TW201634919A - 生物檢測方法 - Google Patents

生物檢測方法 Download PDF

Info

Publication number
TW201634919A
TW201634919A TW104110033A TW104110033A TW201634919A TW 201634919 A TW201634919 A TW 201634919A TW 104110033 A TW104110033 A TW 104110033A TW 104110033 A TW104110033 A TW 104110033A TW 201634919 A TW201634919 A TW 201634919A
Authority
TW
Taiwan
Prior art keywords
receptor
sensing
ligand
metal reaction
current
Prior art date
Application number
TW104110033A
Other languages
English (en)
Other versions
TWI534426B (zh
Inventor
王玉麟
許振彬
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW104110033A priority Critical patent/TWI534426B/zh
Priority to US14/870,563 priority patent/US9891186B2/en
Application granted granted Critical
Publication of TWI534426B publication Critical patent/TWI534426B/zh
Publication of TW201634919A publication Critical patent/TW201634919A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)

Abstract

一種生物檢測方法,包含以下步驟:(A)準備一生物感測器,及一受體,該生物感測器包括二間隔設置且無電連接的感測電極,每一感測電極具有一金屬反應層,該受體設置於該金屬反應層且與該金屬反應層相互鍵結;(B)將一能與該受體產生反應的配體結合於該受體上,並施加一可調變脈波寬度與高度的脈波電壓於該金屬反應層,以令該等感測電極之間產生一壓差,並於該脈波寬度內量測該生物感測器產生的檢測電流,得到一第一感測指標。

