TWI826750B - Optical path adjusting mechanism and manufacturing method thereof - Google Patents

Optical path adjusting mechanism and manufacturing method thereof Download PDF

Info

Publication number
TWI826750B
TWI826750B TW109141869A TW109141869A TWI826750B TW I826750 B TWI826750 B TW I826750B TW 109141869 A TW109141869 A TW 109141869A TW 109141869 A TW109141869 A TW 109141869A TW I826750 B TWI826750 B TW I826750B
Authority
TW
Taiwan
Prior art keywords
base
rotating
coil
rotating shaft
optical path
Prior art date
Application number
TW109141869A
Other languages
Chinese (zh)
Other versions
TW202115480A (en
Inventor
陳昭舜
蔡建興
Original Assignee
揚明光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 揚明光學股份有限公司 filed Critical 揚明光學股份有限公司
Publication of TW202115480A publication Critical patent/TW202115480A/en
Application granted granted Critical
Publication of TWI826750B publication Critical patent/TWI826750B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

An optical path adjusting mechanism including a bearing base, a rotating base, an optical element, a coil, and an magnetic material is provided. The rotating base is disposed near the bearing base. The rotating base has a first region and a second region which are substantially located at diagonal positions. The rotating base includes a bearing element and a rotating axis. The optical element is disposed in the bearing element. The coil is disposed on the rotating base. The magnetic material is disposed on the bearing base and near the coil. The bearing element and the rotating axis are integrated in one piece, and the rotating base simply rotates along a virtual axial line. In addition, a manufacturing method of an optical path adjusting mechanism is also provided.

Description

光路調整機構及其製造方法 Optical path adjustment mechanism and manufacturing method thereof

本發明是有關於一種光路調整機構及其製造方法。 The invention relates to an optical path adjustment mechanism and a manufacturing method thereof.

隨著科技的日益發展,許多利用逐層建構模型等加成式製造技術(Additive Manufacturing technology)來建造物理三維(Three-Dimensional,3-D)模型的不同方法已紛紛被提出。一般而言,加成式製造技術是將利用電腦輔助設計(Computer-Aided Design,CAD)等軟體建構的3-D模型的設計資料轉換為連續堆疊的多個薄(准二維)橫截面層。然而,透過上述三維列印技術所列印出來的物體的表面精度仍無法符合市場需求,因此如何進一步地提升其所列印出來的物體的表面精度一直是本領域的技術人員所要解決的問題。 With the increasing development of science and technology, many different methods of building physical three-dimensional (3-D) models using additive manufacturing technology such as layer-by-layer construction models have been proposed. Generally speaking, additive manufacturing technology converts design data from 3-D models constructed using software such as Computer-Aided Design (CAD) into continuously stacked multiple thin (quasi-two-dimensional) cross-sectional layers. . However, the surface accuracy of objects printed by the above three-dimensional printing technology still cannot meet market demand. Therefore, how to further improve the surface accuracy of printed objects has always been a problem that those skilled in the art have to solve.

本發明提供一種光路調整機構及其製造方法,可使三維列印裝置列印出來的三維列印物件具有良好的表面精度。 The present invention provides an optical path adjustment mechanism and a manufacturing method thereof, which can enable three-dimensional printing objects printed by a three-dimensional printing device to have good surface accuracy.

本發明的實施例提供一種光路調整機構,包括承載基座、旋轉基座、光學元件、線圈、以及磁性材料。旋轉基座設於鄰近承載基座。旋轉基座設有大致對角位置的第一區域與第二區域。旋轉基座包括承載座和轉軸。光學元件設於承載座。線圈設於旋轉基座。磁性材料設於承載基座且鄰近線圈。承載座和轉軸為一體成型,且旋轉基座只沿虛擬軸線轉動。 Embodiments of the present invention provide an optical path adjustment mechanism, including a carrying base, a rotating base, optical elements, coils, and magnetic materials. The rotating base is located adjacent to the carrying base. The rotating base is provided with a first area and a second area at substantially diagonal positions. The rotating base includes a bearing base and a rotating shaft. The optical element is arranged on the bearing base. The coil is installed on the rotating base. The magnetic material is disposed on the carrying base and adjacent to the coil. The bearing base and the rotating shaft are integrally formed, and the rotating base only rotates along the virtual axis.

本發明的實施例提供一種光路調整機構的製造方法,其包括提供承載基座;組裝旋轉基座於鄰近承載基座,旋轉基座設有大致對角位置的第一區域與第二區域,旋轉基座包括承載座和轉軸;組裝光學元件於承載座;組裝線圈於旋轉基座;以及組裝磁性材料,於承載基座且鄰近線圈。承載座和轉軸為一體成型,且旋轉基座只沿虛擬軸線轉動。 Embodiments of the present invention provide a manufacturing method of an optical path adjustment mechanism, which includes providing a bearing base; assembling a rotating base adjacent to the bearing base, and the rotating base is provided with a first region and a second region at approximately diagonal positions. The base includes a bearing base and a rotating shaft; the optical element is assembled on the bearing base; the coil is assembled on the rotating base; and the magnetic material is assembled on the bearing base and adjacent to the coil. The bearing base and the rotating shaft are integrally formed, and the rotating base only rotates along the virtual axis.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.

100、200:光學裝置 100, 200: Optical device

110、210:照明系統 110, 210: Lighting system

112、212:光源 112, 212: light source

114、214:光束 114, 214: Beam

114a、214a、500:子影像 114a, 214a, 500: sub-image

116、216:色輪 116, 216: color wheel

117、217:集光柱 117, 217: Light collecting column

118、218:鏡片組 118, 218: Lens set

119:內部全反射稜鏡 119: Internal total reflection

120:數位微鏡裝置 120:Digital micromirror device

130、230:投影鏡頭 130, 230: Projection lens

140、242、244、246:振動機構 140, 242, 244, 246: Vibration mechanism

219:稜鏡 219:稜顡

220:反射式光閥 220: Reflective light valve

240、1000a、1000b、1000c、1000d、1000e、1940:成像位移模組 240, 1000a, 1000b, 1000c, 1000d, 1000e, 1940: imaging displacement module

242a、244a、322、422:光學元件部 242a, 244a, 322, 422: Optical component department

410、1100:承載基座 410, 1100: Bearing base

412:磁性材料座 412: Magnetic material seat

414a、414b、M1、M2、M3、M4、M5、M6:磁性材料 414a, 414b, M1, M2, M3, M4, M5, M6: magnetic materials

420、1200:旋轉基座 420, 1200: Rotating base

424:承載座 424: Bearing seat

426、427a、427b、C1、C2、C3、C4、C5、C6:線圈模組 426, 427a, 427b, C1, C2, C3, C4, C5, C6: coil module

426a:線圈座 426a: Coil seat

426b:線圈 426b: coil

428:轉軸 428:Rotating axis

430:軸線 430:Axis

432:孔洞 432:hole

400:螢幕 400:Screen

1110、1120:第一承載框 1110, 1120: First carrying frame

1300、1311、1312:彈性件 1300, 1311, 1312: elastic parts

1310、1320:彈性件對 1310, 1320: Pair of elastic parts

1400、1410、1420:致動組件 1400, 1410, 1420: Actuation assembly

1500:光學元件部 1500: Optical components department

1610、1620:轉軸 1610, 1620: rotating shaft

1900a、1900b:三維列印裝置 1900a, 1900b: 3D printing device

1910:成型槽 1910: Forming slot

1912:光敏感材料 1912:Light sensitive materials

1920:投影裝置 1920:Projection device

1930:升降載台 1930:Lifting platform

1932:列印區 1932:Print area

X、Y、XY1、XY2、Z、X’、Y’、X’Y’1、X’Y’2、X”、Y”:方向 X, Y, XY1, XY2, Z, X’, Y’, X’Y’1, X’Y’2, X”, Y”: direction

S:參考平面 S: reference plane

w、NW:寬度 w, NW: width

t:厚度 t:Thickness

B:影像光束 B:Image beam

OB:三維列印物件 OB: 3D printing object

圖1為一種光學裝置的結構示意圖。 Figure 1 is a schematic structural diagram of an optical device.

圖2繪示本發明一實施例之光學裝置的結構示意圖。 FIG. 2 is a schematic structural diagram of an optical device according to an embodiment of the present invention.

圖3繪示本發明一實施例之光學裝置的成像示意圖。 FIG. 3 is a schematic diagram of imaging of an optical device according to an embodiment of the present invention.

圖4繪示本發明一實施例之成像位移模組的結構示意圖。 FIG. 4 is a schematic structural diagram of an imaging displacement module according to an embodiment of the present invention.

圖5繪示本發明圖4實施例之沿D-D虛線方向的剖面側視圖。 FIG. 5 is a cross-sectional side view along the dotted line D-D of the embodiment of FIG. 4 of the present invention.

圖6繪示本發明圖4實施例之沿A-A虛線方向的剖面側視圖。 FIG. 6 shows a cross-sectional side view along the dotted line A-A of the embodiment of FIG. 4 of the present invention.

圖7繪示本發明另一實施例之成像位移模組的結構示意圖。 FIG. 7 is a schematic structural diagram of an imaging displacement module according to another embodiment of the present invention.

圖8繪示本發明圖7實施例之沿D-D虛線方向的剖面側視圖。 FIG. 8 is a cross-sectional side view along the dotted line D-D of the embodiment of FIG. 7 of the present invention.

圖9繪示本發明圖7之沿A-A虛線方向的剖面側視圖。 FIG. 9 shows a cross-sectional side view along the dashed line A-A in FIG. 7 of the present invention.

圖10A、圖11A、圖12A分別繪示本發明不同實施例之成像位移模組的結構示意圖。 FIG. 10A , FIG. 11A , and FIG. 12A are respectively schematic structural diagrams of imaging displacement modules according to different embodiments of the present invention.

圖10B、圖11B、圖12B分別繪示圖10A、圖11A、圖12A實施例之成像位移模組的上視圖。 Figures 10B, 11B, and 12B respectively illustrate top views of the imaging displacement module in the embodiments of Figures 10A, 11A, and 12A.

圖10C、圖11C、圖12C分別繪示圖10A、圖11A、圖12A實施例之成像位移模組的剖面側視圖。 10C, 11C, and 12C respectively illustrate cross-sectional side views of the imaging displacement module according to the embodiments of FIGS. 10A, 11A, and 12A.

圖13A繪示本發明一實施例之子影像移動方向概要示意圖。 FIG. 13A is a schematic diagram illustrating the moving direction of the sub-image according to an embodiment of the present invention.

圖13B和圖13C繪示圖13A實施例之子影像的成像位移結果的概要示意圖。 13B and 13C are schematic diagrams illustrating the imaging displacement results of the sub-image in the embodiment of FIG. 13A.

圖14A繪示本發明另一實施例之子影像的移動方向和成像位置的概要示意圖。 FIG. 14A is a schematic diagram illustrating the moving direction and imaging position of the sub-image according to another embodiment of the present invention.

圖14B繪示圖14A實施例之旋轉基座在一圖框時間中相對不同方向旋轉時,其子影像的成像位置的概要對照圖。 FIG. 14B is a schematic comparison diagram of the imaging positions of the sub-images when the rotating base of the embodiment of FIG. 14A is rotated in different directions within a frame time.

圖15繪示本發明另一實施例之成像位移模組的結構立體示意圖。 FIG. 15 is a schematic structural perspective view of an imaging displacement module according to another embodiment of the present invention.

圖16A繪示本發明另一實施例之子影像的移動方向的概要示意圖。 FIG. 16A is a schematic diagram illustrating the moving direction of a sub-image according to another embodiment of the present invention.

圖16B繪示圖16A實施例之子影像成像位置概要示意圖。 FIG. 16B is a schematic diagram illustrating the sub-image imaging position of the embodiment in FIG. 16A.

