TW201634120A - 混合離子交換材料及其製造方法 - Google Patents

混合離子交換材料及其製造方法 Download PDF

Info

Publication number
TW201634120A
TW201634120A TW105105776A TW105105776A TW201634120A TW 201634120 A TW201634120 A TW 201634120A TW 105105776 A TW105105776 A TW 105105776A TW 105105776 A TW105105776 A TW 105105776A TW 201634120 A TW201634120 A TW 201634120A
Authority
TW
Taiwan
Prior art keywords
ion exchange
exchange material
mixed
activated carbon
alumina
Prior art date
Application number
TW105105776A
Other languages
English (en)
Other versions
TWI602614B (zh
Inventor
詹姆士 諾爾
凱帝 韓德森
安納托 柏圖
Original Assignee
格瑞福科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格瑞福科技有限責任公司 filed Critical 格瑞福科技有限責任公司
Publication of TW201634120A publication Critical patent/TW201634120A/zh
Application granted granted Critical
Publication of TWI602614B publication Critical patent/TWI602614B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/10Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

本發明關於一種主要用於醫藥及食品界應用之高容量混合離子交換材料,其具有從飲用水、工業放流、及廢水中選擇性移除分子(有機物)及陰離子性(磷與砷之氟化物離子與氧基陰離子)物種之強化能力。