Description

生物檢測方法
本發明是有關於一種生物檢測方法,特別是指一種檢測蛋白質的方法。
參閱圖1,現有的電化學生物感測器(electrochemical biosensor)1包含一基板11、一感測窗口12、二感測端部13,及一絕緣板14。該感測窗口12具有二形成於該基板11上且與該等感測端部13電連接的感測膜121,該絕緣板14覆蓋於該基板11上但令該感測窗口12與該等感測端部13露出,用以避免訊號傳輸受干擾。藉由將一受體(receptor)設置於該感測窗口12的感測膜121上,再將一待測配體(ligand)設置於該受體上,並於該等感測端部13施加一電壓,以分析待測配體與感測膜121上的受體在感測窗口12之電極表面的氧化還原反應,以獲取不同濃度的待測配體產生不同的檢測電流,從而可推得未知的待測配體的濃度。
一般來說,現有的電化學生物感測器1因缺乏增益效果,而不易觀察到細微的電訊號,所以需施加較大的電壓,才能讓不同濃度的待測配體產生的檢測電流易於 被量測。然而,此施加電壓通常會大於該受體的氧化還原電壓,因此,以此量測電壓進行檢測,容易會造成該受體被破壞而失去功能。
因此,改良現有的電化學生物感測器1的量測方法,以於量測時避免造成生物分子的氧化還原,並增加感測器的靈敏度,是此技術領域的相關技術人員所待突破的課題。
因此,本發明之目的,即在提供一種生物檢測方法。
於是本發明生物檢測方法,包含一準備步驟,及一檢測步驟。
該準備步驟是準備一生物感測器,及一受體,該生物感測器包括二間隔設置且無電連接的感測電極,每一感測電極具有一金屬反應層,該受體設置於該至少其中一金屬反應層且與該金屬反應層相互鍵結。
該檢測步驟是將一能與該受體產生反應的配體結合於該受體上,並施加一可調變脈波寬度與高度的脈波電壓於其中一金屬反應層,以令該等感測電極之間產生一壓差,並於該脈波寬度內量測該生物感測器產生的檢測電流,得到一第一感測指標。
本發明之功效在於,藉由施加可調變脈波寬度與高度的脈波電壓於鍵結有受體與配體液的該感測電極,令該等感測電極間產生壓差並具有電容效應,以能避免該 受體被氧化還原而失去功能。
2‧‧‧生物感測器
21‧‧‧感測電極
211‧‧‧矽基板
212‧‧‧氮化矽層
213‧‧‧金屬反應層
22‧‧‧輔助電極
23‧‧‧玻璃基板
24‧‧‧受體
25‧‧‧配體液
251‧‧‧配體
3‧‧‧準備步驟
4‧‧‧檢測步驟
41‧‧‧隔離次步驟
5‧‧‧轉換步驟
V‧‧‧脈波電壓
I‧‧‧檢測電流
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一俯視示意圖,說明現有的電化學生物感測器;圖2是一側視示意圖,說明本發明生物感測器的一第一實施例;圖3是一側視示意圖,說明本發明生物感測器的一第三實施例;圖4是一電流對時間的關係圖,說明本發明於一脈波寬度內量測各種鹽濃度而得的電流值;圖5是一電流對時間的關係圖,說明本發明於該脈波寬度內量測一去離子水(D.I.water)、一緩衝溶液(Buffer)、一脫氧核醣核酸(DNA)、一牛血清蛋白(BSA),及具體例1~3而得的電流值;圖6是一特定時間與電流關係圖,輔助說明圖5在50μs時的電流值;圖7是一電荷對時間的關係圖,說明圖5的電流對時間作積分而得的電荷對時間曲線圖;圖8是一特定時間與電荷關係圖,輔助說明圖7在50μs時的電荷值;圖9是一特定時間與時間常數關係圖,說明對圖5的電流曲線進行運算,而在50μs時所取得的時間常數圖; 圖10是一電流對時間的關係圖,說明本發明該去離子水、該緩衝溶液、該脫氧核醣核酸、該牛血清蛋白,及具體例4~10於該脈波寬度內所量測而得的電流值;圖11是一特定時間與電流關係圖,輔助說明圖10在50μs時的電流值;圖12是一電荷對時間的關係圖,說明圖10的電流對時間作積分而得的電荷對時間曲線圖;圖13是一特定時間與電荷關係圖,輔助說明圖12在50μs時的電荷值;圖14是一電流對時間的關係圖,說明本發明該具體例11於該脈波寬度內所量測而得的電流值;圖15是一特定時間與電流關係圖,輔助說明圖14在30μs時的電流值;圖16是一特定時間與電荷關係圖,說明圖14的電流對時間作積分,而在30μs時所取得的電荷值;圖17是一特定時間與時間常數關係圖,說明對圖14的電流曲線進行運算,而在30μs時所取得的時間常數圖;圖18是一電流對時間的關係圖,說明本發明該具體例12於該脈波寬度內所量測而得的電流值;圖19是一特定時間與電流關係圖,輔助說明圖18在30μs時的電流值;圖20是一特定時間與電荷關係圖,說明圖18的電流對時間作積分,而在30μs時所取得的電荷值;圖21是一特定時間與時間常數關係圖,說明對圖18 的電流曲線進行運算,而在30μs時所取得的時間常數圖。
