.

圖4是說明根據本發明概念的示例性實施例的電源閘切換系統的平面圖。FIG. 4 is a plan view illustrating a power gate switching system according to an exemplary embodiment of the inventive concept.

圖5是根據本發明概念的示例性實施例的沿圖4所示的線A-A'截取的剖視圖。FIG. 5 is a cross-sectional view taken along line AA' of FIG. 4, according to an exemplary embodiment of the inventive concept.

圖6是說明根據本發明概念的示例性實施例的電源閘切換系統的平面圖。FIG. 6 is a plan view illustrating a power gate switching system according to an exemplary embodiment of the inventive concept.

圖7是根據本發明概念的示例性實施例的沿圖6所示的線B-B'截取的剖視圖。FIG. 7 is a cross-sectional view taken along line BB' of FIG. 6 according to an exemplary embodiment of the inventive concept.

圖8是說明根據本發明概念的示例性實施例的電源閘切換系統的平面圖。FIG. 8 is a plan view illustrating a power gate switching system according to an exemplary embodiment of the inventive concept.

圖9是根據本發明概念的示例性實施例的沿圖8所示的線B-B'截取的剖視圖。FIG. 9 is a cross-sectional view taken along line BB' of FIG. 8 according to an exemplary embodiment of the inventive concept.

圖10是說明根據本發明概念的示例性實施例的電源閘切換系統的平面圖。FIG. 10 is a plan view illustrating a power gate switching system according to an exemplary embodiment of the inventive concept.

圖11是根據本發明概念的示例性實施例的沿圖10所示的線B-B'截取的剖視圖。FIG. 11 is a cross-sectional view taken along line BB' of FIG. 10, according to an exemplary embodiment of the inventive concept.

圖12是說明根據本發明概念的示例性實施例的電源閘切換系統的平面圖。FIG. 12 is a plan view illustrating a power gate switching system according to an exemplary embodiment of the inventive concept.

圖13是根據本發明概念的示例性實施例的沿圖12所示的線B-B'截取的剖視圖。FIG. 13 is a cross-sectional view taken along line BB' of FIG. 12, according to an exemplary embodiment of the inventive concept.

圖14是說明根據本發明概念的示例性實施例的應用至電源閘切換系統的半導體裝置的佈局的平面圖。FIG. 14 is a plan view illustrating a layout of a semiconductor device applied to a power gate switching system, according to an exemplary embodiment of the inventive concept.

圖15是說明根據本發明概念的示例性實施例的應用至電源閘切換系統的半導體裝置的佈局的平面圖。FIG. 15 is a plan view illustrating a layout of a semiconductor device applied to a power gate switching system, according to an exemplary embodiment of the inventive concept.

圖16是說明根據本發明概念的示例性實施例的應用至電源閘切換系統的半導體裝置的佈局的平面圖。FIG. 16 is a plan view illustrating a layout of a semiconductor device applied to a power gate switching system, according to an exemplary embodiment of the inventive concept.

圖17A是說明根據本發明概念的示例性實施例的電源閘切換系統的平面圖。FIG. 17A is a plan view illustrating a power gate switching system according to an exemplary embodiment of the inventive concept.

圖17B是根據本發明概念的示例性實施例的沿圖17A所示的線A-A'截取的剖視圖。FIG. 17B is a cross-sectional view taken along line AA′ shown in FIG. 17A, according to an exemplary embodiment of the inventive concept.

圖17C是根據本發明概念的示例性實施例的沿圖17A所示的線B-B'截取的剖視圖。FIG. 17C is a cross-sectional view taken along line BB' of FIG. 17A, according to an exemplary embodiment of the inventive concept.

圖18A是說明根據本發明概念的示例性實施例的電源閘切換系統的平面圖。FIG. 18A is a plan view illustrating a power gate switching system according to an exemplary embodiment of the inventive concept.

圖18B是根據本發明概念的示例性實施例的沿圖18A所示的線A-A'截取的剖視圖。FIG. 18B is a cross-sectional view taken along line AA′ shown in FIG. 18A, according to an exemplary embodiment of the inventive concept.

圖18C是根據本發明概念的示例性實施例的沿圖18A所示的線B-B'截取的剖視圖。FIG. 18C is a cross-sectional view taken along line BB' of FIG. 18A, according to an exemplary embodiment of the inventive concept.

圖19是說明根據本發明概念的示例性實施例的應用至電源閘切換系統的半導體裝置的佈局的平面圖。19 is a plan view illustrating a layout of a semiconductor device applied to a power gate switching system, according to an exemplary embodiment of the inventive concept.

100‧‧‧電源閘切換系統 100‧‧‧Power Gate Switching System

101‧‧‧第一擴散區 101‧‧‧First Diffusion Zone

102‧‧‧第二擴散區 102‧‧‧Second diffusion zone

103‧‧‧第三擴散區 103‧‧‧ Third Diffusion Zone

104‧‧‧第四擴散區 104‧‧‧ fourth diffusion zone

105‧‧‧第五擴散區 105‧‧‧ Fifth Diffusion Zone

106‧‧‧第六擴散區 106‧‧‧ sixth diffusion zone

D1‧‧‧第一方向 D1‧‧‧ first direction

D2‧‧‧第二方向 D2‧‧‧ second direction

D3‧‧‧第三方向 D3‧‧‧ third direction

G1‧‧‧第一閘電極 G1‧‧‧first gate electrode

G2‧‧‧第二閘電極 G2‧‧‧second gate electrode

G3‧‧‧第三閘電極 G3‧‧‧third gate electrode

N-well‧‧‧N井 N-well‧‧‧N well

P-sub‧‧‧p型基板 P-sub‧‧‧p type substrate

P-tab1‧‧‧第一p抽頭 P-tab1‧‧‧first p tap

P-tab2‧‧‧第二p抽頭 P-tab2‧‧‧second p tap

P-tab3‧‧‧第三p抽頭 P-tab3‧‧‧ third p tap

P-tab4‧‧‧第四p抽頭 P-tab4‧‧‧4th p tap

s1、s2‧‧‧距離 S1, s2‧‧‧ distance

Virtual_VDD‧‧‧虛擬電源電壓/虛擬電源線 Virtual_V DD ‧‧‧Virtual Power Supply Voltage / Virtual Power Cord

Claims (31)

一種半導體裝置,包括: 虛擬電源線,在第一方向上延伸; n井,在所述第一方向上延伸,其中所述虛擬電源線及所述n井安置於一列中; 第一電源閘開關胞元,安置於所述n井中; 第二電源閘開關胞元,安置於所述n井中,其中所述第一電源閘開關胞元及所述第二電源閘開關胞元是第一類型胞元;以及 第三電源閘開關胞元,在所述第一電源閘開關胞元與所述第二電源閘開關胞元之間安置於所述n井中,其中所述第三電源閘開關胞元是不同於所述第一類型胞元的第二類型胞元。A semiconductor device comprising: a virtual power line extending in a first direction; a n-well extending in the first direction, wherein the virtual power line and the n-well are disposed in a column; the first power gate switch a cell, disposed in the n-well; a second power gate switch cell disposed in the n-well, wherein the first power gate switch cell and the second power gate switch cell are a first type cell And a third power gate switch cell disposed in the n-well between the first power gate switch cell and the second power gate switch cell, wherein the third power gate switch cell Is a second type of cell that is different from the first type of cell. 如申請專利範圍第1項所述的半導體裝置,其中所述第三電源閘開關胞元較所述第二電源閘開關胞元更靠近所述第一電源閘開關胞元安置。The semiconductor device of claim 1, wherein the third power gate switch cell is disposed closer to the first power gate switch cell than the second power gate switch cell. 如申請專利範圍第1項所述的半導體裝置,其中所述第三電源閘開關胞元較所述第一電源閘開關胞元更靠近所述第二電源閘開關胞元安置。The semiconductor device of claim 1, wherein the third power gate switch cell is disposed closer to the second power gate switch cell than the first power gate switch cell. 如申請專利範圍第1項所述的半導體裝置,其中所述第一類型胞元中的每一者包括安置於一對擴散區之間的閘電極及鄰近所述擴散區中的一者安置的抽頭。The semiconductor device of claim 1, wherein each of the first type of cells comprises a gate electrode disposed between a pair of diffusion regions and disposed adjacent to one of the diffusion regions Tap. 如申請專利範圍第4項所述的半導體裝置,其中所述抽頭是p抽頭,且在與所述n井的所述列鄰近的列中,在與所述p抽頭相同的軸線上安置有n抽頭,且所述n抽頭連接至接地線。The semiconductor device of claim 4, wherein the tap is a p-tap, and in a column adjacent to the column of the n-well, an n is placed on the same axis as the p-tap Tap, and the n tap is connected to the ground line. 如申請專利範圍第4項所述的半導體裝置,其中所述第二類型胞元包括安置於一對擴散區之間的閘電極,且其中所述第二類型胞元不包括抽頭。The semiconductor device of claim 4, wherein the second type of cell comprises a gate electrode disposed between a pair of diffusion regions, and wherein the second type of cell does not include a tap. 如申請專利範圍第1項所述的半導體裝置,其中所述第二類型胞元的大小小於所述第一類型胞元中的每一者的大小。The semiconductor device of claim 1, wherein the size of the second type of cell is smaller than the size of each of the first type of cells. 如申請專利範圍第1項所述的半導體裝置,其中所述n井安置於p型基板中。The semiconductor device of claim 1, wherein the n well is disposed in a p-type substrate. 如申請專利範圍第1項所述的半導體裝置,其中所述n井摻雜有n型雜質。The semiconductor device according to claim 1, wherein the n well is doped with an n-type impurity. 如申請專利範圍第1項所述的半導體裝置,其中所述第一電源閘胞元包括安置於第一擴散區與第二擴散區之間的閘電極、以及鄰近所述第一擴散區或所述第二擴散區安置的第一抽頭。The semiconductor device of claim 1, wherein the first power supply gate cell includes a gate electrode disposed between the first diffusion region and the second diffusion region, and adjacent to the first diffusion region or The first tap disposed in the second diffusion region. 如申請專利範圍第10項所述的半導體裝置,其中所述第一擴散區及所述第二擴散區摻雜有p型雜質且所述第一抽頭摻雜有n型雜質。The semiconductor device according to claim 10, wherein the first diffusion region and the second diffusion region are doped with a p-type impurity and the first tap is doped with an n-type impurity. 如申請專利範圍第10項所述的半導體裝置,其中所述第一抽頭連接至所述虛擬電源線,所述第一擴散區連接至真實電源線且所述第二擴散區連接至所述虛擬電源線。The semiconductor device of claim 10, wherein the first tap is connected to the virtual power line, the first diffusion region is connected to a real power line, and the second diffusion region is connected to the virtual power cable. 如申請專利範圍第12項所述的半導體裝置,其中所述第三電源閘胞元包括安置於第三擴散區與第四擴散區之間的閘電極,且其中所述第二類型胞元不包括抽頭,且 其中所述第三擴散區連接至所述真實電源線且所述第四擴散區連接至所述虛擬電源線。The semiconductor device of claim 12, wherein the third power supply gate cell comprises a gate electrode disposed between the third diffusion region and the fourth diffusion region, and wherein the second type of cell is not A tap is included, and wherein the third diffusion region is connected to the real power line and the fourth diffusion region is connected to the virtual power line. 一種電源閘切換系統,包括: 第一虛擬電源線,在第一方向上延伸; 第一電源閘胞元,連接至所述第一虛擬電源線; 第二電源閘胞元,連接至所述第一虛擬電源線,其中所述第一電源閘胞元及所述第二電源閘胞元分別包括至少一個抽頭;以及 第三電源閘胞元,連接至所述第一虛擬電源線且安置於所述第一電源閘胞元與所述第二電源閘胞元之間,其中所述第三電源閘胞元不包括抽頭,且 其中所述第一電源閘胞元至所述第三電源閘胞元以及所述第一虛擬電源線排列於第一列中。A power gate switching system includes: a first virtual power line extending in a first direction; a first power gate cell connected to the first virtual power line; a second power gate cell connected to the first a virtual power line, wherein the first power gate cell and the second power gate cell respectively comprise at least one tap; and a third power gate cell connected to the first virtual power line and disposed in the Between the first power gate cell and the second power gate cell, wherein the third power gate cell does not include a tap, and wherein the first power gate cell to the third power gate cell The element and the first virtual power line are arranged in the first column. 如申請專利範圍第14項所述的電源閘切換系統,更包括: 第二虛擬電源線,在所述第一方向上延伸; 第四電源閘胞元,連接至所述第二虛擬電源線;以及 第五電源閘胞元,連接至所述第二虛擬電源線,其中所述第四電源閘胞元及所述第五電源閘胞元中的每一者包括至少一個抽頭, 其中所述第四電源閘胞元及所述第五電源閘胞元以及所述第二虛擬電源線排列於第二列中。The power gate switching system of claim 14, further comprising: a second virtual power line extending in the first direction; a fourth power gate cell connected to the second virtual power line; And a fifth power gate cell coupled to the second virtual power line, wherein each of the fourth power gate cell and the fifth power gate cell includes at least one tap, wherein the The four power gate cells and the fifth power gate cell and the second virtual power line are arranged in the second column. 如申請專利範圍第14項所述的電源閘切換系統,其中所述第一列包括安置於所述第一電源閘胞元與所述第三電源閘胞元之間的多個邏輯胞元、以及安置於所述第二電源閘胞元與所述第三電源閘胞元之間的多個邏輯胞元。The power gate switching system of claim 14, wherein the first column comprises a plurality of logic cells disposed between the first power gate cell and the third power gate cell, And a plurality of logic cells disposed between the second power gate cell and the third power gate cell. 如申請專利範圍第14項所述的電源閘切換系統,其中所述第一列包括: n井區域,安置於所述第一虛擬電源線的第一側及第二側上; 第一接地線,安置於所述第一虛擬電源線的所述第一側上;以及 第二接地線,安置於所述第一虛擬電源線的所述第二側上。The power gate switching system of claim 14, wherein the first column comprises: a n-well region disposed on the first side and the second side of the first virtual power line; the first ground line And disposed on the first side of the first virtual power line; and a second ground line disposed on the second side of the first virtual power line. 如申請專利範圍第17項所述的電源閘切換系統,更包括: 第一p井區域,在所述第一方向上延伸且在所述第一虛擬電源線的所述第一側上安置於所述第一接地線與所述n井區域之間;以及 第二p井區域,在所述第一方向上延伸且在所述第一虛擬電源線的所述第二側上安置於所述第二接地線與所述n井區域之間。The power gate switching system of claim 17, further comprising: a first p-well region extending in the first direction and disposed on the first side of the first virtual power line Between the first ground line and the n-well region; and a second p-well region extending in the first direction and disposed on the second side of the first virtual power line A second ground line is between the n well region. 如申請專利範圍第17項所述的電源閘切換系統,其中所述第一電源閘胞元包括連接至所述第一虛擬電源線的p抽頭及連接至所述第一接地線的第一n抽頭。The power gate switching system of claim 17, wherein the first power gate cell includes a p-tap connected to the first virtual power line and a first n connected to the first ground line Tap. 如申請專利範圍第19項所述的電源閘切換系統,其中所述第一電源閘胞元包括連接至所述第二接地線的第二n抽頭。The power gate switching system of claim 19, wherein the first power gate cell comprises a second n tap connected to the second ground line. 如申請專利範圍第20項所述的電源閘切換系統,其中所述第一n抽頭、所述p抽頭及所述第二n抽頭依序排列。The power gate switching system of claim 20, wherein the first n tap, the p tap, and the second n tap are sequentially arranged. 一種電源閘切換系統,包括: 第一列,包括第一虛擬電源線、第一電源閘胞元及第二電源閘胞元,其中所述第一電源閘胞元包括安置於第一擴散區與第二擴散區之間的第一閘電極及至少一個抽頭,其中所述第二電源閘胞元包括安置於第三擴散區與第四擴散區之間的第二閘電極且所述第二電源閘胞元不包括抽頭;以及 第二列,包括第二虛擬電源線、第三電源閘胞元及第四電源閘胞元,其中所述第三電源閘胞元包括安置於第五擴散區與第六擴散區之間的第三閘電極及至少一個抽頭,且所述第四電源閘胞元包括安置於第七擴散區與第八擴散區之間的第四閘電極且所述第四電源閘胞元不包括抽頭,且 其中所述第四電源閘胞元連接至所述第二電源閘胞元。A power gate switching system includes: a first column including a first virtual power line, a first power gate cell, and a second power gate cell, wherein the first power gate cell includes a first diffusion region and a first gate electrode and at least one tap between the second diffusion regions, wherein the second power gate cell includes a second gate electrode disposed between the third diffusion region and the fourth diffusion region and the second power source The gate cell does not include a tap; and the second column includes a second virtual power line, a third power gate cell, and a fourth power gate cell, wherein the third power gate cell includes a fifth diffusion region a third gate electrode between the sixth diffusion region and at least one tap, and the fourth power gate cell includes a fourth gate electrode disposed between the seventh diffusion region and the eighth diffusion region and the fourth power source The gate cell does not include a tap, and wherein the fourth power gate cell is coupled to the second power gate cell. 如申請專利範圍第22項所述的電源閘切換系統,其中所述第一列及所述第二列在第一方向上延伸,且所述第二電源閘胞元的閘極控制線及所述第四電源閘胞元的閘極控制線在實質上垂直於所述第一方向的第二方向上延伸。The power gate switching system of claim 22, wherein the first column and the second column extend in a first direction, and a gate control line and a gate of the second power gate cell The gate control line of the fourth power gate cell extends in a second direction that is substantially perpendicular to the first direction. 如申請專利範圍第22項所述的電源閘切換系統,其中所述第一電源閘胞元包括鄰近所述至少一個抽頭的裝置隔離層,且所述第二電源閘胞元包括鄰近所述第三擴散區及所述第四擴散區中的每一者的裝置隔離層。The power gate switching system of claim 22, wherein the first power gate cell includes a device isolation layer adjacent to the at least one tap, and the second power gate cell includes adjacent to the first A device isolation layer for each of the triple diffusion region and the fourth diffusion region. 如申請專利範圍第22項所述的電源閘切換系統,更包括: 第三列,包括第三虛擬電源線、第五電源閘胞元及第六電源閘胞元,其中所述第五電源閘胞元包括安置於第九擴散區與第十擴散區之間的第五閘電極及至少一個抽頭,且所述第六電源閘胞元包括安置於第十一擴散區與第十二擴散區之間的第六閘電極且所述第六電源閘胞元不包括抽頭,且 其中所述第六電源閘胞元連接至所述第四電源閘胞元。The power gate switching system of claim 22, further comprising: a third column comprising a third virtual power line, a fifth power gate cell, and a sixth power gate cell, wherein the fifth power gate The cell includes a fifth gate electrode and at least one tap disposed between the ninth diffusion region and the tenth diffusion region, and the sixth power gate cell includes the eleventh diffusion region and the twelfth diffusion region And a sixth gate electrode and the sixth power gate cell does not include a tap, and wherein the sixth power gate cell is coupled to the fourth power gate cell. 如申請專利範圍第25項所述的電源閘切換系統,其中所述第一電源閘胞元及所述第五電源閘胞元安置於第一行中,且所述第二電源閘胞元、所述第四電源閘胞元及所述第六電源閘胞元安置於第二行中。The power gate switching system of claim 25, wherein the first power gate cell and the fifth power gate cell are disposed in a first row, and the second power gate cell, The fourth power gate cell and the sixth power gate cell are disposed in the second row. 如申請專利範圍第26項所述的電源閘切換系統,其中所述第一列至所述第三列在第一方向上延伸,且所述第一行及所述第二行在實質上垂直於所述第一方向的第二方向上延伸。The power gate switching system of claim 26, wherein the first column to the third column extend in a first direction, and the first row and the second row are substantially vertical Extending in a second direction of the first direction. 如申請專利範圍第22項所述的電源閘切換系統,其中所述第一電源閘胞元的通道在列方向上的寬度大於所述第二電源閘胞元的通道在所述列方向上的寬度。The power gate switching system of claim 22, wherein a width of the channel of the first power gate cell in the column direction is greater than a channel of the second power gate cell in the column direction width. 如申請專利範圍第22項所述的電源閘切換系統,其中所述第一電源閘胞元的大小大於所述第二電源閘胞元的大小。The power gate switching system of claim 22, wherein the size of the first power gate cell is greater than the size of the second power gate cell. 如申請專利範圍第25項所述的電源閘切換系統,其中所述第二電源閘胞元的閘極控制訊號線、所述第四電源閘胞元的閘極控制訊號線及所述第六電源閘胞元的閘極控制訊號線跨越所述第一虛擬電源線、所述第二虛擬電源線及所述第三虛擬電源線延伸。The power gate switching system of claim 25, wherein the gate control signal line of the second power gate cell, the gate control signal line of the fourth power gate cell, and the sixth A gate control signal line of the power gate cell extends across the first virtual power line, the second virtual power line, and the third virtual power line. 如申請專利範圍第22項所述的電源閘切換系統,其中所述第一電源閘胞元跨越所述第一虛擬電源線延伸。The power gate switching system of claim 22, wherein the first power gate cell extends across the first virtual power line.
TW105125362A 2015-08-26 2016-08-10 Semiconductor device and power gate switching system TWI684263B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020160107890A KR102533244B1 (en) 2015-08-26 2016-08-24 Power gate switching system
US15/247,439 US9786685B2 (en) 2015-08-26 2016-08-25 Power gate switching system
US15/713,779 US10141336B2 (en) 2015-08-26 2017-09-25 Power gate switching system
US16/191,674 US10680015B2 (en) 2015-08-26 2018-11-15 Power gate switching system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0120327 2015-08-26
KR20150120327 2015-08-26
KR1020160030470A KR20170026077A (en) 2015-08-26 2016-03-14 Power gate switching system
KR10-2016-0030470 2016-03-14

Publications (2)

Publication Number Publication Date
TW201712851A true TW201712851A (en) 2017-04-01
TWI684263B TWI684263B (en) 2020-02-01

Family

ID=58403964

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105125362A TWI684263B (en) 2015-08-26 2016-08-10 Semiconductor device and power gate switching system

Country Status (3)

Country Link
KR (1) KR20170026077A (en)
CN (1) CN106601736B (en)
TW (1) TWI684263B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102599048B1 (en) 2018-08-16 2023-11-06 삼성전자주식회사 Integrated circuit including standard cell and method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3947308B2 (en) * 1998-06-17 2007-07-18 沖電気工業株式会社 Semiconductor integrated circuit
JP3825756B2 (en) * 2003-02-17 2006-09-27 富士通株式会社 Semiconductor integrated circuit
JP4231003B2 (en) * 2003-03-06 2009-02-25 富士通マイクロエレクトロニクス株式会社 Semiconductor integrated circuit
KR100780750B1 (en) * 2006-05-11 2007-11-30 한국과학기술원 Power Network Using Standard Cell and Power Gating Cell, and Semiconductor Device Using a Power Network
KR100734328B1 (en) * 2006-07-24 2007-07-02 삼성전자주식회사 Layout scheme and method of power gating transistor switch
KR20100081765A (en) * 2009-01-07 2010-07-15 삼성전자주식회사 Fabricating method of semiconductor integrated circuit devices
US9007815B2 (en) * 2012-01-27 2015-04-14 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for switching power in a dual rail memory
US9418728B2 (en) * 2014-07-24 2016-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Dual-port static random-access memory cell

Also Published As

Publication number Publication date
TWI684263B (en) 2020-02-01
KR20170026077A (en) 2017-03-08
CN106601736B (en) 2021-11-23
CN106601736A (en) 2017-04-26

Similar Documents

Publication Publication Date Title
US10680015B2 (en) Power gate switching system
US20210335675A1 (en) Semiconductor structure with buried power rail, integrated circuit and method for manufacturing the semiconductor structure
KR101884949B1 (en) Semiconductor device
CN109585527B (en) Integrated circuit device
WO2016075859A1 (en) Layout structure of semiconductor integrated circuit
JP2010062182A (en) Semiconductor integrated circuit device
TWI689080B (en) Memory device
KR102582771B1 (en) CELL ARCHITECTURE BASED ON MULTI-GATE Vertical FIELD effect transistor
US10916543B2 (en) Semiconductor device
TW201703234A (en) Static random access memory unit structure and static random access memory layout structure
US10134726B2 (en) Diode string implementation for electrostatic discharge protection
US10784251B2 (en) Internally stacked NPN with segmented collector
KR20190053426A (en) Semiconductor device
TWI684263B (en) Semiconductor device and power gate switching system
KR102533244B1 (en) Power gate switching system
JP6645280B2 (en) Semiconductor device and manufacturing method thereof
JPS615571A (en) Manufacture of semiconductor device
KR20180064820A (en) Semiconductor device
EP3501039B1 (en) Substrate noise isolation structures for semiconductor devices
KR101167202B1 (en) Mos transistor and cmos inverter, and method for manufacturing the same
US20240145556A1 (en) Semiconductor device
US8916977B2 (en) Semiconductor device and method for fabricating the same
KR101051813B1 (en) CMOS device and its manufacturing method
CN111128959A (en) Groove guard ring structure and forming method thereof