Description

混合離子交換材料及其製造方法
本發明關於主要用於醫藥及食品界應用之高容量混合離子交換材料,其具有從飲用水、工業放流、及廢水中選擇性移除分子(有機物)及陰離子性(磷與砷之氟化物離子與氧基陰離子)物種之強化能力。
數十年來,活性碳已廣泛用於不同的水處理應用。例如由於具有有效率移除揮發性有機化合物、殺蟲劑、氯、臭味、及異味之能力,家用水純純化系統中有活性碳。活性碳之吸附性能、容量、及選擇性依各種因素而定。最重要的參數包括:a)可從600平方米/克至2,000平方米/克之表面積;b)可從0.5立方公分/克至1.5立方公分/克之總孔體積;及c)孔度分布。
孔度小於2奈米之微孔性活性碳對小有機分子及揮發性有機化合物(如氯仿)呈現高親和力;然而,由於尺寸排除機構,其不吸附更大的有機化合物。孔度為2奈米至50奈米之微孔性活性碳對大有機分子(如殺蟲劑與除草劑)以及膠體粒子(包括鉛之膠體粒子)呈現高親和力。
活性碳的帶正電表面提供可吸附某些陰離子(包括砷之氧基陰離子)之弱陰離子交換劑。相較於用於從不同水性流中選擇性移除As、P、V、Sb、Cr、Se等陰離子之多價金屬(Fe、Ti、Zr等)水合氧化物,活性碳之陰離子交換容量極小(參見例如C.B.Amphlett,Inorganic Ion Exchangers,Elsevier,New York(1964))。
為了改良活性碳之陰離子交換功能,現已提議以不同的多價金屬水合氧化物浸漬且實行,結果形成複合離子交換材料。為了增加活性無機成分,現已嚐試範圍為從粉末到粒狀、從微孔到中孔之不同型式的活性碳,及各種浸漬技術(使用過量的含金屬溶液浸漬、初期潤濕、化學氣相沈積等)。此外,現已嚐試以Fe、Zr、Ti、Al等之水合氧化物作為摻雜活性介質(參見例如美國專利第4,178,270號、美國專利第4,692,431號、美國專利第5,277,931號、美國專利第5,948,265號、美國專利第6,914,034號、美國專利第7,378,372號、美國專利第7,429,551號、美國專利第7,572,380號、美國專利第8,178,065號、美國專利第8,242,051號、美國專利公開第2014/0021139號、GB 1581993號專利、及EP 0815939號專利)。
通常複合材料之陰離子性交換性質依所選的浸漬氧化物之型式而定,且通常容量隨無機氧化物含量增加而增加到特定值;然而,摻雜劑氧化物之量與容量之間的關聯性並非全體適用,因為在許多情形,容量為在孔中形成的指定金屬氧化物相/結構之函數,且其會隨 相同的多價金屬氧化物之類似負載而顯著改變。此外,因為活性金屬氧化物成分沈積在活性碳載體的孔中,故高負載值造成活性碳孔阻塞,如此降低其移除有機分子之效率。換言之,嚐試將複合吸附劑的離子交換容量增加到大於最大值伴隨對有機物之容量降低。現已經實驗證明,多價金屬氧化物之較佳負載10重量百分比至20重量百分比對複合介質提供有效率移除有機及無機物種之能力;但是即使是最大可能負載,仍無法製造離子交換容量接近或等於作為摻雜劑之個別多價金屬水合氧化物的吸附劑。
牢記先行技藝之問題及缺點,因此本發明之一目的為發展一種節省成本之複合碳-礦物質吸附劑(粉末、粒狀、或成形),其對有機分子有高親和力及容量(較佳為不小於未摻雜撐體之80%),且親和力及容量接近(不小於80%)或等於用於選擇性吸附砷及磷的氟化物離子與氧基陰離子之個別金屬水合氧化物。
上述目的對所屬技術領域者為清楚的,且在本發明中完成,本發明有關一種包含以下的混合離子交換材料:活性碳載體;包括氧化鋁之混合氧化物;及摻雜多價金屬氧化物,包括鈦、鋯、錫、鈰、鑭、鐵、或錳、或其任何組合;其中該混合氧化物或摻雜多價金屬氧化物或兩者係設計成選擇性吸附有機分子、磷與砷之氟化物離子或氧基陰離子。
基於氧化鋁之混合氧化物較佳為被浸漬或沈積在活性碳載體的孔中,且可為八面體、五面體、或四面體配位、或其組合。五面體配位氧化鋁之量為約10%至約30%,及四面體配位氧化鋁之量為約5%至約15%。
該吸附劑中的混合氧化物含量較佳為約5重量百分比至約30重量百分比,且更佳為約10重量百分比至約20重量百分比。
該混合氧化物中的氧化鋁含量較佳為約20重量百分比至約80重量百分比,且更佳為約50重量百分比至約80重量百分比。
該活性碳載體所包括的活性碳可為粒狀、粉末、或成形碳塊形式。
該混合離子交換材料在約450℃煅燒2小時之後不損失40%或以上的離子交換容量。
該離子交換材料對氟化物離子之吸附容量為每克離子交換材料約10毫克氟化物至約25毫克F/每克離子交換材料。