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示
參閱圖2,本發明第一實施例的生物感測器2包括二間隔設置且無電連接的感測電極21。
具體地說,每一個感測電極21均是於一矽基板211上形成氮化矽(Si3N4)層212,再於該氮化矽層212上形成一由金奈米粒子(gold nanoparticles GNPs)所構成的金屬反應層213。該氮化矽層212可阻隔該金屬反應層213於後續進行生物檢測產生的電子傳遞至該矽基板211上,而可降低量測的誤差值。該等感測電極21的間隔設置主要是藉由一輔助電極22作為輔助,先將該輔助電極22設置於一玻璃基板23上,且使該輔助電極22與該玻璃基板23的高度總和大於每一個感測電極21的高度,再將其中一個感測電極21的金屬反應層213連接於該輔助電極22的部份表面上,並令該感測電極21凸伸出該輔助電極22的一側,而另一個感測電極21則置於凸伸出該輔助電極22的該感測電極21的下方,從而使該兩個感測電極21的設置方式為彼此位於上下方,且該等金屬反應層213彼此上下相對並具有一間隙間隔。
詳細地說,於本例中,為了方便製作與量測,該輔助電極22的膜層結構與該等感測電極21相同,但該輔助電極22的膜層結構可視情況改變,並不限於此,只要 該輔助電極22的表面能與該感測電極21的金屬反應層213彼此電相連接即可。此外,該等感測電極21與該輔助電極22之間的形成方式也不限於前述結構,亦可視情況以一體成型方式構成。
要說明的是,該第一實施例的該等感測電極21 的金屬反應層213是由多數金奈米粒子所構成,且該等金奈米粒子是以化學還原法方式製備。由於以化學還原法製備金奈米粒子為此技術領域者常用之方法,因此,不再多加說明。
本發明生物感測器2的一第二實施例的層體結 構與該第一實施例大致相同,不同之處在於,該第二實施例的該等感測電極21的金屬反應層213並非金奈米粒子,而是由金薄膜所構成。
參閱圖3,本發明生物感測器2的一第三實施例 的層體結構與組成材料大致是相同於該第一實施例,不同之處在於,該第三實施例的該兩個感測電極21是共用同一矽基板211及同一氮化矽層212,而該兩個感測電極21的金屬反應層213則形成該氮化矽層212表面,且彼此間隔,使該等金屬反應層213可位於同一平面,進而構成如圖3所示的生物感測器2。
本發明的一第四實施例的層體結構與該第三實 施例相同,不同之處在於,該等感測電極21的金屬反應層213是由金薄膜所構成,並非金奈米粒子。
本發明可利用前述該第一~四實施例的生物感 測器2進行生物檢測。茲將該生物檢測方法說明如下:該生物檢測方法包含一準備步驟3,及一檢測步驟4。
該準備步驟3是準備一如圖2或圖3所示的生物感測器2,在此是以圖2所示的生物感測器2作說明。
配合參閱圖2,先將一受體24設置於下方的感測電極21的金屬反應層213上,並使該受體24與該金屬反應層213相互鍵結。接著,進行該檢測步驟4,將一預定濃度且具有能與該受體24產生反應之配體251的配體液25滴加於該等感測電極21的間隙之間,令該配體251鍵結於該受體24上,接著施加一可調變脈波寬度與高度的脈波電壓V於下方的感測電極21的金屬反應層213上,以令該等金屬反應層213之間產生一壓差,並於該脈波寬度內從位於上方的該感測電極21讀取得到位於下方的該感測電極21的金屬反應層213產生的檢測電流I,以得到一由該配體251產生的第一感測指標。
具體地說,本發明的受體24是選用能與金所構成的該金屬反應層213鍵結並具有特定序列的脫氧核醣核酸(deoxyribonucleic acid,DNA),該配體251則是選用能與該受體24產生反應的HIV-1逆轉錄酶蛋白質(HIV-1 Reverse Transcriptase(HIV-1 RT)protein)。要說明的是,該受體24與該配體251的選擇並沒有特別限制,只要該配體251能與該生物感測器2上的受體24相互反應鍵結,且透過該檢測步驟4而能得到該檢測電流I即可。
此外,該等感測電極21的金屬反應層213的目 的是要能鍵結該受體24,因此,該金屬反應層213的材質選用端看該受體24的選擇,而決定該金屬反應層213的材料即可,並沒有特別限制,本發明該受體24是選用DNA,因此該金屬反應層213是以金為例作說明,也可以是例如鉑(Pt)等其它能供不同種類之該受體24鍵結的金屬。
詳細地說,當實施該檢測步驟4,對下方的該感 測電極21的金屬反應層213施加該脈波電壓V時,會使該等感測電極21之間產生壓差而具有一電容效應,而得到由此電容效應所貢獻的該檢測電流I。值得一提的是,利用此電容效應進行生物檢測時,能量測該受體24與該配體251在反應未達平衡狀態前的動態資訊,也因為以此方式進行量測而能避免該受體24被氧化還原而失去功能,詳細數據分析容後說明。
