TW201627745A - Imaging displacement module - Google Patents

Imaging displacement module Download PDF

Info

Publication number
TW201627745A
TW201627745A TW104140907A TW104140907A TW201627745A TW 201627745 A TW201627745 A TW 201627745A TW 104140907 A TW104140907 A TW 104140907A TW 104140907 A TW104140907 A TW 104140907A TW 201627745 A TW201627745 A TW 201627745A
Authority
TW
Taiwan
Prior art keywords
base
sub
displacement module
imaging displacement
images
Prior art date
Application number
TW104140907A
Other languages
Chinese (zh)
Other versions
TWI584045B (en
Inventor
林維賜
陳昭舜
廖洽成
張語宸
蔡建興
Original Assignee
揚明光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 揚明光學股份有限公司 filed Critical 揚明光學股份有限公司
Priority to TW104140907A priority Critical patent/TWI584045B/en
Priority to US15/088,144 priority patent/US10281715B2/en
Publication of TW201627745A publication Critical patent/TW201627745A/en
Priority to DE102016116150.0A priority patent/DE102016116150A1/en
Application granted granted Critical
Publication of TWI584045B publication Critical patent/TWI584045B/en
Priority to US16/403,619 priority patent/US10754147B2/en
Priority to US16/986,279 priority patent/US11314078B2/en
Priority to US17/700,536 priority patent/US11747609B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

An imaging displacement module is adapted to an optical device to switch image positions of a plurality of sub-images. The imaging displacement module includes a carrying base and a rotating base. The carrying base is adapted to control the rotating base to rotate along an axis back forth with limited angles, such that the sub-images projected on a screen shifted a first distance along the horizontal direction and a second distance along the vertical direction. Alternatively, the carrying base is adapted to control the rotating base to rotate relative to a biaxial of a reference plane, such as the sub-images move for a distance in one of moving directions.

Description

成像位移模組 Imaging displacement module

本發明是有關於一種成像位移模組,且特別是有關於一種可提高影像解析度之成像位移模組。 The invention relates to an imaging displacement module, and in particular to an imaging displacement module capable of improving image resolution.

一般背投影顯示產品主要係藉由光學引擎產生影像,並投射在螢幕上。為了使光學引擎投射於螢幕上的影像解析度更高,則光學引擎需使用較高解析度的顯示元件。此外,現今的超高畫質解析度的液晶顯示器已可提供3840x2160及4096×2160兩種規格之影像解析度。相對而言,現今的高畫質解析度(Full HD)的背投影顯示產品所提供的解析度已不符合市場需求,因此背投影顯示產品需要更高的解析度已符合市場的需求。然而,由於較高解析度之顯示元件其成本亦較高,所以在成本的考量下,如何利用低解析度畫素(pixel)的光閥達到高解析度影像畫面效果,以提高顯示裝置製造良率及降低成本,便成為一個要解決的問題。 Generally, the rear projection display product mainly generates images by the optical engine and projects on the screen. In order for the image resolution of the optical engine to be projected on the screen to be higher, the optical engine needs to use a higher resolution display element. In addition, today's ultra-high resolution LCD displays are available in 3840x2160 and 4096x2160 resolutions. Relatively speaking, today's high-definition resolution (Full HD) rear projection display products provide the resolution that is not in line with market demand, so the rear projection display products require higher resolution to meet the needs of the market. However, since the display device of higher resolution has a higher cost, how to use a low-resolution pixel light valve to achieve a high-resolution image frame effect in order to improve the display device manufacturing cost. Rate and cost reduction have become a problem to be solved.

本發明提供一種成像位移模組,可提供相對高的解析度。 The present invention provides an imaging displacement module that provides relatively high resolution.

本發明的一種成像位移模組,其適用於光學裝置中,切換多數個子影像的成像位置。此成像位移模組包括承載基座以及旋轉基座,旋轉基座具有光學元件部及轉軸。旋轉基座樞接於承載基座上,且承載基座適於控制旋轉基座於一角度內來回振動,使這些子影像同時在水平方向上之成像位置移動第一距離以及在垂直方向上之成像位置移動第二距離。光學元件部之對角線平行轉軸之軸線。 An imaging displacement module of the present invention is suitable for use in an optical device to switch an imaging position of a plurality of sub-images. The imaging displacement module includes a carrier base and a rotating base, and the rotating base has an optical component portion and a rotating shaft. The rotating base is pivotally connected to the carrying base, and the carrying base is adapted to control the rotating base to vibrate back and forth at an angle, so that the sub-images are simultaneously moved by the first distance and the vertical direction in the image forming position in the horizontal direction. The imaging position moves a second distance. The diagonal of the optical element portion is parallel to the axis of the shaft.

基於上述,在本發明的範例實施例中,成像位移模組的承載基座適於控制旋轉基座於一角度內來回振動,使子影像同時在水平方向上之成像位置移動第一距離以及在垂直方向上之成像位置移動第二距離。或者,成像位移模組的承載基座適於控制旋轉基座相對於參考平面的雙軸旋轉,以讓這些子影像沿多個移動方向其中之一移動一距離。因此,本發明的範例實施例的光學裝置可以用以相對低解析度的反射式光閥投影出相對高解析度之影像。 Based on the above, in an exemplary embodiment of the present invention, the carrying base of the imaging displacement module is adapted to control the rotating base to vibrate back and forth within an angle, so that the sub-image is simultaneously moved by the first distance in the horizontally-imaged position and The imaging position in the vertical direction is moved by the second distance. Alternatively, the carrier base of the imaging displacement module is adapted to control the biaxial rotation of the rotating base relative to the reference plane to move the sub-images a distance along one of the plurality of moving directions. Therefore, the optical device of the exemplary embodiment of the present invention can be used to project a relatively high resolution image with a relatively low resolution reflective light valve.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、200‧‧‧光學裝置 100, 200‧‧‧ optical devices

426a‧‧‧線圈座 426a‧‧‧ coil holder

110、210‧‧‧照明系統 110, 210‧‧‧ Lighting system

112、212‧‧‧光源 112, 212‧‧‧ Light source

114、214‧‧‧光束 114, 214‧‧ ‧beam

114a、214a、500‧‧‧子影像 114a, 214a, 500‧‧‧ sub-images

116、216‧‧‧色輪 116, 216‧‧‧ color wheel

117、217‧‧‧集光柱 117, 217‧‧ ‧ light column

118、218‧‧‧鏡片組 118, 218‧‧‧ lens group

119‧‧‧內部全反射稜鏡 119‧‧‧Internal total reflection稜鏡

120‧‧‧數位微鏡裝置 120‧‧‧Digital micromirror device

130、230‧‧‧投影鏡頭 130, 230‧‧‧ projection lens

140‧‧‧振動機構 140‧‧‧Vibration mechanism

219‧‧‧稜鏡 219‧‧‧稜鏡

220‧‧‧反射式光閥 220‧‧‧Reflective light valve

240、1000a、1000b、1000c、 1000d、1000e、1940‧‧‧成像位移模組 240, 1000a, 1000b, 1000c, 1000d, 1000e, 1940‧‧‧ imaging displacement module

242、246‧‧‧第一振動機構 242, 246‧‧‧ first vibration mechanism

242a、244a、322‧‧‧光學元件部 242a, 244a, 322‧‧‧ Optical Components Division

244‧‧‧第二振動機構 244‧‧‧Second vibrating mechanism

240‧‧‧成像位移模組 240‧‧‧Image Displacement Module

410、1100‧‧‧承載基座 410, 1100‧‧‧ bearing base

412‧‧‧磁性材料座 412‧‧‧Magnetic material holder

414a、414b、M1、M2、M3、M4、M5、M6‧‧‧磁性材料 414a, 414b, M1, M2, M3, M4, M5, M6‧‧‧ magnetic materials

420、1200‧‧‧旋轉基座 420, 1200‧‧‧ rotating base

422‧‧‧光學元件部 422‧‧‧Optical Components Division

426b‧‧‧線圈 426b‧‧‧ coil

428‧‧‧轉軸 428‧‧‧ shaft

430‧‧‧軸線 430‧‧‧ axis

432‧‧‧孔洞 432‧‧‧ holes

400‧‧‧螢幕 400‧‧‧ screen

1110‧‧‧第一承載框 1110‧‧‧First carrying frame

1120‧‧‧第二承載框 1120‧‧‧second carrier frame

1300‧‧‧彈性件 1300‧‧‧Flexible parts

1310‧‧‧第一彈性件對 1310‧‧‧The first elastic pair

1311‧‧‧第一彈性件 1311‧‧‧First elastic parts

1312‧‧‧第二彈性件 1312‧‧‧Second elastic parts

1320‧‧‧第二彈性件對 1320‧‧‧Second elastic pair

1400‧‧‧致動組件 1400‧‧‧Actuating components

1410‧‧‧第一致動組件 1410‧‧‧First actuating assembly

1420‧‧‧第二致動組件 1420‧‧‧Second actuation assembly

1500‧‧‧光學元件部 1500‧‧‧Optical Components Division

1610‧‧‧第一轉軸 1610‧‧‧First shaft

1620‧‧‧第二轉軸 1620‧‧‧second shaft

1900a、1900b‧‧‧三維列印設備 1900a, 1900b‧‧‧3D printing equipment

1910‧‧‧成型槽 1910‧‧‧forming trough

1912‧‧‧光敏感材料 1912‧‧‧Light sensitive materials

1920‧‧‧投影裝置 1920‧‧‧Projection device

1930‧‧‧升降載台 1930‧‧‧ Lifting platform

1932‧‧‧列印區 1932‧‧‧Printing area

X‧‧‧第一方向 X‧‧‧ first direction

Y‧‧‧第二方向 Y‧‧‧second direction

424‧‧‧承載座 424‧‧‧ bearing seat

426、C1、C2、C3、C4、C5、C6‧‧‧線圈模組 426, C1, C2, C3, C4, C5, C6‧‧‧ coil modules

XY1‧‧‧第三方向 XY1‧‧‧ third direction

XY2‧‧‧第四方向 XY2‧‧‧ fourth direction

Z‧‧‧第五方向 Z‧‧‧ fifth direction

X’、Y’、X’Y’1、X’Y’2、X”、Y”‧‧‧方向 X', Y', X'Y'1, X'Y'2, X", Y" ‧ ‧ directions

S‧‧‧參考平面 S‧‧‧ reference plane

w‧‧‧寬度 w‧‧‧Width

NW‧‧‧頸部寬度 NW‧‧‧ neck width

t‧‧‧厚度 T‧‧‧thickness

B‧‧‧影像光束 B‧‧·Image beam

OB‧‧‧三維列印物件 OB‧‧‧3D printed objects

圖1為一種光學裝置的結構示意圖。 1 is a schematic structural view of an optical device.

圖2繪示本發明一實施例所述之光學裝置的結構示意圖。 2 is a schematic structural view of an optical device according to an embodiment of the invention.

圖3繪示本發明一實施例之光學裝置的成像示意圖。 3 is a schematic view showing the imaging of an optical device according to an embodiment of the present invention.

圖4繪示本發明一實施例之成像位移模組的結構示意圖。 4 is a schematic structural view of an imaging displacement module according to an embodiment of the invention.

圖5繪示本發明圖4實施例之沿D-D虛線方向的剖面側視圖。 Figure 5 is a cross-sectional side view of the embodiment of Figure 4 taken along the line D-D.

圖6繪示本發明圖4實施例之沿A-A虛線方向的剖面側視圖。 Figure 6 is a cross-sectional side view of the embodiment of Figure 4 of the present invention taken along the line A-A.

圖7繪示本發明另一實施例之成像位移模組的結構示意圖。 FIG. 7 is a schematic structural diagram of an imaging displacement module according to another embodiment of the present invention.

圖8繪示本發明圖7實施例之沿D-D虛線方向的剖面側視圖。 Figure 8 is a cross-sectional side view of the embodiment of Figure 7 taken along the line D-D.

圖9繪示本發明圖7之沿A-A虛線方向的剖面側視圖。 Figure 9 is a cross-sectional side view of Figure 7 taken along line A-A of the present invention.

圖10A、圖11A、圖12A分別繪示本發明不同實施例之成像位移模組的結構示意圖。 10A, 11A, and 12A are respectively schematic structural views of an imaging displacement module according to different embodiments of the present invention.