該離子交換材料對pH範圍為大約5-6之血液透析液的PO4離子之吸附容量為每克離子交換材料至少50毫克PO4
在約7至8之pH範圍,該離子交換材料對砷酸離子之吸附容量為每克離子交換材料約10毫克AsO4至每克離子交換材料約25毫克AsO4
該混合離子交換材料之容量為用於選擇性吸附砷與磷之氟化物離子與氧基陰離子的個別金屬水合氧化物之大約80%或相等。
基於氧化鋁之混合氧化物可如奈米尺寸粒子被浸漬或沈積在活性碳載體的孔中。
該活性碳載體之表面積為700-2,000平方米/克之範圍,及孔體積為0.6-1.6立方公分/克之範圍。
在第二態樣中,本發明關於一種製備混合離子交換材料之方法,其包含:(a)提供多孔性活性碳撐體之粉末或顆粒;(b)將含氧化鋁之混合氧化物先質的水溶液噴灑在該多孔性活性碳撐體之顆粒或粉末上;(c)將已浸漬撐體乾燥;(d)將已浸漬活性碳撐體之顆粒或粉末以pH足以中和該撐體孔中酸性含氧化鋁之混合氧化物先質的鹼性試劑溶液接觸,而在孔中形成奈米尺寸水合混合氧化物;(e)將該混合離子交換材料以水清洗而移除滯留的電解質;及(f)將該混合離子交換材料乾燥至LOD大約小於10%。
該含氧化鋁之混合氧化物先質可包括硫酸鋁、氯化鋁、硝酸鋁、或其組合之水溶性化合物。
該方法進一步包括沈積包含鈦、鋯、錫、鈰、鑭、鐵、錳、或其組合之水溶性硝酸鹽、氯化物、硫酸鹽的多價金屬化合物。
已浸漬活性碳撐體之顆粒或粉末可經包括鹼氫氧化物、氫氧化銨、碳酸鹼鹽、碳酸銨、或其組合,pH為大約4-10之範圍的鹼性溶液處理。
多孔性活性碳撐體之粉末或顆粒被預先乾燥,而從該孔消除物理性吸附水。
將含氧化鋁之混合氧化物先質的水溶液噴灑在該多孔性活性碳撐體之顆粒或粉末上的步驟係以足以充填撐體的開孔達到其體積之至多90%之量實行。
乾燥已浸漬撐體的步驟較佳為實行直到移除40%至60%之添加水。
特別在所附的申請專利範圍敘述據信為新穎的之本發明特點、及本發明之基本特徵。圖式僅為了描述目的且未按比例繪製。然而,本發明本身之構成及操作方法均可參考以下的詳細說明結合附圖而最佳地了解,其中:第1圖敘述所測試材料之離子交換性質;第2圖敘述實施例1-4所製備的氫氧化鋁及混合材料之Al-27 MAS NMR光譜;第3圖敘述實施例1、TiO2、與Al2O3之各種床體積之As移除(ppb)的比較性測試結果;第4圖敘述實施例1、TiO2、與Al2O3之各種床體積之氟化物移除(ppb)的比較性測試結果;及第5圖敘述使用實施例1之混合氧化物,熱處理對AsO4及氟化物離子吸取的影響。
在揭述本發明之較佳具體實施例時,在此參考圖式之第1-5圖,其中同樣的符號表示同樣的本發明特徵。
先行技藝之缺點可藉本發明之吸附劑克服。本發明關於一種在大pH範圍且在大為過量的競爭性離子存在下,對有機分子,同時對磷與砷之氟化物離子與氧基陰離子,呈現高親和力及容量之混合離子交換材料,其容量接近(不小於80%)或等於用於選擇性吸附磷與砷之氟化物離子與氧基陰離子的個別金屬水合氧化物。
一種混合離子交換材料由經包含指定比例的氧化鋁(以四面體、五面體、及八面體配位存在)之奈米尺寸混合氧化物浸漬的活性碳撐體、及多價金屬(選自由元素鈦、鋯、錫、鈰、鑭、鐵、錳、或其組合所組成的群組)之摻雜氧化物組成。該混合離子交換材料可為粒狀、粉末、或成形(例如擠製碳塊)形式,且具有大約700-2,000平方米/克之表面積及大約0.6-1.6立方公分/克之孔體積。
參考本發明之指定態樣,該混合離子交換材料含有約5重量百分比至約30重量百分比之混合氧化物,且較佳為約10重量百分比至約20重量百分比之混合氧化物。
本發明之另一態樣為該混合氧化物吸附劑含有約20重量百分比至約80重量百分比之氧化鋁,較佳為約50重量百分比至約80重量百分比之氧化鋁。
本發明之另一特徵為該混合氧化物中的氧化鋁以八面體、五面體、及四面體配位存在,且五面體配位氧化鋁之量為約10%至約30%,及八面體配位氧化鋁之量為約5%至約15%。
本發明之意料外結果為混合氧化物與活性碳撐體之間的強大增效,其造成該複合介質對磷與砷之氟化物離子與氧基陰離子的陰離子交換容量,在類似條件下測試時不小於用於浸漬之個別多價金屬水合氧化物的容量之80-100%。在約7至6之pH範圍,混合離子交換材料對氟化物離子之容量為約10毫克F/克離子交換材料至約25毫克F/克離子交換材料。在約7至8之pH範圍,混合離子交換材料對砷酸離子之容量為每克離子交換材料約10毫克AsO4至每克離子交換材料約25毫克AsO4。混合離子交換材料對pH範圍為約5至6之血液透析液的PO4離子之容量為每克離子交換材料至少50毫克PO4