此外,該檢測步驟4所施加的脈波電壓V的脈 波寬度與高度的大小,是取決於使用者所欲分析的檢測時間及檢測所需的電壓大小,並沒有特別限制,較佳地,於本發明中,該脈波寬度是選用小於該受體24與該配體251在反應未達平衡的時間,且該脈波電壓是小於該受體24的氧化還原電壓。適用於本發明的脈波寬度為不大於10-3秒,而脈波高度則選用0.5V為例作說明。
更詳細地說,該檢測步驟4除了可將不同濃度 的配體液25滴於該受體24後直接進行檢測而直接得到該檢測電流I外,更佳地,為了使量測更為精準,該檢測步 驟4還可包括一隔離次步驟41。
該隔離次步驟41是先將一隔離蛋白液滴至鍵結 有該受體24的該感測電極21上,使該隔離蛋白液與該感測電極21未鍵結有該受體24的該金屬反應層213的表面相互鍵結,之後再將含有一緩衝溶液的及該配體251的配體液25滴至該受體24上,令該受體24與該配體251結合,並施加該脈波電壓V於該等感測電極21以產生該檢測電流I。
具體地說,該隔離次步驟41所使用的隔離蛋白 液為含有預定濃度的牛血清蛋白(bovine serum albumin,BSA)溶液;該配體液25是使用TE緩衝溶液(Tris-EDTA buffer)作為溶劑,並添加HIV-1 RT蛋白質作為配體251,以調配出具有不同濃度的HIV-1 RT蛋白質的配體液25。本發明透過該隔離次步驟41,在鍵結該配體251之前,先滴上該隔離蛋白液而能避免該配體251直接鍵結於未具有該受體24的金屬反應層213上,也就是說,該隔離蛋白液中的牛血清蛋白能先鍵結於未具有該受體24的金屬反應層213上,從而使該配體251僅鍵結於該受體24上。據此,能量測得到僅是由該配體251與該受體24結合後所貢獻的檢測電流I。
值得一提的是,於該檢測步驟4後還可視需求 實施一轉換步驟5,用以將該第一感測指標的檢測電流I轉換得到其他感測指標。
具體地說,第一種轉換方式為對該檢測電流I 相對該脈波寬度(t)進行積分轉換,此時即為對電流與時間進行積分,而可得到電荷量,從而得知特定時間於該感測電極21的金屬反應層213上所累積的總電荷量,以作為一第二感測指標。
另外,第二種轉換方式則是將對應該脈波寬度 的檢測電流I除以該檢測電流的最大值Ipeak,以得到一動態電流值P(t),並對該動態電流值P(t)相對該脈波寬度(t)進行積分轉換,得到一時間常數(time constant),以作為一第三感測指標。
為了可更清楚的說明本發明該生物檢測方法, 以下以12個具體例進行說明,該等具體例1~12是根據上述實施方式配合以下流程實施。
要說明的是,為了確保受體確實鍵結於該感測 電極21的金屬反應層213上,因此,本發明該等具體例1~12在進行量測之前,會先進行如下量測,以確認受體確實鍵結於該感測電極21的金屬反應層213。
首先,取2.5μL/pH8.0的TE緩衝溶液滴至該生 物感測器2的該等感測電極21間,並施加脈波寬度與高度分別為50μs及0.5V的脈波電壓V於其中一感測電極21上,接著量測另一感測電極21,得到一由TE緩衝溶液所貢獻的電流值。接著,移除TE緩衝溶液,再將受體(DNA)滴至該感測電極21的金屬反應層213上,且靜待24小時使DNA與金所構成的金屬反應層213反應鍵結,隨後再以上述相同條件的脈波電壓V量測該感測電極21,而得到一 由DNA所貢獻的電流值。當DNA所貢獻的電流值與TE緩衝溶液所貢獻的電流值不同時,即可判定DNA確實鍵結於該感測電極21的金屬反應層213上。
<具體例1>
本發明生物檢測方法的一具體例1是使用該第一實施例的生物感測器2,且該生物感測器2之下方的感測電極21的金屬反應層213上已鍵結有DNA。接著,以TE緩衝溶液配製含有4%的牛血清蛋白(BSA)的作為隔離蛋白液,並將該隔離蛋白液滴於下方的該感測電極21上,使未鍵結有DNA的金屬反應層213的表面與該隔離蛋白液中的牛血清蛋白(BSA)鍵結,以避免後續滴上的配體直接與該金屬反應層213直接鍵結。
接著,將TE緩衝溶液調配成pH 8.0作為溶劑,並以HIV-1 RT蛋白質作為溶質,調配濃度為1fM的HIV-1 RT蛋白質溶液(即該配體液25)。
最後,取2.5μL濃度為1fM的HIV-1 RT蛋白質溶液,滴至該等感測電極21的金屬反應層213之間。隨後對下方的感測電極21施加0.5V的電壓,並在時間經過2μs時,給予一個脈波寬度與高度分別為50μs及0.5V的脈波電壓V,並於另一個感測電極21量測該生物感測器2所得到該檢測電流I。
<具體例2~3>