圖10B、圖11B、圖12B分別繪示圖10A、圖11A、圖12A實施例之成像位移模組的上視圖。 10B, 11B, and 12B are top views of the imaging displacement module of the embodiment of Figs. 10A, 11A, and 12A, respectively.

圖10C、圖11C、圖12C分別繪示圖10A、圖11A、圖12A實施例之成像位移模組的剖面側視圖。 10C, 11C, and 12C are cross-sectional side views of the imaging displacement module of the embodiment of Figs. 10A, 11A, and 12A, respectively.

圖13A繪示本發明一實施例之子影像移動方向概要示意圖。 FIG. 13A is a schematic diagram showing a schematic direction of movement of a sub-image according to an embodiment of the present invention.

圖13B和圖13C繪示圖13A實施例之子影像的成像位移結果的概要示意圖。 13B and 13C are schematic diagrams showing the results of imaging displacement of the sub-image of the embodiment of FIG. 13A.

圖14A繪示本發明另一實施例之子影像的移動方向和成像位置的概要示意圖。 FIG. 14A is a schematic diagram showing a moving direction and an imaging position of a sub-image according to another embodiment of the present invention.

圖14B繪示圖14A實施例之旋轉基座在一圖框時間中相對不同方向旋轉時,其子影像的成像位置的概要對照圖。 FIG. 14B is a schematic diagram showing the imaging position of the sub-image when the rotating base of the embodiment of FIG. 14A rotates in different directions in a frame time. FIG.

圖15繪示本發明另一實施例之成像位移模組的結構立體示意圖。 FIG. 15 is a perspective view showing the structure of an imaging displacement module according to another embodiment of the present invention.

圖16A繪示本發明另一實施例之子影像的移動方向的概要示 意圖。 FIG. 16A is a schematic diagram showing a moving direction of a sub-image according to another embodiment of the present invention. intention.

圖16B繪示圖16A實施例之子影像成像位置概要示意圖。 FIG. 16B is a schematic diagram showing the sub-image imaging position of the embodiment of FIG. 16A.

圖17A繪示本發明一實施例之成像位移模組應用於投影鏡頭內部的立體示意圖。 FIG. 17A is a perspective view showing the application of the imaging displacement module to the inside of the projection lens according to an embodiment of the invention.

圖17B繪示本發明另一實施例之成像位移模組應用於投影鏡頭內部的立體示意圖。 FIG. 17B is a perspective view showing the application of the imaging displacement module to the inside of the projection lens according to another embodiment of the present invention.

圖18A繪示本發明一實施例成像位移模組結構立體示意圖。 FIG. 18A is a perspective view showing the structure of an imaging displacement module according to an embodiment of the invention.

圖18B繪示圖18A實施例之成像位移模組的第一彈性件的結構立體示意圖。 FIG. 18B is a perspective view showing the structure of the first elastic member of the imaging displacement module of the embodiment of FIG. 18A.

圖18C繪示圖18A實施例之成像位移模組的第一彈性件其振幅與時間的關係圖。 18C is a diagram showing the relationship between amplitude and time of the first elastic member of the imaging displacement module of the embodiment of FIG. 18A.

圖18D繪示第一彈性件其振幅與時間的關係圖。 Figure 18D is a graph showing the amplitude versus time of the first elastic member.

圖19A與圖19B分別繪示應用本發明上述任一實施例的成像位移模組的不同三維列印設備示意圖。 19A and 19B are schematic diagrams showing different three-dimensional printing apparatuses of an imaging displacement module according to any of the above embodiments of the present invention.

圖19C繪示由圖19A或圖19B的不同三維列印設備所三維列印出的三維列印物件示意圖。 FIG. 19C is a schematic diagram of a three-dimensionally printed object three-dimensionally printed by the different three-dimensional printing apparatus of FIG. 19A or FIG. 19B.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之多個實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如「上」、「下」、「前」、「後」、「左」、「右」等,僅是參考附加圖式的方向。因此,使用的方向 用語是用來說明,而非用來限制本發明。圖1繪示一種光學裝置的結構示意圖。請參照圖1,光學裝置100包括照明系統110、數位微鏡裝置120、投影鏡頭130以及振動機構140。其中,照明系統110具有光源112,其適於提供光束114,且數位微鏡裝置120配置光束114的傳遞路徑上。此數位微鏡裝置120適於將光束114轉換為多數個子影像114a。此外,投影鏡頭130配置於這些子影像114a的傳遞路徑上,且數位微鏡裝置120係位於照明系統110與投影鏡頭130之間。另外,振動機構140配置於數位微鏡裝置120與投影鏡頭130之間,且位於這些子影像114a的傳遞路徑上。 The foregoing and other objects, features, and advantages of the invention will be apparent from the Detailed Description The directional terms mentioned in the following embodiments, such as "upper", "lower", "front", "back", "left", "right", etc., are only directions referring to the additional schema. Therefore, the direction of use The terminology is used to illustrate, not to limit the invention. FIG. 1 is a schematic structural view of an optical device. Referring to FIG. 1 , the optical device 100 includes an illumination system 110 , a digital micromirror device 120 , a projection lens 130 , and a vibration mechanism 140 . Therein, the illumination system 110 has a light source 112 adapted to provide a light beam 114, and the digital micromirror device 120 configures a transmission path of the light beam 114. The digital micromirror device 120 is adapted to convert the light beam 114 into a plurality of sub-images 114a. In addition, the projection lens 130 is disposed on the transmission path of the sub-images 114a, and the digital micro-mirror device 120 is located between the illumination system 110 and the projection lens 130. In addition, the vibration mechanism 140 is disposed between the digital micromirror device 120 and the projection lens 130, and is located on the transmission path of the sub-images 114a.

上述之光學裝置100中,光源112所提供的光束114會依序經過色輪(color wheel)116、集光柱(light integration rod)117、鏡片組118及內部全反射稜鏡(TIR Prism)119。之後,內部全反射稜鏡119會將光束114反射至數位微鏡裝置120。此時,數位微鏡裝置120會將光束114轉換成多數個子影像114a,而這些子影像114a會依序通過內部全反射稜鏡119及振動機構140,並經由投影鏡頭130將這些子影像114a投影於螢幕400上。 In the optical device 100 described above, the light beam 114 provided by the light source 112 sequentially passes through a color wheel 116, a light integration rod 117, a lens group 118, and an internal total reflection 稜鏡 (TIR Prism) 119. Thereafter, the internal total reflection 稜鏡 119 reflects the beam 114 to the digital micromirror device 120. At this time, the digital micromirror device 120 converts the light beam 114 into a plurality of sub-images 114a, and the sub-images 114a sequentially pass through the internal total reflection 稜鏡119 and the vibration mechanism 140, and project the sub-images 114a via the projection lens 130. On the screen 400.

當這些子影像114a經過振動機構140時,振動機構140會改變部分這些子影像114a的傳遞路徑。也就是說,通過此振動機構140的這些子影像114a會投影在螢幕400上的第一位置(未繪示),另一部份時間內通過此振動機構140的這些子影像114a則會投影在螢幕400上的第二位置(未繪示),其中第一位置與第二位置係在水平方向(X軸)或垂直方向(Z軸)上相差一固定距離。由於振 動機構140僅能使這些子影像114a之成像位置在水平方向或垂直方向上移動一固定距離,因此能提高影像之水平解析度或垂直解析度。 When the sub-images 114a pass through the vibrating mechanism 140, the vibrating mechanism 140 changes the transmission paths of some of the sub-images 114a. That is, the sub-images 114a passing through the vibrating mechanism 140 are projected on a first position (not shown) on the screen 400, and the sub-images 114a passing through the vibrating mechanism 140 in another portion of the time are projected on the sub-image 114a. A second position (not shown) on the screen 400, wherein the first position and the second position are different in a horizontal direction (X-axis) or a vertical direction (Z-axis) by a fixed distance. Due to vibration The moving mechanism 140 can only move the imaging position of the sub-images 114a by a fixed distance in the horizontal direction or the vertical direction, thereby improving the horizontal resolution or the vertical resolution of the image.

圖2係繪示依照本發明一實施例所述之一種光學裝置的結構示意圖。請參照圖2,本實施例之光學裝置200包括照明系統210、反射式光閥220、投影鏡頭230、成像位移模組240以及螢幕400。其中,照明系統210具有光源212,其適於提供光束214,且反射式光閥220配置光束214的傳遞路徑上。此反射式光閥220適於將光束214轉換為多數個子影像214a。此外,投影鏡頭230配置於這些子影像214a的傳遞路徑上,且反射式光閥220係位於照明系統210與投影鏡頭230之間。 2 is a schematic structural view of an optical device according to an embodiment of the invention. Referring to FIG. 2 , the optical device 200 of the embodiment includes an illumination system 210 , a reflective light valve 220 , a projection lens 230 , an imaging displacement module 240 , and a screen 400 . Among other things, the illumination system 210 has a light source 212 that is adapted to provide a light beam 214, and the reflective light valve 220 configures a transmission path of the light beam 214. The reflective light valve 220 is adapted to convert the light beam 214 into a plurality of sub-images 214a. In addition, the projection lens 230 is disposed on the transmission path of the sub-images 214a, and the reflective light valve 220 is located between the illumination system 210 and the projection lens 230.

圖3繪示本實施例中,本實施例之光學裝置的成像示意圖。當子影像214a經過成像位移模組240時,成像位移模組240會改變部分這些子影像214a的傳遞路徑。也就是說,通過此成像位移模組240的這些子影像214a會投影在螢幕400上的第一位置(實線方格),而另一部份時間內通過此成像位移模組240的這些子影像214a則會投影在螢幕400上的第二位置(虛線方格),因此能同時提高影像之水平解析度及垂直解析度。上述之照明系統210例如是遠心照明系統或非遠心照明系統。此外,反射式光閥220例如是數位微鏡裝置或單晶矽反射式液晶面板,本實施例中係以數位微鏡裝置為例。上述之光源212提供的光束214會依序經過色輪216、集光柱217、鏡片組218及稜鏡219,而稜鏡219會將 光束214反射至反射式光閥220。此時,反射式光閥220會將光束214轉換成多數個子影像214a,而這些子影像214a會依序通過成像位移模組240、稜鏡219或是依序通過稜鏡219、成像位移模組240,並經由投影鏡頭230將這些子影像214a投影於螢幕400上。應注意的是,若使用不同顏色的LED當光源212,則色輪216可被省略。另外,也可使用微透鏡陣列(lens array)取代集光柱217進行光均勻化。 FIG. 3 is a schematic view showing the imaging of the optical device of the embodiment in the embodiment. When the sub-image 214a passes through the imaging displacement module 240, the imaging displacement module 240 changes the transmission path of some of the sub-images 214a. That is to say, the sub-images 214a passing through the imaging displacement module 240 are projected on the first position on the screen 400 (solid squares), and the other portions of the time are passed through the sub-images of the imaging displacement module 240. The image 214a is projected onto the second position (dashed square) on the screen 400, so that the horizontal resolution and the vertical resolution of the image can be simultaneously improved. The illumination system 210 described above is, for example, a telecentric illumination system or a non-telecentric illumination system. In addition, the reflective light valve 220 is, for example, a digital micromirror device or a single crystal germanium reflective liquid crystal panel. In this embodiment, a digital micromirror device is taken as an example. The light beam 214 provided by the light source 212 will sequentially pass through the color wheel 216, the light collecting column 217, the lens group 218 and the 稜鏡219, and the 稜鏡219 will Light beam 214 is reflected to reflective light valve 220. At this time, the reflective light valve 220 converts the light beam 214 into a plurality of sub-images 214a, and the sub-images 214a pass through the imaging displacement module 240, the 稜鏡219, or sequentially through the 稜鏡219, the imaging displacement module. 240, and the sub-images 214a are projected onto the screen 400 via the projection lens 230. It should be noted that if a different color LED is used as the light source 212, the color wheel 216 can be omitted. Alternatively, a light lens homogenization may be performed using a lens array instead of the light collecting column 217.