一額外特徵為本發明之混合離子交換材料為熱安定性介質,其在450℃煅燒2小時之後顯示離子交換容量減少小於40%。
本發明之另一具體實施例關於一種製備混合離子交換材料之方法,其包含:a.提供多孔性活性碳撐體之粉末或顆粒,其已被預先乾燥,而從該孔消除物理性吸附水;b.將含氧化鋁之混合氧化物先質的水溶液以足以充填撐體的開孔達到其體積之至多90%之量,噴灑在該多孔性活性碳撐體之顆粒或粉末上。此操作可特別將可溶性先質引入活性碳孔中,而使撐體表面基本上無沈積物; c.將已浸漬撐體乾燥,直到移除40%至60%之添加水。此操作可濃縮可溶性混合氧化物先質,且將其均勻散佈在內部孔表面上;d.將已浸漬活性碳撐體之顆粒或粉末以pH足以中和該撐體孔中酸性含氧化鋁之混合氧化物先質的鹼性試劑之溶液接觸,而在孔中形成該元素之奈米尺寸水合混合氧化物。在薄層中原位混合氧化物沈澱可形成奈米尺寸混合氧化物顆粒,對照於在無孔度限制之標準沈澱下,形成大的初級顆粒聚集體,其尺寸從數百奈米至數打奈米;e.將該混合離子交換材料以水清洗而移除滯留的電解質;及f.將該混合離子交換材料經由乾燥損失法(LOD)乾燥,直到材料重量總變化小於10%。
特別是該方法在含氧化鋁之混合氧化物先質的溶液中使用包括硫酸鋁、氯化鋁、硝酸鋁、及其組合之水溶性化合物,且使用包含鈦、鋯、錫、鈰、鑭、鐵、錳、或其組合之水溶性硝酸鹽、氯化物、硫酸鹽的多價金屬化合物。該混合氧化物先質溶液中的氧化鋁含量較佳為約20重量百分比至約80重量百分比,且較佳為約50重量百分比至約80重量百分比。
該方法之又另一特徵為將已浸漬活性碳撐體之顆粒或粉末以選自鹼氫氧化物、氫氧化銨、碳酸鹼鹽、碳酸銨、及其組合,pH較佳為在4-10之範圍的鹼性溶液處理。
[實施例]
本發明更具體參考以下實施例而說明,其僅為了例示性目的而提出,且不意圖限制以所附申請專利範圍揭述的本發明。
[實施例1]
活性碳撐體之製備包括將100克之基於木之碳粉(較佳為具有1,600平方米/克之表面積、1.1立方公分/克之孔體積、45-150微米之部分)在150℃乾燥數小時,而從載體孔消除物理性吸附水。
100毫升之混合氧化物先質溶液之製備涉及混合56.25克之Al(NO3)3.9H2O、33.9克之15.0重量百分比(以TiO2計)硫酸氧鈦溶液、與25克之去離子水。
然後將100克之乾燥活性碳粉末置入裝有機械混合器之500毫升玻璃燒杯中,且在持續混合期間將所製備的100毫升之混合氧化物先質噴灑在其上。在添加全部先質溶液之後,活性碳仍為外表乾燥之「自由流動」粉末。
將總重量為大約215克之已浸漬活性碳置入100℃電烤箱中,且乾燥直到其重量減為185克。此操作造成移除約50%之存在於碳孔中的水。然後將經熱處理的已浸漬活性碳以各大約25-30克之小份量轉移至裝有機械混合器,且含有500毫升之1M NaHCO3溶液之1公升玻璃燒瓶中。如果需要,藉由添加25% NaOH溶液而將反應混合物之pH保持在大約7.2-7.8之範圍。當將全部碳粉加入中和溶液時,將反應系統維持混合1小時而 完成中和程序,且在撐體孔中形成基於奈米尺寸鋁之混合氧化物之籽。將已中和碳從溶液經由過濾器分離,且以去離子水清洗而移除過量的滯留電解質。然後將經清洗的產物在100℃電烤箱中乾燥,而建立約8%之LOD。
活性碳中的總混合氧化物負載為11重量百分比(將產物在空氣中以1100℃灰化6小時而測定)。裝載於活性碳孔中的混合氧化物含有60重量百分比之Al2O3、與40重量百分比之TiO2。該混合離子交換材料之表面積為1,380平方米/克之級數,及總孔體積為大約0.95立方公分/克。該材料之離子交換性質歸納於第1圖所示的表中。
[實施例2]
活性碳撐體之製備包括將100克之基於木之碳粉(較佳為具有1,600平方米/克之表面積、1.1立方公分/克之孔體積、45-150微米之部分)在150℃乾燥數小時,而從載體孔消除物理性吸附水。
100毫升之混合氧化物先質溶液之製備涉及混合70.0克之Al(NO3)3.9H2O、16.9克之15.0重量百分比(以TiO2計)硫酸氧鈦溶液、1.75克之MnSO4.H2O、與20克之去離子水。
然後將100克之乾燥活性碳粉末置入裝有機械混合器之500毫升玻璃燒杯中,且在持續混合期間將100毫升之混合氧化物先質噴灑在其上。在添加全部先質溶液之後,活性碳仍為外表乾燥之「自由流動」粉末。