本發明生物檢測方法的一具體例2~3的實施條件大致上是相同於該具體例1,其不同之處在於,該具體例 2、3所配製的配體液25分別是濃度為10fM與100fM的HIV-1 RT蛋白質溶液。
<具體例4~10>
本發明該等具體例4~10的實施條件大致是相同於該具體例1,其不同之處在於,該等具體例4~10是使用該第二實施例的生物感測器2進行量測,且所配製的配體液25分別是濃度為1aM、10aM、100aM、1fM、10fM、100fM,及1pM的HIV-1 RT蛋白質溶液。
<具體例11>
本發明該具體例11的實施條件大致是相同於該具體例1,其不同之處在於,該具體例11是使用該第三實施例的生物感測器2,且所配製的配體液25分別是濃度為1μM的HIV-1 RT蛋白質溶液。
<具體例12>
本發明該具體例12的實施條件大致是相同於該具體例1,其不同之處在於,該具體例12是使用該第四實施例的生物感測器2,且所配製的配體液25分別是濃度為1μM的HIV-1 RT蛋白質溶液。
<數據分析>
參閱圖4,首先使用該第一實施例的生物感測器2(如圖2所示)量測各種不同濃度的鹽溶液,圖4是以氯化鈉(NaCl)調配30mM、60mM、90mM、150mM,及300Mm的鹽溶液。主要目的在觀察,於不同鹽濃度的環境中,以本發明該生物感測器2量測溶液中的離子移動的情形。由 圖4可知,本發明使用該脈波電壓V量測不同濃度的鹽溶液時,其電流曲線隨著鹽濃度越高,在初始的離子移動數量越多,所量測到的電流訊號也越大。
參閱圖5,圖5為使用該第一實施例的生物感測 器2量測各種待測溶液的結果。其量測條件均是先對下方的感測電極21施加電壓,經過2μs後再給予該感測電極21一個脈波寬度與高度分別為50μs及0.5V的脈波電壓V,從而由上方的感測電極21量測得到感測電流,而得到如圖5的電流對時間的關係圖。圖5中D.I.water、Buffer曲線是以未鍵結有受體與配體及未成長有金奈米粒子的該等感測電極21進行量測去離子水(D.I.water)、濃度為30mM的緩衝溶液(Buffer)的結果;GNPs曲線是該感測電極21上成長有金奈米粒子後,於30mM的緩衝溶液中量測的結果;DNA、DNA+BSA曲線則是分別利用鍵結有受體(DNA),及受體與牛血清蛋白(DNA+BSA)的感測電極21量測30mM的緩衝溶液的結果;具體例1~3的曲線則是本發明前述該具體例1~3對不同濃度的配體液(1fM~100fM)的量測結果。
由圖5可知,以該感測電極21量測不同待測溶 液,確實具有不同的電流訊號,且隨著該感測電極21鍵結DNA、DNA+BSA及各具體例1~3之不同濃度的配體液,其電流訊號逐漸減小,證明了鍵結不同待測物確實具有不同電流訊號。隨著時間的增加,該等具體例1~3的電流變化趨勢大致相同,但值得注意的是,在2μs對該感測電極21施加脈波電壓V時,明顯具有一電流峰值產生,而隨著時 間的增加(>5μs),電流曲線則趨於平緩。由此電流曲線的特徵可說明:由於該等感測電極21是彼此間隔設置,因此,當施加脈波電壓V於該感測電極21時,即會於該等感測電極21之間產生一因電容效應的充電現象,從而具有明顯的電流峰值產生;當電流曲線趨於平緩時,則代表整體的反應逐漸達平衡狀態。
更詳細地說,此電容效應產生的電流峰值下降 至平緩狀態的過程,即代表該等具體例1~3的配體(HIV-1 RT蛋白質)與受體(DNA)在達平衡狀態之前的彼此相互反應的電流變化值,也就是說,此電流由峰值下降至平緩狀態的電流曲線(約2μs~2.5μs)能充分反映出配體與受體的反應動態資訊。此外,由圖5可知,不同濃度的配體液確實具有不同電流曲線,且該等電流曲線的訊號隨著配體液濃度越大而逐漸降低,具有明顯的趨勢。
現有的電化學生物感測器1(如圖1所示)因不具 增益效果,因此,在量測不同濃度的待測溶液時,通常會對該生物感測器1施加較大的電壓,才能觀測到待測溶液產生的電流值,然而,該電壓通常已大於該受體的氧化還原電壓,而會使該受體被破壞而失去功能。藉由本發明該生物感測器2配合施加脈波電壓V的檢測方法,可使該等感測電極21間具有電容效應,而可量測該配體與該受體在未達平衡狀態前的動態反應資訊,且搭配該等感測電極21之由金奈米粒子所構成的金屬反應層213,而可增強訊號的讀出。因此,可克服現有的電化學生物感測器1需施加較 大電壓造成受體失去功能的缺點。
參閱圖6,前述已說明在2μs時會對該感測電極 21施加脈波電壓V,為了能更清楚得知在後續配體與受體未達平衡的狀態的電流值,可進一步地對圖5在50μs取其相對應的電流值,而得到如圖6所示該等具體例1~3於特定時間(50μs)的電流值。由圖6顯示得知,當配體液的濃度越大時,則具有越低的電流值。要說明的是,本發明是選取50μs為例作說明,但並不限於此,特定時間的選取可視情況自由選擇,只要是在配體與受體反應未達平衡狀態前即可。由上述圖5與圖6顯示的量測結果可知,該等具體例1~3的不同濃度的配體(HIV-1 RT蛋白質)所得到的檢測電流I確實因濃度的不同而有特定趨勢,所以可使用該檢測電流I作為第一感測指標。
本發明除了使用檢測電流I作為第一感測指標 外,還可進一步地透過轉換步驟,而得到以電荷作為指標的第二感測指標。
參閱圖7,圖7顯示有圖5的各曲線電流值相對 時間進行積分轉換而得到相對時間的電荷曲線。由圖7可知,隨著時間越長,配體液的濃度越小所累積的總電荷量越多。由電荷量等於電流乘以時間(Q=I×t)可知,電荷量與電流成正比,因此,圖7所顯示的電荷曲線確實符合圖5的結果。
參閱圖8,前述圖6已可清楚瞭解該等具體例 1~3在未達平衡狀態前,配體液濃度與電流值之間的關係。 此處要進一步地探討,當該等具體例1~3逐漸趨近平衡狀態的過程中,該等具體例1~3所累積的電荷量關係。圖8顯示有對圖7在50μs取其相對應的電荷值,同樣地,當配體液的濃度越大時,其所累積的電荷值越低(理由同圖7結果所述)。要說明的是,觀察該等具體例1~3累積的電荷所選取的時間也不限於此,也可視情況而自由選擇。
本發明除了使用電流、電荷作為第一、二感測指標外,還可更進一步地透過轉換步驟,而得到以時間常數作為指標的第三感測指標。
參閱圖9,圖9顯示有將圖5的各待測目標與該等具體例1~3的曲線電流值轉換為一時間常數τ(time constant)曲線,並在50μs取其相對應時間常數(τ)值。該時間常數(τ)可藉由下列公式(1)計算而得:
其中,I(t)代表脈波寬度內所對應的電流值;Ipeak代表脈波寬度內所對應的電流最大值;且以電流最大值對應的時間作為積分下限,以所選取的脈波寬度作為積分上限。由圖9的結果可知,其所得到的時間常數(τ)也會因配體液濃度的不同而具有一定的趨勢(濃度越大時間常數(τ)越小),因此,可將此時間常數(τ)作為第三感測指標。
參閱圖10~13,圖10為使用該第二實施例的生物感測器2(該金屬反應層213非金奈米粒子)量測該等具體例4~10的電流對時間的關係圖。圖12為將圖10的該等具 體例4~10的電流曲線進行積分轉換而得的電荷曲線圖,圖11與圖13則分別是對圖10與圖12取該等具體例4~10於50μs的電流值與電荷值。由圖10~13的結果可知,使用該第二實施例的生物感測器2進行量測時,由於該第二實施例的生物感測器2不具有金奈米粒子,所以量測得到的電流訊號差異較小,但由其電流曲線與電荷曲線能可看出,各具體例4~10之間仍具有一定的曲線趨勢,亦能作為生物感測之用。
參閱圖14~21,圖14~17是使用該第三實施例的 生物感測器2量測該具體例11所得到的實驗結果;而圖18~21則是使用該第四實施例的生物感測器2量測該具體例12所得到的實驗結果。由於該第三實施例與該第四實施例的生物感測器2的該等感測電極21是相互結合,而使該等金屬反應層213彼此具有間隙地位於同一平面上,因此,該第三實施例及該第四實施例的生物感測器2於量測時,會具有較大的漏電流,但此漏電流並不會對量測結果產生太大的負面影響。因此,由圖14~21的結果可知,量測受體(DNA)、緩衝溶液(Buffer),及該具體例11~12時,仍可量測出不同的電流曲線值,顯示將該等金屬反應層213設置於同一平面的生物感測器2(如圖3所示)仍可量測不同濃度的配體液。
由此可知,無論是將該等感測電極21的金屬反 應層213彼此上下間隔設置(該第一、二實施例),或是將其設置於同一平面上(該第三、四實施例),又或該金屬反應層 213是否為金奈米粒子表面,均能用以量測不同濃度的配體液。較佳地,採用該等金屬反應層213彼此上下間隔設置,且該金屬反應層213是由金奈米粒子所構成的生物感測器2時(該第二實施例),不僅能有效透過施加脈波電壓V產生的電容效應進行量測,而克服傳統以高電壓破壞受體功能的缺點,還能克服現有電化學生物感測器1不具增益效果的劣勢。
綜上所述,本發明生物檢測方法,藉由將該等 感測電極21的金屬反應層213彼此間隔設置,並配合施加可調變脈波寬度與高度的脈波電壓V於鍵結有受體與配體液的金屬反應層213,從而使該等感測電極21間產生壓差而具有電容效應,透過施加此脈波電壓V與此電容效應檢測不同濃度的配體液時,不僅能避免該受體被氧化還原而失去功能,還能量測受體與配體在未達平衡狀態前的動態資訊,此外,再進一步透過電化學方式,使該金屬反應層213為金奈米粒子,而能增強訊號的讀取,改善現有電化學生物感測器1不具增益效果的缺點,故確實能達成本發明之目的。
惟以上所述者,僅為本發明之實施例而已,當 不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。