圖17A及圖17B分別繪示本發明不同實施例之成像位移模組應用於投影鏡頭內部的立體示意圖。 17A and 17B are respectively schematic three-dimensional views of the imaging displacement module applied inside the projection lens according to different embodiments of the present invention.

圖18A繪示本發明一實施例成像位移模組結構立體示意圖。 FIG. 18A is a schematic three-dimensional structural view of an imaging displacement module according to an embodiment of the present invention.

圖18B及圖18C分別繪示圖18A實施例之成像位移模組的第一彈性件的結構立體示意圖及其振幅與時間的關係圖。 18B and 18C are respectively a schematic structural perspective view of the first elastic member of the imaging displacement module in the embodiment of FIG. 18A and a diagram of its amplitude versus time.

圖18D繪示第一彈性件其振幅與時間的關係圖。 FIG. 18D illustrates the relationship between the amplitude of the first elastic member and time.

圖19A與圖19B分別繪示應用本發明上述任一實施例的成像位移模組的不同三維列印裝置示意圖。 19A and 19B respectively illustrate different schematic diagrams of three-dimensional printing devices using the imaging displacement module according to any of the above embodiments of the present invention.

圖19C繪示由圖19A或圖19B的不同三維列印裝置所三維列印出的三維列印物件示意圖。 FIG. 19C is a schematic diagram of a 3D printed object 3D printed by different 3D printing devices of FIG. 19A or 19B.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之多個實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如「上」、「下」、「前」、「後」、「左」、「右」等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明,而非用來限制本發明。 The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of multiple embodiments with reference to the drawings. Directional terms mentioned in the following embodiments, such as "up", "down", "front", "back", "left", "right", etc., are only for reference to the directions in the attached drawings. Accordingly, the directional terms used are intended to illustrate and not to limit the invention.

圖1繪示一種光學裝置的結構示意圖。請參照圖1,光學裝置100包括照明系統110、數位微鏡裝置120、投影鏡頭130以及振動機構140。其中,照明系統110具有光源112,其適於提供光束114,且數位微鏡裝置120配置光束114的傳遞路徑上。此數位微鏡裝置120適於將光束114轉換為多數個子影像114a。此外, 投影鏡頭130配置於這些子影像114a的傳遞路徑上,且數位微鏡裝置120係位於照明系統110與投影鏡頭130之間。另外,振動機構140配置於數位微鏡裝置120與投影鏡頭130之間,且位於這些子影像114a的傳遞路徑上。 Figure 1 shows a schematic structural diagram of an optical device. Referring to FIG. 1 , the optical device 100 includes an illumination system 110 , a digital micromirror device 120 , a projection lens 130 and a vibration mechanism 140 . Wherein, the illumination system 110 has a light source 112, which is suitable for providing a light beam 114, and the digital micromirror device 120 is arranged on the transmission path of the light beam 114. The digital micromirror device 120 is suitable for converting the light beam 114 into a plurality of sub-images 114a. also, The projection lens 130 is arranged on the transmission path of these sub-images 114a, and the digital micromirror device 120 is located between the illumination system 110 and the projection lens 130. In addition, the vibration mechanism 140 is disposed between the digital micromirror device 120 and the projection lens 130, and is located on the transmission path of these sub-images 114a.

上述之光學裝置100中,光源112所提供的光束114會依序經過色輪(color wheel)116、集光柱(light integration rod)117、鏡片組118及內部全反射稜鏡(TIR Prism)119。之後,內部全反射稜鏡119會將光束114反射至數位微鏡裝置120。此時,數位微鏡裝置120會將光束114轉換成多數個子影像114a,而這些子影像114a會依序通過內部全反射稜鏡119及振動機構140,並經由投影鏡頭130將這些子影像114a投影於螢幕400上。 In the above-mentioned optical device 100, the light beam 114 provided by the light source 112 will pass through the color wheel 116, the light integration rod 117, the lens group 118 and the total internal reflection prism (TIR Prism) 119 in sequence. Afterwards, the internal total reflection lens 119 will reflect the light beam 114 to the digital micromirror device 120 . At this time, the digital micromirror device 120 will convert the light beam 114 into a plurality of sub-images 114a, and these sub-images 114a will pass through the internal total reflection lens 119 and the vibration mechanism 140 in sequence, and project these sub-images 114a through the projection lens 130 on screen 400.

當這些子影像114a經過振動機構140時,振動機構140會改變部分這些子影像114a的傳遞路徑。也就是說,通過此振動機構140的這些子影像114a會投影在螢幕400上的第一位置(未繪示),另一部份時間內通過此振動機構140的這些子影像114a則會投影在螢幕400上的第二位置(未繪示),其中第一位置與第二位置係在水平方向(X軸)或垂直方向(Z軸)上相差一固定距離。由於振動機構140僅能使這些子影像114a之成像位置在水平方向或垂直方向上移動一固定距離,因此能提高影像之水平解析度或垂直解析度。 When these sub-images 114a pass through the vibration mechanism 140, the vibration mechanism 140 will change part of the transmission paths of these sub-images 114a. That is to say, the sub-images 114a passing through the vibrating mechanism 140 will be projected at the first position (not shown) on the screen 400, and the sub-images 114a passing through the vibrating mechanism 140 will be projected at another part of the time. A second position (not shown) on the screen 400, where the first position and the second position differ by a fixed distance in the horizontal direction (X-axis) or the vertical direction (Z-axis). Since the vibration mechanism 140 can only move the imaging positions of these sub-images 114a by a fixed distance in the horizontal or vertical direction, it can improve the horizontal resolution or vertical resolution of the image.

圖2係繪示依照本發明一實施例所述之一種光學裝置的結構示意圖。請參照圖2,本實施例之光學裝置200包括照明系統 210、反射式光閥220、投影鏡頭230、成像位移模組240以及螢幕400。其中,照明系統210具有光源212,其適於提供光束214,且反射式光閥220配置光束214的傳遞路徑上。此反射式光閥220適於將光束214轉換為多數個子影像214a。此外,投影鏡頭230配置於這些子影像214a的傳遞路徑上,且反射式光閥220係位於照明系統210與投影鏡頭230之間。 FIG. 2 is a schematic structural diagram of an optical device according to an embodiment of the present invention. Please refer to Figure 2. The optical device 200 of this embodiment includes an illumination system. 210. Reflective light valve 220, projection lens 230, imaging displacement module 240 and screen 400. Wherein, the lighting system 210 has a light source 212, which is suitable for providing a light beam 214, and a reflective light valve 220 is arranged on the transmission path of the light beam 214. The reflective light valve 220 is adapted to convert the light beam 214 into a plurality of sub-images 214a. In addition, the projection lens 230 is disposed on the transmission path of these sub-images 214a, and the reflective light valve 220 is located between the illumination system 210 and the projection lens 230.

圖3繪示本實施例中,本實施例之光學裝置的成像示意圖。當子影像214a經過成像位移模組240時,成像位移模組240會改變部分這些子影像214a的傳遞路徑。也就是說,通過此成像位移模組240的這些子影像214a會投影在螢幕400上的第一位置(實線方格),而另一部份時間內通過此成像位移模組240的這些子影像214a則會投影在螢幕400上的第二位置(虛線方格),因此能同時提高影像之水平解析度及垂直解析度。上述之照明系統210例如是遠心照明系統或非遠心照明系統。此外,反射式光閥220例如是數位微鏡裝置或單晶矽反射式液晶面板,本實施例中係以數位微鏡裝置為例。上述之光源212提供的光束214會依序經過色輪216、集光柱217、鏡片組218及稜鏡219,而稜鏡219會將光束214反射至反射式光閥220。此時,反射式光閥220會將光束214轉換成多數個子影像214a,而這些子影像214a會依序通過成像位移模組240、稜鏡219或是依序通過稜鏡219、成像位移模組240,並經由投影鏡頭230將這些子影像214a投影於螢幕400上。應注意的是,若使用不同顏色的LED當光源212,則色輪216可 被省略。另外,也可使用微透鏡陣列(lens array)取代集光柱217進行光均勻化。 FIG. 3 is a schematic diagram of imaging of the optical device in this embodiment. When the sub-images 214a pass through the imaging displacement module 240, the imaging displacement module 240 changes the transmission paths of part of the sub-images 214a. That is to say, the sub-images 214a passing through the imaging displacement module 240 will be projected at the first position (solid line square) on the screen 400, and the sub-images 214a passing through the imaging displacement module 240 will be projected in another part of the time. The image 214a will be projected on the second position (dotted square) on the screen 400, thereby improving the horizontal resolution and vertical resolution of the image at the same time. The above-mentioned lighting system 210 is, for example, a telecentric lighting system or a non-telecentric lighting system. In addition, the reflective light valve 220 is, for example, a digital micromirror device or a single crystal silicon reflective liquid crystal panel. In this embodiment, a digital micromirror device is used as an example. The light beam 214 provided by the above-mentioned light source 212 will pass through the color wheel 216, the light collecting column 217, the lens group 218 and the lens 219 in sequence, and the lens 219 will reflect the light beam 214 to the reflective light valve 220. At this time, the reflective light valve 220 will convert the light beam 214 into a plurality of sub-images 214a, and these sub-images 214a will pass through the imaging displacement module 240 and the imaging displacement module 219 in sequence, or pass through the imaging displacement module 219 and the imaging displacement module in sequence. 240, and project these sub-images 214a on the screen 400 through the projection lens 230. It should be noted that if LEDs of different colors are used as the light source 212, the color wheel 216 can is omitted. In addition, a microlens array (lens array) may be used instead of the light collecting rod 217 for light uniformization.

圖4、5、6分別繪示本發明一實施例之成像位移模組的結構立體示意圖、沿D-D虛線方向的剖面側視圖、以及沿A-A虛線方向的剖面側視圖。請參照圖4、5、6,本實施例中,成像位移模組240包括承載基座410及旋轉基座420。其中,旋轉基座420樞接於承載基座410上,且承載基座410適於控制旋轉基座420於一特定角度θ(未繪示)內來回振動。此旋轉基座420具有光學元件部422,此光學元件部422係位於上述這些子影像214a(如圖2中所示)的傳遞路徑上。而且,當旋轉基座420於此特定角度θ內來回振動時,此光學元件部422可使這些子影像214a之成像位置於一軸線430上移動一距離。換言之,成像位移模組240(如圖4中所示)之光學元件部422可使這些子影像214a之成像位置同時在水平方向(X軸)和在垂直方向(Z軸)上各移動一距離。 4, 5, and 6 respectively illustrate a schematic structural perspective view of an imaging displacement module according to an embodiment of the present invention, a cross-sectional side view along the dashed line D-D, and a cross-sectional side view along the dashed line A-A. Please refer to Figures 4, 5, and 6. In this embodiment, the imaging displacement module 240 includes a bearing base 410 and a rotation base 420. The rotating base 420 is pivotally connected to the carrying base 410, and the carrying base 410 is suitable for controlling the rotating base 420 to vibrate back and forth within a specific angle θ (not shown). The rotating base 420 has an optical element part 422, and the optical element part 422 is located on the transmission path of the above-mentioned sub-images 214a (as shown in FIG. 2). Moreover, when the rotating base 420 vibrates back and forth within the specific angle θ, the optical element portion 422 can move the imaging positions of the sub-images 214a by a distance on an axis 430. In other words, the optical element part 422 of the imaging displacement module 240 (as shown in FIG. 4 ) can move the imaging positions of these sub-images 214a by a distance in the horizontal direction (X-axis) and the vertical direction (Z-axis) at the same time. .

上述之成像位移模組240中,承載基座410例如包括磁性材料座412、兩磁性材料414a、414b以及感應模組(未繪示)。旋轉基座420例如包括光學元件部422、承載座424、線圈模組426以及轉軸428。轉軸428上下兩端係藉由孔洞432而樞接於底座(未繪示)上。此外,感應模組配置於承載基座410上,而線圈模組426配置於旋轉基座420上,且感應模組係藉由線圈模組426控制旋轉基座420於此特定角度θ內來回振動。更詳細地說,承載基座410中例如具有磁性材料414a、414b,且感應模組係藉由改變 線圈模組426之磁性,使線圈模組426與磁性材料414之間產生吸引力及排斥力兩者至少其中之一,以控制旋轉基座420於此特定角度θ內來回振動,進而改變上述這些子影像214a之成像位置。 In the above-mentioned imaging displacement module 240, the carrying base 410 includes, for example, a magnetic material base 412, two magnetic materials 414a, 414b, and a sensing module (not shown). The rotating base 420 includes, for example, an optical element part 422, a bearing base 424, a coil module 426, and a rotating shaft 428. The upper and lower ends of the rotating shaft 428 are pivotally connected to the base (not shown) through holes 432. In addition, the induction module is arranged on the carrying base 410, and the coil module 426 is arranged on the rotating base 420, and the induction module controls the rotating base 420 to vibrate back and forth within this specific angle θ through the coil module 426 . In more detail, the carrying base 410 has, for example, magnetic materials 414a and 414b, and the induction module is The magnetism of the coil module 426 causes at least one of the attractive force and the repulsive force between the coil module 426 and the magnetic material 414 to control the rotating base 420 to vibrate back and forth within this specific angle θ, thereby changing the above-mentioned factors. The imaging position of the sub-image 214a.

本發明一實施例中,感應模組例如包括電路板(未繪示)以及感應器(未繪示)。其中,電路板配置於底座上,而感應器配置於承載基座上。此感應器係用以感應旋轉基座之轉軸428擺動幅度,當轉軸428向磁性材料414a擺動一定幅度時,電路板會改變線圈模組426之磁性,使線圈模組426與磁性材料414a之間產生排斥力(使線圈模組426與磁性材料414b之間產生吸引力),進而使線圈模組426遠離磁性材料414a。而當轉軸428向磁性材料414b擺動一定幅度時,電路板會改變線圈模組426之磁性,使線圈模組426與磁性材料414b之間產生排斥力(使線圈模組426與磁性材料414a之間產生吸引力),進而使線圈模組426遠離磁性材料414b。藉由使線圈模組426貼近/遠離或遠離/貼近磁性材料414a/414b,可使旋轉基座420於此特定角度θ內來回振動,進而改變上述這些子影像214a之成像位置。 In one embodiment of the present invention, the sensing module includes, for example, a circuit board (not shown) and a sensor (not shown). Among them, the circuit board is arranged on the base, and the sensor is arranged on the carrying base. This sensor is used to sense the swing amplitude of the rotating shaft 428 of the rotating base. When the rotating shaft 428 swings to the magnetic material 414a to a certain extent, the circuit board will change the magnetism of the coil module 426, so that there is a gap between the coil module 426 and the magnetic material 414a. A repulsive force is generated (an attraction force is generated between the coil module 426 and the magnetic material 414b), thereby causing the coil module 426 to move away from the magnetic material 414a. When the rotating shaft 428 swings toward the magnetic material 414b to a certain extent, the circuit board will change the magnetism of the coil module 426, causing a repulsive force to be generated between the coil module 426 and the magnetic material 414b (to cause a repulsive force between the coil module 426 and the magnetic material 414a. (generating an attractive force), thereby moving the coil module 426 away from the magnetic material 414b. By moving the coil module 426 close to/away from or away from/close to the magnetic material 414a/414b, the rotating base 420 can be vibrated back and forth within the specific angle θ, thereby changing the imaging positions of the above-mentioned sub-images 214a.

上述之成像位移模組240中,線圈模組426例如包括線圈座426a以及線圈426b。其中,線圈426b係圍繞於線圈座426a上,電路板例如係藉由改變線圈426b中電流之方向,而使線圈模組426改變磁性。值得注意的是,在本實施例中,可藉由射出模具使旋轉基座420之轉軸428與光學元件部422一體成型。而在一實施例中,也可將旋轉基座420之轉軸428與光學元件部422是 分開製造,再將光學元件部422與轉軸428組裝在一起。此外,光學元件部422可為一反射片或一透鏡。 In the above-mentioned imaging displacement module 240, the coil module 426 includes, for example, a coil base 426a and a coil 426b. The coil 426b surrounds the coil base 426a, and the circuit board causes the coil module 426 to change the magnetism, for example, by changing the direction of the current in the coil 426b. It is worth noting that in this embodiment, the rotating shaft 428 of the rotating base 420 and the optical element portion 422 can be integrally formed by an injection mold. In one embodiment, the rotating shaft 428 of the rotating base 420 and the optical element portion 422 can also be They are manufactured separately, and then the optical element part 422 and the rotating shaft 428 are assembled together. In addition, the optical element part 422 may be a reflective sheet or a lens.

圖7、8、9分別繪示本發明另一實施例之成像位移模組的結構立體示意圖、沿D-D虛線方向的剖面側視圖、以及沿A-A虛線方向的剖面側視圖。與圖4、5、6之實施例不同點在於,圖4中轉軸428上下兩端分別為水平和垂直配置,而本實施例將轉軸428上下兩端係水平配置。此外,本實施例將線圈模組分成兩部分427a、427b。當轉軸428向磁性材料414a擺動一定幅度時,電路板會改變線圈模組427a、427b之磁性,使線圈模組427a與磁性材料414a之間產生排斥力,同時使線圈模組427b與磁性材料部414b之間產生吸引力,進而使線圈模組427a遠離磁性材料414a。而當轉軸428向磁性材料414b擺動一定幅度時,電路板會改變線圈模組427a、427b之磁性,使線圈模組427b與磁性材料414b之間產生排斥力,同時使線圈模組427a與磁性材料部414a之間產生吸引力,進而使線圈模組427b遠離磁性材料414b。藉由使線圈模組427a、427b貼近/遠離或遠離/貼近磁性材料414a/414b,可使旋轉基座420於此特定角度θ內來回振動,進而改變上述這些子影像214a之成像位置。 7 , 8 , and 9 respectively illustrate a schematic structural perspective view of an imaging displacement module according to another embodiment of the present invention, a cross-sectional side view along the dotted line D-D, and a cross-sectional side view along the dotted line A-A. The difference from the embodiments in Figures 4, 5, and 6 is that in Figure 4, the upper and lower ends of the rotating shaft 428 are arranged horizontally and vertically respectively, while in this embodiment, the upper and lower ends of the rotating shaft 428 are arranged horizontally. In addition, this embodiment divides the coil module into two parts 427a and 427b. When the rotating shaft 428 swings toward the magnetic material 414a to a certain extent, the circuit board will change the magnetism of the coil modules 427a and 427b, causing a repulsive force between the coil module 427a and the magnetic material 414a, and at the same time, the coil module 427b and the magnetic material part will An attractive force is generated between 414b, thereby causing the coil module 427a to move away from the magnetic material 414a. When the rotating shaft 428 swings toward the magnetic material 414b to a certain extent, the circuit board will change the magnetism of the coil modules 427a and 427b, causing a repulsive force between the coil module 427b and the magnetic material 414b, and at the same time, the coil module 427a and the magnetic material An attractive force is generated between the portions 414a, thereby causing the coil module 427b to move away from the magnetic material 414b. By moving the coil modules 427a and 427b close to/away from or away from/close to the magnetic material 414a/414b, the rotating base 420 can be vibrated back and forth within this specific angle θ, thereby changing the imaging positions of the above-mentioned sub-images 214a.

圖10A繪示本發明另一實施例之成像位移模組的結構立體示意圖。圖10B繪示圖10A實施例的上視圖。圖10C繪示圖10A實施例的剖面側視圖。請先參照圖10A、圖10B以及圖10C,在本實施例中,成像位移模組1000a包括承載基座1100以及旋轉 基座1200。旋轉基座1200經由至少一彈性件1300耦接至承載基座1100。承載基座1100適於控制旋轉基座1200相對於參考平面S的雙軸旋轉。在本實施例中,參考平面S的雙軸例如為第一方向X上的第一轉軸1610以及第二方向Y上的第二轉軸1620。第一轉軸1610以及第二轉軸1620的夾角為90度,並且第一轉軸1610以及第二轉軸1620定義出參考平面S。承載基座1100以及旋轉基座1200相對於第一轉軸1610對稱。旋轉基座1200相對於第一轉軸1610以及第二轉軸1620兩者之至少其中之一旋轉。 FIG. 10A is a schematic structural perspective view of an imaging displacement module according to another embodiment of the present invention. Figure 10B illustrates a top view of the embodiment of Figure 10A. Figure 10C illustrates a cross-sectional side view of the embodiment of Figure 10A. Please refer to Figure 10A, Figure 10B and Figure 10C. In this embodiment, the imaging displacement module 1000a includes a bearing base 1100 and a rotating Base 1200. The rotating base 1200 is coupled to the carrying base 1100 via at least one elastic member 1300 . The carrying base 1100 is adapted to control the biaxial rotation of the rotating base 1200 relative to the reference plane S. In this embodiment, the two axes of the reference plane S are, for example, the first rotation axis 1610 in the first direction X and the second rotation axis 1620 in the second direction Y. The angle between the first rotation axis 1610 and the second rotation axis 1620 is 90 degrees, and the first rotation axis 1610 and the second rotation axis 1620 define the reference plane S. The carrying base 1100 and the rotating base 1200 are symmetrical with respect to the first rotating axis 1610 . The rotating base 1200 rotates relative to at least one of the first rotating shaft 1610 and the second rotating shaft 1620 .

另一方面,在本實施例中,成像位移模組1000a更包括光學元件部1500。光學元件部1500設置在旋轉基座1200上。光學元件部包括反射鏡或透鏡。 On the other hand, in this embodiment, the imaging displacement module 1000a further includes an optical element part 1500. The optical element unit 1500 is provided on the rotation base 1200 . The optical element section includes a mirror or a lens.

在本實施例中,至少一彈性件包括一第一彈性件對1310以及一第二彈性件對1320。承載基座1100包括第一承載框1110以及第二承載框1120,第一承載框1110設置於第二承載框1120上。第二承載框1120環繞第一承載框1110。第一承載框1110經由第一彈性件對1310耦接至旋轉基座1200,第二承載框1120經由第二彈性件對1320耦接至第一承載框1110。第一彈性件對1310沿雙軸的其中之一轉軸1620設置在第一承載框1110的相對兩側,第二彈性件對1320沿雙軸的其中之另一轉軸1610設置在第二承載框1120之相對兩側。 In this embodiment, at least one elastic member includes a first elastic member pair 1310 and a second elastic member pair 1320 . The bearing base 1100 includes a first bearing frame 1110 and a second bearing frame 1120. The first bearing frame 1110 is disposed on the second bearing frame 1120. The second carrying frame 1120 surrounds the first carrying frame 1110 . The first carrying frame 1110 is coupled to the rotating base 1200 via the first pair of elastic members 1310 , and the second carrying frame 1120 is coupled to the first carrying frame 1110 via the second pair of elastic members 1320 . The first pair of elastic members 1310 is disposed on opposite sides of the first bearing frame 1110 along one of the two rotating axes 1620 , and the second pair of elastic members 1320 is disposed on the second bearing frame 1120 along the other one of the two rotating axes 1610 . the opposite sides.

在本實施例中,至少一彈性件1300為彈簧。於其他實施例中,至少一彈性件1300也可以是其他彈性可變形的物體,如板 金件、薄金屬、扭轉彈簧或者塑膠,本發明並不以此為限。 In this embodiment, at least one elastic member 1300 is a spring. In other embodiments, at least one elastic member 1300 can also be other elastically deformable objects, such as plates. The invention is not limited to gold parts, thin metals, torsion springs or plastics.

在本實施例中,成像位移模組1000a更包括多個致動組件1400。這些多個致動組件1400設置在至少承載基座1100及旋轉基座1200兩者其中之一。承載基座1100係利用這些致動組件1400控制旋轉基座1200相對於參考平面S的雙軸旋轉。 In this embodiment, the imaging displacement module 1000a further includes a plurality of actuating components 1400. These multiple actuating assemblies 1400 are disposed on at least one of the carrying base 1100 and the rotating base 1200 . The carrying base 1100 uses these actuating assemblies 1400 to control the biaxial rotation of the rotating base 1200 relative to the reference plane S.

更具體來說,在本實施例中,這些多個致動組件1400包括第一致動組件1410以及第二致動組件1420。第一致動組件1410設置在承載基座1100上,沿著第二方向Y排列。承載基座1100利用第二致動組件1420控制旋轉基座1200相對於第二轉軸1620旋轉,此時旋轉基座1200與第一承載框1110同時相對於第二承載框1120旋轉。另一方面,第二致動組件1420設置在承載基座1100上,沿著第一方向X排列。承載基座1100利用第二致動組件1420控制旋轉基座1200相對於第二轉軸1620旋轉,此時旋轉基座1200相對於第一承載框1110旋轉。 More specifically, in this embodiment, the plurality of actuating components 1400 include a first actuating component 1410 and a second actuating component 1420 . The first actuating assembly 1410 is disposed on the carrying base 1100 and arranged along the second direction Y. The carrying base 1100 uses the second actuating component 1420 to control the rotating base 1200 to rotate relative to the second rotating shaft 1620. At this time, the rotating base 1200 and the first carrying frame 1110 rotate relative to the second carrying frame 1120 at the same time. On the other hand, the second actuation assembly 1420 is disposed on the carrying base 1100 and arranged along the first direction X. The carrying base 1100 uses the second actuating component 1420 to control the rotating base 1200 to rotate relative to the second rotating shaft 1620 , when the rotating base 1200 rotates relative to the first carrying frame 1110 .

在本實施例中,第一致動組件1410包括兩個磁性材料M1、M2以及一個線圈模組C1。磁性材料M1、M2對稱第一轉軸1610設置於承載基座1100。線圈模組C1設置於承載基座1100上,並且線圈模組C1位於磁性材料M1、M2之間。第二致動組件1420包括兩個磁性材料M3、M4以及兩個線圈模組C2、C3。兩個磁性材料M3、M4對稱第二轉軸1620設置於承載基座1100上。兩個線圈模組C2、C3對稱第二轉軸1620設置於光學元件部1500上。兩個線圈模組C2、C3位於兩個磁性材料M3、M4之間。磁性材 料M3、M4與線圈模組C2、C3沿著第一方向X排列。值得一提的是,本實施例的成像位移模組1000a所使用的線圈總長度最小,其轉動慣量最小。 In this embodiment, the first actuation component 1410 includes two magnetic materials M1 and M2 and a coil module C1. The magnetic materials M1 and M2 are symmetrical about the first rotation axis 1610 and are arranged on the carrying base 1100 . The coil module C1 is disposed on the carrying base 1100, and the coil module C1 is located between the magnetic materials M1 and M2. The second actuation component 1420 includes two magnetic materials M3 and M4 and two coil modules C2 and C3. The two magnetic materials M3 and M4 are symmetrically arranged on the second rotating axis 1620 on the carrying base 1100 . The two coil modules C2 and C3 are symmetrically arranged on the second rotation axis 1620 on the optical element part 1500 . The two coil modules C2 and C3 are located between the two magnetic materials M3 and M4. Magnetic material The materials M3 and M4 and the coil modules C2 and C3 are arranged along the first direction X. It is worth mentioning that the imaging displacement module 1000a of this embodiment uses the smallest total coil length and the smallest moment of inertia.

具體而言,在本實施例中,感應模組(未繪示)藉由改變線圈模組C1、C2、C3的磁性,以控制旋轉基座1200相對於參考平面S的雙軸旋轉。感應模組(未繪示)包括電路板以及感應器。感應器係用以感應第一轉軸1610以及第二轉軸1620的擺動幅度。當第一轉軸1610或第二轉軸1620的擺動一定幅度時,電路板藉由改變線圈模組C1、C2、C3上的電流方向,使線圈模組C1、C2、C3改變磁性。因此,線圈模組C1、C2、C3與磁性材料M1、M2、M3、M4之間產生排斥力或吸引力,使線圈模組C1、C2、C3遠離或靠近磁性材料M1、M2、M3、M4,進而控制旋轉基座1200相對於參考平面S的雙軸旋轉。 Specifically, in this embodiment, the induction module (not shown) controls the biaxial rotation of the rotating base 1200 relative to the reference plane S by changing the magnetism of the coil modules C1, C2, and C3. The sensing module (not shown) includes a circuit board and a sensor. The sensor is used to sense the swing amplitude of the first rotating shaft 1610 and the second rotating shaft 1620 . When the first rotating shaft 1610 or the second rotating shaft 1620 swings to a certain extent, the circuit board causes the coil modules C1, C2, and C3 to change their magnetism by changing the current direction on the coil modules C1, C2, and C3. Therefore, a repulsive or attractive force is generated between the coil modules C1, C2, C3 and the magnetic materials M1, M2, M3, M4, causing the coil modules C1, C2, C3 to stay away from or close to the magnetic materials M1, M2, M3, M4 , thereby controlling the biaxial rotation of the rotating base 1200 relative to the reference plane S.

在本實施例中,多個致動組件包括磁性材料及線圈所構成。於其他實施例中,這些致動組件也可以是利用壓電材料或者步進馬達來達到如同本實施例中的致動效果,本發明不以此為限。 In this embodiment, the plurality of actuating components include magnetic materials and coils. In other embodiments, these actuating components may also use piezoelectric materials or stepper motors to achieve the same actuating effect as in this embodiment, and the invention is not limited thereto.

在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。 It must be noted here that the following embodiments follow the component numbers and part of the content of the previous embodiments, where the same numbers are used to represent the same or similar elements, and descriptions of the same technical content are omitted. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be repeated in the following embodiments.

圖11A繪示本發明另一實施例之成像位移模組的結構立體示意圖。圖11B繪示圖11A實施例之成像位移模組的上視圖。 圖11C繪示圖11A實施例之成像位移模組的剖面側視圖。請同時參考圖11A、圖11B以及圖11C,本實施例的成像位移模組1000b與成像位移模組1000a主要的差異是在於:本實施例的第二致動組件1420中的線圈模組C4設置在旋轉基座1200上,並且線圈模組C4環繞旋轉基座1200的光學元件部1500。值得一提的是,本實施例的所使用到的線圈數量少,製程上相對來說較為簡單。 FIG. 11A is a schematic structural perspective view of an imaging displacement module according to another embodiment of the present invention. FIG. 11B shows a top view of the imaging displacement module of the embodiment of FIG. 11A. FIG. 11C shows a cross-sectional side view of the imaging displacement module of the embodiment of FIG. 11A. Please refer to FIG. 11A, FIG. 11B and FIG. 11C at the same time. The main difference between the imaging displacement module 1000b and the imaging displacement module 1000a of this embodiment is: the setting of the coil module C4 in the second actuating component 1420 of this embodiment. On the rotating base 1200 , the coil module C4 surrounds the optical element portion 1500 of the rotating base 1200 . It is worth mentioning that the number of coils used in this embodiment is small, and the manufacturing process is relatively simple.

圖12A繪示本發明另一實施例之成像位移模組的結構立體示意圖。圖12B繪示圖12A實施例之成像位移模組的上視圖。圖12C繪示圖12A實施例之成像位移模組的剖面側視圖。請同時參考圖12A、圖12B以及圖12C,本實施例的成像位移模組1000c與成像位移模組1000a主要的差異例如如下。在本實施例中,承載基座1100以及旋轉基座1200除了相對於第一轉軸1610對稱之外還相對於第二轉軸1620對稱。在本實施例中,第一彈性件對1310沿著第一轉軸1610設置在第二承載框1120之相對兩側,第二彈性件對1320沿著第二轉軸1620設置在第一承載框1110的相對兩側。此外,在本實施例中,第一致動組件1410包括兩個磁性材料M5、M6以及兩個線圈模組C5、C6。磁性材料M5、M6皆對稱於第一轉軸1610,並設置在承載基座1100上。線圈模組C5、C6皆對稱於第一轉軸1610,並設置在光學元件部1500上。磁性材料M5、M6以及線圈模組C5、C6沿著第二方向排列,線圈模組C5、C6位於磁性材料M5、M6之間。 FIG. 12A is a schematic structural perspective view of an imaging displacement module according to another embodiment of the present invention. FIG. 12B shows a top view of the imaging displacement module of the embodiment of FIG. 12A. FIG. 12C shows a cross-sectional side view of the imaging displacement module of the embodiment of FIG. 12A. Please refer to FIG. 12A, FIG. 12B and FIG. 12C at the same time. The main differences between the imaging displacement module 1000c and the imaging displacement module 1000a of this embodiment are as follows. In this embodiment, the bearing base 1100 and the rotating base 1200 are symmetrical not only relative to the first rotating axis 1610 but also relative to the second rotating axis 1620 . In this embodiment, the first pair of elastic members 1310 is disposed on opposite sides of the second bearing frame 1120 along the first rotation axis 1610 , and the second pair of elastic members 1320 is disposed on the first bearing frame 1110 along the second rotation axis 1620 . Opposite sides. Furthermore, in this embodiment, the first actuation component 1410 includes two magnetic materials M5 and M6 and two coil modules C5 and C6. The magnetic materials M5 and M6 are both symmetrical to the first rotating axis 1610 and are arranged on the bearing base 1100 . The coil modules C5 and C6 are both symmetrical about the first rotation axis 1610 and are disposed on the optical element part 1500 . The magnetic materials M5 and M6 and the coil modules C5 and C6 are arranged along the second direction, and the coil modules C5 and C6 are located between the magnetic materials M5 and M6.

在本實施例中,第一致動組件1410與第二致動組件1420 分別對稱於第一轉軸1610以及第二轉軸1620配置。也就是說,本實施例的成像位移模組1000c的第一致動組件1410以及第二致動組件1420具有高度對稱性,馬達可以設定相同出力,控制上較為容易。再者,第一致動組件1410以及第二致動組件1420相對於前述的實施例具有較長的力臂,因此啟動成像位移模組1000c的所需的力量相對較小。此外,由於四個磁性材料或四個線圈模組之間距離較遠,相對於前述的實施例來說,彼此之間較不易被干擾。 In this embodiment, the first actuating component 1410 and the second actuating component 1420 They are arranged symmetrically with respect to the first rotating axis 1610 and the second rotating axis 1620 respectively. In other words, the first actuator component 1410 and the second actuator component 1420 of the imaging displacement module 1000c of this embodiment are highly symmetrical, and the motors can be set to the same output force, making control easier. Furthermore, the first actuating component 1410 and the second actuating component 1420 have longer force arms than the previous embodiments, so the force required to activate the imaging displacement module 1000c is relatively small. In addition, since the distance between the four magnetic materials or the four coil modules is relatively far, they are less likely to be interfered with each other compared to the aforementioned embodiments.

圖13A繪示本發明一實施例之子影像的移動方向的概要示意圖。圖13B和圖13C繪示圖13A實施例之子影像的成像位移結果的概要示意圖。請同時參照圖13A以及圖13B,在本發明實施例中,成像位移模組適用於光學裝置,成像位移模組切換多個子影像的成像位置,以讓這些子影像500沿多個移動方向的其中之一移動一距離。這些子影像500的位置係依據旋轉基座1200的旋轉方式來決定。具體來說,在本實施例中,當旋轉基座1200相對於第一轉軸1610或第二轉軸1620其中之一旋轉時,這些子影像500的位置例如在圖2的螢幕400上,沿多個移動方向其中之一移動一距離,多個移動方向例如是第一方向X或第二方向Y。在本實施例中,此距離為約0.7倍畫素寬度。因此,這些子影像500由原先的位置(實線方格)可以擺動至四個不同的位置(虛線方格),換言之,可以提高影像解析度至原先的四倍影像解析度。在另一實施例中,請參考圖13C,當旋轉基座1200相對於第一轉軸1610或/且第二轉軸1620旋轉時,這些子影像500可沿多個移動方向例如 是第一方向X、第二方向Y、第三方向XY1及第四方向XY2其中之一移動。更進一步的說,當旋轉基座1200相對於第一轉軸1610及第二轉軸1620同時旋轉時,這些子影像500例如在第三方向XY1或第四方向XY2上移動一距離,其中第三方向XY1及第四方向XY2是介於第一方向X及第二方向Y之間。 FIG. 13A is a schematic diagram illustrating the moving direction of a sub-image according to an embodiment of the present invention. 13B and 13C are schematic diagrams illustrating the imaging displacement results of the sub-image in the embodiment of FIG. 13A. Please refer to FIG. 13A and FIG. 13B at the same time. In the embodiment of the present invention, the imaging displacement module is suitable for an optical device. The imaging displacement module switches the imaging positions of multiple sub-images so that the sub-images 500 move along one of the multiple moving directions. One moves one distance. The positions of these sub-images 500 are determined according to the rotation mode of the rotating base 1200 . Specifically, in this embodiment, when the rotating base 1200 rotates relative to one of the first rotating axis 1610 or the second rotating axis 1620, the positions of these sub-images 500 are, for example, on the screen 400 in FIG. 2, along multiple One of the moving directions moves a distance, and the multiple moving directions are, for example, the first direction X or the second direction Y. In this embodiment, this distance is approximately 0.7 times the pixel width. Therefore, these sub-images 500 can swing from the original position (solid line square) to four different positions (dashed line square). In other words, the image resolution can be increased to four times the original image resolution. In another embodiment, please refer to FIG. 13C , when the rotating base 1200 rotates relative to the first rotating axis 1610 and/or the second rotating axis 1620 , these sub-images 500 can move in multiple directions, such as It is a movement in one of the first direction X, the second direction Y, the third direction XY1 and the fourth direction XY2. Furthermore, when the rotating base 1200 rotates simultaneously relative to the first rotating axis 1610 and the second rotating axis 1620, these sub-images 500 move a distance in the third direction XY1 or the fourth direction XY2, for example, where the third direction XY1 And the fourth direction XY2 is between the first direction X and the second direction Y.

圖14A繪示本發明另一實施例之子影像的移動方向和成像位置的概要示意圖。圖14B繪示圖14A實施例之旋轉基座在一圖框時間中相對不同方向旋轉時,其子影像的成像位置的概要對照圖。請先參照圖14A,在本實施例中,當旋轉基座相對於第一轉軸或第二轉軸其中之一旋轉時,這些子影像500沿方向X’或Y’其中之一移動。更進一步的說,當旋轉基座相對於第一轉軸及第二轉軸同時旋轉時,這些子影像500在方向X’Y’1或方向X’Y’2其中之一移動一距離,其中方向X’Y’1及方向X’Y’2是介於方向X’及方向Y,之間。 FIG. 14A is a schematic diagram illustrating the moving direction and imaging position of the sub-image according to another embodiment of the present invention. FIG. 14B is a schematic comparison diagram of the imaging positions of the sub-images when the rotating base of the embodiment of FIG. 14A is rotated in different directions within a frame time. Please refer to FIG. 14A first. In this embodiment, when the rotating base rotates relative to one of the first rotating axis or the second rotating axis, the sub-images 500 move along one of the directions X’ or Y’. Furthermore, when the rotating base rotates simultaneously relative to the first rotating axis and the second rotating axis, these sub-images 500 move a distance in one of the directions X'Y'1 or X'Y'2, where the direction X 'Y'1 and direction X'Y'2 are between direction X' and direction Y.

請再參照圖14A,當旋轉基座相對於第一轉軸及第二轉軸兩者至少其中之一旋轉時,這些子影像500的位置沿方向X’、Y’、X’Y’1及X’Y’2位移的示意圖。具體來說,在本實施例中,這些子影像500在方向X’以及在方向Y’上移動的距離皆為1畫素寬度,這些子影像500在方向X’Y’1或方向X’Y’2上移動的距離約為1.4畫素寬度。 Please refer to FIG. 14A again. When the rotating base rotates relative to at least one of the first rotating axis and the second rotating axis, the positions of these sub-images 500 are along the directions X', Y', X'Y'1 and X'. Schematic diagram of Y'2 displacement. Specifically, in this embodiment, the moving distances of these sub-images 500 in the direction X' and the direction Y' are both 1 pixel width, and the sub-images 500 move in the direction X'Y'1 or the direction X'Y The distance moved on '2 is about 1.4 pixels wide.

更詳細的說,在圖14A及14B中,其標記的數字標號1至9分別代表同一子影像於不同的時間下位於不同的位置標號。 數字標號1代表的是子影像500沒有移動的位置。數字標號3、7代表的是子影像500在方向X’上向右或向左移動的位置。數字標號5、9代表的是子影像500在方向Y’上向下或向上移動的位置。數字標號2、6代表的是子影像500在方向X’Y’1上移動的位置。數字標號4、8代表的是子影像500在方向X’Y’2上移動的位置。 To be more specific, in FIGS. 14A and 14B , the labeled numbers 1 to 9 respectively represent the same sub-image located at different position numbers at different times. The numerical label 1 represents the position where the sub-image 500 has not moved. Numerical labels 3 and 7 represent the position of the sub-image 500 moving to the right or left in the direction X'. Numerical labels 5 and 9 represent the positions where the sub-image 500 moves downward or upward in the direction Y'. Numerical labels 2 and 6 represent the positions where the sub-image 500 moves in the direction X’Y’1. Numerical labels 4 and 8 represent the positions where the sub-image 500 moves in the direction X’Y’2.

圖14B中的數字標號1所代表的意思是在此時間區間內,這些子影像500在對應圖14A的數字標號1的位置上。同樣地,圖14B中的數字標號2至9所代表的意思是在各個不同時間區間內,這些子影像500在對應圖14A的數字標號2~9的位置上。 The numerical label 1 in FIG. 14B represents that within this time interval, these sub-images 500 are at the positions corresponding to the numerical label 1 in FIG. 14A . Similarly, the numbers 2 to 9 in FIG. 14B represent that within different time intervals, these sub-images 500 are at positions corresponding to the numbers 2 to 9 in FIG. 14A .

圖14B的縱軸對應到在不同的時間區間內,子影像500可沿著不同的方向移動(方向X’或/及方向Y’)。舉例而言,當在數字標號為1時,其在方向X’及方向Y’對應的縱軸值皆為0,代表子影像500不往方向X’也不往方向Y’作動。當在數字標號為2時,其在方向X’及方向Y’對應的縱軸值皆為正,代表子影像500由位置1往方向X’和方向Y’之間的方向移動到位置2,也就是方向X’Y’1。當在數字標號為3時,其在方向X’對應的縱軸值為正及方向Y’對應的縱軸值為0,代表子影像500由位置1往方向X’作動到位置3。當在數字標號為4時,其在方向X’對應的縱軸值為正,在方向Y’對應的縱軸值為負,代表的是子影像500由位置1往方向X’和負的方向Y’向量合成的方向作動到位置4,也就是方向X’Y’的反方向。接續的數字標號以此類推,在此不再贅述。應注意的是,在此處僅為舉例這些子影像500可在方向X’、方向 Y’方向X’Y’1或方向X’Y’2上移動的其中一種順序,本發明並不以此為限。另外,子影像500(實線方格)可以在圖14B移動至不同的九個位置(虛線方格),換言之,可以提高影像解析度至原先的九倍影像解析度。 The vertical axis of FIG. 14B corresponds to the fact that the sub-image 500 can move in different directions (direction X' or/and direction Y') in different time intervals. For example, when the numerical label is 1, the corresponding vertical axis values in the direction X' and the direction Y' are both 0, which means that the sub-image 500 does not move in the direction X' nor in the direction Y'. When the digital label is 2, the corresponding vertical axis values in direction X' and direction Y' are both positive, which means that the sub-image 500 moves from position 1 to the direction between direction X' and direction Y' to position 2. That is the direction X'Y'1. When the numerical label is 3, the vertical axis value corresponding to the direction X' is positive and the vertical axis value corresponding to the direction Y' is 0, which means that the sub-image 500 moves from position 1 to position 3 in the direction X'. When the numerical label is 4, the vertical axis value corresponding to the direction X' is positive, and the vertical axis value corresponding to the direction Y' is negative, which represents the sub-image 500 moving from position 1 to the direction X' and the negative direction. The direction of Y' vector synthesis moves to position 4, which is the opposite direction of direction X'Y'. The subsequent numerical labels are deduced in the same way and will not be repeated here. It should be noted that these sub-images 500 may be in the direction X', direction The present invention is not limited to one of the sequences of movement in the Y' direction X'Y'1 or direction X'Y'2. In addition, the sub-image 500 (solid line square) can be moved to nine different positions (dashed line square) in Figure 14B. In other words, the image resolution can be increased to nine times the original image resolution.

圖15繪示本發明另一實施例之成像位移模組的結構立體示意圖。請參照圖15,在本實施例中,成像位移模組1000d與成像位移模組1000b主要的差異在於:本實施例的第一轉軸1610與第二轉軸1620具有一夾角。舉例而言,本實施例的夾角為45度,也就是說,本發明的範例實施例之第一轉軸1610與第二轉軸1620並不限定於兩者彼此互相垂直。 FIG. 15 is a schematic structural perspective view of an imaging displacement module according to another embodiment of the present invention. Please refer to FIG. 15 . In this embodiment, the main difference between the imaging displacement module 1000d and the imaging displacement module 1000b is that the first rotation axis 1610 and the second rotation axis 1620 in this embodiment have an included angle. For example, the included angle in this embodiment is 45 degrees. That is to say, the first rotating axis 1610 and the second rotating axis 1620 in the exemplary embodiment of the present invention are not limited to being perpendicular to each other.

圖16A繪示本發明另一實施例之子影像的移動方向的概要示意圖。圖16B繪示圖16A實施例之子影像的成像位置的概要示意圖。請參照圖16A,具體來說,在本實施例中,當旋轉基座相對於第一轉軸或第二轉軸其中之一旋轉時,這些子影像的位置沿方向X”或方向Y”移動一距離。在本實施例中,此距離在沿方向X”時為1倍畫素寬度,沿方向Y”時為約1.1倍畫素寬度。因此,這些子影像由原先的位置(實線方格)可以擺動至四個不同的位置(虛線方格),換言之,可以提高影像解析度至原先的四倍影像解析度。 FIG. 16A is a schematic diagram illustrating the moving direction of a sub-image according to another embodiment of the present invention. FIG. 16B is a schematic diagram illustrating the imaging position of the sub-image in the embodiment of FIG. 16A. Please refer to Figure 16A. Specifically, in this embodiment, when the rotating base rotates relative to one of the first rotating axis or the second rotating axis, the positions of these sub-images move a distance along the direction X” or the direction Y”. . In this embodiment, the distance is 1 times the pixel width along the direction X" and about 1.1 times the pixel width along the direction Y". Therefore, these sub-images can swing from the original position (solid line square) to four different positions (dashed line square). In other words, the image resolution can be increased to four times the original image resolution.

圖17A繪示本發明一實施例之成像位移模組應用於投影鏡頭內部的立體示意圖。圖17B繪示本發明另一實施例之成像位移模組應用於投影鏡頭內部的立體示意圖。請同時參照圖17A以及圖17B,本發明之實施例的成像位移模組也可以置於投影鏡頭 的內部或者投影鏡頭的前方,以使投射出的影像解析度提升為原先四倍的影像解析度。 FIG. 17A is a schematic three-dimensional view of an imaging displacement module applied inside a projection lens according to an embodiment of the present invention. FIG. 17B is a schematic three-dimensional view of an imaging displacement module applied inside a projection lens according to another embodiment of the present invention. Please refer to Figure 17A and Figure 17B at the same time. The imaging displacement module according to the embodiment of the present invention can also be placed on the projection lens. inside or in front of the projection lens, so that the resolution of the projected image is increased to four times the original image resolution.

圖18A繪示本發明一實施例之成像位移模組的結構立體示意圖。圖18B繪示圖18A實施例之成像位移模組的第一彈性件的結構立體示意圖。圖18C繪示圖18A實施例之成像位移模組的第一彈性件之振幅與時間的關係圖。圖18D繪示用以驅動第一彈性件的訊號其振幅與時間的關係圖。 FIG. 18A is a schematic structural perspective view of an imaging displacement module according to an embodiment of the present invention. FIG. 18B is a schematic structural perspective view of the first elastic member of the imaging displacement module according to the embodiment of FIG. 18A. FIG. 18C is a graph showing the relationship between the amplitude and time of the first elastic member of the imaging displacement module of the embodiment of FIG. 18A. FIG. 18D is a diagram illustrating the relationship between the amplitude and time of the signal used to drive the first elastic member.

圖18A的成像位移模組可以由前述實施例之敘述中獲致足夠的教示、建議與實施說明。因此,在圖18A中僅標示下列段落說明所需的元件符號,其他部分不再贅述。此外,由於本實施例中的第一彈性件對1310類似於第二彈性件對1320,因此下列段落係以第一彈性件對1310舉例來說明,第二彈性件對1320的操作方式可以此類推。 The imaging displacement module of FIG. 18A can obtain sufficient teachings, suggestions and implementation instructions from the description of the foregoing embodiments. Therefore, only the component symbols required for the description in the following paragraphs are marked in FIG. 18A , and other parts will not be described again. In addition, since the first elastic member pair 1310 in this embodiment is similar to the second elastic member pair 1320, the following paragraphs take the first elastic member pair 1310 as an example to illustrate, and the operation mode of the second elastic member pair 1320 can be deduced in this way. .

請參照圖18A,舉例而言,在本實施例中,第一彈性件對1310包括第一彈性件1311以及第二彈性件1312。第一彈性件1311以及第二彈性件1312係以彼此垂直的方式沿著本實施例的成像位移模組1000e的第一轉軸1610設置,此配置方式可使第一轉軸1610通過光學元件部1500的軸心。 Please refer to FIG. 18A. For example, in this embodiment, the first elastic member pair 1310 includes a first elastic member 1311 and a second elastic member 1312. The first elastic member 1311 and the second elastic member 1312 are arranged perpendicularly to each other along the first rotation axis 1610 of the imaging displacement module 1000e of this embodiment. This arrangement allows the first rotation axis 1610 to pass through the optical element part 1500 axis.

一般來說,當第一彈性件1311的振幅由一方向轉換至另一方向時,其振幅轉換的過程所需的時間稱為轉換時間(transition time)T。轉換時間T的長短決定了子影像的顯示品質。由於轉換時間T與第一彈性件1311的自然頻率成反比,而自然頻率與第一彈 性件1311的結構參數有關。因此前述所提到影響自然頻率的因素皆可為影響轉換時間T的因素。 Generally speaking, when the amplitude of the first elastic member 1311 switches from one direction to another direction, the time required for the amplitude switching process is called transition time T. The length of the conversion time T determines the display quality of the sub-image. Since the conversion time T is inversely proportional to the natural frequency of the first elastic member 1311, and the natural frequency is It is related to the structural parameters of property 1311. Therefore, the aforementioned factors that affect the natural frequency can all be factors that affect the conversion time T.

請參照圖18B。承上述,轉換時間T與第一彈性件1311的結構參數有關。在本實施例中,第一彈性件1311的頸部寬度NW的結構參數例如是第一彈性件1311的寬度w的0.2倍至0.6倍。此外,第一彈性件1311的厚度t也是影響轉換時間T的一個原因。在一實施例中,第一彈性件1311的厚度t至少在0.2毫米(mm)以上。此厚度的設計可使第一彈性件1311的自然頻率至少大於90Hz。由於自然頻率與轉換時間T成反比,因此此厚度設計也可以有效地降低轉換時間T。 Please refer to Figure 18B. Based on the above, the conversion time T is related to the structural parameters of the first elastic member 1311. In this embodiment, the structural parameter of the neck width NW of the first elastic member 1311 is, for example, 0.2 to 0.6 times the width w of the first elastic member 1311 . In addition, the thickness t of the first elastic member 1311 is also a factor affecting the conversion time T. In one embodiment, the thickness t of the first elastic member 1311 is at least 0.2 millimeters (mm). The design of this thickness can make the natural frequency of the first elastic member 1311 at least greater than 90 Hz. Since the natural frequency is inversely proportional to the switching time T, this thickness design can also effectively reduce the switching time T.

除了前述所提到的第一彈性件1311的結構參數會影響轉換時間T之外,影響轉換時間T的因素還包括第一彈性件1311的振動方式。請同時參照圖18C以及圖18D,在本實施例中,藉由改變第一彈性件1311的振動方式以降低轉換時間T。具體而言,在第一彈性件1311的振幅由一方向轉為另一方向時,其驅動訊號波形如同圖18D所示。此外,驅動訊號波形也不僅限於如圖18D所示的方波形式驅動訊號,也可以是正弦波形式的驅動訊號波形。轉換時間T小於1毫秒,較佳範圍在1~0.05毫秒之間,使得光學裝置可提供良好的顯示品質。 In addition to the aforementioned structural parameters of the first elastic member 1311 that affect the conversion time T, factors that affect the conversion time T also include the vibration mode of the first elastic member 1311. Please refer to FIG. 18C and FIG. 18D simultaneously. In this embodiment, the conversion time T is reduced by changing the vibration mode of the first elastic member 1311 . Specifically, when the amplitude of the first elastic member 1311 changes from one direction to another, the driving signal waveform is as shown in FIG. 18D . In addition, the driving signal waveform is not limited to the square wave driving signal shown in FIG. 18D , but may also be a sine wave driving signal waveform. The conversion time T is less than 1 millisecond, and the optimal range is between 1 and 0.05 milliseconds, so that the optical device can provide good display quality.

為了更了解前述實施例中所提到的成像位移模組的實際應用,下列段落提出多個範例實施例。圖19A與圖19B分別繪示應用本發明上述任一實施例的成像位移模組的不同三維列印裝置 示意圖,而圖19C所示為由圖19A或圖19B的不同三維列印裝置所三維列印出的三維列印物件示意圖。在本應用範例實施例中,三維列印裝置例如藉由計算機輔助設計(Computer Aided Design,簡稱為CAD)或動畫模擬軟件等建構而成的立體模型的多層橫截面逐步製造出三維物件。請先參照圖19A,在本應用範例實施例中的三維列印裝置1900a所採用的三維列印技術例如是採用立體光固化成型法(Stereo Lithography,簡稱為SLA),三維列印裝置1900a包括成型槽1910、投影裝置1920、升降載台1930以及前述實施例所述及的任一的成像位移模組1940,其中三維列印裝置1900a用以形成三維列印物件OB,其中圖19A的三維列印裝置例如是下沉式的三維列印裝置1900a。 In order to better understand the practical application of the imaging displacement module mentioned in the foregoing embodiments, the following paragraphs propose multiple example embodiments. Figure 19A and Figure 19B respectively illustrate different three-dimensional printing devices using the imaging displacement module according to any of the above embodiments of the present invention. A schematic diagram, and FIG. 19C shows a schematic diagram of a 3D printed object 3D printed by the different 3D printing device of FIG. 19A or 19B. In this application example embodiment, the three-dimensional printing device gradually produces a three-dimensional object from multi-layer cross-sections of a three-dimensional model constructed by computer-aided design (CAD) or animation simulation software. Please refer to FIG. 19A first. In this application example, the 3D printing technology used by the 3D printing device 1900a is, for example, stereolithography (Stereo Lithography, SLA for short). The 3D printing device 1900a includes a molding process. The slot 1910, the projection device 1920, the lifting platform 1930 and any of the imaging displacement modules 1940 mentioned in the previous embodiments, in which the three-dimensional printing device 1900a is used to form the three-dimensional printing object OB, wherein the three-dimensional printing in Figure 19A The device is, for example, a sunken three-dimensional printing device 1900a.

以下段落將對本應用範例實施例中的三維列印裝置1900a的各組件進行詳細地介紹。 The following paragraphs will introduce each component of the three-dimensional printing device 1900a in this application example embodiment in detail.

成型槽1910用以容置光敏感材料1912,其中光敏感材料1912在具有特定波長的光束照射下,會產生光聚合反應而固化。投影裝置1920中具有發光元件,其所採用的發光元件可以是發光二極體(Light Emitting Diode,簡稱為LED)、雷射(Laser)或其他適用的發光元件,發光元件適於發出影像光束B,其中影像光束B可提供能固化光敏感材料1912的波段的光線(例如紫外線),但影像光束B的波段並不以此為限制,只要是能夠固化光敏感材料1912即可。升降載台1930具有列印區1932,且適於在成型槽1910內移動。此外,本應用範例實施例中的三維列印裝置1900a還包括 控制器(未繪示)與輸入介面(未繪示),控制器與投影裝置1920、升降載台1930以及輸入介面電性連接,使用者可以通過輸入介面並通過電腦輔助設計(Computer Aided Design,簡稱為:CAD)或動畫建模軟體以輸入三維列印物件OB的三維實體模型。具體而言,輸入介面可以是滑鼠、鍵盤、觸控裝置或者是其他能夠使使用者輸入三維列印物件OB的三維實體模型的介面。控制器依據三維實體模型控制升降載台1930與影像光束B的作動方式。具體而言,控制器可以是計算器、微處理器(Micro Controller Unit,簡稱為:MCU)、中央處理單元(Central Processing Unit,簡稱為:CPU),或是其他可程式化的控制器(Microprocessor)、數位信號處理器(Digital Signal Processor,簡稱為:DSP)、可程式化控制器、專用積體電路(Application Specific Integrated Circuits,簡稱為:ASIC)、可程式化邏輯裝置(Programmable Logic Device,簡稱為:PLD)或其他類似裝置。在本應用範例實施例中,成像位移模組1940配置於投影裝置1920的外部,且成像位移模組1940配置於影像光束B的路徑上,在其他的應用範例實施例中,成像位移模組1940可以配置於投影裝置1920內,只要成像位移模組1940配置在影像光束B的路徑上即可,成像位移模組1940配置的位置並不以此為限。 The molding groove 1910 is used to accommodate the light-sensitive material 1912, where the light-sensitive material 1912 will undergo a photopolymerization reaction and solidify under the irradiation of a light beam with a specific wavelength. The projection device 1920 has a light-emitting element. The light-emitting element used may be a light-emitting diode (LED), a laser (Laser) or other suitable light-emitting elements. The light-emitting element is suitable for emitting the image beam B. , where the image beam B can provide light (such as ultraviolet light) in a wavelength band that can cure the photosensitive material 1912, but the wavelength band of the image beam B is not limited to this, as long as it can cure the photosensitive material 1912. The lifting platform 1930 has a printing area 1932 and is adapted to move within the forming groove 1910 . In addition, the three-dimensional printing device 1900a in this application example embodiment also includes The controller (not shown) and the input interface (not shown) are electrically connected to the projection device 1920, the lifting platform 1930 and the input interface. The user can use the input interface and computer-aided design (Computer Aided Design, Abbreviated as: CAD) or animation modeling software to input the three-dimensional solid model of the three-dimensional printing object OB. Specifically, the input interface may be a mouse, a keyboard, a touch device, or other interfaces that enable the user to input a three-dimensional solid model of the three-dimensional printing object OB. The controller controls the action mode of the lifting stage 1930 and the image beam B based on the three-dimensional solid model. Specifically, the controller can be a calculator, a Micro Controller Unit (MCU), a Central Processing Unit (CPU), or other programmable controllers (Microprocessor). ), Digital Signal Processor (DSP for short), programmable controller, Application Specific Integrated Circuits (ASIC for short), Programmable Logic Device (Programmable Logic Device for short) (PLD) or other similar devices. In this application example embodiment, the imaging displacement module 1940 is disposed outside the projection device 1920, and the imaging displacement module 1940 is disposed on the path of the image beam B. In other application example embodiments, the imaging displacement module 1940 It can be disposed in the projection device 1920, as long as the imaging displacement module 1940 is disposed on the path of the image beam B, and the position where the imaging displacement module 1940 is disposed is not limited to this.

接下來介紹光固化成型的三維列印製程,其製程大致如下:首先,利用電腦輔助設計(Computer Aided Design,簡稱為:CAD)設計出三維實體模型,利用離散程式將三維實體模型進行切 片處理,進而得到多個分層的掃描路徑。接著,依據各個切層的掃描路徑精確控制影像光束B和升降載台1930的運動。由圖19A可看出列印區1932浸入於光敏感材料1912中,影像光束B按第一切層的掃描路徑照射到部分光敏感材料1912,此部分光敏感材料1912產生光聚合反應而固化,生成出三維列印物件OB的其中一個截面,進而得到第一固化層附著於列印區1932上。之後,升降載台1930向下移動少許距離,且原先形成的第一固化層對應向下移動少許距離,而原先形成的第一固化層的上表面可以當作承載面,使第一固化層上覆蓋另一層光敏感材料1912,再依據第二切層的掃描路徑精確控制影像光束B,使影像光束B按第二切層的掃描路徑照射到另一層光敏感材料1912的表面,進而得到第二固化層,依照這樣的模式不斷製作多層後可形成如圖19C所繪示的三維列印物件OB。應注意的是,圖19C所繪示的三維列印物件OB的形狀僅為舉例,三維列印物件OB的形狀並不以此為限。 Next, we will introduce the three-dimensional printing process of stereolithography. The process is roughly as follows: First, use Computer Aided Design (CAD) to design a three-dimensional solid model, and use discrete programs to cut the three-dimensional solid model. Slice processing is performed to obtain multiple hierarchical scan paths. Then, the movement of the image beam B and the lifting stage 1930 is precisely controlled according to the scanning path of each slice. It can be seen from Figure 19A that the printing area 1932 is immersed in the photosensitive material 1912. The image beam B irradiates part of the photosensitive material 1912 according to the scanning path of the first layer. This part of the photosensitive material 1912 undergoes a photopolymerization reaction and solidifies. One of the cross-sections of the three-dimensional printing object OB is generated, and the first solidified layer is obtained and attached to the printing area 1932. After that, the lifting platform 1930 moves downward a small distance, and the originally formed first solidified layer moves downward correspondingly, and the upper surface of the originally formed first solidified layer can be used as a bearing surface, so that the first solidified layer can be Cover another layer of light-sensitive material 1912, and then accurately control the image beam B according to the scanning path of the second slice layer, so that the image beam B irradiates the surface of another layer of light-sensitive material 1912 according to the scanning path of the second slice layer, thereby obtaining the second layer of light-sensitive material 1912. After continuously making multiple layers of the solidified layer according to this pattern, a three-dimensional printed object OB as shown in Figure 19C can be formed. It should be noted that the shape of the three-dimensional printing object OB shown in FIG. 19C is only an example, and the shape of the three-dimensional printing object OB is not limited thereto.

請參照圖19B,圖19B繪示應用本發明上述實施例的成像位移模組的另一種三維列印裝置示意圖,請先參照圖19B,圖19B所示的三維列印裝置1900b類似於圖19A所示的三維列印裝置1900a,其主要差異在於:成型槽1910的材料包括透明材料或透光材料,且升降載台1930與投影裝置1920分別配置於成型槽1910的相對兩側,其中圖19B的三維列印裝置1900b例如是上拉式的三維列印裝置1900b。由於成型槽1910的材料包括透明材料或透光材料,因此影像光束B可以通過成型槽1910照射光敏感材 料1912。當進行三維列印時,影像光束B按第一切層的掃描路徑照射到部分光敏感材料1912,此部分光敏感材料1912產生光聚合反應而固化,生成出三維列印物件OB的其中一個截面,進而得到第一固化層附著于列印區1932上。之後,升降載台1930向上移動少許距離,且原先形成的第一固化層對應向上移動少許距離,而原先形成的第一固化層的下表面可以當作承載面,以使第一固化層的下表面覆蓋另一層光敏感材料1912再依據第二切層的掃描路徑精確控制影像光束B,使影像光束B按第二切層的掃描路徑照射到另一層光敏感材料1912的表面,進而得到第二固化層,依照這樣的模式不斷製作多層後可形成如圖19C所繪示的三維列印物件OB。 Please refer to Figure 19B. Figure 19B is a schematic diagram of another three-dimensional printing device using the imaging displacement module according to the above embodiment of the present invention. Please refer to Figure 19B first. The three-dimensional printing device 1900b shown in Figure 19B is similar to that shown in Figure 19A. The main difference of the three-dimensional printing device 1900a shown is that: the material of the molding groove 1910 includes transparent materials or light-transmitting materials, and the lifting platform 1930 and the projection device 1920 are respectively arranged on opposite sides of the molding groove 1910, in which Figure 19B The three-dimensional printing device 1900b is, for example, a pull-up three-dimensional printing device 1900b. Since the material of the forming groove 1910 includes a transparent material or a light-transmitting material, the image beam B can illuminate the photosensitive material through the forming groove 1910 Material 1912. When performing three-dimensional printing, the image beam B irradiates part of the light-sensitive material 1912 according to the scanning path of the first layer. This part of the light-sensitive material 1912 undergoes a photopolymerization reaction and solidifies, generating one of the cross-sections of the three-dimensional printing object OB. , thereby obtaining the first solidified layer attached to the printing area 1932. After that, the lifting platform 1930 moves upward a small distance, and the originally formed first solidified layer moves upward correspondingly, and the lower surface of the originally formed first solidified layer can be used as a bearing surface, so that the lower surface of the first solidified layer The surface is covered with another layer of light-sensitive material 1912 and then the image beam B is accurately controlled according to the scanning path of the second slice layer, so that the image beam B is irradiated to the surface of another layer of light-sensitive material 1912 according to the scanning path of the second slice layer, thereby obtaining the second After continuously making multiple layers of the solidified layer according to this pattern, a three-dimensional printed object OB as shown in Figure 19C can be formed.

請同時參照圖19A與圖19B,由於成像位移模組1940配置在影像光束B的路徑上,影像光束B經由成像位移模組1940後,在不同的時間下,影像光束B會投射至不同的位置,詳言之,圖19A與圖19B所繪示的實線,是影像光束B在某一時刻下,影像光束B所投射的位置;而圖19A與圖19B所繪示的虛線,則是影像光束B在另一時刻下,影像光束B所投射的位置。成像位移模組1940的細部的作動方式可以由前述實施例的敍述中獲致足夠的教示、建議與實施說明,在此不再贅述。因此,由於本應用範例實施例的三維列印裝置1900a與1900b具有前述任一實施例所提到的成像位移模組1940,可以使投影裝置1920所投射出的影像光束B的像素提高,以使三維列印裝置1900a與1900b固化光敏感 材料1912時能夠獲得更高的解析度,進而使得三維列印物件OB具有更佳的表面精度。 Please refer to Figure 19A and Figure 19B at the same time. Since the imaging displacement module 1940 is arranged on the path of the image beam B, after the image beam B passes through the imaging displacement module 1940, the image beam B will be projected to different positions at different times. , in detail, the solid lines shown in Figures 19A and 19B are the positions where the image beam B is projected at a certain moment; and the dotted lines shown in Figures 19A and 19B are the images The position where the image beam B is projected at another time. The detailed operation method of the imaging displacement module 1940 can be obtained from the description of the foregoing embodiments with sufficient teachings, suggestions and implementation instructions, and will not be described again here. Therefore, since the three-dimensional printing devices 1900a and 1900b in this application example embodiment have the imaging displacement module 1940 mentioned in any of the previous embodiments, the pixels of the image beam B projected by the projection device 1920 can be increased, so that the Three-dimensional printing devices 1900a and 1900b curing photosensitive When the material is 1912, a higher resolution can be obtained, thereby allowing the 3D printed object OB to have better surface accuracy.

綜上所述,在本發明的範例實施例的三維列印裝置中,由於光路調整結構中的旋轉基座設有大致對角位置的第一區域與第二區域,且承載座和轉軸為一體成型,且旋轉基座只沿虛擬軸線轉動,因此當影像光束經過旋轉基座上的光學元件時,影像光束的光路會因為光學元件被旋轉基座所帶動而被光學元件所改變。由於影像光束的光路會被光路調整結構所改變,因此本發明實施例的三維列印裝置能夠使影像光束所形成的影像畫面的像素提高,進而使三維列印裝置所列印出的三維列印物件具有更佳的表面精度。 To sum up, in the three-dimensional printing device according to the exemplary embodiment of the present invention, since the rotating base in the optical path adjustment structure is provided with a first area and a second area at approximately diagonal positions, and the bearing base and the rotating shaft are integrated The rotating base only rotates along the virtual axis, so when the image beam passes through the optical element on the rotating base, the optical path of the image beam will be changed by the optical element because the optical element is driven by the rotating base. Since the optical path of the image beam will be changed by the optical path adjustment structure, the three-dimensional printing device according to the embodiment of the present invention can increase the pixels of the image frame formed by the image beam, thereby improving the three-dimensional printing produced by the three-dimensional printing device. Objects have better surface accuracy.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.

1900a:三維列印裝置 1900a: Three-dimensional printing device

1910:成型槽 1910: Forming slot

1912:光敏感材料 1912:Light sensitive materials

1920:投影裝置 1920:Projection device

1930:升降載台 1930:Lifting platform

1932:列印區 1932:Print area

1940:成像位移模組 1940: Imaging displacement module

B:影像光束 B:Image beam

OB:三維列印物件 OB: 3D printing object

Claims (11)

一種光路調整機構,包括:一承載基座;一旋轉基座,設於鄰近該承載基座,該旋轉基座設有大致對角位置的一第一區域與一第二區域,該旋轉基座包括一承載座和一轉軸,該轉軸連接該第一區域;一光學元件,設於該承載座;一線圈,設於該旋轉基座;以及一磁性材料,設於該承載基座且鄰近該線圈,其中該承載座和該轉軸為一體成型。 An optical path adjustment mechanism includes: a bearing base; a rotating base located adjacent to the bearing base; the rotating base is provided with a first area and a second area at approximately diagonal positions; the rotating base It includes a carrying base and a rotating shaft, the rotating shaft is connected to the first area; an optical element is provided on the carrying base; a coil is provided on the rotating base; and a magnetic material is provided on the carrying base and adjacent to the Coil, wherein the bearing seat and the rotating shaft are integrally formed. 如請求項1所述之光路調整機構,其中該光路調整機構只設有單個致動器,該單個致動器包括該線圈以及該磁性材料。 The optical path adjustment mechanism as claimed in claim 1, wherein the optical path adjustment mechanism is provided with only a single actuator, and the single actuator includes the coil and the magnetic material. 如請求項1所述之光路調整機構,其中該轉軸設有大致相對的一第一端和一第二端,該第一端和該第二端分別設有一孔洞。 The optical path adjustment mechanism of claim 1, wherein the rotating shaft is provided with a first end and a second end that are generally opposite, and the first end and the second end are respectively provided with a hole. 如請求項1所述之光路調整機構,其中該轉軸和該光學元件為一體成型。 The optical path adjustment mechanism as claimed in claim 1, wherein the rotating shaft and the optical element are integrally formed. 如請求項3所述之光路調整機構,其中該轉軸的該第一端位於該第一區域,該轉軸的該第二端位於該第二區域。 The optical path adjustment mechanism according to claim 3, wherein the first end of the rotating shaft is located in the first area, and the second end of the rotating shaft is located in the second area. 如請求項3所述之光路調整機構,其中該轉軸的該第一端與該第二端位於同一平面。 The optical path adjustment mechanism as claimed in claim 3, wherein the first end and the second end of the rotating shaft are located on the same plane. 如請求項1至6任一項所述之光路調整機構,其中該光學元件包括一反射片或一透鏡。 The optical path adjustment mechanism according to any one of claims 1 to 6, wherein the optical element includes a reflective sheet or a lens. 如請求項1至6任一項所述之光路調整機構,可用於一光學裝置,其中該光學裝置還包含一內部全反射稜鏡。 The optical path adjustment mechanism as described in any one of claims 1 to 6 can be used in an optical device, wherein the optical device further includes an internal total reflection lens. 如請求項1至6任一項所述之光路調整機構,可用於一光學裝置,其中該光學裝置還包含一光閥,該光閥垂直該光學元件。 The optical path adjustment mechanism as described in any one of claims 1 to 6 can be used in an optical device, wherein the optical device further includes a light valve perpendicular to the optical element. 一種光路調整機構的製造方法,包括:提供一承載基座;組裝一旋轉基座於鄰近該承載基座,該旋轉基座設有大致對角位置的一第一區域與一第二區域,該旋轉基座包括一承載座和一轉軸,該轉軸連接該第一區域;組裝一光學元件於該承載座;組裝一線圈於該旋轉基座;以及組裝一磁性材料,於該承載基座且鄰近該線圈,其中該承載座和該轉軸為一體成型。 A method of manufacturing an optical path adjustment mechanism, including: providing a bearing base; assembling a rotating base adjacent to the bearing base, the rotating base being provided with a first area and a second area at approximately diagonal positions, the The rotating base includes a carrying base and a rotating shaft, the rotating shaft is connected to the first area; assembling an optical element on the carrying base; assembling a coil on the rotating base; and assembling a magnetic material on and adjacent to the carrying base The coil, the bearing seat and the rotating shaft are integrally formed. 一種光路調整機構,包括:一承載基座;一旋轉基座,設於鄰近該承載基座,該旋轉基座設有大致對角位置的一第一區域與一第二區域,該旋轉基座包括一承載座和一轉軸,該轉軸連接該第一區域;一光學元件,設於該承載座; 一線圈,設於該旋轉基座;以及兩磁性材料,設於該承載基座,該線圈位於該兩磁性材料之間,且該線圈適於圍繞該承載座的位置。 An optical path adjustment mechanism includes: a bearing base; a rotating base located adjacent to the bearing base; the rotating base is provided with a first area and a second area at substantially diagonal positions; the rotating base It includes a bearing base and a rotating shaft, the rotating shaft is connected to the first area; an optical element is provided on the bearing base; A coil is provided on the rotating base; and two magnetic materials are provided on the carrying base, the coil is located between the two magnetic materials, and the coil is adapted to surround the position of the carrying base.
TW109141869A 2015-01-19 2015-12-04 Optical path adjusting mechanism and manufacturing method thereof TWI826750B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW104101729 2015-01-19
TW104101729 2015-01-19
TW104119521 2015-06-16
TW104119521 2015-06-16

Publications (2)

Publication Number Publication Date
TW202115480A TW202115480A (en) 2021-04-16
TWI826750B true TWI826750B (en) 2023-12-21

Family

ID=56466136

Family Applications (4)

Application Number Title Priority Date Filing Date
TW106111043A TWI613503B (en) 2015-01-19 2015-12-04 Optical path adjusting mechanism
TW104140907A TWI584045B (en) 2015-01-19 2015-12-04 Imaging displacement module
TW106111087A TWI713722B (en) 2015-01-19 2015-12-04 Three dimensional printing apparatus
TW109141869A TWI826750B (en) 2015-01-19 2015-12-04 Optical path adjusting mechanism and manufacturing method thereof

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW106111043A TWI613503B (en) 2015-01-19 2015-12-04 Optical path adjusting mechanism
TW104140907A TWI584045B (en) 2015-01-19 2015-12-04 Imaging displacement module
TW106111087A TWI713722B (en) 2015-01-19 2015-12-04 Three dimensional printing apparatus

Country Status (2)

Country Link
CN (2) CN105807385A (en)
TW (4) TWI613503B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250717A (en) * 2016-09-30 2023-12-19 扬明光学股份有限公司 Light path adjusting mechanism and optical mechanism
CN106681086B (en) * 2016-12-29 2020-11-24 成都迅达光电有限公司 Support of oscillating mirror, oscillating mirror and projector
KR102046473B1 (en) * 2017-03-08 2019-11-19 삼성전기주식회사 Mirror Module for OIS and Camera module including the same
CN106918975B (en) * 2017-03-28 2018-11-09 苏州佳世达光电有限公司 Optical element adjusting apparatus and use its projection arrangement
CN108693686B (en) * 2017-04-06 2020-11-03 中强光电股份有限公司 Projection device
TWI636343B (en) * 2017-07-21 2018-09-21 陳德利 Laser projection device
CN109856898B (en) * 2017-11-30 2021-12-31 中强光电股份有限公司 Projector, optical-mechanical module, image resolution enhancement device and driving method thereof
CN110082999B (en) * 2018-01-26 2021-11-16 中强光电股份有限公司 Projector, optical engine and pixel shifting device
TWI698696B (en) * 2018-05-11 2020-07-11 揚明光學股份有限公司 Light path adjustment mechanism and fabrication method thereof
CN110554550B (en) 2018-05-31 2021-08-17 中强光电股份有限公司 Projection device
TWI663423B (en) 2018-06-29 2019-06-21 揚明光學股份有限公司 Image displacement device and fabrication method thereof
TWI675224B (en) 2018-06-29 2019-10-21 揚明光學股份有限公司 Image displacement module and fabrication method thereof
CN110658665B (en) 2018-06-29 2021-10-01 中强光电股份有限公司 Projection device and imaging module thereof
CN208636638U (en) 2018-06-29 2019-03-22 中强光电股份有限公司 Projection arrangement and its image-forming module
TWI691778B (en) 2018-11-30 2020-04-21 揚明光學股份有限公司 Light path adjustment mechanism and fabrication method thereof
JP7155967B2 (en) * 2018-12-04 2022-10-19 セイコーエプソン株式会社 Optical path shift device and image display device
CN117872557A (en) * 2019-04-02 2024-04-12 扬明光学股份有限公司 Light path adjusting mechanism
TWI765235B (en) * 2020-02-27 2022-05-21 揚明光學股份有限公司 Light path adjustment mechanism and fabrication method thereof
CN113495335B (en) * 2020-03-18 2023-08-25 扬明光学股份有限公司 Optical path adjusting mechanism and manufacturing method thereof
CN113835183B (en) * 2020-06-22 2024-08-27 扬明光学股份有限公司 Optical path adjusting mechanism and manufacturing method thereof
JP2022082000A (en) * 2020-11-20 2022-06-01 セイコーエプソン株式会社 Optical device and display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI243276B (en) * 2004-11-12 2005-11-11 Young Optics Inc Imaging displacement module and optical projection device
TWM327045U (en) * 2007-06-05 2008-02-11 Young Optics Inc Imaging displacement module

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60037710T2 (en) * 1999-11-16 2008-06-05 Fujinon Corp. vibration isolator
US6826540B1 (en) * 1999-12-29 2004-11-30 Virtual Personalities, Inc. Virtual human interface for conducting surveys
US7023603B2 (en) * 2002-04-30 2006-04-04 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic microemulsion
CN1797176A (en) * 2004-12-30 2006-07-05 扬明光学股份有限公司 Subassembly of imaging displacement and optical projection device
US7279812B2 (en) * 2005-01-18 2007-10-09 Hewlett-Packard Development Company, L.P. Light direction assembly shorted turn
CN100340899C (en) * 2005-06-08 2007-10-03 中国科学院上海光学精密机械研究所 double-optical-wedge beam deflection mechanical device
US20070076171A1 (en) * 2005-09-20 2007-04-05 Fasen Donald J Wobulator position sensing system and method
CN201066401Y (en) * 2007-07-23 2008-05-28 扬明光学股份有限公司 Imaging shift module
TWI376564B (en) * 2009-06-05 2012-11-11 Young Optics Inc Imaging displacement module
TW201228808A (en) * 2011-01-14 2012-07-16 Microjet Technology Co Ltd Three-dimensional make-up machine
AU2012212488B2 (en) * 2011-01-31 2017-02-09 Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. Method and apparatus for making three-dimensional objects from multiple solidifiable materials
JP5991024B2 (en) * 2012-05-22 2016-09-14 セイコーエプソン株式会社 Mirror device, optical scanner and image forming apparatus
TWM492012U (en) * 2014-08-19 2014-12-11 國立臺灣科技大學 Multifunctional 3D scanning and printing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI243276B (en) * 2004-11-12 2005-11-11 Young Optics Inc Imaging displacement module and optical projection device
TWM327045U (en) * 2007-06-05 2008-02-11 Young Optics Inc Imaging displacement module

Also Published As

Publication number Publication date
TWI613503B (en) 2018-02-01
CN115963683A (en) 2023-04-14
TW201627745A (en) 2016-08-01
CN105807385A (en) 2016-07-27
TWI584045B (en) 2017-05-21
TW202115480A (en) 2021-04-16
TW201723631A (en) 2017-07-01
TW201723632A (en) 2017-07-01
TWI713722B (en) 2020-12-21

Similar Documents

Publication Publication Date Title
TWI826750B (en) Optical path adjusting mechanism and manufacturing method thereof
US11747609B2 (en) Optical path adjusting mechanism
TWI568601B (en) Three dimensional printing apparatus and prining method thereof
TWI548533B (en) Three-dimensional printing apparatus
US9632420B2 (en) Production of a volume object by lithography, having improved spatial resolution
TWI630124B (en) Three dimensional printing apparatus
TWI580519B (en) Three dimensional printing apparatus
JP6284961B2 (en) Stereolithography method and photocuring method of photosensitive resin
US9302460B2 (en) Three dimensional printing apparatus
US20150328833A1 (en) Stereolithography rapid prototyping apparatus and method
US20180029299A1 (en) Additive manufacturing with offset stitching
JP6058819B2 (en) 3D object production
JP2016540665A (en) Additive manufacturing apparatus and method
US20180188711A1 (en) Control device
US20070008311A1 (en) High resolution and rapid three dimensional object generator advanced
JP2010036537A (en) Photo-fabricating apparatus
TW201511928A (en) Stereolithography machine with improved optical unit
JP6210784B2 (en) 3D modeling apparatus and 3D modeling method
CN107486985B (en) A kind of unilateral side speed change demoulding control system for rapid prototyping and quick molding method
KR102443272B1 (en) 3d printer and 3d printing method using overlapped light irradiation along a specific path
TWM550666U (en) Multi-material stereolithography modeling system with real-time image scanning
JP4834297B2 (en) Stereolithography apparatus and stereolithography method
JPH0376631A (en) Three dimensional model molding machine
TW201700266A (en) A vat photopolymerization device
JP2007017922A (en) System