將總重量為大約209克之已浸漬活性碳置入100℃電烤箱中,且乾燥直到其重量減為185克。此操作造成移除約50%之存在於碳孔中的水。然後將經熱處理的已浸漬活性碳以各大約25-30克之小份量轉移至裝有機械混合器,且含有500毫升之1M NaHCO3溶液之1公升玻璃燒瓶中。如果需要,藉由添加25% NaOH溶液而將反應混合物之pH保持在大約7.2-7.8之範圍。當將全部碳粉加入中和溶液時,將反應系統維持混合1小時而完成中和程序,且在撐體孔中形成基於奈米尺寸鋁之混合氧化物之籽。然後將已中和碳從溶液經由過濾器分離,且以去離子水清洗而移除過量的滯留電解質。然後將經清洗的產物在100℃電烤箱中乾燥,而建立約5%之LOD。
活性碳中的總混合氧化物負載為11重量百分比(將產物在空氣中以1100℃灰化6小時而測定)。裝載於活性碳孔中的混合氧化物含有75重量百分比之Al2O3、20重量百分比之TiO2、與5重量百分比之MnO2。該混合離子交換材料之表面積為1,350平方米/克,及其總孔體積為0.95立方公分/克。該材料之離子交換性質歸納於第1圖所示的表中。
[實施例3]
100毫升之混合氧化物先質溶液之製備包含混合66.15克之Al(NO3)3.9H2O、18.22克之FeCl3、與25克之去離子水。活性碳之型式、活性碳撐體之製備、及摻雜方法均類似實施例1所述。
將該混合離子交換材料乾燥至LOD=5%。活性碳中的總混合氧化物負載為大約15.5重量百分比。裝載於活性碳孔中的混合氧化物含有50重量百分比之Al2O3、與50重量百分比之Fe2O3。該混合離子交換材料之表面積為1,220平方米/克,及其總孔體積為0.90立方公分/克。該材料之離子交換性質歸納於第1圖之表中。
[實施例4]
100毫升之混合氧化物先質溶液之製備包含混合77.2克之Al(NO3)3.9H2O、10克之30% Ce(NO3)3(以CeO2計)溶液、6克之25%硝酸氧鋯(以ZrO2計)溶液、與15克之去離子水。活性碳之型式、活性碳撐體之製備、及摻雜方法均類似實施例1所述。
該經乾燥的混合離子交換材料之LOD=7%。活性碳中的總混合氧化物負載為13重量百分比。裝載於活性碳孔中的混合氧化物含有70重量百分比之Al2O3、20重量百分比之CeO2、與10重量百分比之ZrO2。該混合離子交換材料之表面積為1,320平方米/克,及其總孔體積為0.95立方公分/克。該材料之離子交換性質歸納於第1圖之表中。
現將實施例1-4所製備的氫氧化鋁及混合材料以Bruker Avance III 400MHz光譜儀記錄Al-27 MAS NMR光譜,且敘述於第2圖之表中。
[實施例5]
在分批條件下以18小時之接觸時間進行吸附實驗。以下測試溶液被用於吸附實驗: a.氟化物離子-10ppm F+2mM NaHCO3+2mM Na2SO4,pH=6;b.磷酸離子-96ppm PO4,140mM Na,2mM K,1.5mM Ca,0.5mM Mg,pH=7.4;及c.砷酸離子-3.7ppm AsO4+2mM NaHCO3,pH=8。
為了比較目的而使用市售吸附劑粒狀氧化鐵(GFO)(Bayer AG)、MetSorb®(Graver Technologies LLC)、活性氧化鋁AA400、及鋯水合氧化物。
[實施例6]
在管柱條件下,以鋁水合氧化物、鈦水合氧化物(MetSorb®)、及實施例1之混合離子交換劑,實行砷酸離子移除之比較性測試。以8.3之pH,及100 BV/小時之流速,從含300ppb As(V)之2mM NaHCO3溶液進行吸附。管柱含有1.00克之介質。第3圖敘述實施例1、TiO2、及Al2O3之各種床體積之As移除(ppb)的比較性測試結果。
[實施例7]
在管柱條件下,以鋁水合氧化物(AA400G)、鈦水合氧化物(MetSorb®)、及實施例1之混合離子交換劑,實行氟化物離子移除之比較性測試。使用增加6.5ppm F,pH=8.3,及流速為100 BV/小時之自來水進行吸附。管柱含有1.00克之介質。第4圖敘述實施例1、TiO2、及Al2O3之各種床體積之As(ppb)的比較性測試結果。第4圖敘述實施例1、TiO2、及Al2O3之各種床體積之氟化物移除(ppb)的比較性測試結果。
[實施例8]
在實施例1之混合氧化物上,熱處理對AsO4及氟化物離子吸取的影響示於第5圖之表中。該砷測試溶液含有3.7ppm AsO4,pH為8。氟化物測試溶液在自來水中含有10ppm F,pH為7.5。接觸時間為大約18小時。
雖然本發明已特別連同指定較佳具體實施例而說明,但就以上的揭述,許多備案、修改、及變化對所屬技術領域者為明顯的。因此意圖所附申請專利範圍包含任何落入在本發明之確實範圍及精神內的備案、修改、及變化。