圖4、5、6分別繪示本發明一實施例之成像位移模組的結構立體示意圖、沿D-D虛線方向的剖面側視圖、以及沿A-A虛線方向的剖面側視圖。請參照圖4、5、6,本實施例中,成像位移模組240包括承載基座410及旋轉基座420。其中,旋轉基座420樞接於承載基座410上,且承載基座410適於控制旋轉基座420於一特定角度θ(未繪示)內來回振動。此旋轉基座420具有光學元件部422,此光學元件部422係位於上述這些子影像214a(如圖2中所示)的傳遞路徑上。而且,當旋轉基座420於此特定角度θ內來回振動時,此光學元件部422可使這些子影像214a之成像位置於一軸線430上移動一距離。換言之,成像位移模組240(如圖4中所示)之光學元件部422可使這些子影像214a之成像位置同時在水平方向(X軸)和在垂直方向(Z軸)上各移動一距離。 4, 5, and 6 are respectively a perspective view showing the structure of the imaging displacement module according to an embodiment of the present invention, a cross-sectional side view along the D-D dotted line direction, and a cross-sectional side view along the A-A dotted line direction. Referring to FIGS. 4 , 5 , and 6 , in the embodiment, the imaging displacement module 240 includes a carrier base 410 and a rotating base 420 . The rotating base 420 is pivotally connected to the carrying base 410, and the carrying base 410 is adapted to control the rotating base 420 to vibrate back and forth within a specific angle θ (not shown). The spin base 420 has an optical element portion 422 that is located on the transfer path of the sub-images 214a (shown in FIG. 2). Moreover, when the spin base 420 vibrates back and forth within this particular angle θ, the optical component portion 422 can move the imaging position of the sub-images 214a by a distance on an axis 430. In other words, the optical component portion 422 of the imaging displacement module 240 (as shown in FIG. 4) can move the imaging positions of the sub-images 214a simultaneously in the horizontal direction (X-axis) and in the vertical direction (Z-axis) by one distance. .

上述之成像位移模組240中,承載基座410例如包括磁性材料座412、兩磁性材料414a、414b以及感應模組(未繪示)。旋轉基座420例如包括光學元件部422、承載座424、線圈模組426 以及轉軸428。轉軸428上下兩端係藉由孔洞432而樞接於底座(未繪示)上。此外,感應模組配置於承載基座410上,而線圈模組426配置於旋轉基座420上,且感應模組係藉由線圈模組426控制旋轉基座420於此特定角度θ內來回振動。更詳細地說,承載基座410中例如具有磁性材料414a、414b,且感應模組係藉由改變線圈模組426之磁性,使線圈模組426與磁性材料414之間產生吸引力及排斥力兩者至少其中之一,以控制旋轉基座420於此特定角度θ內來回振動,進而改變上述這些子影像214a之成像位置。 In the imaging displacement module 240 described above, the carrier base 410 includes, for example, a magnetic material holder 412, two magnetic materials 414a and 414b, and a sensing module (not shown). The rotating base 420 includes, for example, an optical element portion 422, a carrier 424, and a coil module 426. And the shaft 428. The upper and lower ends of the rotating shaft 428 are pivotally connected to the base (not shown) by the holes 432. In addition, the sensing module is disposed on the carrier base 410, and the coil module 426 is disposed on the rotating base 420, and the sensing module controls the rotating base 420 to vibrate back and forth within the specific angle θ by the coil module 426. . In more detail, the carrier base 410 has magnetic materials 414a, 414b, for example, and the sensing module generates attraction and repulsive force between the coil module 426 and the magnetic material 414 by changing the magnetic properties of the coil module 426. At least one of the two controls the rotating base 420 to vibrate back and forth within the specific angle θ to change the imaging position of the sub-images 214a.

本發明一實施例中,感應模組例如包括電路板(未繪示)以及感應器(未繪示)。其中,電路板配置於底座上,而感應器配置於承載基座上。此感應器係用以感應旋轉基座之轉軸428擺動幅度,當轉軸428向磁性材料414a擺動一定幅度時,電路板會改變線圈模組426之磁性,使線圈模組426與磁性材料414a之間產生排斥力(使線圈模組426與磁性材料414b之間產生吸引力),進而使線圈模組426遠離磁性材料414a。而當轉軸428向磁性材料414b擺動一定幅度時,電路板會改變線圈模組426之磁性,使線圈模組426與磁性材料414b之間產生排斥力(使線圈模組426與磁性材料414a之間產生吸引力),進而使線圈模組426遠離磁性材料414b。藉由使線圈模組426貼近/遠離或遠離/貼近磁性材料414a/414b,可使旋轉基座420於此特定角度θ內來回振動,進而改變上述這些子影像214a之成像位置。 In an embodiment of the invention, the sensing module includes, for example, a circuit board (not shown) and a sensor (not shown). The circuit board is disposed on the base, and the inductor is disposed on the carrier base. The inductor is used to sense the amplitude of the rotation of the rotating shaft 428 of the rotating base. When the rotating shaft 428 swings to a certain extent to the magnetic material 414a, the circuit board changes the magnetic properties of the coil module 426, so that the coil module 426 and the magnetic material 414a are interposed. Repulsive forces are generated (increasing the attraction between the coil module 426 and the magnetic material 414b), thereby moving the coil module 426 away from the magnetic material 414a. When the rotating shaft 428 swings to the magnetic material 414b by a certain amplitude, the circuit board changes the magnetic properties of the coil module 426, and a repulsive force is generated between the coil module 426 and the magnetic material 414b (between the coil module 426 and the magnetic material 414a). The attraction is generated), thereby moving the coil module 426 away from the magnetic material 414b. By bringing the coil module 426 closer to/away from or away from/close to the magnetic material 414a/414b, the spin base 420 can be vibrated back and forth within this particular angle θ, thereby changing the imaging position of the sub-images 214a.

上述之成像位移模組240中,線圈模組426例如包括線 圈座426a以及線圈426b。其中,線圈426b係圍繞於線圈座426a上,電路板例如係藉由改變線圈426b中電流之方向,而使線圈模組426改變磁性。值得注意的是,在本實施例中,可藉由射出模具使旋轉基座420之轉軸428與光學元件部422一體成型。而在一實施例中,也可將旋轉基座420之轉軸428與光學元件部422是分開製造,再將光學元件部422與轉軸428組裝在一起。此外,光學元件部420可為一反射片或一透鏡。 In the imaging displacement module 240 described above, the coil module 426 includes, for example, a line. The ring seat 426a and the coil 426b. The coil 426b is surrounded by the coil base 426a. The circuit board changes the magnetic properties of the coil module 426, for example, by changing the direction of the current in the coil 426b. It should be noted that in the present embodiment, the rotating shaft 428 of the rotating base 420 and the optical element portion 422 can be integrally formed by the injection mold. In an embodiment, the rotating shaft 428 of the rotating base 420 and the optical element portion 422 may be separately manufactured, and the optical element portion 422 and the rotating shaft 428 may be assembled together. Further, the optical element portion 420 can be a reflective sheet or a lens.

圖7、8、9分別繪示本發明另一實施例之成像位移模組的結構立體示意圖、沿D-D虛線方向的剖面側視圖、以及沿A-A虛線方向的剖面側視圖。與圖4、5、6之實施例不同點在於,圖4中轉軸428上下兩端分別為水平和垂直配置,而本實施例將轉軸428上下兩端係水平配置。此外,本實施例將線圈模組分成兩部分427a、427b。當轉軸428向磁性材料414a擺動一定幅度時,電路板會改變線圈模組427a、427b之磁性,使線圈模組427a與磁性材料414a之間產生排斥力,同時使線圈模組427b與磁性材料部414b之間產生吸引力,進而使線圈模組427a遠離磁性材料414a。而當轉軸428向磁性材料414b擺動一定幅度時,電路板會改變線圈模組427a、427b之磁性,使線圈模組427b與磁性材料414b之間產生排斥力,同時使線圈模組427a與磁性材料部414a之間產生吸引力,進而使線圈模組427b遠離磁性材料414b。藉由使線圈模組427a、427b貼近/遠離或遠離/貼近磁性材料414a/414b,可使旋轉基座420於此特定角度θ內來回振動,進而改變上述這些子 影像214a之成像位置。 7, 8 and 9 are respectively a perspective view showing the structure of the imaging displacement module according to another embodiment of the present invention, a cross-sectional side view along the D-D dotted line direction, and a cross-sectional side view along the A-A dotted line direction. The difference from the embodiment of FIG. 4, FIG. 5 and FIG. 6 is that the upper and lower ends of the rotating shaft 428 are respectively arranged horizontally and vertically in FIG. 4, and the upper and lower ends of the rotating shaft 428 are horizontally arranged in this embodiment. Further, this embodiment divides the coil module into two portions 427a, 427b. When the rotating shaft 428 swings to the magnetic material 414a by a certain amplitude, the circuit board changes the magnetic properties of the coil modules 427a and 427b, and generates a repulsive force between the coil module 427a and the magnetic material 414a, and simultaneously causes the coil module 427b and the magnetic material portion. An attraction occurs between the 414bs, thereby moving the coil module 427a away from the magnetic material 414a. When the rotating shaft 428 swings to the magnetic material 414b by a certain amplitude, the circuit board changes the magnetic properties of the coil modules 427a and 427b, and generates a repulsive force between the coil module 427b and the magnetic material 414b, and simultaneously causes the coil module 427a and the magnetic material. An attraction force is generated between the portions 414a, thereby moving the coil module 427b away from the magnetic material 414b. By bringing the coil modules 427a, 427b closer to/away from or away from/close to the magnetic material 414a/414b, the rotating base 420 can be vibrated back and forth within the specific angle θ, thereby changing the above-mentioned sub-functions. The imaging position of image 214a.

圖10A繪示本發明另一實施例之成像位移模組的結構立體示意圖。圖10B繪示圖10A實施例的上視圖。圖10C繪示圖10A實施例的剖面側視圖。請先參照圖10A、圖10B以及圖10C,在本實施例中,成像位移模組1000a包括承載基座1100以及旋轉基座1200。旋轉基座1200經由至少一彈性件1300耦接至承載基座1100。承載基座1100適於控制旋轉基座1200相對於參考平面S的雙軸旋轉。在本實施例中,參考平面S的雙軸例如為第一方向X上的第一轉軸1610以及第二方向Y上的第二轉軸1620。第一轉軸1610以及第二轉軸1620的夾角為90度,並且第一轉軸1610以及第二轉軸1620定義出參考平面S。承載基座1100以及旋轉基座1200相對於第一轉軸1610對稱。旋轉基座1200相對於第一轉軸1610以及第二轉軸1620兩者之至少其中之一旋轉。 FIG. 10A is a perspective view showing the structure of an imaging displacement module according to another embodiment of the present invention. Figure 10B illustrates a top view of the embodiment of Figure 10A. Figure 10C is a cross-sectional side view of the embodiment of Figure 10A. Referring to FIG. 10A, FIG. 10B and FIG. 10C , in the embodiment, the imaging displacement module 1000 a includes a carrying base 1100 and a rotating base 1200 . The spin base 1200 is coupled to the carrier base 1100 via at least one elastic member 1300. The carrier base 1100 is adapted to control the biaxial rotation of the spin base 1200 with respect to the reference plane S. In the present embodiment, the two axes of the reference plane S are, for example, a first rotating shaft 1610 in the first direction X and a second rotating shaft 1620 in the second direction Y. The angle between the first rotating shaft 1610 and the second rotating shaft 1620 is 90 degrees, and the first rotating shaft 1610 and the second rotating shaft 1620 define a reference plane S. The carrier base 1100 and the spin base 1200 are symmetrical with respect to the first rotating shaft 1610. The spin base 1200 rotates relative to at least one of the first rotating shaft 1610 and the second rotating shaft 1620.

另一方面,在本實施例中,成像位移模組1000a更包括光學元件部1500。光學元件部1500設置在旋轉基座1200上。光學元件部包括反射鏡或透鏡。 On the other hand, in the embodiment, the imaging displacement module 1000a further includes an optical element portion 1500. The optical element portion 1500 is disposed on the spin base 1200. The optical component portion includes a mirror or a lens.

在本實施例中,至少一彈性件包括一第一彈性件對1310以及一第二彈性件對1320。承載基座1100包括第一承載框1110以及第二承載框1120,第一承載框1110設置於第二承載框1120上。第二承載框1120環繞第一承載框1110。第一承載框1110經由第一彈性件對1310耦接至旋轉基座1200,第二承載框1120經由第二彈性件對1320耦接至第一承載框1110。第一彈性件對1310 沿雙軸的其中之一轉軸1620設置在第一承載框1110的相對兩側,第二彈性件對1320沿雙軸的其中之另一轉軸1610設置在第二承載框1120之相對兩側。 In this embodiment, the at least one elastic member includes a first elastic member pair 1310 and a second elastic member pair 1320. The carrier base 1100 includes a first carrier frame 1110 and a second carrier frame 1120. The first carrier frame 1110 is disposed on the second carrier frame 1120. The second carrier frame 1120 surrounds the first carrier frame 1110. The first carrying frame 1110 is coupled to the rotating base 1200 via the first elastic member pair 1310 , and the second carrying frame 1120 is coupled to the first carrying frame 1110 via the second elastic member pair 1320 . First elastic member pair 1310 One of the rotating shafts 1620 along the two axes is disposed on opposite sides of the first carrying frame 1110, and the second elastic member pair 1320 is disposed on opposite sides of the second carrying frame 1120 along the other of the rotating shafts 1610 of the two axes.

在本實施例中,至少一彈性件1300為彈黃。於其他實施例中,至少一彈性件1300也可以是其他彈性可變形的物體,如板金件、薄金屬、扭轉彈簧或者塑膠,本發明並不以此為限。 In this embodiment, at least one elastic member 1300 is yellowed. In other embodiments, the at least one elastic member 1300 may also be other elastically deformable objects, such as sheet metal, thin metal, torsion spring or plastic, and the invention is not limited thereto.

在本實施例中,成像位移模組1000a更包括多個致動組件1400。這些多個致動組件1400設置在至少承載基座1100及旋轉基座1200兩者其中之一。承載基座1100係利用這些致動組件1400控制旋轉基座1200相對於參考平面S的雙軸旋轉。 In the embodiment, the imaging displacement module 1000a further includes a plurality of actuation components 1400. The plurality of actuation assemblies 1400 are disposed on at least one of the carrier base 1100 and the spin base 1200. The carrier base 1100 utilizes these actuation assemblies 1400 to control the biaxial rotation of the spin base 1200 relative to the reference plane S.

更具體來說,在本實施例中,這些多個致動組件1400包括第一致動組件1410以及第二致動組件1420。第一致動組件1410設置在承載基座1100上,沿著第二方向Y排列。承載基座1100利用第二致動組件1410控制旋轉基座1200相對於第一轉軸1610旋轉,此時旋轉基座1200與第一承載框1110同時相對於第二承載框1120旋轉。另一方面,第二致動組件1420設置在承載基座1100上,沿著第一方向X排列。承載基座1100利用第二致動組件1410控制旋轉基座1200相對於第二轉軸1620旋轉,此時旋轉基座1200相對於第一承載框1110旋轉。 More specifically, in the present embodiment, the plurality of actuation assemblies 1400 include a first actuation assembly 1410 and a second actuation assembly 1420. The first actuator assembly 1410 is disposed on the carrier base 1100 and arranged along the second direction Y. The carrier base 1100 controls the rotation base 1200 to rotate relative to the first rotation shaft 1610 by using the second actuation component 1410. At this time, the rotation base 1200 rotates simultaneously with the first carrier frame 1110 with respect to the second carrier frame 1120. On the other hand, the second actuation assembly 1420 is disposed on the carrier base 1100 and arranged along the first direction X. The carrier base 1100 controls the rotation base 1200 to rotate relative to the second rotation shaft 1620 by the second actuation assembly 1410, at which time the rotation base 1200 rotates relative to the first carrier frame 1110.

在本實施例中,第一致動組件1410包括兩個磁性材料M1、M2以及一個線圈模組C1。磁性材料M1、M2對稱第一轉軸1610設置於承載基座1100。線圈模組C1設置於第一轉軸1610 上,並且第二磁性件C1位於磁性材料M1、M2之間。第二致動組件1420包括兩個磁性材料M3、M4以及兩個線圈模組C2、C3。兩個磁性材料M3、M4對稱第二轉軸1620設置於承載基座1100上。兩個線圈模組C2、C3對稱第二轉軸1620設置於光學元件部1500上。兩個線圈模組C2、C3位於兩個磁性材料M3、M4之間。磁性材料M3、M4與線圈模組C2、C3沿著第一方向X排列。值得一提的是,本實施例的成像位移模組1000a所使用的線圈總長度最小,其轉動慣量最小。 In the present embodiment, the first actuation assembly 1410 includes two magnetic materials M1, M2 and a coil module C1. The magnetic material M1, M2 symmetrical first rotating shaft 1610 is disposed on the carrier base 1100. The coil module C1 is disposed on the first rotating shaft 1610 Upper, and the second magnetic member C1 is located between the magnetic materials M1, M2. The second actuation assembly 1420 includes two magnetic materials M3, M4 and two coil modules C2, C3. The two magnetic materials M3, M4 are symmetrically disposed on the second rotating shaft 1620 on the carrier base 1100. The two coil modules C2 and C3 are symmetrically disposed on the optical element portion 1500. Two coil modules C2, C3 are located between the two magnetic materials M3, M4. The magnetic materials M3, M4 and the coil modules C2, C3 are arranged along the first direction X. It is worth mentioning that the imaging displacement module 1000a of the embodiment has the smallest total length of the coil and the smallest moment of inertia.

具體而言,在本實施例中,感應模組(未繪示)藉由改變線圈模組C1、C2、C3的磁性,以控制旋轉基座1200相對於參考平面S的雙軸旋轉。感應模組(未繪示)包括電路板以及感應器。感應器係用以感應第一轉軸1610以及第二轉軸1620的擺動幅度。當第一轉軸1610或第二轉軸1620的擺動一定幅度時,電路板藉由改變線圈模組C1、C2、C3上的電流方向,使線圈模組C1、C2、C3改變磁性。因此,線圈模組C1、C2、C3與磁性材料M1、M2、M3、M4之間產生排斥力或吸引力,使線圈模組C1、C2、C3遠離或靠近磁性材料M1、M2、M3、M4,進而控制旋轉基座1200相對於參考平面S的雙軸旋轉。 Specifically, in the embodiment, the sensing module (not shown) controls the magnetic rotation of the coil modules C1, C2, and C3 to control the biaxial rotation of the rotating base 1200 with respect to the reference plane S. The sensing module (not shown) includes a circuit board and an inductor. The inductor is used to sense the amplitude of the swing of the first shaft 1610 and the second shaft 1620. When the first rotating shaft 1610 or the second rotating shaft 1620 swings by a certain amplitude, the circuit board changes the direction of the current on the coil modules C1, C2, and C3 to change the magnetic properties of the coil modules C1, C2, and C3. Therefore, a repulsive force or attractive force is generated between the coil modules C1, C2, and C3 and the magnetic materials M1, M2, M3, and M4, so that the coil modules C1, C2, and C3 are away from or close to the magnetic materials M1, M2, M3, and M4. In turn, the biaxial rotation of the spin base 1200 with respect to the reference plane S is controlled.

在本實施例中,多個致動組件包括磁性材料及線圈所構成。於其他實施例中,這些致動組件也可以是利用壓電材料或者步進馬達來達到如同本實施例中的致動效果,本發明不以此為限。 In this embodiment, the plurality of actuation components are comprised of a magnetic material and a coil. In other embodiments, the actuating components may also utilize a piezoelectric material or a stepping motor to achieve an actuation effect as in the present embodiment, and the invention is not limited thereto.

在此必須說明的是,下述實施例沿用前述實施例的元件 標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。 It must be noted here that the following embodiments follow the components of the foregoing embodiments. The same reference numerals are used to denote the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted portions, reference may be made to the foregoing embodiments, and the following embodiments are not repeated.

圖11A繪示本發明另一實施例之成像位移模組的結構立體示意圖。圖11B繪示圖11A實施例之成像位移模組的上視圖。圖11C繪示圖11A實施例之成像位移模組的剖面側視圖。請同時參考圖11A、圖11B以及圖11C,本實施例的成像位移模組1000b與成像位移模組1000a主要的差異是在於:本實施例的第二致動組件1420中的線圈模組C4設置在旋轉基座1200上,並且線圈模組C4環繞旋轉基座1200的光學元件部1500。值得一提的是,本實施例的所使用到的線圈數量少,製程上相對來說較為簡單。 FIG. 11A is a perspective view showing the structure of an imaging displacement module according to another embodiment of the present invention. 11B is a top view of the imaging displacement module of the embodiment of FIG. 11A. 11C is a cross-sectional side view of the imaging displacement module of the embodiment of FIG. 11A. Referring to FIG. 11A, FIG. 11B and FIG. 11C, the main difference between the imaging displacement module 1000b and the imaging displacement module 1000a of the present embodiment is that the coil module C4 in the second actuation component 1420 of the embodiment is set. On the spin base 1200, and the coil module C4 surrounds the optical element portion 1500 of the spin base 1200. It is worth mentioning that the number of coils used in this embodiment is small, and the process is relatively simple.

圖12A繪示本發明另一實施例之成像位移模組的結構立體示意圖。圖12B繪示圖12A實施例之成像位移模組的上視圖。圖12C繪示圖12A實施例之成像位移模組的剖面側視圖。請同時參考圖12A、圖12B以及圖12C,本實施例的成像位移模組1000c與成像位移模組1000a主要的差異例如如下。在本實施例中,承載基座1100以及旋轉基座1200除了相對於第一轉軸1610對稱之外還相對於第二轉軸1620對稱。在本實施例中,第一彈性件對1310沿著第一轉軸1610設置在第二承載框1120之相對兩側,第二彈性件對1320沿著第二轉軸1620設置在第一承載框1110的相對兩側。此外,在本實施例中,第一致動組件1410包括兩個磁性材料M5、M6以及兩個線圈模組C5、C6。磁性材料M5、M6皆 對稱於第一轉軸1610,並設置在承載基座1100上。線圈模組C5、C6皆對稱於第一轉軸1610,並設置在光學元件部1500上。磁性材料M5、M6以及線圈模組C5、C6沿著第二方向排列,線圈模組C5、C6位於磁性材料M5、M6之間。 FIG. 12A is a perspective view showing the structure of an imaging displacement module according to another embodiment of the present invention. Figure 12B is a top view of the imaging displacement module of the embodiment of Figure 12A. 12C is a cross-sectional side view of the imaging displacement module of the embodiment of FIG. 12A. Referring to FIG. 12A, FIG. 12B and FIG. 12C simultaneously, the main difference between the imaging displacement module 1000c and the imaging displacement module 1000a of the present embodiment is as follows. In the present embodiment, the carrier base 1100 and the spin base 1200 are symmetrical with respect to the second rotating shaft 1620 in addition to being symmetrical with respect to the first rotating shaft 1610. In this embodiment, the first elastic member pair 1310 is disposed on opposite sides of the second bearing frame 1120 along the first rotating shaft 1610 , and the second elastic member pair 1320 is disposed on the first carrying frame 1110 along the second rotating shaft 1620 . Relative sides. Further, in the present embodiment, the first actuation assembly 1410 includes two magnetic materials M5, M6 and two coil modules C5, C6. Magnetic materials M5, M6 It is symmetrical to the first rotating shaft 1610 and is disposed on the carrier base 1100. The coil modules C5 and C6 are both symmetrical to the first rotating shaft 1610 and disposed on the optical element portion 1500. The magnetic materials M5 and M6 and the coil modules C5 and C6 are arranged along the second direction, and the coil modules C5 and C6 are located between the magnetic materials M5 and M6.

在本實施例中,第一致動組件1410與第二致動組件1420分別對稱於第一轉軸1610以及第二轉軸1620配置。也就是說,本實施例的成像位移模組1000c的第一致動組件1410以及第二致動組件1420具有高度對稱性,馬達可以設定相同出力,控制上較為容易。再者,第一致動組件1410以及第二致動組件1420相對於前述的實施例具有較長的力臂,因此啟動成像位移模組1000c的所需的力量相對較小。此外,由於四個磁性材料或四個線圈模組之間距離較遠,相對於前述的實施例來說,彼此之間較不易被干擾。 In the present embodiment, the first actuation assembly 1410 and the second actuation assembly 1420 are respectively configured symmetrically with respect to the first rotation shaft 1610 and the second rotation shaft 1620. That is to say, the first actuation component 1410 and the second actuation component 1420 of the imaging displacement module 1000c of the present embodiment have high symmetry, and the motor can set the same output, which is relatively easy to control. Moreover, the first actuation assembly 1410 and the second actuation assembly 1420 have longer force arms relative to the previously described embodiments, and thus the required force to activate the imaging displacement module 1000c is relatively small. In addition, since the distance between the four magnetic materials or the four coil modules is relatively long, it is less likely to be interfered with each other with respect to the foregoing embodiments.

圖13A繪示本發明一實施例之子影像的移動方向的概要示意圖。圖13B和圖13C繪示圖13A實施例之子影像的成像位移結果的概要示意圖。請同時參照圖13A以及圖13B,在本發明實施例中,成像位移模組適用於光學裝置,成像位移模組切換多個子影像的成像位置,以讓這些子影像500沿多個移動方向的其中之一移動一距離。這些子影像500的位置係依據旋轉基座1200的旋轉方式來決定。具體來說,在本實施例中,當旋轉基座1200相對於第一轉軸1610或第二轉軸1620其中之一旋轉時,這些子影像500的位置例如在圖2的螢幕400上,沿多個移動方向其中之 一移動一距離,多個移動方向例如是第一方向X或第二方向Y。在本實施例中,此距離為約0.7倍畫素寬度。因此,這些子影像500由原先的位置(實線方格)可以擺動至四個不同的位置(虛線方格),換言之,可以提高影像解析度至原先的四倍影像解析度。在另一實施例中,請參考圖13C,當旋轉基座1200相對於第一轉軸1610或/且第二轉軸1620旋轉時,這些子影像500可沿多個移動方向例如是第一方向X、第二方向Y、第三方向XY1及第四方向XY2其中之一移動。更進一步的說,當旋轉基座1200相對於第一轉軸1610及第二轉軸1620同時旋轉時,這些子影像500例如在第三方向XY1或第四方向XY2上移動一距離,其中第三方向XY1及第四方向XY2是介於第一方向X及第二方向Y之間。 FIG. 13A is a schematic diagram showing the moving direction of a sub-image according to an embodiment of the present invention. 13B and 13C are schematic diagrams showing the results of imaging displacement of the sub-image of the embodiment of FIG. 13A. Referring to FIG. 13A and FIG. 13B simultaneously, in the embodiment of the present invention, the imaging displacement module is applied to an optical device, and the imaging displacement module switches the imaging positions of the plurality of sub-images so that the sub-images 500 are in a plurality of moving directions. One moves a distance. The position of these sub-images 500 is determined according to the manner in which the spin base 1200 is rotated. Specifically, in the present embodiment, when the spin base 1200 is rotated relative to one of the first rotating shaft 1610 or the second rotating shaft 1620, the positions of the sub-images 500 are, for example, on the screen 400 of FIG. Moving direction When moving a distance, the plurality of moving directions are, for example, the first direction X or the second direction Y. In the present embodiment, this distance is about 0.7 times the pixel width. Therefore, these sub-images 500 can be swung from the original position (solid square) to four different positions (dashed squares), in other words, the image resolution can be improved to the original quadruple image resolution. In another embodiment, referring to FIG. 13C, when the spin base 1200 is rotated relative to the first rotating shaft 1610 or/and the second rotating shaft 1620, the sub-images 500 may be in a plurality of moving directions, for example, the first direction X, One of the second direction Y, the third direction XY1, and the fourth direction XY2 moves. Further, when the spin base 1200 rotates simultaneously with respect to the first rotating shaft 1610 and the second rotating shaft 1620, the sub-images 500 move by a distance, for example, in the third direction XY1 or the fourth direction XY2, wherein the third direction XY1 And the fourth direction XY2 is between the first direction X and the second direction Y.

圖14A繪示本發明另一實施例之子影像的移動方向和成像位置的概要示意圖。圖14B繪示圖14A實施例之旋轉基座在一圖框時間中相對不同方向旋轉時,其子影像的成像位置的概要對照圖。請先參照圖14A,在本實施例中,當旋轉基座相對於第一轉軸或第二轉軸其中之一旋轉時,這些子影像500沿方向X’或Y’其中之一移動。更進一步的說,當旋轉基座相對於第一轉軸及第二轉軸同時旋轉時,這些子影像500在方向X’Y’1或方向X’Y’2其中之一移動一距離,其中方向X’Y’1及方向X’Y’2是介於方向X’及方向Y’之間。 FIG. 14A is a schematic diagram showing a moving direction and an imaging position of a sub-image according to another embodiment of the present invention. FIG. 14B is a schematic diagram showing the imaging position of the sub-image when the rotating base of the embodiment of FIG. 14A rotates in different directions in a frame time. FIG. Referring first to Figure 14A, in the present embodiment, when the spin base is rotated relative to one of the first or second reels, the sub-images 500 move in one of the directions X' or Y'. Further, when the rotating base rotates simultaneously with respect to the first rotating shaft and the second rotating shaft, the sub-images 500 move by a distance in one of the directions X'Y'1 or the direction X'Y'2, wherein the direction X 'Y'1 and direction X'Y'2 are between the direction X' and the direction Y'.

請再參照圖14A,當旋轉基座相對於第一轉軸及第二轉軸兩者至少其中之一旋轉時,這些子影像500的位置沿方向X’、 Y’、X’Y’1及X’Y’2位移的示意圖。具體來說,在本實施例中,這些子影像500在方向X’以及在方向Y’上移動的距離皆為1畫素寬度,這些子影像500在方向X’Y’1或方向X’Y’2上移動的距離約為1.4畫素寬度。 Referring again to FIG. 14A, when the rotating base rotates with respect to at least one of the first rotating shaft and the second rotating shaft, the positions of the sub-images 500 are along the direction X', Schematic representation of the displacement of Y', X'Y'1 and X'Y'2. Specifically, in the embodiment, the distances of the sub-images 500 moving in the direction X′ and in the direction Y′ are all 1 pixel width, and the sub-images 500 are in the direction X′Y′1 or the direction X′Y. The distance moved on '2 is about 1.4 pixels wide.

更詳細的說,在圖14A及14B中,其標記的數字標號1至9分別代表同一子影像於不同的時間下位於不同的位置標號。數字標號1代表的是子影像500沒有移動的位置。數字標號3、7代表的是子影像500在方向X’上向右或向左移動的位置。數字標號5、9代表的是子影像500在方向Y’上向下或向上移動的位置。數字標號2、6代表的是子影像500在方向X’Y’1上移動的位置。數字標號4、8代表的是子影像500在方向X’Y’2上移動的位置。 In more detail, in FIGS. 14A and 14B, the reference numerals 1 to 9 respectively denote that the same sub-image is located at different position marks at different times. Numeral 1 denotes a position where the sub-image 500 does not move. Numerals 3, 7 represent positions where sub-image 500 is moved to the right or left in direction X'. Numerals 5, 9 represent the position at which the sub-image 500 moves downward or upward in the direction Y'. Numerals 2 and 6 represent the position at which the sub-image 500 moves in the direction X'Y'1. The numeral 4, 8 represents the position at which the sub-image 500 moves in the direction X'Y'2.

圖14B中的數字標號1所代表的意思是在此時間區間內,這些子影像500在對應圖14A的數字標號1的位置上。同樣地,圖14B中的數字標號2至9所代表的意思是在各個不同時間區間內,這些子影像500在對應圖14A的數字標號2~9的位置上。 The numeral 1 in Fig. 14B means that these sub-images 500 are at positions corresponding to the numeral 1 of Fig. 14A during this time interval. Similarly, the numerals 2 to 9 in Fig. 14B mean that the sub-images 500 are at positions corresponding to the numerical symbols 2 to 9 of Fig. 14A in respective different time intervals.

圖14B的縱軸對應到在不同的時間區間內,子影像500可沿著不同的方向移動(方向X’或/及方向Y’)。舉例而言,當在數字標號為1時,其在方向X’及方向Y’對應的縱軸值皆為0,代表子影像500不往方向X’也不往方向Y’作動。當在數字標號為2時,其在方向X’及方向Y’對應的縱軸值皆為正,代表子影像500由位置1往方向X’和方向Y’之間的方向移動到位置2,也就是方向X’Y’1。當在數字標號為3時,其在方向X’對應的縱軸值為正 及方向Y’對應的縱軸值為0,代表子影像500由位置1往方向X’作動到位置3。當在數字標號為4時,其在方向X’對應的縱軸值為正,在方向Y’對應的縱軸值為負,代表的是子影像500由位置1往方向X’和負的方向Y’向量合成的方向作動到位置4,也就是方向X’Y’的反方向。接續的數字標號以此類推,在此不再贅述。應注意的是,在此處僅為舉例這些子影像500可在方向X’、方向Y’方向X’Y’1或方向X’Y’2上移動的其中一種順序,本發明並不以此為限。另外,子影像500(實線方格)可以在圖14B移動至不同的九個位置(虛線方格),換言之,可以提高影像解析度至原先的九倍影像解析度。 The vertical axis of Fig. 14B corresponds to the sub-image 500 being movable in different directions (direction X' or/and direction Y') in different time intervals. For example, when the numeral is 1, the vertical axis values corresponding to the direction X' and the direction Y' are all 0, which means that the sub-image 500 does not move in the direction X' or the direction Y'. When the numeral is 2, the vertical axis values corresponding to the direction X' and the direction Y' are both positive, and the sub-image 500 is moved from the position 1 to the direction between the direction X' and the direction Y' to the position 2, That is the direction X'Y'1. When the numeral is 3, its vertical axis value corresponding to the direction X' is positive. The vertical axis value corresponding to the direction Y' is 0, which means that the sub-image 500 is moved from the position 1 to the direction X' to the position 3. When the numeral is 4, the vertical axis value corresponding to the direction X' is positive, and the vertical axis value corresponding to the direction Y' is negative, which represents the sub-image 500 from the position 1 to the direction X' and the negative direction. The direction of Y' vector synthesis is actuated to position 4, which is the opposite direction of direction X'Y'. The continuation of the numerical designation and so on will not be repeated here. It should be noted that here is merely one of the sequences in which the sub-images 500 can move in the direction X', the direction Y' direction X'Y'1 or the direction X'Y'2, and the present invention does not Limited. In addition, the sub-image 500 (solid square) can be moved to different nine positions (dashed squares) in FIG. 14B, in other words, the image resolution can be improved to the original nine-fold image resolution.

圖15繪示本發明另一實施例之成像位移模組的結構立體示意圖。請參照圖15,在本實施例中,成像位移模組1000d與成像位移模組1000b主要的差異在於:本實施例的第一轉軸1610與第二轉軸1620具有一夾角。舉例而言,本實施例的夾角為45度,也就是說,本發明的範例實施例之第一轉軸1610與第二轉軸1620並不限定於兩者彼此互相垂直。 FIG. 15 is a perspective view showing the structure of an imaging displacement module according to another embodiment of the present invention. Referring to FIG. 15, in the present embodiment, the main difference between the imaging displacement module 1000d and the imaging displacement module 1000b is that the first rotating shaft 1610 of the present embodiment has an angle with the second rotating shaft 1620. For example, the angle of the embodiment is 45 degrees, that is, the first rotating shaft 1610 and the second rotating shaft 1620 of the exemplary embodiment of the present invention are not limited to being perpendicular to each other.

圖16A繪示本發明另一實施例之子影像的移動方向的概要示意圖。圖16B繪示圖16A實施例之子影像的成像位置的概要示意圖。請參照圖16A,具體來說,在本實施例中,當旋轉基座相對於第一轉軸或第二轉軸其中之一旋轉時,這些子影像的位置沿方向X”或方向Y”移動一距離。在本實施例中,此距離在沿方向X”時為1倍畫素寬度,沿方向Y”時為約1.1倍畫素寬度。因此, 這些子影像由原先的位置(實線方格)可以擺動至四個不同的位置(虛線方格),換言之,可以提高影像解析度至原先的四倍影像解析度。 FIG. 16A is a schematic diagram showing the moving direction of a sub-image according to another embodiment of the present invention. FIG. 16B is a schematic diagram showing the imaging position of the sub-image of the embodiment of FIG. 16A. Referring to FIG. 16A, in particular, in the embodiment, when the rotating base rotates relative to one of the first rotating shaft or the second rotating shaft, the positions of the sub-images are moved by a distance along the direction X" or the direction Y" . In the present embodiment, this distance is 1 pixel width in the direction X" and about 1.1 pixel width in the direction Y". therefore, These sub-images can be swung to four different positions (dashed squares) from the original position (solid squares), in other words, the image resolution can be improved to the original quadruple image resolution.

圖17A繪示本發明一實施例之成像位移模組應用於投影鏡頭內部的立體示意圖。圖17B繪示本發明另一實施例之成像位移模組應用於投影鏡頭內部的立體示意圖。請同時參照圖17A以及圖17B,本發明之實施例的成像位移模組也可以置於投影鏡頭的內部或者投影鏡頭的前方,以使投射出的影像解析度提升為原先四倍的影像解析度。 FIG. 17A is a perspective view showing the application of the imaging displacement module to the inside of the projection lens according to an embodiment of the invention. FIG. 17B is a perspective view showing the application of the imaging displacement module to the inside of the projection lens according to another embodiment of the present invention. Referring to FIG. 17A and FIG. 17B simultaneously, the imaging displacement module of the embodiment of the present invention can also be placed inside the projection lens or in front of the projection lens, so that the projected image resolution is improved to four times the original image resolution. .

圖18A繪示本發明一實施例之成像位移模組的結構立體示意圖。圖18B繪示圖18A實施例之成像位移模組的第一彈性件的結構立體示意圖。圖18C繪示圖18A實施例之成像位移模組的第一彈性件之振幅與時間的關係圖。圖18D繪示用以驅動第一彈性件的訊號其振幅與時間的關係圖。 FIG. 18A is a perspective view showing the structure of an imaging displacement module according to an embodiment of the invention. FIG. 18B is a perspective view showing the structure of the first elastic member of the imaging displacement module of the embodiment of FIG. 18A. FIG. 18C is a diagram showing the relationship between the amplitude of the first elastic member and the time of the imaging displacement module of the embodiment of FIG. 18A. Figure 18D is a diagram showing the relationship between the amplitude of the signal for driving the first elastic member and time.

圖18A的成像位移模組可以由前述實施例之敘述中獲致足夠的教示、建議與實施說明。因此,在圖18A中僅標示下列段落說明所需的元件符號,其他部分不再贅述。此外,由於本實施例中的第一彈性件對1310類似於第二彈性件對1320,因此下列段落係以第一彈性件對1310舉例來說明,第二彈性件對1320的操作方式可以此類推。 The imaging displacement module of Fig. 18A can be sufficiently taught, suggested, and implemented by the description of the foregoing embodiments. Therefore, only the following paragraphs are labeled in FIG. 18A to describe the required component symbols, and the rest will not be described again. In addition, since the first elastic member pair 1310 in this embodiment is similar to the second elastic member pair 1320, the following paragraphs are exemplified by the first elastic member pair 1310, and the second elastic member pair 1320 can be operated in the same manner. .

請參照圖18A,舉例而言,在本實施例中,第一彈性件對1310包括第一彈性件1311以及第二彈性件1312。第一彈性件 1311以及第二彈性件1312係以彼此垂直的方式沿著本實施例的成像位移模組1000e的第一轉軸1610設置,此配置方式可使第一轉軸1610通過光學元件部1500的軸心。 Referring to FIG. 18A, for example, in the embodiment, the first elastic member pair 1310 includes a first elastic member 1311 and a second elastic member 1312. First elastic member The first elastic shaft 1610 is disposed along the first rotating shaft 1610 of the imaging displacement module 1000e of the present embodiment in such a manner as to be perpendicular to each other, and the first rotating shaft 1610 can pass through the axial center of the optical element portion 1500.

一般來說,當第一彈性件1311的振幅由一方向轉換至另一方向時,其振幅轉換的過程所需的時間稱為轉換時間(transition time)T。轉換時間T的長短決定了子影像的顯示品質。由於轉換時間T與第一彈性件1311的自然頻率成反比,而自然頻率與第一彈性件1311的結構參數有關。因此前述所提到影響自然頻率的因素皆可為影響轉換時間T的因素。 In general, when the amplitude of the first elastic member 1311 is switched from one direction to the other direction, the time required for the process of amplitude conversion is referred to as a transition time T. The length of the conversion time T determines the display quality of the sub-image. Since the switching time T is inversely proportional to the natural frequency of the first elastic member 1311, the natural frequency is related to the structural parameters of the first elastic member 1311. Therefore, the aforementioned factors affecting the natural frequency can be factors affecting the conversion time T.

請參照圖18B。承上述,轉換時間T與第一彈性件1311的結構參數有關。在本實施例中,第一彈性件1311的頸部寬度NW的結構參數例如是第一彈性件1311的寬度w的0.2倍至0.6倍。此外,第一彈性件1311的厚度t也是影響轉換時間T的一個原因。在一實施例中,第一彈性件1311的厚度t至少在0.2毫米(mm)以上。此厚度的設計可使第一彈性件1311的自然頻率至少大於90Hz。由於自然頻率與轉換時間T成反比,因此此厚度設計也可以有效地降低轉換時間T。 Please refer to FIG. 18B. In view of the above, the conversion time T is related to the structural parameters of the first elastic member 1311. In the present embodiment, the structural parameter of the neck width NW of the first elastic member 1311 is, for example, 0.2 to 0.6 times the width w of the first elastic member 1311. Further, the thickness t of the first elastic member 1311 is also a cause of affecting the switching time T. In an embodiment, the first elastic member 1311 has a thickness t of at least 0.2 millimeters (mm) or more. This thickness is designed such that the natural frequency of the first elastic member 1311 is at least greater than 90 Hz. Since the natural frequency is inversely proportional to the conversion time T, this thickness design can also effectively reduce the conversion time T.

除了前述所提到的第一彈性件1311的結構參數會影響轉換時間T之外,影響轉換時間T的因素還包括第一彈性件1311的振動方式。請同時參照圖18C以及圖18D,在本實施例中,藉由改變第一彈性件1311的振動方式以降低轉換時間T。具體而言,在第一彈性件1311的振幅由一方向轉為另一方向時,其驅動訊號 波形如同圖18D所示。此外,驅動訊號波形也不僅限於如圖18D所示的方波形式驅動訊號,也可以是正弦波形式的驅動訊號波形。轉換時間T小於1毫秒,較佳範圍在1~0.05毫秒之間,使得光學裝置可提供良好的顯示品質。 In addition to the aforementioned structural parameters of the first elastic member 1311 affecting the switching time T, the factor affecting the switching time T also includes the vibration mode of the first elastic member 1311. Referring to FIG. 18C and FIG. 18D simultaneously, in the present embodiment, the switching time T is lowered by changing the vibration mode of the first elastic member 1311. Specifically, when the amplitude of the first elastic member 1311 is changed from one direction to another direction, the driving signal thereof The waveform is as shown in Figure 18D. In addition, the driving signal waveform is not limited to the square wave form driving signal as shown in FIG. 18D, and may be a driving signal waveform in the form of a sine wave. The switching time T is less than 1 millisecond, preferably between 1 and 0.05 milliseconds, so that the optical device can provide good display quality.

為了更了解前述實施例中所提到的成像位移模組的實際應用,下列段落提出多個範例實施例。圖19A與圖19B分別繪示應用本發明上述任一實施例的成像位移模組的不同三維列印設備示意圖,而圖19C所示為由圖19A或圖19B的不同三維列印設備所三維列印出的三維列印物件示意圖。在本應用範例實施例中,三維列印設備例如藉由計算機輔助設計(Computer Aided Design,簡稱為CAD)或動畫模擬軟件等建構而成的立體模型的多層橫截面逐步製造出三維物件。請先參照圖19A,在本應用範例實施例中的三維列印設備1900a所採用的三維列印技術例如是採用立體光固化成型法(Stereo Lithography,簡稱為SLA),三維列印設備1900a包括成型槽1910、投影裝置1920、升降載台1930以及前述實施例所述及的任一的成像位移模組1940,其中三維列印設備1900a用以形成三維列印物件OB,其中圖19A的三維列印設備例如是下沉式的三維列印設備1900a。 In order to better understand the practical application of the imaging displacement module mentioned in the previous embodiments, the following paragraphs present a number of exemplary embodiments. 19A and 19B are respectively schematic diagrams showing different three-dimensional printing apparatuses applying the imaging displacement module according to any of the above embodiments of the present invention, and FIG. 19C is a three-dimensional column of different three-dimensional printing apparatuses of FIG. 19A or FIG. 19B. A schematic diagram of the printed 3D printed object. In this application example embodiment, the three-dimensional printing device gradually manufactures a three-dimensional object by multi-layer cross-section of a three-dimensional model constructed by computer Aided Design (CAD) or animation simulation software. Referring to FIG. 19A, the three-dimensional printing technology adopted by the three-dimensional printing apparatus 1900a in the embodiment of the present application embodiment is, for example, Stereo Lithography (SLA), and the three-dimensional printing apparatus 1900a includes molding. The slot 1910, the projection device 1920, the lifting platform 1930, and the imaging displacement module 1940 of any of the foregoing embodiments, wherein the three-dimensional printing apparatus 1900a is configured to form a three-dimensional printing object OB, wherein the three-dimensional printing of FIG. 19A The device is for example a sunken three-dimensional printing device 1900a.

以下段落將對本應用範例實施例中的三維列印設備1900a的各組件進行詳細地介紹。 The following paragraphs will describe in detail the components of the three-dimensional printing apparatus 1900a in this application example embodiment.

成型槽1910用以容置光敏感材料1912,其中光敏感材料1912在具有特定波長的光束照射下,會產生光聚合反應而固化。 投影裝置1920中具有發光元件,其所採用的發光元件可以是發光二極體(Light Emitting Diode,簡稱為LED)、雷射(Laser)或其他適用的發光元件,發光元件適於發出影像光束B,其中影像光束B可提供能固化光敏感材料1912的波段的光線(例如紫外線),但影像光束B的波段並不以此為限制,只要是能夠固化光敏感材料1912即可。升降載台1930具有列印區1932,且適於在成型槽1910內移動。此外,本應用範例實施例中的三維列印設備1900a還包括控制器(未繪示)與輸入介面(未繪示),控制器與投影裝置1920、升降載台1930以及輸入介面電性連接,使用者可以通過輸入介面並通過電腦輔助設計(Computer Aided Design,簡稱為:CAD)或動畫建模軟體以輸入三維列印物件OB的三維實體模型。具體而言,輸入介面可以是滑鼠、鍵盤、觸控裝置或者是其他能夠使使用者輸入三維列印物件OB的三維實體模型的介面。控制器依據三維實體模型控制升降載台1930與影像光束B的作動方式。具體而言,控制器可以是計算器、微處理器(Micro Controller Unit,簡稱為:MCU)、中央處理單元(Central Processing Unit,簡稱為:CPU),或是其他可程式化的控制器(Microprocessor)、數位信號處理器(Digital Signal Processor,簡稱為:DSP)、可程式化控制器、專用積體電路(Application Specific Integrated Circuits,簡稱為:ASIC)、可程式化邏輯裝置(Programmable Logic Device,簡稱為:PLD)或其他類似裝置。在本應用範例實施例中,成像位移模組1940配置於投影裝置1920的外部,且成像位移模組1940配置於影像光束B 的路徑上,在其他的應用範例實施例中,成像位移模組1940可以配置於投影裝置1920內,只要成像位移模組1940配置在影像光束B的路徑上即可,成像位移模組1940配置的位置並不以此為限。 The molding groove 1910 is for accommodating the light sensitive material 1912, wherein the light sensitive material 1912 is photopolymerized to be cured by irradiation with a light beam having a specific wavelength. The projection device 1920 has a light-emitting element, and the light-emitting element used may be a Light Emitting Diode (LED), a laser or other suitable light-emitting element, and the light-emitting element is adapted to emit an image beam B. The image beam B can provide light (for example, ultraviolet light) capable of curing the wavelength band of the light sensitive material 1912, but the wavelength band of the image beam B is not limited thereto, as long as the light sensitive material 1912 can be cured. The lift stage 1930 has a print area 1932 and is adapted to move within the forming slot 1910. In addition, the three-dimensional printing device 1900a in the embodiment of the present application further includes a controller (not shown) and an input interface (not shown), and the controller is electrically connected to the projection device 1920, the lifting platform 1930, and the input interface. The user can input the 3D solid model of the 3D printed object OB through the input interface and through Computer Aided Design (CAD) or animation modeling software. Specifically, the input interface can be a mouse, a keyboard, a touch device, or other interface that enables the user to input a three-dimensional solid model of the three-dimensional printed object OB. The controller controls the operation of the lifting stage 1930 and the image beam B according to the three-dimensional solid model. Specifically, the controller may be a calculator, a Micro Controller Unit (MCU), a Central Processing Unit (CPU), or another programmable controller (Microprocessor). ), Digital Signal Processor (DSP), Programmable Controller, Application Specific Integrated Circuits (ASIC), Programmable Logic Device (Programmable Logic Device) Is: PLD) or other similar device. In the embodiment of the present application, the imaging displacement module 1940 is disposed outside the projection device 1920, and the imaging displacement module 1940 is disposed on the image beam B. In other embodiments, the imaging displacement module 1940 can be disposed in the projection device 1920. The imaging displacement module 1940 can be disposed on the path of the image beam B. The imaging displacement module 1940 is configured. Location is not limited to this.

接下來介紹光固化成型的三維列印製程,其製程大致如下:首先,利用電腦輔助設計(Computer Aided Design,簡稱為:CAD)設計出三維實體模型,利用離散程式將三維實體模型進行切片處理,進而得到多個分層的掃描路徑。接著,依據各個切層的掃描路徑精確控制影像光束B和升降載台1930的運動。由圖19A可看出列印區1932浸入於光敏感材料1912中,影像光束B按第一切層的掃描路徑照射到部分光敏感材料1912,此部分光敏感材料1912產生光聚合反應而固化,生成出三維列印物件OB的其中一個截面,進而得到第一固化層附著於列印區1932上。之後,升降載台1930向下移動少許距離,且原先形成的第一固化層對應向下移動少許距離,而原先形成的第一固化層的上表面可以當作承載面,使第一固化層上覆蓋另一層光敏感材料1912,再依據第二切層的掃描路徑精確控制影像光束B,使影像光束B按第二切層的掃描路徑照射到另一層光敏感材料1912的表面,進而得到第二固化層,依照這樣的模式不斷製作多層後可形成如圖19C所繪示的三維列印物件OB。應注意的是,圖19C所繪示的三維列印物件OB的形狀僅為舉例,三維列印物件OB的形狀並不以此為限。 Next, the three-dimensional printing process of photocuring is introduced. The process is as follows: First, a computer-aided design (Computer Aided Design, CAD for short) is used to design a three-dimensional solid model, and a three-dimensional solid model is sliced by using a discrete program. Further, a plurality of hierarchical scan paths are obtained. Next, the motion of the image beam B and the lifting stage 1930 is precisely controlled in accordance with the scanning path of each slice. It can be seen from FIG. 19A that the printing area 1932 is immersed in the light sensitive material 1912, and the image light beam B is irradiated to the partial light sensitive material 1912 according to the scanning path of the first cutting layer, and the partial light sensitive material 1912 is photopolymerized and solidified. One of the cross sections of the three-dimensionally printed object OB is formed, and the first cured layer is attached to the printing area 1932. Thereafter, the lifting stage 1930 is moved downward by a small distance, and the originally formed first solidified layer is moved downward by a small distance, and the upper surface of the originally formed first solidified layer can be used as a bearing surface to make the first solidified layer Covering another layer of light sensitive material 1912, and then precisely controlling the image beam B according to the scanning path of the second slice, so that the image beam B is irradiated to the surface of the other layer of the light sensitive material 1912 according to the scanning path of the second slice, thereby obtaining the second The solidified layer can be formed into a plurality of layers in accordance with such a pattern to form a three-dimensional printed object OB as shown in FIG. 19C. It should be noted that the shape of the three-dimensional printed object OB illustrated in FIG. 19C is merely an example, and the shape of the three-dimensional printed object OB is not limited thereto.

請參照圖19B,圖19B繪示應用本發明上述實施例的成像位移模組的另一種三維列印設備示意圖,請先參照圖19B,圖 19B所示的三維列印設備1900b類似於圖19A所示的三維列印設備1900a,其主要差異在於:成型槽1910的材料包括透明材料或透光材料,且升降載台1930與投影裝置1920分別配置於成型槽1910的相對兩側,其中圖19B的三維列印設備1900b例如是上拉式的三維列印設備1900b。由於成型槽1910的材料包括透明材料或透光材料,因此影像光束B可以通過成型槽1910照射光敏感材料1912。當進行三維列印時,影像光束B按第一切層的掃描路徑照射到部分光敏感材料1912,此部分光敏感材料1912產生光聚合反應而固化,生成出三維列印物件OB的其中一個截面,進而得到第一固化層附著于列印區1932上。之後,升降載台1930向上移動少許距離,且原先形成的第一固化層對應向上移動少許距離,而原先形成的第一固化層的下表面可以當作承載面,以使第一固化層的下表面覆蓋另一層光敏感材料1912再依據第二切層的掃描路徑精確控制影像光束B,使影像光束B按第二切層的掃描路徑照射到另一層光敏感材料1912的表面,進而得到第二固化層,依照這樣的模式不斷製作多層後可形成如圖19C所繪示的三維列印物件OB。 Referring to FIG. 19B, FIG. 19B is a schematic diagram of another three-dimensional printing device applying the imaging displacement module according to the above embodiment of the present invention. Please refer to FIG. 19B first. The three-dimensional printing apparatus 1900b shown in FIG. 19B is similar to the three-dimensional printing apparatus 1900a shown in FIG. 19A, and the main difference is that the material of the molding groove 1910 includes a transparent material or a light-transmitting material, and the lifting stage 1930 and the projection device 1920 respectively They are disposed on opposite sides of the molding groove 1910, wherein the three-dimensional printing apparatus 1900b of FIG. 19B is, for example, a pull-up three-dimensional printing apparatus 1900b. Since the material of the molding groove 1910 includes a transparent material or a light transmissive material, the image light beam B can illuminate the light sensitive material 1912 through the molding groove 1910. When three-dimensional printing is performed, the image beam B is irradiated to a portion of the photosensitive material 1912 according to the scanning path of the first slice, and the portion of the photosensitive material 1912 is photopolymerized to be solidified to form one of the sections of the three-dimensionally printed object OB. Further, the first cured layer is attached to the printing area 1932. Thereafter, the lifting stage 1930 is moved upward by a small distance, and the originally formed first solidified layer is moved upward by a small distance, and the lower surface of the originally formed first solidified layer can be used as a bearing surface to make the first solidified layer The surface is covered with another layer of light sensitive material 1912, and then the image beam B is precisely controlled according to the scanning path of the second slice, so that the image beam B is irradiated onto the surface of the other layer of the light sensitive material 1912 according to the scanning path of the second slice, thereby obtaining the second The solidified layer can be formed into a plurality of layers in accordance with such a pattern to form a three-dimensional printed object OB as shown in FIG. 19C.

請同時參照圖19A與圖19B,由於成像位移模組1940配置在影像光束B的路徑上,影像光束B經由成像位移模組1940後,在不同的時間下,影像光束B會投射至不同的位置,詳言之,圖19A與圖19B所繪示的實線,是影像光束B在某一時刻下,影像光束B所投射的位置;而圖19A與圖19B所繪示的虛線,則是 影像光束B在另一時刻下,影像光束B所投射的位置。成像位移模組1940的細部的作動方式可以由前述實施例的敍述中獲致足夠的教示、建議與實施說明,在此不再贅述。因此,由於本應用範例實施例的三維列印設備1900a與1900b具有前述任一實施例所提到的成像位移模組1940,可以使投影裝置1920所投射出的影像光束B的像素提高,以使三維列印設備1900a與1900b固化光敏感材料1912時能夠獲得更高的解析度,進而使得三維列印物件OB具有更佳的表面精度。 Referring to FIG. 19A and FIG. 19B simultaneously, since the imaging displacement module 1940 is disposed on the path of the image beam B, after the image beam B passes through the imaging displacement module 1940, the image beam B is projected to different positions at different times. In detail, the solid line shown in FIG. 19A and FIG. 19B is the position where the image beam B is projected at a certain moment, and the dotted line shown in FIG. 19A and FIG. 19B is The position at which the image beam B is projected at another time by the image beam B. The manner of operation of the detail of the imaging displacement module 1940 can be sufficiently taught, suggested and implemented by the description of the foregoing embodiments, and details are not described herein again. Therefore, since the three-dimensional printing apparatuses 1900a and 1900b of the embodiment of the present application have the imaging displacement module 1940 mentioned in any of the foregoing embodiments, the pixels of the image beam B projected by the projection apparatus 1920 can be raised, so that The three-dimensional printing apparatus 1900a and 1900b can obtain higher resolution when curing the light-sensitive material 1912, thereby making the three-dimensional printing object OB have better surface precision.

綜上所述,本發明的光學裝置因採用前述成像位移模組配置於多數個子影像的傳遞路徑上,其中成像位移模組係利用承載基座以控制旋轉基座相對於一參考平面的雙軸旋轉,以決定這些子影像的在二維平面的任意移動方向,可藉由成像位移模組使這些子影像提高任意方向之解析度。本發明之光學裝置可以用以較低解析度的反射式光閥投影出較高解析度之影像。 In summary, the optical device of the present invention is configured on the transmission path of a plurality of sub-images by using the imaging displacement module, wherein the imaging displacement module utilizes a carrier base to control the rotation of the rotating base relative to a reference plane. Rotation to determine any direction of movement of the sub-images in a two-dimensional plane, the image displacement module can be used to increase the resolution of the sub-images in any direction. The optical device of the present invention can project a higher resolution image with a lower resolution reflective light valve.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

240‧‧‧成像位移模組 240‧‧‧Image Displacement Module

410‧‧‧承載基座 410‧‧‧bearing base

412‧‧‧磁性材料座 412‧‧‧Magnetic material holder

414a、414b‧‧‧磁性材料 414a, 414b‧‧‧ magnetic materials

420‧‧‧旋轉基座 420‧‧‧Spinning base

422‧‧‧光學元件部 422‧‧‧Optical Components Division

424‧‧‧承載座 424‧‧‧ bearing seat

426‧‧‧線圈模組 426‧‧‧ coil module

426a‧‧‧線圈座 426a‧‧‧ coil holder

426b‧‧‧線圈 426b‧‧‧ coil

428‧‧‧轉軸 428‧‧‧ shaft

430‧‧‧軸線 430‧‧‧ axis

432‧‧‧孔洞 432‧‧‧ holes

D-D、A-A‧‧‧虛線 D-D, A-A‧‧‧ dotted line

Claims (10)

一種成像位移模組,適用於一光學裝置中,以切換多數個子影像的影像位置,該成像位移模組包括:一承載基座;以及一旋轉基座,具有一光學元件部及一轉軸,該旋轉基座樞接於該承載基座上,且該承載基座適於控制該旋轉基座於一角度內來回振動,使該些子影像同時在一水平方向上之成像位置移動一第一距離以及在一垂直方向上之成像位置移動一第二距離,其中該光學元件部之一對角線平行轉軸之軸線。 An imaging displacement module is adapted to be used in an optical device to switch image positions of a plurality of sub-images, the imaging displacement module comprising: a carrier base; and a rotating base having an optical component portion and a rotating shaft, The rotating base is pivotally connected to the carrying base, and the carrying base is adapted to control the rotating base to vibrate back and forth at an angle, so that the sub-images are simultaneously moved by a first distance in an image forming position in a horizontal direction. And moving the imaging position in a vertical direction by a second distance, wherein one of the optical element portions is diagonally parallel to the axis of the axis of rotation. 如申請專利範圍第1項所述之成像位移模組,其中該第一或第二距離係為約1/2畫素之距離。 The imaging displacement module of claim 1, wherein the first or second distance is a distance of about 1/2 pixel. 一種成像位移模組,適用於一光學裝置中,以切換多數個子影像的影像位置,該成像位移模組包括:一承載基座;以及一旋轉基座,經由至少一彈性件耦接至該承載基座,該承載基座適於控制該旋轉基座相對於一參考平面的雙軸旋轉,以讓該些子影像沿多個移動方向其中之一移動一距離,其中該承載基座環繞該旋轉基座,以及該些子影像的該移動方向係依據該旋轉基座的旋轉方式來決定。 An imaging displacement module is adapted to be used in an optical device to switch image positions of a plurality of sub-images, the imaging displacement module comprising: a carrier base; and a rotating base coupled to the carrier via at least one elastic member a base, the carrier base is adapted to control a biaxial rotation of the rotating base relative to a reference plane to move the plurality of sub-images in a plurality of moving directions, wherein the carrier base surrounds the rotation The base, and the direction of movement of the sub-images are determined according to the manner in which the spin base is rotated. 如申請專利範圍第3項所述的成像位移模組,其中該雙軸包括在一第一方向上的一第一轉軸以及在一第二方向上的一第二轉軸,該旋轉基座相對該第一轉軸及該第二轉軸兩者至少其中之一旋轉,以決定該些子影像的移動方向,其中該第一轉軸以及該第二轉軸定義出該參考平面。 The imaging displacement module of claim 3, wherein the dual shaft comprises a first rotating shaft in a first direction and a second rotating shaft in a second direction, the rotating base is opposite to the At least one of the first rotating shaft and the second rotating shaft rotates to determine a moving direction of the sub-images, wherein the first rotating shaft and the second rotating shaft define the reference plane. 如申請專利範圍第4項所述的成像位移模組,其中該些子影像的移動方向包括該第一方向及該第二方向,該旋轉基座相對於該第一轉軸或該第二轉軸旋轉,以及該些子影像沿該第一方向或該第二方向移動該距離。 The imaging displacement module of claim 4, wherein the moving direction of the sub-images includes the first direction and the second direction, and the rotating base rotates relative to the first rotating shaft or the second rotating shaft And the sub-images move the distance in the first direction or the second direction. 如申請專利範圍第4項所述的成像位移模組,其中該些移動方向包括一第三方向及一第四方向,該第三方向及該第四方向介在該第一方向及該第二方向之間,該旋轉基座相對於該第一轉軸及該第二轉軸旋轉,以及該些子影像沿該第三方向及該第四方向移動該距離。 The imaging displacement module of claim 4, wherein the moving directions include a third direction and a fourth direction, the third direction and the fourth direction being in the first direction and the second direction The rotating base rotates relative to the first rotating shaft and the second rotating shaft, and the sub-images move the distance along the third direction and the fourth direction. 如申請專利範圍第4項所述的成像位移模組,其中該第一方向和該第二方向之間具有一夾角,以及該夾角小於或等於90度。 The imaging displacement module of claim 4, wherein the first direction and the second direction have an included angle, and the included angle is less than or equal to 90 degrees. 如申請專利範圍第3項至第7項中的任一項所述之成像位移模組,其中成像位移模組還包含一光學元件部。 The imaging displacement module according to any one of claims 3 to 7, wherein the imaging displacement module further comprises an optical element portion. 如申請專利範圍第8項所述之成像位移模組,其中該光學元件部包括一反射片或一透鏡。 The imaging displacement module of claim 8, wherein the optical component portion comprises a reflective sheet or a lens. 如申請專利範圍第1項至第7項中的任一項所述之成像位移模組,其中該承載基座具有一感應模組與一磁性材料,該旋轉基座具有一線圈模組,且該感應模組係藉由改變該線圈模組之磁性,使該線圈模組與該磁性材料之間產生吸引力及排斥力兩者至少其中之一,以控制該旋轉基座於該角度內來回振動。 The imaging displacement module according to any one of the preceding claims, wherein the carrier base has a sensing module and a magnetic material, the rotating base has a coil module, and The sensing module generates at least one of an attractive force and a repulsive force between the coil module and the magnetic material by changing the magnetic properties of the coil module to control the rotating base to travel back and forth within the angle. vibration.
TW104140907A 2015-01-19 2015-12-04 Imaging displacement module TWI584045B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
TW104140907A TWI584045B (en) 2015-01-19 2015-12-04 Imaging displacement module
US15/088,144 US10281715B2 (en) 2015-06-16 2016-04-01 Imaging displacement module
DE102016116150.0A DE102016116150A1 (en) 2015-06-16 2016-08-30 Image offset module
US16/403,619 US10754147B2 (en) 2015-06-16 2019-05-06 Projector and three-dimensional printing apparatus with image displacement module
US16/986,279 US11314078B2 (en) 2015-06-16 2020-08-06 Optical path adjusting mechanism
US17/700,536 US11747609B2 (en) 2015-06-16 2022-03-22 Optical path adjusting mechanism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW104101729 2015-01-19
TW104119521 2015-06-16
TW104140907A TWI584045B (en) 2015-01-19 2015-12-04 Imaging displacement module

Publications (2)

Publication Number Publication Date
TW201627745A true TW201627745A (en) 2016-08-01
TWI584045B TWI584045B (en) 2017-05-21

Family

ID=56466136

Family Applications (4)

Application Number Title Priority Date Filing Date
TW106111087A TWI713722B (en) 2015-01-19 2015-12-04 Three dimensional printing apparatus
TW109141869A TWI826750B (en) 2015-01-19 2015-12-04 Optical path adjusting mechanism and manufacturing method thereof
TW106111043A TWI613503B (en) 2015-01-19 2015-12-04 Optical path adjusting mechanism
TW104140907A TWI584045B (en) 2015-01-19 2015-12-04 Imaging displacement module

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW106111087A TWI713722B (en) 2015-01-19 2015-12-04 Three dimensional printing apparatus
TW109141869A TWI826750B (en) 2015-01-19 2015-12-04 Optical path adjusting mechanism and manufacturing method thereof
TW106111043A TWI613503B (en) 2015-01-19 2015-12-04 Optical path adjusting mechanism

Country Status (2)

Country Link
CN (2) CN115963683A (en)
TW (4) TWI713722B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636343B (en) * 2017-07-21 2018-09-21 陳德利 Laser projection device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884897A (en) * 2016-09-30 2018-04-06 扬明光学股份有限公司 Light path adjusting mechanism
CN106681086B (en) * 2016-12-29 2020-11-24 成都迅达光电有限公司 Support of oscillating mirror, oscillating mirror and projector
KR102046473B1 (en) * 2017-03-08 2019-11-19 삼성전기주식회사 Mirror Module for OIS and Camera module including the same
CN106918975B (en) * 2017-03-28 2018-11-09 苏州佳世达光电有限公司 Optical element adjusting apparatus and use its projection arrangement
CN108693686B (en) * 2017-04-06 2020-11-03 中强光电股份有限公司 Projection device
CN109856898B (en) * 2017-11-30 2021-12-31 中强光电股份有限公司 Projector, optical-mechanical module, image resolution enhancement device and driving method thereof
CN110082999B (en) * 2018-01-26 2021-11-16 中强光电股份有限公司 Projector, optical engine and pixel shifting device
TWI698696B (en) * 2018-05-11 2020-07-11 揚明光學股份有限公司 Light path adjustment mechanism and fabrication method thereof
CN110554550B (en) 2018-05-31 2021-08-17 中强光电股份有限公司 Projection device
CN110658665B (en) 2018-06-29 2021-10-01 中强光电股份有限公司 Projection device and imaging module thereof
TWI675224B (en) 2018-06-29 2019-10-21 揚明光學股份有限公司 Image displacement module and fabrication method thereof
CN208636638U (en) 2018-06-29 2019-03-22 中强光电股份有限公司 Projection arrangement and its image-forming module
TWI663423B (en) 2018-06-29 2019-06-21 揚明光學股份有限公司 Image displacement device and fabrication method thereof
TWI691778B (en) 2018-11-30 2020-04-21 揚明光學股份有限公司 Light path adjustment mechanism and fabrication method thereof
JP7155967B2 (en) * 2018-12-04 2022-10-19 セイコーエプソン株式会社 Optical path shift device and image display device
CN117872557A (en) * 2019-04-02 2024-04-12 扬明光学股份有限公司 Light path adjusting mechanism
TWI765235B (en) 2020-02-27 2022-05-21 揚明光學股份有限公司 Light path adjustment mechanism and fabrication method thereof
CN113495335B (en) * 2020-03-18 2023-08-25 扬明光学股份有限公司 Optical path adjusting mechanism and manufacturing method thereof
JP2022082000A (en) * 2020-11-20 2022-06-01 セイコーエプソン株式会社 Optical device and display

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102107B1 (en) * 1999-11-16 2008-01-09 Fujinon Corporation Vibration isolator
US6826540B1 (en) * 1999-12-29 2004-11-30 Virtual Personalities, Inc. Virtual human interface for conducting surveys
US7023603B2 (en) * 2002-04-30 2006-04-04 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic microemulsion
TWI243276B (en) * 2004-11-12 2005-11-11 Young Optics Inc Imaging displacement module and optical projection device
CN1797176A (en) * 2004-12-30 2006-07-05 扬明光学股份有限公司 Subassembly of imaging displacement and optical projection device
US7279812B2 (en) * 2005-01-18 2007-10-09 Hewlett-Packard Development Company, L.P. Light direction assembly shorted turn
CN100340899C (en) * 2005-06-08 2007-10-03 中国科学院上海光学精密机械研究所 Light-beam offset mechanic apparatus with double light wedges
US20070076171A1 (en) * 2005-09-20 2007-04-05 Fasen Donald J Wobulator position sensing system and method
TWM327045U (en) * 2007-06-05 2008-02-11 Young Optics Inc Imaging displacement module
CN201066401Y (en) * 2007-07-23 2008-05-28 扬明光学股份有限公司 Imaging shift module
TWI376564B (en) * 2009-06-05 2012-11-11 Young Optics Inc Imaging displacement module
TW201228808A (en) * 2011-01-14 2012-07-16 Microjet Technology Co Ltd Three-dimensional make-up machine
WO2012106256A1 (en) * 2011-01-31 2012-08-09 Global Filtration Systems Method and apparatus for making three-dimensional objects from multiple solidifiable materials
JP5991024B2 (en) * 2012-05-22 2016-09-14 セイコーエプソン株式会社 Mirror device, optical scanner and image forming apparatus
TWM492012U (en) * 2014-08-19 2014-12-11 國立臺灣科技大學 Multifunctional 3D scanning and printing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636343B (en) * 2017-07-21 2018-09-21 陳德利 Laser projection device

Also Published As

Publication number Publication date
TW201723631A (en) 2017-07-01
TW201723632A (en) 2017-07-01
CN105807385A (en) 2016-07-27
CN115963683A (en) 2023-04-14
TW202115480A (en) 2021-04-16
TWI826750B (en) 2023-12-21
TWI713722B (en) 2020-12-21
TWI613503B (en) 2018-02-01
TWI584045B (en) 2017-05-21

Similar Documents

Publication Publication Date Title
TWI584045B (en) Imaging displacement module
US11747609B2 (en) Optical path adjusting mechanism
TWI568601B (en) Three dimensional printing apparatus and prining method thereof
CN104981339B (en) Volumetric object is prepared by the lithographic printing with improved spatial resolution
US9656422B2 (en) Three dimensional (3D) printer with near instantaneous object printing using a photo-curing liquid
CN104669625B (en) Photocuring 3 D-printing method and printing equipment based on projection
TWI548533B (en) Three-dimensional printing apparatus
TWI448732B (en) Three-dimensional printing apparatus
JP2016540665A (en) Additive manufacturing apparatus and method
US20180029299A1 (en) Additive manufacturing with offset stitching
US9302460B2 (en) Three dimensional printing apparatus
WO2014101866A1 (en) Photocuring rapid prototyping device and method
TWI545028B (en) Three dimensional object construction
TW201600225A (en) Three dimensional printing apparatus
JP2010036537A (en) Photo-fabricating apparatus
KR20220124260A (en) Nanoimprint microlens array and manufacturing method thereof
US20030223043A1 (en) High resolution 3 dimensional image generator
CN107486985A (en) A kind of unilateral speed change demoulding control system for rapid prototyping and quick molding method
KR102443272B1 (en) 3d printer and 3d printing method using overlapped light irradiation along a specific path
TWM550666U (en) Multi-material stereolithography modeling system with real-time image scanning
CN116811233A (en) Dual-resolution projection type photo-curing 3D printing method
JP4834297B2 (en) Stereolithography apparatus and stereolithography method
CN107627600A (en) Expose shaped device and its exposure forming method
TW201700266A (en) A vat photopolymerization device