Claims (11)

  1. 一種生物檢測方法,包含:一準備步驟,準備一生物感測器,及一受體,該生物感測器包括二間隔設置且無電連接的感測電極,每一感測電極具有一金屬反應層,該受體設置於該至少其中一金屬反應層且與該金屬反應層相互鍵結;及一檢測步驟,將一能與該受體產生反應的配體結合於該受體上,並施加一可調變脈波寬度與高度的脈波電壓於其中一金屬反應層,以令該等感測電極之間產生一壓差,並於該脈波寬度內量測該生物感測器產生的檢測電流,得到一第一感測指標。
  2. 如請求項1所述的生物檢測方法,還包含一實施於該檢測步驟後的轉換步驟,對該檢測電流相對該脈波寬度進行積分轉換,得到一第二感測指標。
  3. 如請求項1或2所述的生物檢測方法,還包含一實施於該檢測步驟後的轉換步驟,將對應該脈波寬度的檢測電流除以該檢測電流的最大值,並對該脈波寬度進行積分轉換,得到一第三感測指標。
  4. 如請求項1所述的生物檢測方法,其中,該檢測步驟為連續性地施加該脈波電壓。
  5. 如請求項1所述的生物檢測方法,其中,該檢測步驟還包括一隔離次步驟,該隔離次步驟是將一隔離蛋白液滴至鍵結有該受體的感測電極上,使該隔離蛋白液與未鍵結有該受體的該金屬反應層相互鍵結,之後再將一含有 緩衝溶液的及該配體的配體液滴至該受體上,令該受體與該配體結合,並施加該脈波電壓於該等感測電極以產生該檢測電流。
  6. 如請求項1所述的生物檢測方法,其中,該檢測步驟的該脈波寬度不大於10-3秒。
  7. 如請求項1所述的生物檢測方法,其中,該感測電極的金屬反應層是由金所構成。
  8. 如請求項7所述的生物檢測方法,其中,該感測電極的金屬反應層是以化學還原法形成的金奈米粒子所構成。
  9. 如請求項1所述的生物檢測方法,其中,該生物感測器的該等感測電極的金屬反應層為彼此上、下相對。
  10. 如請求項1所述的生物檢測方法,其中,該生物感測器的該等感測電極是位於同一平面。
  11. 如請求項7所述的生物檢測方法,其中,該受體是使用一能與金產生鍵結的脫氧核醣核酸,該配體為能與該脫氧核醣核酸產生鍵結的蛋白質。
TW104110033A 2015-03-27 2015-03-27 生物檢測方法 TWI534426B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104110033A TWI534426B (zh) 2015-03-27 2015-03-27 生物檢測方法
US14/870,563 US9891186B2 (en) 2015-03-27 2015-09-30 Method for analyzing analyte concentration in a liquid sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104110033A TWI534426B (zh) 2015-03-27 2015-03-27 生物檢測方法

Publications (2)

Publication Number Publication Date
TWI534426B TWI534426B (zh) 2016-05-21
TW201634919A true TW201634919A (zh) 2016-10-01

Family

ID=56509348

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104110033A TWI534426B (zh) 2015-03-27 2015-03-27 生物檢測方法

Country Status (2)

Country Link
US (1) US9891186B2 (zh)
TW (1) TWI534426B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661568B (zh) * 2017-10-05 2019-06-01 國立清華大學 感測裝置及生物檢測方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073206A (zh) * 2017-10-23 2019-07-30 B-生物有限公司 稳健地抗咖啡环效应的生物传感器
TWI662123B (zh) 2018-05-09 2019-06-11 國立清華大學 細胞檢測方法
US20210231650A1 (en) * 2018-05-09 2021-07-29 Arizona Board of Regents on behalf of Arzona State University Method for electronic detection and quantification of antibodies
JP7433300B2 (ja) 2018-05-17 2024-02-19 レコグニション アナリティクス インコーポレイテッド 酵素活性の直接電気測定用のデバイス、システムおよび方法
KR20220147602A (ko) 2020-02-28 2022-11-03 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 생체고분자를 시퀀싱하는 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942771B1 (en) * 1999-04-21 2005-09-13 Clinical Micro Sensors, Inc. Microfluidic systems in the electrochemical detection of target analytes
US7455975B2 (en) * 2000-04-14 2008-11-25 Esa Biosciences, Inc. Electrochemical detection of nucleic acid sequences
WO2002051537A2 (en) * 2000-12-22 2002-07-04 Burstein Technologies, Inc. Optical bio-discs and methods relating thereto
KR100698961B1 (ko) 2005-02-04 2007-03-26 주식회사 아이센스 전기화학적 바이오센서
US7749371B2 (en) * 2005-09-30 2010-07-06 Lifescan, Inc. Method and apparatus for rapid electrochemical analysis
US20070235346A1 (en) 2006-04-11 2007-10-11 Popovich Natasha D System and methods for providing corrected analyte concentration measurements
WO2009137129A2 (en) * 2008-02-12 2009-11-12 Stc.Unm Rapid detection of anti-chromatin autoantibodies in human serum using a portable electrochemical biosensor
US20120037515A1 (en) * 2009-04-15 2012-02-16 TheStateof Oregonactingbyand throughthestateBoard ofHigherEducationon behalf of thePortlandstateUniv Impedimetric sensors using dielectric nanoparticles
US9746468B2 (en) * 2011-01-28 2017-08-29 The Regents Of The University Of California Bioaffinity sensors based on surface monolayers
JPWO2012147249A1 (ja) * 2011-04-28 2014-07-28 パナソニック株式会社 バイオセンサデバイス
KR101355127B1 (ko) 2011-09-30 2014-01-29 주식회사 아이센스 전기화학적 바이오센서용 산화환원반응 시약조성물 및 이를 포함하는 바이오센서

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661568B (zh) * 2017-10-05 2019-06-01 國立清華大學 感測裝置及生物檢測方法
US10605769B2 (en) 2017-10-05 2020-03-31 National Tsing Hua University Sensing device and biological detection method

Also Published As

Publication number Publication date
TWI534426B (zh) 2016-05-21
US9891186B2 (en) 2018-02-13
US20160282295A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
TWI534426B (zh) 生物檢測方法
US10274455B2 (en) Nanoelectronic sensor pixel
US10145846B2 (en) Digital protein sensing chip and methods for detection of low concentrations of molecules
US20190017103A1 (en) Nano-sensor array
US20140166487A1 (en) High-Resolution Molecular Sensor
TWI565946B (zh) 生物檢測方法及其生物感測器
US20140145709A1 (en) Nanowire electrode sensor
RU2564516C2 (ru) Способ измерения емкости и его применение
US11579114B2 (en) Four point semiconductor nanowire-based sensors and related methods
US20200306747A1 (en) Sample analysis chip and fabricating method thereof
JP6664737B2 (ja) 金属イオンの検出方法、被検物質の検出方法、電極基板および検出キット
US8901433B2 (en) Individually addressable band electrode arrays and methods to prepare the same
EP3505921B1 (en) Detecting method for blood
EP3960291A1 (en) In-situ controlled dissolution of metals using electrochemistry
TWI662123B (zh) 細胞檢測方法
EP4009045A1 (en) Extended-gate field-effect transistor with aptamer functionalisation layer for measuring hormone concentration in biofluids and corresponding fabrication method
US20050147741A1 (en) Fabrication of array PH sensitive EGFET and its readout circuit
Emons et al. Detection of metal ions in aqueous solution by voltohmmetry
TW201730560A (zh) 心血管疾病的檢測方法