Claims (26)

  1. 一種混合離子交換材料,其包含:活性碳載體;包括氧化鋁之混合氧化物;摻雜多價金屬氧化物,包括鈦、鋯、錫、鈰、鑭、鐵、或錳、或其任何組合;及其中該混合氧化物或該摻雜多價金屬氧化物或兩者係設計成選擇性吸附有機分子、磷與砷之氟化物離子或氧基陰離子。
  2. 如請求項1之混合離子交換材料,其中該基於氧化鋁之混合氧化物被浸漬或沈積在該活性碳載體的孔中。
  3. 如請求項1之混合離子交換材料,其中該混合氧化物中的該氧化鋁為八面體、五面體、或四面體配位、或其組合。
  4. 如請求項1之混合離子交換材料,其中吸附劑中的該混合氧化物含量為約5重量百分比至約30重量百分比。
  5. 如請求項1之混合離子交換材料,其中吸附劑中的該混合氧化物含量為約10重量百分比至約20重量百分比。
  6. 如請求項1之混合離子交換材料,其中該混合氧化物中的該氧化鋁含量為約20重量百分比至約80重量百分比。
  7. 如請求項1之混合離子交換材料,其中該混合氧化物中的該氧化鋁含量為約50重量百分比至約80重量百分比。
  8. 如請求項1之混合離子交換材料,其中該活性碳載體包括粒狀、粉末、或成形碳塊形式的活性碳。
  9. 如請求項1之混合離子交換材料,其包括在約450℃煅燒2小時之後不損失40%以上的離子交換容量之性質。
  10. 如請求項1之混合離子交換材料,其對氟化物離子之吸附容量為每克離子交換材料約10毫克氟化物至約25毫克F/每克離子交換材料。
  11. 如請求項1之混合離子交換材料,其對pH範圍為大約5-6之血液透析液的PO4離子之吸附容量為每克離子交換材料至少50毫克PO4
  12. 如請求項1之混合離子交換材料,其在約7至8之pH範圍,對砷酸離子之吸附容量為每克離子交換材料約10毫克AsO4至每克離子交換材料約25毫克AsO4
  13. 如請求項1之混合離子交換材料,其中該材料之容量為用於選擇性吸附砷與磷之氟化物離子與氧基陰離子的個別金屬水合氧化物之大約80%或相等。
  14. 如請求項2之混合離子交換材料,其中該基於氧化鋁之混合氧化物如奈米尺寸粒子被浸漬或沈積在該活性碳載體的孔中。
  15. 如請求項3之混合離子交換材料,其中五面體配位氧化鋁之量為約10%至約30%,及四面體配位氧化鋁之量為約5%至約15%。
  16. 如請求項8之混合離子交換材料,其中該活性碳載體之表面積為700-2,000平方米/克之範圍,及孔體積為0.6-1.6立方公分/克之範圍。
  17. 如請求項10之混合離子交換材料,其中在6至7之pH範圍,該對氟化物離子之吸附容量為約10毫克F/每克離子交換材料至約25毫克F/每克離子交換材料。
  18. 一種製備混合離子交換材料之方法,其包含:a.提供多孔性活性碳撐體之粉末或顆粒;b.將含氧化鋁之混合氧化物先質的水溶液噴灑在該多孔性活性碳撐體之顆粒或粉末上;c.將已浸漬撐體乾燥;d.將該已浸漬活性碳撐體之顆粒或粉末以pH足以中和該撐體孔中酸性含氧化鋁之混合氧化物先質的鹼性試劑之溶液接觸,而在孔中形成奈米尺寸水合混合氧化物;e.將該混合離子交換材料以水清洗而移除滯留的電解質;及f.將該混合離子交換材料乾燥至LOD大約小於10%。
  19. 如請求項18之方法,其中該含氧化鋁之混合氧化物先質包含硫酸鋁、氯化鋁、硝酸鋁、或其組合之水溶性化合物。
  20. 如請求項19之方法,其包括沈積包含鈦、鋯、錫、鈰、鑭、鐵、錳、或其組合之水溶性硝酸鹽、氯化物、硫酸鹽的多價金屬化合物。
  21. 如請求項18之方法,其中該混合氧化物先質中的氧化鋁含量為大約20重量百分比至80重量百分比之範圍。
  22. 如請求項18之方法,其中該混合氧化物先質中的氧化鋁含量為大約50重量百分比至80重量百分比之範圍。
  23. 如請求項18之方法,其中該已浸漬活性碳撐體之顆粒或粉末經包括鹼氫氧化物、氫氧化銨、碳酸鹼鹽、碳酸銨、或其組合,pH為大約4-10之範圍的鹼性溶液處理。
  24. 如請求項18之方法,其中該多孔性活性碳撐體之粉末或顆粒被預先乾燥,而從該孔消除物理性吸附水。
  25. 如請求項18之方法,其中該將該含氧化鋁之混合氧化物先質的水溶液噴灑在該多孔性活性碳撐體之顆粒或粉末上的步驟係以足以充填該撐體的開孔達到其體積之至多90%之量實行。
  26. 如請求項18之方法,其中實行該乾燥已浸漬撐體的步驟,直到移除40%至60%之添加水。
TW105105776A 2015-03-04 2016-02-26 混合離子交換材料及其製造方法 TWI602614B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/637,786 US9901918B2 (en) 2015-03-04 2015-03-04 Hybrid ion exchange material and method for making the same

Publications (2)

Publication Number Publication Date
TW201634120A true TW201634120A (zh) 2016-10-01
TWI602614B TWI602614B (zh) 2017-10-21

Family

ID=56849049

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105105776A TWI602614B (zh) 2015-03-04 2016-02-26 混合離子交換材料及其製造方法

Country Status (9)

Country Link
US (2) US9901918B2 (zh)
EP (1) EP3265224B1 (zh)
JP (2) JP6641286B2 (zh)
KR (2) KR101868868B1 (zh)
CN (1) CN107107023B (zh)
AR (2) AR103837A1 (zh)
MX (1) MX2016011277A (zh)
TW (1) TWI602614B (zh)
WO (1) WO2016140843A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11364454B2 (en) 2018-06-07 2022-06-21 Graver Technologies Llc Filter media for the removal of particles, ions, and biological materials, and decolorization in a sugar purification process, and use thereof
US10759681B2 (en) 2018-06-28 2020-09-01 Board Of Trustees Of The University Of Arkansas Water purification compositions and the method of producing the same
CN109173988A (zh) * 2018-08-20 2019-01-11 扬州大学 磁性复合活性炭、制备方法及其在有机废水处理中的应用
CN109173991A (zh) * 2018-09-17 2019-01-11 榆林学院 一种处理含氟废水的载镧-铝杏壳活性炭制备方法
KR102520535B1 (ko) * 2018-12-24 2023-04-11 안형일 미네랄을 포함하는 사료 첨가 조성물
CN114105313B (zh) * 2021-12-09 2023-07-21 苏州中晟环境修复有限公司 一种以固定化微生物技术结合生物炭联合处理富营养化水体的方法
CN115722195B (zh) * 2022-12-05 2023-12-12 广东邦普循环科技有限公司 氟离子吸附剂的制备方法
US11904297B1 (en) 2023-01-11 2024-02-20 Iliad Ip Company, Llc Process for manufacturing lithium selective adsorption/separation media

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106682A (en) 1977-03-01 1978-09-16 Hitachi Ltd Supporting method for hydrated metal oxide on carrier
US4692431A (en) 1985-12-16 1987-09-08 The Dow Chemical Company Hydrous oxide activated charcoal
US5401481A (en) 1986-11-10 1995-03-28 Board Of Regents, The University Of Texas System Processes for removing acid components from gas streams
ATE142905T1 (de) 1989-05-16 1996-10-15 Engelhard Corp Verfahren zur herstellung einer säureaktivierten bleicherde
US5008226A (en) * 1989-05-16 1991-04-16 Engelhard Corporation Process for making acid activated bleaching earth using high susceptibility source clay and novel bleaching earth product
US5277931A (en) 1992-08-21 1994-01-11 Engelhard Corporation Composite ion-exchange material, preparation and use thereof
US5234876A (en) 1992-10-20 1993-08-10 Corning Incorporated Thermally stable chromium-exchanged zeolites and method of making same
US5948265A (en) 1996-07-05 1999-09-07 Tosoh Corporation Ion-exchanger, process for production thereof, and process for removal of multiply charged anions employing the ion-exchanger
JP3800900B2 (ja) * 1999-09-09 2006-07-26 三菱電機株式会社 冷凍冷蔵庫、冷凍冷蔵庫の運転方法
US7572380B2 (en) 2001-06-08 2009-08-11 The Penn State Research Foundation Method for oxyanion removal from ground water
US6914034B2 (en) 2001-08-27 2005-07-05 Calgon Carbon Corporation Adsorbents for removing heavy metals and methods for producing and using the same
US7429551B2 (en) 2001-08-27 2008-09-30 Calgon Carbon Corporation Adsorbents for removing heavy metals
DE10210786A1 (de) * 2002-03-12 2003-10-02 Bayer Ag Mischungen aus Adsorbermaterialien
JP4681384B2 (ja) 2005-07-28 2011-05-11 株式会社アステック 砒素吸着剤の製造方法及び砒素吸着剤
US7378372B2 (en) 2005-10-11 2008-05-27 Layne Christensen Company Filter and sorbent for removal of contaminants from a fluid
CN101405223B (zh) 2005-12-29 2012-08-22 北京微陶环保技术研究中心有限公司 从水中除去砷和重金属的方法及组合物
CN101415509B (zh) * 2006-02-16 2013-04-17 布莱阿姆青年大学 超高纯度金属氧化物、混合金属氧化物、金属以及金属合金的均匀纳米颗粒的制备
US8242051B2 (en) 2006-03-10 2012-08-14 Council Of Scientific & Industrial Research Carbon supported activated alumina absorbent useful for the removal of fluoride ions from water and a process for the preparation thereof
ES2526171T3 (es) 2006-12-14 2015-01-07 Novartis Ag Adsorbente de fosfato a base de hierro (III)-carbohidratos
JP5099348B2 (ja) * 2008-04-21 2012-12-19 戸田工業株式会社 吸着剤
US7786038B2 (en) 2008-04-29 2010-08-31 Research Center for Eco-Enviromental Sciences, Chinese Academy of Sciences Composite metal oxide adsorbent for fluoride removal
US8511319B2 (en) * 2008-11-20 2013-08-20 R. J. Reynolds Tobacco Company Adsorbent material impregnated with metal oxide component
EP2243547A1 (en) * 2009-04-20 2010-10-27 Fortum OYJ Novel sorbent, method of producing the same and the use thereof
CN102059093B (zh) * 2009-11-18 2012-10-10 中国科学院生态环境研究中心 砷氟共除纳米复合吸附剂
US8178065B2 (en) 2010-03-16 2012-05-15 The National Titanium Dioxide Co. Ltd. (Cristal) Photocatalyst comprising TiO2 and activated carbon made from date pits
CN102600790A (zh) * 2011-01-20 2012-07-25 中国科学院金属研究所 一种纳米水合氧化铈基除砷材料及其制备方法与除砷应用
US9296626B2 (en) 2011-01-21 2016-03-29 Kyungpook National University Industry-Academic Cooperation Foundation Method for producing an organic-inorganic hybrid sorbent by impregnating an oxide into nanopores of activated carbon and use thereof in water treatment
EP2800591B1 (en) * 2012-01-04 2016-01-13 Fresenius Medical Care Holdings, Inc. Method and system of enhancing removal of toxic anions and organic solutes in sorbent dialysis
US9809466B2 (en) * 2012-05-29 2017-11-07 Indian Institute Of Technology Kanpur Bi-metal nanoadsorbents and methods for their preparation and use
JP2018008596A (ja) * 2016-07-13 2018-01-18 日本精機株式会社 車両用表示装置

Also Published As

Publication number Publication date
AR103837A1 (es) 2017-06-07
KR20170032220A (ko) 2017-03-22
CN107107023B (zh) 2020-12-25
US9901918B2 (en) 2018-02-27
AR122464A2 (es) 2022-09-14
CN107107023A (zh) 2017-08-29
US10081012B2 (en) 2018-09-25
JP6625167B2 (ja) 2019-12-25
JP2018167269A (ja) 2018-11-01
EP3265224A4 (en) 2019-01-09
US20160256865A1 (en) 2016-09-08
KR20180039767A (ko) 2018-04-18
EP3265224A1 (en) 2018-01-10
JP2017511248A (ja) 2017-04-20
JP6641286B2 (ja) 2020-02-05
WO2016140843A1 (en) 2016-09-09
US20180133708A1 (en) 2018-05-17
MX2016011277A (es) 2017-04-27
TWI602614B (zh) 2017-10-21
EP3265224B1 (en) 2022-12-28
KR101868868B1 (ko) 2018-07-20
KR101937284B1 (ko) 2019-04-09

Similar Documents

Publication Publication Date Title
TWI602614B (zh) 混合離子交換材料及其製造方法
Kong et al. Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@ MgAl nanocomposites
Sun et al. Elaborate design of polymeric nanocomposites with Mg (ii)-buffering nanochannels for highly efficient and selective removal of heavy metals from water: case study for Cu (ii)
Zhang et al. Efficient removal of Pb (II) ions using manganese oxides: the role of crystal structure
Triantafyllidis et al. Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents
Purwajanti et al. Mesoporous magnesium oxide hollow spheres as superior arsenite adsorbent: synthesis and adsorption behavior
EP0655952B1 (en) Composite ion-exchange material, preparation and use thereof
Zhi et al. Ordered mesoporous MnO 2 as a synergetic adsorbent for effective arsenic (III) removal
JP2014529067A (ja) キャリヤ上に沈着する吸着剤、該吸着剤を製造する方法及び該吸着剤の使用
Alotaibi et al. Iron supported on bioinspired green silica for water remediation
Nilchi et al. Removal of arsenic from aqueous solutions by an adsorption process with titania–silica binary oxide nanoparticle loaded polyacrylonitrile polymer
Kundu et al. Carbon-layered double hydroxide nanocomposite for efficient removal of inorganic and organic based water contaminants–unravelling the adsorption mechanism
Liu et al. High-efficiency adsorption of phosphate by Fe-Zr-La tri-metal oxide composite from aqueous media: Performance and mechanism
KR20140127800A (ko) 정수용 다층 유기-형판화된-베마이트-나노구조물
WO2017081857A1 (ja) 吸着材担持体
US8664150B2 (en) Methods of producing adsorption media including a metal oxide
Ghiloufi et al. Preparation and characterization of nanoporous resin for heavy metal removal from aqueous solution
KR102554005B1 (ko) 중금속 흡착을 위한 표면 개질된 기능성 세라믹 필터 및 이의 제조방법
Ghosh et al. Nanotechnology for Advanced Oxidation Based Water Treatment Processes
TWI430958B (zh) Method and product for synthesizing monosodium titanate under neutral condition by chemical precipitation method
Chen et al. Preparation and adsorption performance of mesoporous Fe-Ce binary oxide for effective removal of arsenite

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees