TW201622175A - Semiconductor light emitting device, method of manufacturing semiconductor light emitting device, and method of forming negative electrode - Google Patents

Semiconductor light emitting device, method of manufacturing semiconductor light emitting device, and method of forming negative electrode Download PDF

Info

Publication number
TW201622175A
TW201622175A TW104129458A TW104129458A TW201622175A TW 201622175 A TW201622175 A TW 201622175A TW 104129458 A TW104129458 A TW 104129458A TW 104129458 A TW104129458 A TW 104129458A TW 201622175 A TW201622175 A TW 201622175A
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
gallium nitride
layer
film
type gallium
Prior art date
Application number
TW104129458A
Other languages
Chinese (zh)
Inventor
林真太郎
後藤浩嗣
美濃卓哉
安田正治
Original Assignee
松下知識產權經營股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下知識產權經營股份有限公司 filed Critical 松下知識產權經營股份有限公司
Publication of TW201622175A publication Critical patent/TW201622175A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

The present invention addresses the problem of reducing contact resistance between an n-type gallium nitride compound semiconductor layer and a negative electrode. A semiconductor light emitting element (100) relating to the present invention is provided with: a substrate (1); and a nitride semiconductor layer (20), which is formed on one surface (1a) side of the substrate (1), and which sequentially has, from the one surface (1a) side, an n-type gallium nitride compound semiconductor layer (3), a light emitting layer (4), and a p-type gallium nitride compound semiconductor layer (6). Furthermore, the semiconductor light emitting element (100) is provided with: a positive electrode (8) that is formed on the surface (6a) side of the p-type gallium nitride compound semiconductor layer (6); and a negative electrode (9) that is formed on an exposed surface (3a) of the n-type gallium nitride compound semiconductor layer (3). The negative electrode (9) is configured from a solidification structure having Ni and Al as main components.

Description

半導體發光元件,半導體發光元件的製造方法及負電極的形成方法Semiconductor light-emitting element, method of manufacturing semiconductor light-emitting element, and method of forming negative electrode

本發明係有關於半導體發光元件,半導體發光元件的製造方法及負電極的形成方法,尤其是關於在n型氮化鎵系化合物半導體層之表面形成有負電極之半導體發光元件及半導體發光元件的製造方法,以及在n型氮化鎵系化合物半導體層表面形成負電極的方法。The present invention relates to a semiconductor light-emitting device, a method of manufacturing a semiconductor light-emitting device, and a method of forming a negative electrode, and more particularly to a semiconductor light-emitting device and a semiconductor light-emitting device in which a negative electrode is formed on a surface of an n-type gallium nitride-based compound semiconductor layer. A manufacturing method and a method of forming a negative electrode on the surface of the n-type gallium nitride-based compound semiconductor layer.

至今為止,作為發光元件,已知有氮化鎵系化合物半導體發光元件(以下稱為「半導體發光元件」)(例如,文獻1[日本專利公報第3180871號]及文獻2[日本專利公報第3482955號])。Heretofore, a gallium nitride-based compound semiconductor light-emitting device (hereinafter referred to as "semiconductor light-emitting device") has been known as a light-emitting device (for example, Document 1 [Japanese Patent Publication No. 3180871] and Document 2 [Japanese Patent Publication No. 3482955] number]).

於文獻1及文獻2所記載之半導體發光元件,係於絶緣性基板上依序層積n型氮化鎵系化合物半導體層、活性層、p型氮化鎵系化合物半導體層。此外,此半導體發光元件又以蝕刻分別去除p型氮化鎵系化合物半導體層及活性層之局部。藉此,半導體發光元件之n型氮化鎵系化合物半導體層會露出。In the semiconductor light-emitting device described in the documents 1 and 2, an n-type gallium nitride compound semiconductor layer, an active layer, and a p-type gallium nitride compound semiconductor layer are sequentially laminated on an insulating substrate. Further, the semiconductor light-emitting device is further etched to remove portions of the p-type gallium nitride compound semiconductor layer and the active layer. Thereby, the n-type gallium nitride compound semiconductor layer of the semiconductor light emitting element is exposed.

半導體發光元件在露出之n型氮化鎵系化合物半導體層的表面,會形成與n型氮化鎵系化合物半導體層相接之負電極(n電極)。In the semiconductor light-emitting device, a negative electrode (n electrode) that is in contact with the n-type gallium nitride-based compound semiconductor layer is formed on the surface of the exposed n-type gallium nitride compound semiconductor layer.

文獻1及文獻2記載,於形成負電極時,先形成最下層之Ti膜及Al膜及最上層之Au膜這般由層積膜所構成之多層膜後,再以400℃以上、1200℃以下進行回火。於文獻1記載,藉由上述之回火,可獲得負電極與n型氮化鎵系化合物半導體層之較佳歐姆接觸(ohmic contact)。In Document 1 and Document 2, when a negative electrode is formed, a multilayer film composed of a laminated film is formed by forming a lowermost Ti film, an Al film, and an uppermost Au film, and then 400 ° C or higher and 1200 ° C. The following is tempered. As described in Document 1, by the above tempering, a preferable ohmic contact between the negative electrode and the n-type gallium nitride-based compound semiconductor layer can be obtained.

此外,於文獻1及2,記載有上述回火之回火溫度係400℃以上、更佳為500℃以上、最佳為600℃以上之內容。Further, in the documents 1 and 2, the tempering tempering temperature is 400 ° C or higher, more preferably 500 ° C or higher, and most preferably 600 ° C or higher.

上述半導體發光元件,係藉由在正電極(p電極)與負電極之間施加順向偏壓(相對於負電極,係正電極為高電位側),而電流會由正電極流向負電極,電洞與電子在活性層結合,發出指定波長的光。In the above semiconductor light-emitting device, a forward bias is applied between the positive electrode (p electrode) and the negative electrode (the positive electrode is on the high potential side with respect to the negative electrode), and the current flows from the positive electrode to the negative electrode. The holes and electrons are combined in the active layer to emit light of a specified wavelength.

於文獻3(國際公開第2012/039442號),揭露出在n型Alx Ga1 x N層上所形成之n電極(Ti/Al/Ti/Au)和n型Alx Ga1 x N層之接觸電阻與熱處理溫度的關係之量測結果。文獻3對於此關係,顯示了針對n型Alx Ga1 x N層之AlN莫耳分率(mole fraction) x為0、0.25、0.4及0.6的4種情形,進行量測的結果。In Document 3 (International Publication No. 2012/039442), an n-electrode (Ti/Al/Ti/Au) and an n-type Al x Ga 1 - x formed on an n-type Al x Ga 1 - x N layer are exposed. The measurement result of the relationship between the contact resistance of the N layer and the heat treatment temperature. For this relationship, Document 3 shows the results of measurement for four cases in which the AlN molar fraction x of the n-type Al x Ga 1 - x N layer is 0, 0.25, 0.4, and 0.6.

此外,於文獻3,記載有當發光波長係比365nm更為短波長之紫外線發光元件時,為了在n型Alx Ga1 x N層上以低接觸電阻形成n電極,需要大約600℃以上之熱處理。此外,文獻3揭露,随著發光波長越短,也就是說AlN莫耳分率x越大,則需要更高溫之熱處理。Further, in Document 3, when an ultraviolet light-emitting element having an emission wavelength shorter than 365 nm is described, in order to form an n-electrode with a low contact resistance on an n-type Al x Ga 1 - x N layer, it is necessary to be about 600 ° C or higher. Heat treatment. Further, Document 3 discloses that as the emission wavelength is shorter, that is, the AlN molar fraction x is larger, a higher temperature heat treatment is required.

於上述之半導體發光元件,在例如將發光波長設定為300nm以下的情況下,就n型氮化鎵系化合物半導體層而言,需要Al之組成比例高於0.6的n型氮化鎵系化合物半導體層。In the above-described semiconductor light-emitting device, when the emission wavelength is set to 300 nm or less, for the n-type gallium nitride-based compound semiconductor layer, an n-type gallium nitride compound semiconductor having a composition ratio of Al higher than 0.6 is required. Floor.

本案發明團隊,得出下述見解:在例如n型Al0.7 Ga0.3 N層露出之表面上,若欲於形成上述Ti膜及Al膜及Au膜之層積膜後取得歐姆接觸,則需要以750℃以上之回火溫度進行回火。The inventors of the present invention have found that, on the surface exposed, for example, of the n-type Al 0.7 Ga 0.3 N layer, if the Ti film and the laminated film of the Al film and the Au film are to be formed to obtain an ohmic contact, it is necessary to Tempering at a tempering temperature of 750 ° C or higher.

此外,於文獻3所記載之量測結果,係當AlN莫耳分率x為0.6的情況下,會在熱處理溫度約為950℃左右時,接觸電阻達到最低値。此接觸電阻之最低値係1×10 2 Ω・cm2 左右。Further, in the measurement results described in Document 3, when the AlN molar fraction x is 0.6, the contact resistance reaches a minimum 値 when the heat treatment temperature is about 950 °C. The minimum enthalpy of this contact resistance is about 1 × 10 - 2 Ω·cm 2 .

然而,在半導體發光元件,若回火溫度過高,則n型AlGaN層之N會離脱,對n型AlGaN層產生損傷。基於此種緣故,在半導體發光元件需要能以更低之回火溫度形成的負電極。此外,在半導體發光元件,需要和n型氮化鎵系化合物半導體層之接觸電阻更小的負電極。However, in the semiconductor light-emitting device, if the tempering temperature is too high, the N of the n-type AlGaN layer is removed, and the n-type AlGaN layer is damaged. For this reason, a negative electrode which can be formed at a lower tempering temperature is required in the semiconductor light emitting element. Further, in the semiconductor light-emitting device, a negative electrode having a smaller contact resistance with the n-type gallium nitride-based compound semiconductor layer is required.

本發明之目的在於提供半導體發光元件,半導體發光元件的製造方法,及負電極的形成方法,俾使n型氮化鎵系化合物半導體層與負電極之接觸電阻得以降低。An object of the present invention is to provide a semiconductor light-emitting device, a method for producing a semiconductor light-emitting device, and a method for forming a negative electrode, which have a reduced contact resistance between an n-type gallium nitride-based compound semiconductor layer and a negative electrode.

本發明之一態樣的半導體發光元件具備基板及氮化物半導體層;該氮化物半導體層形成於該基板之一面側,從該一面側依序具有n型氮化鎵系化合物半導體層、發光層及p型氮化鎵系化合物半導體層。此外,本發明之半導體發光元件,具備正電極與負電極;該正電極形成於該p型氮化鎵系化合物半導體層之表面側,該負電極形成於該n型氮化鎵系化合物半導體層中露出之表面。該負電極,係由以Ni與Al為主成分之凝固組織所構成。A semiconductor light-emitting device according to an aspect of the present invention includes a substrate and a nitride semiconductor layer. The nitride semiconductor layer is formed on one surface side of the substrate, and has an n-type gallium nitride compound semiconductor layer and a light-emitting layer in this order from the one surface side. And a p-type gallium nitride compound semiconductor layer. Further, the semiconductor light-emitting device of the present invention includes a positive electrode and a negative electrode; the positive electrode is formed on a surface side of the p-type gallium nitride compound semiconductor layer, and the negative electrode is formed on the n-type gallium nitride compound semiconductor layer The surface exposed. The negative electrode is composed of a solidified structure mainly composed of Ni and Al.

本發明之一態樣的半導體發光元件的製造方法,該半導體發光元件具備:基板;氮化物半導體層,形成於該基板之第1面側,從該第1面側依序具有n型氮化鎵系化合物半導體層、發光層及p型氮化鎵系化合物半導體層;正電極,形成於該p型氮化鎵系化合物半導體層之表面側;以及負電極,形成於該n型氮化鎵系化合物半導體層中露出之表面。該負電極於該n型氮化鎵系化合物半導體層之該表面上之形成,係在該n型氮化鎵系化合物半導體層之該表面上,形成多層膜;該多層膜係交互層積有Al膜與Ni膜,並於最上方之Ni膜上,層積有Au膜。之後,於本發明之半導體發光元件的製造方法,係以640℃以上、700℃以下之回火溫度進行回火處理,以使該多層膜熔融,並藉由進行緩冷,以形成該負電極。In a method of manufacturing a semiconductor light-emitting device according to an aspect of the present invention, the semiconductor light-emitting device includes: a substrate; a nitride semiconductor layer formed on a first surface side of the substrate, and having n-type nitridation sequentially from the first surface side a gallium-based compound semiconductor layer, a light-emitting layer, and a p-type gallium nitride compound semiconductor layer; a positive electrode formed on a surface side of the p-type gallium nitride compound semiconductor layer; and a negative electrode formed on the n-type gallium nitride The exposed surface of the compound semiconductor layer. Forming the negative electrode on the surface of the n-type gallium nitride compound semiconductor layer on the surface of the n-type gallium nitride compound semiconductor layer to form a multilayer film; the multilayer film is alternately laminated An Al film and a Ni film were laminated on the uppermost Ni film, and an Au film was laminated. Then, in the method for producing a semiconductor light-emitting device of the present invention, tempering is performed at a tempering temperature of 640 ° C or higher and 700 ° C or lower to melt the multilayer film, and slow cooling is performed to form the negative electrode. .

本發明之一態樣的負電極的形成方法,係於n型氮化鎵系化合物半導體層之表面上,形成多層膜,之後,以640℃以上、700℃以下之回火溫度進行回火處理,以使該多層膜熔融,並藉由進行緩冷,以形成負電極;該多層膜係交互層積有Al膜與Ni膜,並於最上方之Ni膜上,層積有Au膜。A method for forming a negative electrode according to an aspect of the present invention is to form a multilayer film on the surface of an n-type gallium nitride-based compound semiconductor layer, and then tempering at a tempering temperature of 640 ° C or higher and 700 ° C or lower. The multilayer film is melted and slowly cooled to form a negative electrode; the multilayer film is alternately laminated with an Al film and a Ni film, and an Au film is laminated on the uppermost Ni film.

於下述實施形態所說明之各圖,係示意性的圖式,各構成要件之大小及厚度之彼此間的比例,未必反映實際之尺寸比例。此外,記載於實施形態的材料、數値等,僅係呈現較佳例,並非用以限定於此。更進一步而言,只要在不脫離本發明之技術思想的範圍內,可適當地對結構進行各種變更,該等變更亦涵蓋在本發明之範圍內。Each of the drawings described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each constituent element does not necessarily reflect the actual dimensional ratio. Further, the materials, the numbers, and the like described in the embodiments are merely preferred, and are not limited thereto. Further, various changes may be made to the structure as appropriate without departing from the scope of the invention, and such modifications are also included in the scope of the invention.

(實施形態) 以下將針對本實施形態之半導體發光元件100,根據圖1~10進行說明。(Embodiment) Hereinafter, a semiconductor light emitting element 100 of the present embodiment will be described with reference to Figs.

半導體發光元件100具備:基板1以及形成在基板1之一面(第1面)1a側的氮化物半導體層20;該氮化物半導體層20,從一面(第1面)1a側依序具有n型氮化鎵系化合物半導體層3、發光層4及p型氮化鎵系化合物半導體層6。此外,半導體發光元件100具有正電極8及負電極9;該正電極8形成於p型氮化鎵系化合物半導體層6之表面6a側,該負電極9形成於n型氮化鎵系化合物半導體層3所露出之表面3a。負電極9,係由以Ni及Al作為主成分之凝固組織所構成。因此,半導體發光元件100,就可以降低n型氮化鎵系化合物半導體層3與負電極9之接觸電阻。所謂n型氮化鎵系化合物半導體層3所露出之表面3a,係意指在n型氮化鎵系化合物半導體層3中,在與基板1側相反之側、而未與發光層4及p型氮化鎵系化合物半導體層6重疊之表面。更詳細地說,所謂n型氮化鎵系化合物半導體層3所露出之表面3a,係意指將氮化物半導體層20去除至深度方向之途中,而在n型氮化鎵系化合物半導體層3中露出之表面。所謂凝固組織,意指熔融金屬變態成固體之結果,而產生之結晶組織。換言之,凝固組織係由於含有Ni與Al之熔融金屬凝固所形成之熔融凝固組織。以Ni與Al為主成分之凝固組織,亦可含有雜質,例如Au及N。The semiconductor light emitting device 100 includes a substrate 1 and a nitride semiconductor layer 20 formed on one surface (first surface) 1a side of the substrate 1; the nitride semiconductor layer 20 has n-type from one side (first surface) 1a side in order The gallium nitride-based compound semiconductor layer 3, the light-emitting layer 4, and the p-type gallium nitride-based compound semiconductor layer 6. Further, the semiconductor light emitting element 100 has a positive electrode 8 formed on the surface 6a side of the p-type gallium nitride compound semiconductor layer 6, and a negative electrode 9 formed on the n-type gallium nitride compound semiconductor The exposed surface 3a of layer 3. The negative electrode 9 is composed of a solidified structure containing Ni and Al as main components. Therefore, in the semiconductor light emitting element 100, the contact resistance between the n-type gallium nitride compound semiconductor layer 3 and the negative electrode 9 can be lowered. The surface 3a exposed by the n-type gallium nitride-based compound semiconductor layer 3 means that the n-type gallium nitride-based compound semiconductor layer 3 is on the side opposite to the substrate 1 side, and is not connected to the light-emitting layers 4 and p. The surface of the type gallium nitride-based compound semiconductor layer 6 overlaps. More specifically, the surface 3a exposed by the n-type gallium nitride-based compound semiconductor layer 3 means that the nitride semiconductor layer 20 is removed in the depth direction, and the n-type gallium nitride-based compound semiconductor layer 3 is formed. The surface exposed. By solidified structure is meant the resulting crystalline structure as a result of the molten metal becoming a solid. In other words, the solidified structure is a molten solidified structure formed by solidification of a molten metal containing Ni and Al. The solidified structure mainly composed of Ni and Al may also contain impurities such as Au and N.

凝固組織如圖3~5所示,有與n型氮化鎵系化合物半導體層3之表面3a相接的複數Ni初晶9a、以及與n型氮化鎵系化合物半導體層3之表面3a相接的AlNi共晶9b混在一起。因此,半導體發光元件100,可以降低n型氮化鎵系化合物半導體層3與負電極9之接觸電阻,且可以降低負電極9之片電阻(sheet resistance)。由於AlNi共晶9b之Al組成比係96~97at%左右,因此相較於Ni,係更富有Al之富鋁(Al-rich)組織。關於構成負電極9之凝固組織,推測其複數Ni初晶9a主要有助於降低接觸電阻,而AlNi共晶9b主要有助於降低片電阻。Ni初晶9a,例如亦可含有作為雜質之Au及N。AlNi共晶9b,例如亦可含有作為雜質之Au。As shown in Figs. 3 to 5, the solidified structure has a plurality of Ni primary crystals 9a in contact with the surface 3a of the n-type gallium nitride-based compound semiconductor layer 3, and a surface 3a of the n-type gallium nitride-based compound semiconductor layer 3. The connected AlNi eutectic 9b is mixed together. Therefore, in the semiconductor light emitting element 100, the contact resistance of the n-type gallium nitride compound semiconductor layer 3 and the negative electrode 9 can be lowered, and the sheet resistance of the negative electrode 9 can be reduced. Since the Al composition ratio of the AlNi eutectic 9b is about 96 to 97 at%, it is richer in Al-rich Al than the Ni. Regarding the solidified structure constituting the negative electrode 9, it is presumed that the plural Ni primary crystal 9a mainly contributes to lowering the contact resistance, and the AlNi eutectic 9b mainly contributes to lowering the sheet resistance. The Ni primary crystal 9a may contain, for example, Au and N as impurities. The AlNi eutectic 9b may, for example, also contain Au as an impurity.

半導體發光元件100,藉由降低n型氮化鎵系化合物半導體層3與負電極9之接觸電阻,而可以降低半導體發光元件100之動作電壓,此外,還可以提升發光輝度。In the semiconductor light-emitting device 100, by reducing the contact resistance between the n-type gallium nitride-based compound semiconductor layer 3 and the negative electrode 9, the operating voltage of the semiconductor light-emitting device 100 can be lowered, and the luminance of the light can be improved.

半導體發光元件100,較佳係n型氮化鎵系化合物半導體層3與負電極9之接觸為歐姆接觸。所謂歐姆接觸,係指在n型氮化鎵系化合物半導體層3與負電極9之接觸中,未有隨著施加電壓之方向產生電流整流性之接觸。歐姆接觸,較佳係電流-電壓特性為大致線形,更佳係線形。此外,歐姆接觸係接觸電阻越小越好。在n型氮化鎵系化合物半導體層3與負電極9之接觸,通過n型氮化鎵系化合物半導體層3與負電極9之界面的電流,據信係穿越肖特基位障之熱電子輻射(thermal emission)電流、與穿過肖特基位障之穿隧電流之和。因此,據信在n型氮化鎵系化合物半導體層3與負電極9之接觸,若係穿隧電流占優勢,則會近似實現歐姆接觸。The semiconductor light-emitting device 100, preferably the contact between the n-type gallium nitride-based compound semiconductor layer 3 and the negative electrode 9, is in ohmic contact. The ohmic contact refers to a contact in which the current rectifying property is generated in the direction in which the voltage is applied in the contact between the n-type gallium nitride-based compound semiconductor layer 3 and the negative electrode 9. The ohmic contact, preferably the current-voltage characteristic, is substantially linear, and more preferably linear. In addition, the smaller the contact resistance of the ohmic contact system, the better. When the n-type gallium nitride-based compound semiconductor layer 3 is in contact with the negative electrode 9, the current passing through the interface between the n-type gallium nitride-based compound semiconductor layer 3 and the negative electrode 9 is believed to be a thermal electron that crosses the Schottky barrier. The sum of the thermal emission current and the tunneling current through the Schottky barrier. Therefore, it is believed that when the n-type gallium nitride-based compound semiconductor layer 3 is in contact with the negative electrode 9, if the tunneling current is dominant, the ohmic contact is approximately achieved.

半導體發光元件100之晶片尺寸,設定為400μm□(400μm×400μm),但不限定於此。晶片尺寸可在例如200μm□(200μm×200μm)~1mm□(1mm×1mm)左右之範圍內適當設定。此外,半導體發光元件100之平面形狀,並不限定於正方形,例如長方形等亦可。半導體發光元件100之平面形狀若為長方形,則半導體發光元件100之晶片尺寸,可以設為例如500μm×240μm。The wafer size of the semiconductor light emitting element 100 is set to 400 μm □ (400 μm × 400 μm), but is not limited thereto. The wafer size can be appropriately set within a range of, for example, about 200 μm □ (200 μm × 200 μm) to 1 mm □ (1 mm × 1 mm). Further, the planar shape of the semiconductor light emitting element 100 is not limited to a square shape, and may be, for example, a rectangular shape. When the planar shape of the semiconductor light emitting element 100 is a rectangle, the wafer size of the semiconductor light emitting element 100 can be, for example, 500 μm × 240 μm.

以下將詳細說明半導體發光元件100之各構成元件。Hereinafter, each constituent element of the semiconductor light emitting element 100 will be described in detail.

半導體發光元件100可以係例如具備210nm~280nm之紫外線波長範圍之發光波長(發光峰值波長)之紫外線發光二極體。藉此,半導體發光元件100可利用於例如:高效率白色照明、殺菌、醫療、高速處理環境污染物質之用途等領域。半導體發光元件100若係紫外線發光二極體這樣的紫外線發光元件,則較佳係具有UV-C之波長範圍的發光波長。UV-C之波長範圍,若根據例如國際照明委員會(CIE)之紫外線波長分類,係100nm~280nm。The semiconductor light emitting element 100 may be, for example, an ultraviolet light emitting diode having an emission wavelength (emission peak wavelength) in an ultraviolet wavelength range of 210 nm to 280 nm. Thereby, the semiconductor light emitting element 100 can be utilized, for example, in the fields of high-efficiency white illumination, sterilization, medical treatment, and high-speed use of environmentally-contaminated substances. When the semiconductor light-emitting device 100 is an ultraviolet light-emitting element such as an ultraviolet light-emitting diode, it preferably has an emission wavelength in a wavelength range of UV-C. The wavelength range of UV-C is 100 nm to 280 nm according to, for example, the ultraviolet light wavelength of the International Commission on Illumination (CIE).

基板1之第1面1a可由例如(0001)面的藍寶石基板構成。也就是說,基板1可由c面藍寶石基板(α-Al2 O3 基板)構成。此外,由藍寶石基板之(0001)面的截光角(cut-off angle),較佳係0~0.4°。The first surface 1a of the substrate 1 can be formed of, for example, a sapphire substrate of a (0001) plane. That is, the substrate 1 can be composed of a c-plane sapphire substrate (α-Al 2 O 3 substrate). Further, the cut-off angle of the (0001) plane of the sapphire substrate is preferably 0 to 0.4.

半導體發光元件100,較佳係於基板1與n型氮化鎵系化合物半導體層3(以下,有時亦會稱作「n型半導體層3」。)之間,具備緩衝層2。簡言之,半導體發光元件100較佳係於基板1之第1面1a上形成有緩衝層2,而n型半導體層3較佳係形成在緩衝層2上。緩衝層2係由Aly Ga1 y N(0≦y≦1)層所構成。緩衝層2較佳係由AlN層所構成。The semiconductor light-emitting device 100 is preferably provided with a buffer layer 2 between the substrate 1 and the n-type gallium nitride-based compound semiconductor layer 3 (hereinafter sometimes referred to as "n-type semiconductor layer 3"). In short, the semiconductor light emitting device 100 is preferably formed with a buffer layer 2 on the first surface 1a of the substrate 1, and the n-type semiconductor layer 3 is preferably formed on the buffer layer 2. The buffer layer 2 is composed of an Al y Ga 1 - y N (0≦y≦1) layer. The buffer layer 2 is preferably composed of an AlN layer.

緩衝層2係以減少穿透差排(threading dislocation)為目的而設置之膜層。緩衝層2在厚度過薄時,容易導致穿透差排之減少效果不足;厚度若過厚,則有可能產生晶格不匹配所導致之裂痕(crack)、或是使得用來形成複數個半導體發光元件100之晶圓的翹曲過大。因此,緩衝層2之厚度,較佳係設定在例如500nm~10μm左右的範圍內,更佳係設定在1μm~5μm的範圍內。緩衝層2之厚度,作為一例,設定為4μm。The buffer layer 2 is a film layer provided for the purpose of reducing threading dislocation. When the thickness of the buffer layer 2 is too thin, the effect of reducing the penetration difference is likely to be insufficient; if the thickness is too thick, cracks caused by lattice mismatch may occur, or a plurality of semiconductors may be formed. The warpage of the wafer of the light-emitting element 100 is excessively large. Therefore, the thickness of the buffer layer 2 is preferably set to, for example, about 500 nm to 10 μm, and more preferably set to be in the range of 1 μm to 5 μm. The thickness of the buffer layer 2 is set to 4 μm as an example.

n型半導體層3係用以對發光層4輸送電子的層。n型半導體層3,例如可以由n型Alz Ga1 z N(0<z<1)層構成。構成n型氮化鎵系化合物半導體層3之n型Alz Ga1 z N(0<z<1)層的組成比例,較佳係設定為以良好的效率發出發光層4所產生之紫外線。例如,發光層4具有由障壁層與量子井層所構成之量子井結構,若量子井層之Al的組成比例為0.5,障壁層之Al的組成比例為0.7,則n型Alz Ga1 z N(0<z<1)之Al的組成比例z,可以與障壁層之Al的組成比例相同,設定為0.7。亦即,若發光層4之量子井層由Al0.5 Ga0.5 N層所構成、障壁層由Al0.7 Ga0.3 N層所構成,則n型半導體層3可以由例如n型Al0.7 Ga0.3 N層構成。n型半導體層3之Al的組成比例,並不限定為要與障壁層之Al的組成比例相同,亦可為不同。此外,n型半導體層3,並不限定於單層膜,例如,亦可由彼此之Al的組成比例不同之複數n型AlGaN層所層積而成之多層膜構成。n型半導體層3的厚度,作為一例,設定為2μm。n型半導體層3之施體(Donor)雜質係以例如Si為佳。此外,n型半導體層3的電子濃度,設定在例如1×1018 ~1×1019 cm 3 左右之範圍內即可。The n-type semiconductor layer 3 is a layer for transporting electrons to the light-emitting layer 4. The n-type semiconductor layer 3 can be composed, for example, of an n-type Al z Ga 1 - z N (0 < z < 1) layer. The composition ratio of the n-type Al z Ga 1 - z N (0<z<1) layer constituting the n-type gallium nitride-based compound semiconductor layer 3 is preferably set to emit ultraviolet rays generated by the light-emitting layer 4 with good efficiency. . For example, the light-emitting layer 4 has a quantum well structure composed of a barrier layer and a quantum well layer. If the composition ratio of Al of the quantum well layer is 0.5, and the composition ratio of Al of the barrier layer is 0.7, then n-type Al z Ga 1 - The composition ratio z of Al of z N (0 < z < 1) may be the same as the composition ratio of Al of the barrier layer, and is set to 0.7. That is, if the quantum well layer of the light-emitting layer 4 is composed of an Al 0.5 Ga 0.5 N layer and the barrier layer is composed of an Al 0.7 Ga 0.3 N layer, the n-type semiconductor layer 3 may be, for example, an n-type Al 0.7 Ga 0.3 N layer. Composition. The composition ratio of Al of the n-type semiconductor layer 3 is not limited to be the same as or different from the composition ratio of Al of the barrier layer. Further, the n-type semiconductor layer 3 is not limited to a single-layer film, and may be formed of, for example, a multilayer film in which a plurality of n-type AlGaN layers having different composition ratios of Al are laminated. The thickness of the n-type semiconductor layer 3 is set to 2 μm as an example. The Donor impurity of the n-type semiconductor layer 3 is preferably Si, for example. Further, the electron concentration n-type semiconductor layer 3 is set, for example, 1 × 10 18 ~ 1 × 10 19 cm - the range of about 3 to.

發光層4係使所注入載子(carrier;在此係指電子與正孔)變換成光之膜層。換言之,發光層4,係透過所注入之2種載子(電子、正孔)的再結合而放射紫外線之膜層。發光層4較佳係具有量子井結構。發光層4之量子井結構中的量子井層,較佳係由Ala Ga1 a N(0<a<1)層所構成;量子井結構中的障壁層,較佳係由Alb Ga1 b N(0<b≦1,b>a)層所構成。具備Ala Ga1 a N(0<a<1)層所構成之量子井層的發光層4,藉由使量子井層之Al的組成比例a變化,而可以使發光波長在210nm~360nm的範圍內,設定成任意的發光波長。例如,若所要的發光波長在265nm附近,則將Al之組成比例a設定為0.50即可。發光層4之量子井結構中的量子井層,亦可由InAlGaN層所構成。The light-emitting layer 4 converts the injected carrier (here, referred to as electrons and positive holes) into a film layer of light. In other words, the light-emitting layer 4 emits a film layer of ultraviolet rays by recombination of the two kinds of carriers (electrons, positive holes) injected. The luminescent layer 4 preferably has a quantum well structure. The quantum well layer in the quantum well structure of the light-emitting layer 4 is preferably composed of a layer of Al a Ga 1 - a N (0<a<1); the barrier layer in the quantum well structure, preferably by Al b Ga 1 - b N (0 < b ≦ 1, b > a) layer. The light-emitting layer 4 having a quantum well layer composed of an Al a Ga 1 - a N (0 < a < 1) layer can have an emission wavelength of 210 nm to 360 nm by changing the composition ratio a of the Al well layer of the quantum well layer. Within the range, it is set to an arbitrary light-emitting wavelength. For example, if the desired emission wavelength is around 265 nm, the composition ratio a of Al may be set to 0.50. The quantum well layer in the quantum well structure of the light-emitting layer 4 may also be composed of an InAlGaN layer.

量子井結構可為多重量子井結構,亦可為單一量子井結構。發光層4若量子井層之厚度過厚,則推測注入至量子井層之電子及正孔,會由於在量子井結構之晶格不匹配所致之壓電場,而導致空間上的分離,造成發光效率低落。此外,發光層4若量子井層之厚度過薄,則推測會使載子侷限的效果低落,導致發光效率低落。因此,量子井層之厚度,較佳係例如1nm~5nm左右,1.3nm~3nm左右更佳。此外,障壁層之厚度,較佳係設定在例如5nm~15nm左右的範圍內。在半導體發光元件100中,作為一例,係將量子井層之厚度設定為2nm,將障壁層之厚度設定為10nm。半導體發光元件100中,發光層4並不限定於具有量子井結構之構成,發光層4亦可為例如由n型半導體層3與p型氮化鎵系化合物半導體層6(以下,有時亦稱作「p型半導體層」。)所包夾之雙重混雜結構(double hetero)。The quantum well structure can be a multiple quantum well structure or a single quantum well structure. If the thickness of the quantum well layer is too thick in the light-emitting layer 4, it is presumed that the electrons and the positive holes injected into the quantum well layer may cause spatial separation due to the piezoelectric field caused by the lattice mismatch of the quantum well structure. Causes low luminous efficiency. Further, if the thickness of the quantum well layer is too thin in the light-emitting layer 4, it is presumed that the effect of limiting the carrier is lowered, resulting in a decrease in luminous efficiency. Therefore, the thickness of the quantum well layer is preferably, for example, about 1 nm to 5 nm, and more preferably about 1.3 nm to 3 nm. Further, the thickness of the barrier layer is preferably set to, for example, a range of about 5 nm to 15 nm. In the semiconductor light emitting device 100, as an example, the thickness of the quantum well layer is set to 2 nm, and the thickness of the barrier layer is set to 10 nm. In the semiconductor light-emitting device 100, the light-emitting layer 4 is not limited to a structure having a quantum well structure, and the light-emitting layer 4 may be, for example, an n-type semiconductor layer 3 and a p-type gallium nitride-based compound semiconductor layer 6 (hereinafter, sometimes It is called a "p-type semiconductor layer".) It is a double hetero structure.

半導體發光元件100,較佳係在發光層4與p型半導體層6之間,具備電子阻擋層5。The semiconductor light emitting element 100 is preferably provided between the light-emitting layer 4 and the p-type semiconductor layer 6, and includes an electron blocking layer 5.

電子阻擋層5可以適當地設置在發光層4與p型半導體層6之間,用以使注入至發光層4的電子中,未於發光層4中與正孔再結合之電子,能抑制洩漏至p型半導體層6側(溢流;overflow)的情形。電子阻擋層5係由p型Alc Ga1 c N(0<c<1)層所構成。p型Alc Ga1 c N(0<c<1)層之Al的組成比例c,可以設為例如0.9。p型Alc Ga1 c N(0<c<1)層之組成比例,並無特別限定,不過較佳係設定成使電子阻擋層5之能帶間隙(Band gap energy),高於p型半導體層6或障壁層之能帶間隙。此外,電子阻擋層5之正孔濃度,並無特別限定。此外,電子阻擋層5之厚度,作為一例係設定為30nm。電子阻擋層5之厚度若過薄,則抑制溢流的效果就會減少,若過厚則可能導致半導體發光元件100之電阻變大。關於電子阻擋層5之厚度,由於其適合厚度會隨著Al之組成比例c或正孔濃度等數値而變化,所以無法一概而論,不過較佳係設定在1nm~50nm之範圍內,更佳係設定在5nm~25nm之範圍內。The electron blocking layer 5 may be appropriately disposed between the light-emitting layer 4 and the p-type semiconductor layer 6 to prevent electrons from being recombined with the positive holes in the electrons injected into the light-emitting layer 4, thereby preventing leakage. To the case of the p-type semiconductor layer 6 side (overflow). The electron blocking layer 5 is composed of a p-type Al c Ga 1 - c N (0 < c < 1) layer. The composition ratio c of Al of the p-type Al c Ga 1 - c N (0 < c < 1) layer can be, for example, 0.9. The composition ratio of the p-type Al c Ga 1 - c N (0<c<1) layer is not particularly limited, but is preferably set such that the band gap energy of the electron blocking layer 5 is higher than p The band gap of the type semiconductor layer 6 or the barrier layer. Further, the positive hole concentration of the electron blocking layer 5 is not particularly limited. Further, the thickness of the electron blocking layer 5 is set to 30 nm as an example. If the thickness of the electron blocking layer 5 is too thin, the effect of suppressing overflow is reduced, and if it is too thick, the electric resistance of the semiconductor light emitting element 100 may become large. Regarding the thickness of the electron blocking layer 5, since the suitable thickness varies depending on the composition ratio c of Al or the positive hole concentration, etc., it cannot be generalized, but it is preferably set in the range of 1 nm to 50 nm, and more preferably It is set in the range of 5 nm to 25 nm.

p型半導體層6係用以對發光層4輸送正孔之層。p型半導體層6較佳係由p型Ald Ga1 d N(0<d<1)層所構成。p型Ald Ga1 d N(0<d<1)層之組成比例,較佳係設定成可以使發光層4所發出之紫外線受到吸收的情況得到抑制。例如,若如上述般,發光層4之量子井層之Al的組成比例為0.5,障壁層之Al的組成比例b為0.7,則p型Ald Ga1 d N(0<d<1)層之Al的組成比例d,可以係例如與障壁層之Al的組成比例b相同,設定為0.7。亦即,若發光層4之量子井層由Al0.5 Ga0.5 N層所構成,則p型半導體層6,可以係例如由p型Al0.7 Ga0.3 N層所構成。p型半導體層6之Al的組成比例,並不限定為與障壁層之Al的組成比例b相同,亦可不同。作為p型半導體層6的受體(Acceptor)雜質,較佳係例如Mg。The p-type semiconductor layer 6 is used to transport a layer of positive holes to the light-emitting layer 4. The p-type semiconductor layer 6 is preferably composed of a p-type Al d Ga 1 - d N (0 < d < 1) layer. The composition ratio of the p-type Al d Ga 1 - d N (0 < d < 1) layer is preferably set so that the ultraviolet rays emitted from the light-emitting layer 4 are absorbed. For example, as described above, the composition ratio of Al in the quantum well layer of the light-emitting layer 4 is 0.5, and the composition ratio b of Al in the barrier layer is 0.7, then p-type Al d Ga 1 - d N (0 < d < 1) The composition ratio d of the Al of the layer may be, for example, the same as the composition ratio b of Al of the barrier layer, and is set to 0.7. That is, if the quantum well layer of the light-emitting layer 4 is composed of an Al 0.5 Ga 0.5 N layer, the p-type semiconductor layer 6 may be formed, for example, of a p-type Al 0.7 Ga 0.3 N layer. The composition ratio of Al of the p-type semiconductor layer 6 is not limited to be the same as or different from the composition ratio b of Al of the barrier layer. As the acceptor impurity of the p-type semiconductor layer 6, it is preferably, for example, Mg.

p型半導體層6之正孔濃度,在p型半導體層6之膜質不劣化之正孔濃度的範圍內,以較高之濃度為佳。然而,於半導體發光元件100,由於p型Ald Ga1 d N(0<d<1)層之正孔濃度低於n型Alz Ga1 z N(0<z≦1)層之電子濃度,因此p型半導體層6之厚度倘若過厚,則半導體發光元件100之阻抗會變得過大。因此,p型半導體層6之厚度,較佳係200nm以下,而以100nm以下更佳。又,於半導體發光元件100,作為一例,係將p型半導體層6之厚度設定為50nm。The positive hole concentration of the p-type semiconductor layer 6 is preferably a higher concentration in the range of the positive hole concentration at which the film quality of the p-type semiconductor layer 6 does not deteriorate. However, in the semiconductor light emitting element 100, since the p-type Al d Ga 1 - d N (0 < d < 1) layer has a positive hole concentration lower than that of the n-type Al z Ga 1 - z N (0 < z ≦ 1) layer If the thickness of the p-type semiconductor layer 6 is too thick, the impedance of the semiconductor light-emitting device 100 becomes excessive. Therefore, the thickness of the p-type semiconductor layer 6 is preferably 200 nm or less, more preferably 100 nm or less. Further, in the semiconductor light emitting device 100, as an example, the thickness of the p-type semiconductor layer 6 is set to 50 nm.

半導體發光元件100,可以適當地構成為在p型半導體層6之表面6a上具備p型接觸層7之結構。The semiconductor light emitting element 100 can be suitably configured to include the p-type contact layer 7 on the surface 6a of the p-type semiconductor layer 6.

p型接觸層7之設置,係為了降低與正電極8之接觸電阻,以得到與正電極8之良好的歐姆接觸。p型接觸層7較佳係由p型GaN層所構成。構成p型接觸層7之p型GaN層的正孔濃度,較佳係使之為高於p型半導體層6之濃度,例如藉由使其為7×1017 cm 3 左右,而可以得到與正電極8之良好的歐姆接觸。然而,亦可在能得到與正電極8之良好的歐姆接觸的正孔濃度之範圍內,對p型GaN層之正孔濃度進行適當變更。p型接觸層7之厚度,雖設定為200nm,並不限定於此,只要係設定在例如50nm~300nm之範圍內即可。The p-type contact layer 7 is provided in order to reduce the contact resistance with the positive electrode 8 to obtain good ohmic contact with the positive electrode 8. The p-type contact layer 7 is preferably composed of a p-type GaN layer. Positive hole concentration, preferably based layer constituting the p-type contact layer 7 of p-type GaN makes it higher than the concentration of the p-type semiconductor layer 6 of, for example, by making it of 7 × 10 17 cm - 3 or so, but may be obtained Good ohmic contact with the positive electrode 8. However, the positive hole concentration of the p-type GaN layer may be appropriately changed within a range of the positive hole concentration at which good ohmic contact with the positive electrode 8 can be obtained. The thickness of the p-type contact layer 7 is set to 200 nm, and is not limited thereto, and may be set to, for example, 50 nm to 300 nm.

如上所述,於半導體發光元件100,可以設置為氮化物半導體層20具備緩衝層2、n型半導體層3、發光層4、電子阻擋層5、p型半導體層6及p型接觸層7之結構。至於在氮化物半導體層20,除了n型半導體層3、發光層4及p型半導體層6以外,緩衝層2、電子阻擋層5及p型接觸層7等係斟酌設置即可。氮化物半導體層20可藉由磊晶成長法而形成。關於磊晶成長法,例如可採用有機金屬氣相成長(metal organic vapor phase epitaxy:MOVPE)法、氫化物氣相磊晶(hydride vapor phase epitaxy:HVPE)法、分子束磊晶(molecular beam epitaxy:MBE)法等。又,於氮化物半導體層20,亦可存在著此氮化物半導體層20形成時,不可避免地混入的H、C、O、Si、Fe等雜質。As described above, in the semiconductor light emitting element 100, the nitride semiconductor layer 20 may be provided with the buffer layer 2, the n-type semiconductor layer 3, the light-emitting layer 4, the electron blocking layer 5, the p-type semiconductor layer 6, and the p-type contact layer 7. structure. As for the nitride semiconductor layer 20, in addition to the n-type semiconductor layer 3, the light-emitting layer 4, and the p-type semiconductor layer 6, the buffer layer 2, the electron blocking layer 5, and the p-type contact layer 7 may be provided as needed. The nitride semiconductor layer 20 can be formed by an epitaxial growth method. For the epitaxial growth method, for example, a metal organic vapor phase epitaxy (MOVPE) method, a hydride vapor phase epitaxy (HVPE) method, or a molecular beam epitaxy (molecular beam epitaxy: MBE) law, etc. Further, in the nitride semiconductor layer 20, impurities such as H, C, O, Si, and Fe which are inevitably mixed in when the nitride semiconductor layer 20 is formed may be present.

半導體發光元件100,係從氮化物半導體層20之表面20a側,將氮化物半導體層20之局部,藉由蝕刻而去除至n型半導體層3之途中為止。藉此,半導體發光元件100使n型半導體層3之表面3a露出。簡言之,半導體發光元件100,具有藉由蝕刻氮化物半導體層20之局部所形成之高台結構(mesa structure)22。而半導體發光元件100,係於氮化物半導體層20之表面20a上形成有正電極8,於n型半導體層3之表面3a上形成有負電極9。於半導體發光元件100,若氮化物半導體層20具有p型接觸層7,則p型接觸層7之表面7a,就構成氮化物半導體層20之表面20a。正電極8有時亦稱作p電極。負電極9有時亦稱作n電極。The semiconductor light-emitting device 100 is removed from the surface 20a side of the nitride semiconductor layer 20 by etching to the middle of the n-type semiconductor layer 3. Thereby, the semiconductor light emitting element 100 exposes the surface 3a of the n-type semiconductor layer 3. In short, the semiconductor light emitting element 100 has a mesa structure 22 formed by etching a portion of the nitride semiconductor layer 20. On the semiconductor light-emitting device 100, a positive electrode 8 is formed on the surface 20a of the nitride semiconductor layer 20, and a negative electrode 9 is formed on the surface 3a of the n-type semiconductor layer 3. In the semiconductor light emitting element 100, when the nitride semiconductor layer 20 has the p-type contact layer 7, the surface 7a of the p-type contact layer 7 constitutes the surface 20a of the nitride semiconductor layer 20. The positive electrode 8 is sometimes also referred to as a p-electrode. The negative electrode 9 is sometimes also referred to as an n-electrode.

於半導體發光元件100,較佳係形成有涵蓋高台結構22之頂面22a(氮化物半導體層20之表面20a)局部及高台結構22之側面22c及n型半導體層3之表面3a局部的絶緣膜10。絶緣膜10係具有電氣絶緣性之膜。絶緣膜10之材料,可採用例如SiO2 等。絶緣膜10之材料,只要係具備電氣絶緣性之材料即可,並不限定於SiO2 ,例如亦可採用Si3 N4 、Al2 O3 、TiO2 、Ta2 O5 、ZrO2 、Y2 O3 、CeO2 、Nb2 O5 等。絶緣膜10之厚度,作為一例,設定為1μm。絶緣膜10可藉由例如CVD(chemical vapor deposition)法、蒸鍍法、濺鍍法等形成。絶緣膜10,並不限定於單層膜,亦可由多層膜構成。作為絶緣膜10而設置之多層膜,亦可由用以使發光層4所發出之光(紫外線)反射之誘電體多層膜所構成。於圖2省略了圖1之絶緣膜10的圖示。The semiconductor light-emitting device 100 is preferably formed with an insulating film covering a top surface 22a of the high-rise structure 22 (the surface 20a of the nitride semiconductor layer 20) and a side surface 22c of the high-rise structure 22 and a portion 3a of the surface of the n-type semiconductor layer 3. 10. The insulating film 10 is a film having electrical insulation. As the material of the insulating film 10, for example, SiO 2 or the like can be used. The material of the insulating film 10 is not limited to SiO 2 as long as it is electrically insulating, and for example, Si 3 N 4 , Al 2 O 3 , TiO 2 , Ta 2 O 5 , ZrO 2 , Y may be used. 2 O 3 , CeO 2 , Nb 2 O 5 and the like. The thickness of the insulating film 10 is set to 1 μm as an example. The insulating film 10 can be formed by, for example, a CVD (chemical vapor deposition) method, a vapor deposition method, a sputtering method, or the like. The insulating film 10 is not limited to a single layer film, and may be composed of a multilayer film. The multilayer film provided as the insulating film 10 may be composed of a multilayer film of an electric conductor for reflecting light (ultraviolet rays) emitted from the light-emitting layer 4. The illustration of the insulating film 10 of Fig. 1 is omitted in Fig. 2.

半導體發光元件100,如上所述,其氮化物半導體層20形成於基板1之第1面1a側。半導體發光元件100較佳係以與基板1之一面(第1面)1a相反側之面(第2面)1b,構成為取光面。As described above, the semiconductor light emitting element 100 has the nitride semiconductor layer 20 formed on the first surface 1a side of the substrate 1. The semiconductor light-emitting device 100 is preferably configured as a light-receiving surface on a surface (second surface) 1b opposite to one surface (first surface) 1a of the substrate 1.

正電極8較佳係隔著p型接觸層7而與p型半導體層6電性連接。正電極8之形成,作為一例,係在p型接觸層7之表面7a上形成Ni膜與Au膜之層積膜後,藉由進行回火處理而形成。於層積膜,作為一例,Ni膜之厚度設定為30nm,Au膜之厚度設定為200nm。The positive electrode 8 is preferably electrically connected to the p-type semiconductor layer 6 via the p-type contact layer 7. The formation of the positive electrode 8 is formed by forming a laminated film of a Ni film and an Au film on the surface 7a of the p-type contact layer 7 as an example, and then performing tempering treatment. As a laminated film, as an example, the thickness of the Ni film is set to 30 nm, and the thickness of the Au film is set to 200 nm.

正電極8係為了得到與p型接觸層7之歐姆接觸,而形成在p型接觸層7之表面7a上的接觸用電極。半導體發光元件100較佳係於正電極8上具備第1平頭電極(pad electrod)18。第1平頭電極18係用於與外部連接用的電極。換言之,第1平頭電極18,係用於組裝之電極。更詳細來說,第1平頭電極18係在將半導體發光元件100組裝至封裝或配線基板等時,與導電性之電線及導電性之凸塊(bump)等接合。第1平頭電極18可由例如Al膜與Ti膜與Au膜之層積膜所構成。於第1平頭電極18,Al膜、Ti膜及Au膜之厚度,分別設為100nm、250nm及1250nm。The positive electrode 8 is a contact electrode formed on the surface 7a of the p-type contact layer 7 in order to obtain ohmic contact with the p-type contact layer 7. The semiconductor light emitting device 100 preferably includes a first pad electrode 18 on the positive electrode 8. The first flat electrode 18 is an electrode for connection to the outside. In other words, the first flat electrode 18 is used for the assembled electrode. More specifically, when the semiconductor light emitting element 100 is assembled to a package or a wiring board or the like, the first flat electrode 18 is bonded to a conductive electric wire and a conductive bump or the like. The first flat electrode 18 can be composed of, for example, an Al film and a laminated film of a Ti film and an Au film. In the first flat electrode 18, the thicknesses of the Al film, the Ti film, and the Au film are set to 100 nm, 250 nm, and 1250 nm, respectively.

負電極9與n型半導體層3電性連接。作為一例,負電極9之形成,係藉由在n型半導體層3之表面3a上,形成多層膜90之後,進行回火處理,再進行緩冷(slow cooling)而形成;該多層膜90係交互層積有如圖7所示之Al膜91與Ni膜92,並於最上方之Ni膜92上層積Au膜93而成。於多層膜90,Al膜91、Ni膜92及Au膜93之厚度,分別設定為200nm、30nm及200nm。The negative electrode 9 is electrically connected to the n-type semiconductor layer 3. As an example, the negative electrode 9 is formed by forming a multilayer film 90 on the surface 3a of the n-type semiconductor layer 3, performing tempering treatment, and then performing slow cooling. The multilayer film 90 is formed. An Al film 91 and a Ni film 92 as shown in FIG. 7 are laminated, and an Au film 93 is laminated on the uppermost Ni film 92. In the multilayer film 90, the thicknesses of the Al film 91, the Ni film 92, and the Au film 93 were set to 200 nm, 30 nm, and 200 nm, respectively.

負電極9係為了得到與n型氮化鎵系化合物半導體層3之歐姆接觸,而形成在n型氮化鎵系化合物半導體層3之表面3a上的接觸用電極。半導體發光元件100較佳係於負電極9上具有第2平頭電極19。第2平頭電極19係用於與外部連接用的電極。換言之,第2平頭電極19係用於組裝之電極。更詳細來說,第2平頭電極19係在將半導體發光元件100組裝至封裝或配線基板等時,與導電性之電線及導電性之凸塊等接合。第2平頭電極19可由例如圖6所示之Al膜191與Ti膜192與Au膜193之層積膜所構成。於第2平頭電極19,Al膜191、Ti膜192及Au膜193之厚度,分別設為100nm、250nm及1250nm。The negative electrode 9 is a contact electrode formed on the surface 3a of the n-type gallium nitride compound semiconductor layer 3 in order to obtain ohmic contact with the n-type gallium nitride compound semiconductor layer 3. The semiconductor light emitting device 100 preferably has a second pad electrode 19 on the negative electrode 9. The second flat electrode 19 is an electrode for connection to the outside. In other words, the second flat electrode 19 is used for the assembled electrode. More specifically, the second flat head electrode 19 is bonded to a conductive electric wire, a conductive bump, or the like when the semiconductor light emitting element 100 is assembled to a package or a wiring board. The second flat electrode 19 can be composed of, for example, an Al film 191 shown in FIG. 6 and a laminated film of the Ti film 192 and the Au film 193. In the second flat electrode 19, the thicknesses of the Al film 191, the Ti film 192, and the Au film 193 are set to 100 nm, 250 nm, and 1250 nm, respectively.

關於負電極9,會在說明過半導體發光元件100之製造方法後,更進一步說明。The negative electrode 9 will be further described after explaining the method of manufacturing the semiconductor light emitting device 100.

茲針對半導體發光元件100之製造方法,參照圖8A、8B、8C、9A、9B、9C、10A、10B及10C進行說明。The method of manufacturing the semiconductor light emitting element 100 will be described with reference to FIGS. 8A, 8B, 8C, 9A, 9B, 9C, 10A, 10B, and 10C.

半導體發光元件100具備:基板1以及形成在基板1之第1面1a側的氮化物半導體層20;該氮化物半導體層20,從第1面1a側依序具有n型氮化鎵系化合物半導體層3、發光層4及p型氮化鎵系化合物半導體層6。此外,半導體發光元件100具有正電極8及負電極9;該正電極8形成於p型氮化鎵系化合物半導體層6之表面6a側,該負電極9形成於n型氮化鎵系化合物半導體層3所露出之表面3a。The semiconductor light emitting device 100 includes a substrate 1 and a nitride semiconductor layer 20 formed on the first surface 1a side of the substrate 1; the nitride semiconductor layer 20 has an n-type gallium nitride compound semiconductor in this order from the first surface 1a side. Layer 3, light-emitting layer 4, and p-type gallium nitride-based compound semiconductor layer 6. Further, the semiconductor light emitting element 100 has a positive electrode 8 formed on the surface 6a side of the p-type gallium nitride compound semiconductor layer 6, and a negative electrode 9 formed on the n-type gallium nitride compound semiconductor The exposed surface 3a of layer 3.

在n型氮化鎵系化合物半導體層3之表面3a形成負電極9之際,要在n型氮化鎵系化合物半導體層3之表面3a上,形成多層膜90;該多層膜90係交互層積有Al膜91與Ni膜92,並於最上方之Ni膜92上層積Au膜93而成。接著,於半導體發光元件100之製造方法中,係藉由以640℃以上、700℃以下之回火溫度進行回火處理,以熔融多層膜90,再藉由進行緩冷,以形成負電極9。藉此,以半導體發光元件100之製造方法,可以形成以Ni與Al作為主成分之凝固組織所構成之負電極9。因此,以半導體發光元件100之製造方法,可以製造能降低n型氮化鎵系化合物半導體層3與負電極9之接觸電阻的半導體發光元件100。於多層膜90中, Al膜91與Ni膜92之層積結構的反覆次數,只要係2以上,可以為任意數值。When the negative electrode 9 is formed on the surface 3a of the n-type gallium nitride-based compound semiconductor layer 3, a multilayer film 90 is formed on the surface 3a of the n-type gallium nitride-based compound semiconductor layer 3; the multilayer film 90 is an interactive layer The Al film 91 and the Ni film 92 are stacked, and the Au film 93 is laminated on the uppermost Ni film 92. Next, in the method of manufacturing the semiconductor light-emitting device 100, the tempering treatment is performed at a tempering temperature of 640 ° C or higher and 700 ° C or lower to melt the multilayer film 90, and then slow-cooling to form the negative electrode 9 . Thereby, in the method of manufacturing the semiconductor light emitting element 100, the negative electrode 9 composed of a solidified structure containing Ni and Al as main components can be formed. Therefore, the semiconductor light-emitting device 100 capable of reducing the contact resistance between the n-type gallium nitride-based compound semiconductor layer 3 and the negative electrode 9 can be manufactured by the method of manufacturing the semiconductor light-emitting device 100. In the multilayer film 90, the number of times of overlapping of the laminated structure of the Al film 91 and the Ni film 92 may be any value as long as it is 2 or more.

於半導體發光元件100之製造方法,進行緩冷時之冷卻速度,較佳係20~60℃/min。藉此,以半導體發光元件100之製造方法,可以形成與n型氮化鎵系化合物半導體層3之表面3a相接、並有複數Ni初晶9a與AlNi共晶9b混在一起之凝固組織。於半導體發光元件100之製造方法,若冷卻速度比20℃/min還要慢,則各Ni初晶9a之尺寸會變小,導致各Ni初晶9a與n型氮化鎵系化合物半導體層3之表面3a的接觸面積減少。因此,於半導體發光元件100之製造方法,就降低接觸電阻之觀點而言,進行緩冷時的冷卻速度,較佳係在20℃/min以上。於半導體發光元件100之製造方法,若冷卻速度比60℃/min還要快,則不易形成有複數Ni初晶9a與AlNi共晶9b混在一起之凝固組織,導致產生非晶形化的傾向。因此,於半導體發光元件100之製造方法,就降低接觸電阻觀點而言,進行緩冷時的冷卻速度,較佳係在20℃/min以上、60℃/min以下。In the method of manufacturing the semiconductor light-emitting device 100, the cooling rate at the time of slow cooling is preferably 20 to 60 ° C / min. Thereby, in the method of manufacturing the semiconductor light-emitting device 100, a solidified structure in which the surface of the n-type gallium nitride-based compound semiconductor layer 3 is in contact with each other and a plurality of Ni primary crystals 9a and AlNi eutectic 9b are mixed together can be formed. In the method of manufacturing the semiconductor light-emitting device 100, if the cooling rate is slower than 20 ° C/min, the size of each of the Ni primary crystals 9a becomes small, resulting in each of the Ni primary crystal 9a and the n-type gallium nitride compound semiconductor layer 3. The contact area of the surface 3a is reduced. Therefore, in the method of manufacturing the semiconductor light-emitting device 100, the cooling rate at the time of slow cooling is preferably 20 ° C / min or more from the viewpoint of reducing the contact resistance. In the method of manufacturing the semiconductor light-emitting device 100, if the cooling rate is faster than 60 ° C / min, it is difficult to form a solidified structure in which a plurality of Ni primary crystals 9 a and AlNi eutectic 9 b are mixed, resulting in amorphization tends to occur. Therefore, in the method of manufacturing the semiconductor light-emitting device 100, the cooling rate at the time of slow cooling is preferably 20 ° C / min or more and 60 ° C / min or less from the viewpoint of reducing the contact resistance.

以下將針對半導體發光元件100之製造方法進行詳細敍述。Hereinafter, a method of manufacturing the semiconductor light emitting element 100 will be described in detail.

(1)晶圓之準備 晶圓係圓板狀之基板。半導體發光元件100中之基板1若為藍寶石基板,則作為晶圓,可採用藍寶石晶圓。晶圓較佳係形成有定向平面(OF;orientation flat)。晶圓之厚度,較佳係例如數100μm~數mm,更佳係200μm~1mm。晶圓之直徑,較佳係例如50.8mm~150mm。(1) Preparation of wafer The wafer is a disk-shaped substrate. When the substrate 1 in the semiconductor light emitting device 100 is a sapphire substrate, a sapphire wafer can be used as the wafer. The wafer is preferably formed with an orientation flat (OF). The thickness of the wafer is preferably, for example, several hundred μm to several mm, more preferably 200 μm to 1 mm. The diameter of the wafer is preferably, for example, 50.8 mm to 150 mm.

晶圓,較佳係滿足例如日本電子工業振興協會(JEIDA)、或SEMI(Semiconductor Equipment and Materials International)等之規格,或以此為基礎。關於藍寶石晶圓,較佳係滿足例如SEMI M65-0306所規格化之用於化合物半導體磊晶晶圓的藍寶石基板規格,或以此為基礎。此外,藍寶石晶圓,其第1面對應基板1之第1面1a。就藍寶石晶圓之第1面而言,可採用例如c面、m面、a面、R面等,較佳係c面所成之(0001)面。此外,藍寶石晶圓之第1面,從(0001)面起算之截光角,較佳係0~0.3°。更詳而言之,藍寶石晶圓之第1面,從(0001)面起算之截光角,較佳係0~0.4°,更佳係0.1~0.31°,若係0.21~0.31°則又更為理想。The wafer is preferably based on, or based on, specifications of the Japan Electronics Industry Promotion Association (JEIDA) or SEMI (Semiconductor Equipment and Materials International). The sapphire wafer is preferably based on, or based on, a sapphire substrate specification for a compound semiconductor epitaxial wafer standardized by SEMI M65-0306. Further, the sapphire wafer has a first surface corresponding to the first surface 1a of the substrate 1. The first surface of the sapphire wafer may be, for example, a c-plane, an m-plane, an a-plane, an R-plane, etc., and is preferably a (0001) plane formed by the c-plane. Further, the first side of the sapphire wafer preferably has a cut angle of from 0 to 0.3° from the (0001) plane. More specifically, the first side of the sapphire wafer, the cut angle from the (0001) plane is preferably 0 to 0.4°, more preferably 0.1 to 0.31°, and more preferably 0.21 to 0.31°. Ideal.

(2)於晶圓之第1面上層積氮化物半導體層20之製程 於此製程,氮化物半導體層20係以磊晶成長法所形成(請參照圖8A)。(2) Process for laminating the nitride semiconductor layer 20 on the first surface of the wafer In this process, the nitride semiconductor layer 20 is formed by an epitaxial growth method (see Fig. 8A).

氮化物半導體層20,係具有n型氮化鎵系化合物半導體層3、發光層4及p型氮化鎵系化合物半導體層6之層積膜。氮化物半導體層20,係多層結構之磊晶層。氮化物半導體層20較佳係除了例如n型氮化鎵系化合物半導體層3、發光層4及p型氮化鎵系化合物半導體層6以外,更具備緩衝層2、電子阻擋層5及p型接觸層7。緩衝層2、電子阻擋層5及p型接觸層7,乃酌情設置即可。The nitride semiconductor layer 20 is a laminated film of the n-type gallium nitride-based compound semiconductor layer 3, the light-emitting layer 4, and the p-type gallium nitride-based compound semiconductor layer 6. The nitride semiconductor layer 20 is an epitaxial layer of a multilayer structure. The nitride semiconductor layer 20 is preferably provided with a buffer layer 2, an electron blocking layer 5, and a p-type, in addition to the n-type gallium nitride-based compound semiconductor layer 3, the light-emitting layer 4, and the p-type gallium nitride-based compound semiconductor layer 6, for example. Contact layer 7. The buffer layer 2, the electron blocking layer 5, and the p-type contact layer 7 may be provided as appropriate.

於此製程,就氮化物半導體層20之磊晶成長法而言,係採用MOVPE法。於此製程,就MOVPE法而言,較佳係採用減壓MOVPE法。In this process, in the epitaxial growth method of the nitride semiconductor layer 20, the MOVPE method is employed. In this process, in the case of the MOVPE method, a reduced pressure MOVPE method is preferably employed.

就Al之原料氣體而言,較佳係採用三甲基鋁(TMAl;trimethylaluminum)。此外,就Ga之原料氣體而言,較佳係採用三甲基鎵(TMGa)。就N之原料氣體而言,較佳係採用NH3 。就賦與n型導電性之雜質的Si之原料氣體而言,較佳係採用四乙矽烷(TESi;tetraethylsilane)。就有助於p型導電性之雜質的Mg之原料氣體而言,較佳係採用雙(環戊二烯)鎂(Cp2 Mg;Bis(cyclopentadienyl)magnesium)。就各原料氣體各自之載子氣體而言,較佳係採用例如H2 氣體。As the raw material gas of Al, trimethylaluminum (TMAl) is preferably used. Further, in the case of the material gas of Ga, trimethylgallium (TMGa) is preferably used. In the case of the raw material gas of N, NH 3 is preferably used. For the source gas of Si to which an impurity of n-type conductivity is imparted, tetraethyl hydride (TESi; tetraethylsilane) is preferably used. As the raw material gas of Mg which contributes to the p-type conductivity impurity, bis(cyclopentadienyl)magnesium (Cp 2 Mg; Bis(cyclopentadienyl)magnesium) is preferably used. For the carrier gas of each of the material gases, for example, H 2 gas is preferably used.

各原料氣體並無特別限定,例如Ga之原料氣體亦可採用三乙基鎵(TEGa)、N之原料氣體亦可採用聯胺衍生物(hydrazine derivatives)、Si之原料氣體亦可採用矽甲烷(SiH4 )。The raw material gases are not particularly limited. For example, the raw material gas of Ga may be a raw material gas of triethylgallium (TEGa) or N, or a hydrazine derivative or a raw material gas of Si may be used. SiH 4 ).

關於氮化物半導體層20之成長條件,基板溫度、V/III比、各原料氣體之供給量、成長壓力等只要酌情設定即可。Regarding the growth conditions of the nitride semiconductor layer 20, the substrate temperature, the V/III ratio, the supply amount of each source gas, the growth pressure, and the like may be set as appropriate.

氮化物半導體層20之磊晶成長法,並不限定於MOVPE法,亦可採用例如MBE法、HVPE法等。The epitaxial growth method of the nitride semiconductor layer 20 is not limited to the MOVPE method, and examples thereof include an MBE method and an HVPE method.

(3)為使p型雜質活性化所進行之回火製程 此製程係藉由在回火裝置之回火爐内,以指定之回火溫度,維持指定之回火時間,而使電子阻擋層5、p型氮化鎵系化合物半導體層6及p型接觸層7之p型雜質活性化之製程。關於回火條件,雖然將回火溫度設定為750℃、回火時間設定為10分,但此等數値僅為一例,並無特別限定。就回火裝置而言,例如可採用燈回火(Lamp Anneal)裝置、電爐(electric furnace)回火裝置等。(3) A tempering process for activating the p-type impurity. The process is performed by maintaining a specified tempering time at a specified tempering temperature in a tempering furnace of the tempering device to cause the electron blocking layer 5 A process for activating p-type impurities of the p-type gallium nitride-based compound semiconductor layer 6 and the p-type contact layer 7. Regarding the tempering condition, although the tempering temperature is set to 750 ° C and the tempering time is set to 10 minutes, these numbers are only an example and are not particularly limited. As the tempering device, for example, a Lamp Anneal device, an electric furnace tempering device, or the like can be employed.

(4)形成高台結構22之製程 於此製程,係在氮化物半導體層20中,對應高台結構22之頂面22a(氮化物半導體層20之表面20a)的區域上,利用光微影技術,形成第1光阻層。而在此製程中,藉由以第1光阻層作為光罩,而從表面20a側將氮化物半導體層20之局部蝕刻至n型氮化鎵系化合物半導體層3之途中為止,藉此以形成高台結構22(請參照圖8B)。之後,於此製程去除第1光阻層。氮化物半導體層20之蝕刻,較佳係使用例如乾蝕刻裝置來進行。就乾蝕刻裝置而言,較佳係例如感應耦合式電漿蝕刻裝置(inductively coupled plasma etching system)。(4) The process of forming the high-rise structure 22 is performed in the nitride semiconductor layer 20, corresponding to the top surface 22a of the high-rise structure 22 (the surface 20a of the nitride semiconductor layer 20), using photolithography technology. A first photoresist layer is formed. In this process, by using the first photoresist layer as a mask, a portion of the nitride semiconductor layer 20 is etched from the surface 20a side to the n-type gallium nitride-based compound semiconductor layer 3, thereby A high stage structure 22 is formed (please refer to FIG. 8B). Thereafter, the first photoresist layer is removed by this process. The etching of the nitride semiconductor layer 20 is preferably performed using, for example, a dry etching apparatus. In the case of a dry etching apparatus, for example, an inductively coupled plasma etching system is preferred.

(5)形成絶緣膜10之製程 於此製程係藉由例如電漿化學氣相沈積(PECVD;plasma-enhanced Chemical Vapor Deposition)法,以在晶圓第1面側之整面,形成作為絶緣膜10基礎之SiO2 膜。而於此製程,藉由對SiO2 膜進行圖案化而形成絶緣膜10,而藉以在晶圓之第1面側、SiO2 膜中重疊於將會分別形成氮化物半導體層20之正電極8及負電極9之預定區域的部位,產生開口。又,SiO2 膜之形成方法,並不限定於PECVD法,例如亦可為其他的CVD法等。SiO2 膜之圖案化,係使用光微影技術及蝕刻技術進行。(5) Process for Forming Insulating Film 10 This process is formed as an insulating film on the entire surface of the first side of the wafer by, for example, plasma-enhanced chemical vapor deposition (PECVD). 10 basic SiO 2 film. In this process, the insulating film 10 is formed by patterning the SiO 2 film, whereby the positive electrode 8 which will respectively form the nitride semiconductor layer 20 is overlapped on the first surface side of the wafer and the SiO 2 film. And a portion of the predetermined area of the negative electrode 9, an opening is created. Further, the method of forming the SiO 2 film is not limited to the PECVD method, and may be, for example, another CVD method. The patterning of the SiO 2 film is carried out using photolithography and etching techniques.

(6)形成負電極9之製程 於此製程,首先在晶圓之第1面側進行第1步驟,形成第2光阻層,其以僅使負電極9之預定形成區域(也就是說,n型氮化鎵系化合物半導體層3所露出之表面3a之局部)露出的方式圖案化。然後於此製程進行第2步驟,而在n型氮化鎵系化合物半導體層3之表面3a上,以蒸鍍法形成多層膜90;該多層膜90係由靠近表面3a之側起,依序層積有圖7所示之Al膜91、Ni膜92、Al膜91、Ni膜92、及Au膜93。蒸鍍法較佳係為電子束蒸鍍法。層積膜之成膜方法並不限定於蒸鍍法,例如亦可為濺鍍法等。然後於此製程進行第3步驟,藉由進行掀離(lift-off),以去除第2光阻層、及第2光阻層上不需要的膜。進一步再於此製程進行第4步驟,藉由進行回火處理、進行緩冷,以形成負電極9(請參照圖8C)。回火處理較佳係在N2 氣體氛圍下之RTA(Rapid Thermal Annealing)。(6) Process for Forming Negative Electrode 9 First, the first step is performed on the first surface side of the wafer to form a second photoresist layer to make only a predetermined formation region of the negative electrode 9 (that is, The portion of the surface 3a exposed by the n-type gallium nitride-based compound semiconductor layer 3 is patterned to be exposed. Then, the second step is performed in this process, and a multilayer film 90 is formed on the surface 3a of the n-type gallium nitride-based compound semiconductor layer 3 by vapor deposition; the multilayer film 90 is formed from the side close to the surface 3a, in order The Al film 91, the Ni film 92, the Al film 91, the Ni film 92, and the Au film 93 shown in Fig. 7 are laminated. The vapor deposition method is preferably an electron beam evaporation method. The film formation method of the laminated film is not limited to the vapor deposition method, and may be, for example, a sputtering method. Then, in the third step of the process, the second photoresist layer and the unnecessary film on the second photoresist layer are removed by performing lift-off. Further, in the fourth step of the process, the tempering treatment is performed and the cooling is performed to form the negative electrode 9 (please refer to FIG. 8C). The tempering treatment is preferably RTA (Rapid Thermal Annealing) under a N 2 gas atmosphere.

RTA處理之條件,係例如將回火溫度設為650℃,回火時間設為1分即可。回火溫度較佳係AlNi之共晶點(640℃)以上之溫度、較佳係700℃以下之溫度。回火溫度若高於700℃,則N 容易自n型氮化鎵系化合物半導體層3脱離,會有導致n型氮化鎵系化合物半導體層3受損之虞。回火溫度亦可根據n型氮化鎵系化合物半導體層3之Al的組成比例,適度變更。回火時間只要是設定在例如30秒~3分左右之範圍內即可。所謂之共晶點,係指液狀之共晶混合物要作成相同組成之固相時,凝固之溫度。The conditions for the RTA treatment are, for example, a tempering temperature of 650 ° C and a tempering time of 1 minute. The tempering temperature is preferably a temperature higher than a eutectic point (640 ° C) of AlNi, preferably a temperature lower than 700 ° C. When the tempering temperature is higher than 700 ° C, N is easily detached from the n-type gallium nitride-based compound semiconductor layer 3, and the n-type gallium nitride-based compound semiconductor layer 3 may be damaged. The tempering temperature may be appropriately changed depending on the composition ratio of Al of the n-type gallium nitride-based compound semiconductor layer 3. The tempering time may be set within a range of, for example, about 30 seconds to 3 minutes. The so-called eutectic point refers to the temperature at which the liquid eutectic mixture is solidified when it is made into a solid phase of the same composition.

所謂之進行緩冷,係意指緩緩冷卻。進行緩冷時之冷卻速度,例如為30℃/min即可。冷卻速度並不限定於30℃/min,在例如20~60℃/min之範圍內適度設定即可。The so-called slow cooling means slow cooling. The cooling rate at the time of slow cooling may be, for example, 30 ° C / min. The cooling rate is not limited to 30 ° C / min, and may be appropriately set within a range of, for example, 20 to 60 ° C / min.

於此製程,較佳係以紅外線回火裝置進行回火處理。紅外線回火裝置具備:作為加熱源之紅外線燈管、置入工件用的石英爐、以及作為調整爐內壓力之壓力調整裝置的真空泵。紅外線回火裝置較佳係使用鹵素燈管以作為紅外線燈管的鹵素燈回火裝置。在此,工件係晶圓狀之結構物,其形成有氮化物半導體層20與多層膜90;該氮化物半導體層20係於晶圓具有高台結構22,該多層膜90係在n型氮化鎵系化合物半導體層3所露出之表面3a上。於鹵素燈回火裝置進行緩冷時,可以藉由調整流向爐内之N2 氣體的流量,以改變冷卻速度。In this process, it is preferred to perform tempering treatment by an infrared tempering device. The infrared tempering apparatus includes an infrared lamp tube as a heating source, a quartz furnace for placing a workpiece, and a vacuum pump as a pressure adjusting device for adjusting the pressure in the furnace. The infrared tempering device preferably uses a halogen lamp as a halogen lamp tempering device for the infrared lamp. Here, the workpiece is a wafer-like structure formed with a nitride semiconductor layer 20 and a multilayer film 90; the nitride semiconductor layer 20 is attached to the wafer having a high-rise structure 22, which is based on n-type nitridation The surface 3a of the gallium-based compound semiconductor layer 3 is exposed. When the halogen tempering device is slowly cooled, the cooling rate can be changed by adjusting the flow rate of the N 2 gas flowing into the furnace.

本案發明團隊認為,藉由進行此製程之回火處理及緩冷,而形成負電極9之推測機制如下。又,半導體發光元件100之製造方法,即便與推測機制不同,仍涵括在本發明之範圍内。The inventive team of the present invention believes that the speculative mechanism for forming the negative electrode 9 by performing the tempering treatment and slow cooling of the process is as follows. Further, the method of manufacturing the semiconductor light-emitting device 100 is not included in the scope of the present invention, even if it is different from the estimation mechanism.

於此製程,藉由進行回火處理,熔融多層膜90;進行緩冷時,首先會有Ni初晶9a析出;之後,AlNi之共晶組織會凝固(形成AlNi共晶9b)。藉此,於此製程,就可以形成以Ni與Al為主成分之凝固組織所構成的負電極9。更詳而言之,於此製程,可以形成含有複數之Ni初晶9a與AlNi共晶9b的凝固組織所構成之負電極9。在此,Ni初晶9a含有作為雜質的Au。更詳而言之,Ni初晶9a雖含有作為雜質之微量(ppm等級)的Au,但99%以上都是Ni。由於Ni初晶9a不會等向性成長(換言之,成長速度隨著方向而異),因此會成長為樹枝狀。此外,AlNi共晶9b雜質含有作為雜質的Au。推測由於負電極9藉由回火處理時,從n型氮化鎵系化合物半導體層3解離之N固溶至Ni,而形成雜質準位,因此可以降低因穿隧效應而造成之與n型氮化鎵系化合物半導體層3的接觸電阻。換言之,推測係藉由負電極9從n型氮化鎵系化合物半導體層3抽出部分氮素,而得以實現n型氮化鎵系化合物半導體層3與負電極9之歐姆接觸。因此,Ni初晶9a含有作為雜質的Au。In this process, the multilayer film 90 is melted by tempering treatment; when the slow cooling is performed, first, the Ni primary crystal 9a is precipitated; thereafter, the eutectic structure of AlNi is solidified (formation of the AlNi eutectic 9b). Thereby, in this process, the negative electrode 9 composed of a solidified structure mainly composed of Ni and Al can be formed. More specifically, in this process, a negative electrode 9 composed of a solidified structure of a plurality of Ni primary crystals 9a and AlNi eutectic 9b can be formed. Here, the Ni primary crystal 9a contains Au as an impurity. More specifically, the Ni primary crystal 9a contains a trace amount (ppm grade) of Au as an impurity, but 99% or more is Ni. Since the Ni primary crystal 9a does not grow in an isotropic manner (in other words, the growth rate varies depending on the direction), it grows into a dendritic shape. Further, the AlNi eutectic 9b impurity contains Au as an impurity. It is presumed that since the negative electrode 9 is tempered, the N dissociated from the n-type gallium nitride-based compound semiconductor layer 3 is solid-dissolved to Ni to form an impurity level, so that the n-type due to the tunneling effect can be reduced. Contact resistance of the gallium nitride-based compound semiconductor layer 3. In other words, it is estimated that a part of nitrogen is extracted from the n-type gallium nitride-based compound semiconductor layer 3 by the negative electrode 9, and ohmic contact between the n-type gallium nitride-based compound semiconductor layer 3 and the negative electrode 9 is achieved. Therefore, the Ni primary crystal 9a contains Au as an impurity.

於回火處理,在多層膜90,推測首先係Al膜91熔融;之後,Al膜91間的Ni膜92熔融;之後,Al膜91與Au膜93之間的Ni膜92熔融;之後,Au膜93熔融。因此,Au膜93具有作為保護膜之功能,可抑制Ni在回火處理前就因大氣中的氧而導致氧化,也抑制爐内之殘留氧所導致之Ni氧化。藉此,半導體發光元件100之製造方法,可以防止因為Ni氧化而造成之高融點化。簡言之,半導體發光元件100之製造方法,可以謀求在形成負電極9之製程中的回火溫度低溫化。In the tempering treatment, in the multilayer film 90, it is presumed that the Al film 91 is first melted; thereafter, the Ni film 92 between the Al films 91 is melted; thereafter, the Ni film 92 between the Al film 91 and the Au film 93 is melted; thereafter, Au The film 93 is melted. Therefore, the Au film 93 has a function as a protective film, and it is possible to suppress oxidation of Ni due to oxygen in the atmosphere before the tempering treatment, and also to suppress Ni oxidation caused by residual oxygen in the furnace. Thereby, the method of manufacturing the semiconductor light emitting element 100 can prevent high melting point due to oxidation of Ni. In short, in the method of manufacturing the semiconductor light-emitting device 100, it is possible to lower the tempering temperature in the process of forming the negative electrode 9.

(7)形成正電極8之製程 於此製程,係在p型氮化鎵系化合物半導體層6之表面6a側形成正電極8(請參照圖9A)。(7) Process for Forming Positive Electrode 8 In this process, the positive electrode 8 is formed on the surface 6a side of the p-type gallium nitride-based compound semiconductor layer 6 (see Fig. 9A).

更詳而言之,於此製程,首先形成第3光阻層,其以僅使晶圓第1面側之正電極8的預定形成區域(在此係p型接觸層7之表面7a之局部)露出的方式圖案化。然後,於此製程,以電子束蒸鍍法,形成例如厚30nm之Ni膜與厚200nm之Au膜所構成之層積膜,並藉由進行掀離,而去除第3光阻層及第3光阻層上不需要的膜。進一步再於此製程進行N2 氣體氛圍下之RTA處理,以使正電極8與p型接觸層7之接觸,成為歐姆接觸。RTA處理之條件,係例如回火溫度設為500℃、回火時間設為15分即可。More specifically, in this process, first, a third photoresist layer is formed which is a portion of the surface 7a of the p-type contact layer 7 which is a predetermined region of the positive electrode 8 on the first surface side of the wafer. ) The way of exposure is patterned. Then, in this process, a laminated film composed of, for example, a Ni film having a thickness of 30 nm and an Au film having a thickness of 200 nm is formed by electron beam evaporation, and the third photoresist layer and the third layer are removed by performing the lift-off. An unwanted film on the photoresist layer. Further, in this process, the RTA treatment under the N 2 gas atmosphere is performed so that the positive electrode 8 and the p-type contact layer 7 are brought into contact with each other to become an ohmic contact. The conditions for the RTA treatment are, for example, a tempering temperature of 500 ° C and a tempering time of 15 minutes.

(8)形成第1平頭電極18及第2平頭電極19之製程 於此製程,係利用光微影技術及薄膜形成技術,而分別在正電極8、負電極9上,形成第1平頭電極18、第2平頭電極19(請參照圖9B)。就薄膜形成技術而言,例如可採用蒸鍍法等。蒸鍍法較佳係電子束蒸鍍法。第1平頭電極18、第2平頭電極19,分別電性連接至正電極8、負電極9。第1平頭電極18,較佳係形成為覆蓋住正電極8。第2平頭電極19,較佳係形成為覆蓋住負電極9。(8) Process for forming the first flat electrode 18 and the second flat electrode 19 In this process, the first flat electrode 18 is formed on the positive electrode 8 and the negative electrode 9 by photolithography and thin film formation techniques, respectively. The second flat electrode 19 (please refer to FIG. 9B). As the film forming technique, for example, a vapor deposition method or the like can be employed. The vapor deposition method is preferably an electron beam evaporation method. The first flat electrode 18 and the second flat electrode 19 are electrically connected to the positive electrode 8 and the negative electrode 9, respectively. The first flat electrode 18 is preferably formed to cover the positive electrode 8. The second flat electrode 19 is preferably formed to cover the negative electrode 9.

(9)形成割溝之製程 於此製程,形成從晶圓之氮化物半導體層20表面20a側、到晶圓厚度方向途中為止的割溝。於此製程,較佳係藉由採用雷射加工機之電氣灼燒切割(ablation)加工以形成割溝。所謂之電氣灼燒切割加工,係指在引起電氣灼燒切割之照射條件下之雷射加工。(9) Process for forming a dicing groove In this process, a grooving is formed from the surface 20a side of the nitride semiconductor layer 20 of the wafer to the middle of the thickness direction of the wafer. In this process, it is preferred to form a grooving by electrical abrading processing using a laser processing machine. The so-called electrical burning cutting process refers to laser processing under the irradiation conditions that cause electrical burning and cutting.

(10)研磨晶圓之製程 於此製程,藉由從第2面(與第1面相反之面)側研磨晶圓,而磨薄晶圓厚度,直至相當於藍寶石基板1之指定厚度為止(請參照圖9C)。於晶圓之研磨時,較佳係依序進行研削製程、拋光製程(lapping process)。(10) Process for Grinding Wafers In this process, the wafer thickness is polished from the side of the second surface (the surface opposite to the first surface) to a thickness corresponding to the specified thickness of the sapphire substrate 1 ( Please refer to FIG. 9C). In the polishing of the wafer, it is preferred to carry out the grinding process and the lapping process in sequence.

於半導體發光元件100之製造方法,藉由此製程結束,而完成形成有複數半導體發光元件100之晶圓。簡言之,於半導體發光元件100之製造方法,係藉由依序進行上述之(1)~(10)的製程,以完成形成有複數半導體發光元件100之晶圓。In the method of manufacturing the semiconductor light emitting device 100, the wafer on which the plurality of semiconductor light emitting elements 100 are formed is completed by the end of the process. In short, in the method of manufacturing the semiconductor light-emitting device 100, the processes of the above-described (1) to (10) are sequentially performed to complete the wafer on which the plurality of semiconductor light-emitting devices 100 are formed.

(11)從形成有複數半導體發光元件100之晶圓分割成單個半導體發光元件100之製程 此製程係切割(dicing)製程,係以切割機等將形成有複數半導體發光元件100之晶圓加以裁斷,藉此以分割成單個的半導體發光元件100。(11) A process of dividing a wafer in which a plurality of semiconductor light-emitting elements 100 are formed into individual semiconductor light-emitting elements 100. This process is a dicing process in which a wafer on which a plurality of semiconductor light-emitting elements 100 are formed is cut by a cutter or the like. Thereby, it is divided into individual semiconductor light emitting elements 100.

由以上所說明之本實施形態之半導體發光元件100之的製造方法,可以製造出能降低n型氮化鎵系化合物半導體層3與負電極9之接觸電阻的半導體發光元件100。According to the method of manufacturing the semiconductor light-emitting device 100 of the present embodiment described above, the semiconductor light-emitting device 100 capable of reducing the contact resistance between the n-type gallium nitride-based compound semiconductor layer 3 and the negative electrode 9 can be manufactured.

話說,藉由蝕刻而形成高台結構22的情況下,n型氮化鎵系化合物半導體層3之表面3a,會如圖10A般粗糙。亦即,n型氮化鎵系化合物半導體層3之表面3a,具有雜亂之凹凸結構。因此,若僅以蒸鍍等形成多層膜90,則多層膜90與n型氮化鎵系化合物半導體層3之表面3a之物理性接觸,會如圖10B所示,無法獲得充份接觸。因此,推測若以不使多層膜90熔融之溫度進行回火,則難以降低負電極9與n型氮化鎵系化合物半導體層3之接觸電阻。然而,由於在本實施形態之半導體發光元件100之製造方法,係先行熔融多層膜90後,再析出Ni初晶9a,使AlNi共晶凝固,因此可以使負電極9與n型氮化鎵系化合物半導體層3之表面3a,能毫無空隙地接觸。藉此,以本實施形態之半導體發光元件100之製造方法,由於Ni會易於和n型氮化鎵系化合物半導體層3内的N起反應,因此可以謀求接觸電阻之降低。In other words, when the high-rise structure 22 is formed by etching, the surface 3a of the n-type gallium nitride-based compound semiconductor layer 3 is rough as shown in FIG. 10A. In other words, the surface 3a of the n-type gallium nitride-based compound semiconductor layer 3 has a disordered uneven structure. Therefore, when the multilayer film 90 is formed only by vapor deposition or the like, the multilayer film 90 is in physical contact with the surface 3a of the n-type gallium nitride-based compound semiconductor layer 3, and as shown in FIG. 10B, sufficient contact cannot be obtained. Therefore, it is estimated that it is difficult to reduce the contact resistance between the negative electrode 9 and the n-type gallium nitride-based compound semiconductor layer 3 by tempering at a temperature at which the multilayer film 90 is not melted. However, in the method of manufacturing the semiconductor light-emitting device 100 of the present embodiment, after the multilayer film 90 is melted, the Ni primary crystal 9a is precipitated and the AlNi eutectic is solidified, so that the negative electrode 9 and the n-type gallium nitride can be made. The surface 3a of the compound semiconductor layer 3 can be contacted without any gap. As a result, in the method of manufacturing the semiconductor light-emitting device 100 of the present embodiment, since Ni easily reacts with N in the n-type gallium nitride-based compound semiconductor layer 3, it is possible to reduce the contact resistance.

此外,由於Ni相較於Ti,有更高的工作函數,因此若僅只於與n型氮化鎵系化合物半導體層3相接,電阻會比Al來得更高。然而,在本實施形態之半導體發光元件100之製造方法中,由於會使多層膜90熔融,因此Ni會與n型氮化鎵系化合物半導體層3内之N起反應,而使N固溶,所以就可以降低接觸電阻。Ni固溶N的能力,比Ti或Al都要高。Further, since Ni has a higher work function than Ti, if it is only in contact with the n-type gallium nitride-based compound semiconductor layer 3, the electric resistance is higher than that of Al. However, in the method of manufacturing the semiconductor light-emitting device 100 of the present embodiment, since the multilayer film 90 is melted, Ni reacts with N in the n-type gallium nitride-based compound semiconductor layer 3 to form a solid solution of N. Therefore, the contact resistance can be reduced. The ability of Ni to dissolve N is higher than that of Ti or Al.

此外,AlNi共晶,相較於AlTi共晶,共晶點低了約20℃,因此Al之組成比例與共晶組成中之Al組成比例不一致時,融點之變化量少。因此,藉由本實施形態之半導體發光元件100之製造方法,就可以抑制半導體發光元件100之負電極9的電氣特性隨著各批次而不一致的情形,而得以謀求成本降低。Further, the AlNi eutectic has a eutectic point lower by about 20 ° C than the AlTi eutectic. Therefore, when the composition ratio of Al does not match the Al composition ratio in the eutectic composition, the amount of change in the melting point is small. Therefore, according to the method of manufacturing the semiconductor light-emitting device 100 of the present embodiment, it is possible to suppress the electrical characteristics of the negative electrode 9 of the semiconductor light-emitting device 100 from being inconsistent with each batch, and to reduce the cost.

更進一步而言,藉由半導體發光元件100之製造方法,可以實現一種結構的負電極9,其所含有之Ni初晶9a中, 具有滿足下述條件的Ni初晶9aa(請參照圖3)。Furthermore, the negative electrode 9 having a structure in which the Ni primary crystal 9a contained in the Ni primary crystal 9a contains the Ni primary crystal 9aa satisfying the following conditions (refer to FIG. 3) can be realized by the method of manufacturing the semiconductor light-emitting device 100. .

條件:連續區域之寛度W1(請參照圖3),大於負電極9之厚度H1(請參照圖3);該連續區域,係形成為涵蓋負電極9之厚度方向的全長,且在負電極9之一面內方向,與n型氮化鎵系化合物半導體層3相接。Condition: the width W1 of the continuous region (please refer to FIG. 3) is larger than the thickness H1 of the negative electrode 9 (please refer to FIG. 3); the continuous region is formed to cover the entire length of the negative electrode 9 in the thickness direction, and is at the negative electrode One of the in-plane directions is in contact with the n-type gallium nitride-based compound semiconductor layer 3.

以上所說明之本實施形態之半導體發光元件100中的負電極9,如上所述,係由以Ni與Al為主成分之凝固組織所構成。藉此,半導體發光元件100,可以達成n型氮化鎵系化合物半導體層3與負電極9之接觸電阻之降低。接觸電阻,係例如以傳輸線模型(TLM;Transmission Line Model)法所量測出之數値。As described above, the negative electrode 9 in the semiconductor light-emitting device 100 of the present embodiment is composed of a solidified structure mainly composed of Ni and Al. Thereby, the semiconductor light-emitting device 100 can achieve a reduction in contact resistance between the n-type gallium nitride-based compound semiconductor layer 3 and the negative electrode 9. The contact resistance is, for example, a number measured by a Transmission Line Model (TLM) method.

凝固組織如上所述,有與n型氮化鎵系化合物半導體層3之表面3a相接之複數的Ni初晶9a、以及與n型氮化鎵系化合物半導體層3之表面3a相接之AlNi共晶9b混在一起。Ni初晶9a,較佳係含有作為雜質之Au及N。Ni初晶9a要含有作為雜質之N的原因如下:推測其反應機制係Ni初晶9a在晶體生長時,從n型氮化鎵系化合物半導體層3抽出部份之N而固溶。又,半導體發光元件100,即便與所推測之機制不同,亦涵括在本發明之範圍内。As described above, the solidified structure has a plurality of Ni primary crystals 9a which are in contact with the surface 3a of the n-type gallium nitride-based compound semiconductor layer 3, and AlNi which is in contact with the surface 3a of the n-type gallium nitride-based compound semiconductor layer 3. The eutectic 9b is mixed together. The Ni primary crystal 9a preferably contains Au and N as impurities. The reason why the Ni primary crystal 9a contains N as an impurity is as follows: It is presumed that the reaction mechanism is that Ni primary crystal 9a is solid-solved by extracting a part of N from the n-type gallium nitride-based compound semiconductor layer 3 during crystal growth. Further, the semiconductor light emitting element 100 is included in the scope of the present invention even if it is different from the estimated mechanism.

半導體發光元件100之負電極9中之複數的Ni初晶9a,較佳含有滿足下述條件之Ni初晶9aa, 條件:連續區域之寛度,大於負電極9之厚度;該連續區域,係形成為涵蓋負電極9之厚度方向的全長,且在負電極9之一面內方向,與n型氮化鎵系化合物半導體層3相接。 藉此,半導體發光元件100,可以達到Ni初晶9a與n型氮化鎵系化合物半導體層3之表面3a的接觸電阻,更進一步的降低。The plurality of Ni primary crystals 9a in the negative electrode 9 of the semiconductor light-emitting device 100 preferably contain Ni primary crystals 9aa satisfying the following conditions: the temperature of the continuous region is greater than the thickness of the negative electrode 9; The entire length in the thickness direction of the negative electrode 9 is formed, and is in contact with the n-type gallium nitride-based compound semiconductor layer 3 in the in-plane direction of the negative electrode 9. Thereby, the semiconductor light-emitting device 100 can have a contact resistance of the surface 3a of the Ni primary crystal 9a and the n-type gallium nitride-based compound semiconductor layer 3, and further reduce.

Ni初晶9a係樹枝狀結晶,其與n型氮化鎵系化合物半導體層3之厚度方向正交之剖面形狀,較佳係樹枝狀。藉此,於半導體發光元件100,就可以增加Ni初晶9a與n型氮化鎵系化合物半導體層3之表面3a之接觸面積,而可以更進一步地降低接觸電阻。又,Ni初晶9a正交於n型氮化鎵系化合物半導體層3之厚度方向的剖面形狀,與圖4所示之樹枝狀的形狀大致相同。The Ni primary crystal 9a is a dendritic crystal, and the cross-sectional shape orthogonal to the thickness direction of the n-type gallium nitride-based compound semiconductor layer 3 is preferably dendritic. Thereby, in the semiconductor light emitting element 100, the contact area between the Ni primary crystal 9a and the surface 3a of the n-type gallium nitride compound semiconductor layer 3 can be increased, and the contact resistance can be further reduced. Moreover, the cross-sectional shape of the Ni primary crystal 9a orthogonal to the thickness direction of the n-type gallium nitride-based compound semiconductor layer 3 is substantially the same as the dendritic shape shown in FIG.

半導體發光元件100,其n型氮化鎵系化合物半導體層3較佳係n型AlGaN層。藉此,半導體發光元件100,可以構成例如紫外線發光二極體。本實施形態之半導體發光元件100,就紫外線發光二極體而言,可以為具有深紫外光發光波長之深紫外光發光二極體。In the semiconductor light emitting device 100, the n-type gallium nitride compound semiconductor layer 3 is preferably an n-type AlGaN layer. Thereby, the semiconductor light emitting element 100 can constitute, for example, an ultraviolet light emitting diode. The semiconductor light-emitting device 100 of the present embodiment may be a deep ultraviolet light-emitting diode having a deep ultraviolet light emission wavelength in terms of the ultraviolet light-emitting diode.

話說,在文獻3所記載之量測結果,當AlN莫耳分率x為0.6的情況下,會在熱處理溫度為950℃左右時,接觸電阻達到最低値;接觸電阻之最低値,係1×10 2 Ω・cm2 左右。相對於此,半導體發光元件100,則可以使Al組成比例更高之n型Al0.7 Ga0.3 N層所構成之n型氮化鎵系化合物半導體層3與負電極9之接觸電阻,成為5×10 3 Ωcm2 左右。半導體發光元件100,具有隨著Al組成比例變高,而接觸電阻就變高之傾向。因此,負電極9只要係能對Al組成比例更高之n型AlGaN層得到歐姆接觸,則不限於Al之組成比例低的n型AlGaN層,而可適用於以Alx1 Gay1 In1 x1 y1 N(0≦x1,0≦y1,x1+y1≦1)之組成代表之n型半導體層3。In other words, in the measurement results described in Document 3, when the AlN molar fraction x is 0.6, the contact resistance reaches a minimum 热处理 at a heat treatment temperature of about 950 ° C; the lowest 接触 of the contact resistance is 1 × 10 - 2 Ω・cm 2 or so. On the other hand, in the semiconductor light-emitting device 100, the contact resistance of the n-type gallium nitride-based compound semiconductor layer 3 composed of the n-type Al 0.7 Ga 0.3 N layer having a higher Al composition ratio and the negative electrode 9 can be 5 × 10 - 3 Ωcm 2 or so. In the semiconductor light-emitting device 100, the contact resistance tends to increase as the Al composition ratio increases. Therefore, the negative electrode 9 is not limited to the n-type AlGaN layer having a low composition ratio of Al as long as it can obtain an ohmic contact to the n-type AlGaN layer having a higher Al composition ratio, and is applicable to Al x1 Ga y1 In 1 - x1 - The composition of y1 N (0≦x1, 0≦y1, x1+y1≦1) represents the n-type semiconductor layer 3.

半導體發光元件100並不限於紫外線發光二極體,亦可係紫外線雷射二極體。The semiconductor light emitting element 100 is not limited to the ultraviolet light emitting diode, and may be an ultraviolet laser diode.

(本發明之態樣) 如上述實施形態所明示,本發明之第1態樣的半導體發光元件(100),包括:基板(1);氮化物半導體層(20),形成於該基板(1)之一面(1a)側,從該一面(1a)側依序具有n型氮化鎵系化合物半導體層(3)、發光層(4)及p型氮化鎵系化合物半導體層(6);正電極(8),形成於該p型氮化鎵系化合物半導體層(6)之表面(6a)側;以及負電極(9),形成於該n型氮化鎵系化合物半導體層(3)中露出之表面(3a);該負電極(9),係由以Ni與Al為主成分之凝固組織所構成。(Aspect of the present invention) The semiconductor light-emitting device (100) according to the first aspect of the present invention includes a substrate (1) and a nitride semiconductor layer (20) formed on the substrate (1). One side (1a) side, and has an n-type gallium nitride-based compound semiconductor layer (3), a light-emitting layer (4), and a p-type gallium nitride-based compound semiconductor layer (6) in this order (1a) side; a positive electrode (8) formed on a surface (6a) side of the p-type gallium nitride compound semiconductor layer (6); and a negative electrode (9) formed on the n-type gallium nitride compound semiconductor layer (3) The exposed surface (3a); the negative electrode (9) is composed of a solidified structure mainly composed of Ni and Al.

本發明之第2態樣之半導體發光元件(100),係於第1態樣,該凝固組織有與該n型氮化鎵系化合物半導體層(3)之表面(3a)相接之複數的Ni初晶(9a)、以及與該n型氮化鎵系化合物半導體層(3)之表面(3a)相接之AlNi共晶(9b)混在一起。A semiconductor light-emitting device (100) according to a second aspect of the present invention is the first aspect, wherein the solidified structure has a plurality of surfaces which are in contact with the surface (3a) of the n-type gallium nitride-based compound semiconductor layer (3). The Ni primary crystal (9a) and the AlNi eutectic (9b) which is in contact with the surface (3a) of the n-type gallium nitride compound semiconductor layer (3) are mixed.

本發明之第3態樣之半導體發光元件(100),係於第2態樣,該複數之Ni初晶(9a),包含滿足下述條件之Ni初晶(9aa); 條件:連續區域之寛度(W1),大於該負電極(9)之厚度(H1);該連續區域,係形成為涵蓋該負電極(9)之厚度方向的全長,且在該負電極(9)之一面內方向,與該n型氮化鎵系化合物半導體層(3)相接。A semiconductor light-emitting device (100) according to a third aspect of the present invention is the second aspect, wherein the plurality of Ni primary crystals (9a) include Ni primary crystals (9aa) satisfying the following conditions; Condition: continuous region The twist (W1) is larger than the thickness (H1) of the negative electrode (9); the continuous region is formed to cover the entire length of the negative electrode (9) in the thickness direction, and is in the plane of one of the negative electrodes (9) The direction is in contact with the n-type gallium nitride-based compound semiconductor layer (3).

本發明之第4態樣的半導體發光元件(100),係在第2或第3態樣中,該Ni初晶(9a)係樹枝狀結晶;而正交於該n型氮化鎵系化合物半導體層(3)之厚度方向的剖面形狀為樹枝狀。A semiconductor light-emitting device (100) according to a fourth aspect of the present invention is characterized in that, in the second or third aspect, the Ni primary crystal (9a) is dendritic; and the n-type gallium nitride compound is orthogonal to the n-type gallium nitride compound. The cross-sectional shape of the semiconductor layer (3) in the thickness direction is a dendritic shape.

本發明之第5態樣的半導體發光元件(100),係在第1至第4態樣中之任一中,該n型氮化鎵系化合物半導體層(3)為n型AlGaN層。In the semiconductor light-emitting device (100) according to the fifth aspect of the present invention, in any one of the first to fourth aspects, the n-type gallium nitride-based compound semiconductor layer (3) is an n-type AlGaN layer.

本發明之第6態樣的半導體發光元件(100),係在第1至第5態樣中之任一中,該負電極(9)之形成,係藉由對形成於該n型氮化鎵系化合物半導體層(3)之該表面(3a)上之多層膜(90),以640℃以上、700℃以下之回火溫度進行回火處理加以熔融,並進行緩冷而形成;該多層膜(90)係交互層積有Al膜(91)與Ni膜(92),並於最上方之Ni膜(92)上,層積有Au膜。In a semiconductor light-emitting device (100) according to a sixth aspect of the present invention, in any one of the first to fifth aspects, the negative electrode (9) is formed by pairing the n-type nitride The multilayer film (90) on the surface (3a) of the gallium-based compound semiconductor layer (3) is tempered at a tempering temperature of 640 ° C or higher and 700 ° C or lower, melted, and slowly cooled to form; The film (90) is alternately laminated with an Al film (91) and a Ni film (92), and an Au film is laminated on the uppermost Ni film (92).

本發明之第7態樣的半導體發光元件(100),係在第6態樣中,進行該緩冷時之冷卻速度,設為20~60℃/min。In the semiconductor light-emitting device (100) according to the seventh aspect of the present invention, in the sixth aspect, the cooling rate at the time of the slow cooling is set to 20 to 60 ° C / min.

本發明之第8態樣的半導體發光元件(100),係在第6或第7態樣中,該回火處理之回火時間,係30秒~3分。In the eighth or seventh aspect of the semiconductor light-emitting device (100) according to the eighth aspect of the present invention, the tempering time of the tempering treatment is 30 seconds to 3 minutes.

本發明之第1~第8態樣的半導體發光元件(100),具有可以降低n型氮化鎵系化合物半導體層(3)與負電極(9)之接觸電阻的效果。The semiconductor light-emitting device (100) according to the first to eighth aspects of the present invention has an effect of reducing the contact resistance between the n-type gallium nitride-based compound semiconductor layer (3) and the negative electrode (9).

本發明之第9態樣的半導體發光元件(100)的製造方法,該半導體發光元件包括:基板(1);氮化物半導體層(20),形成於該基板(1)之一面(1a)側,從該一面(1a)側依序具有n型氮化鎵系化合物半導體層(3)、發光層(4)及p型氮化鎵系化合物半導體層(6);正電極(8),形成於該p型氮化鎵系化合物半導體層(6)之表面(6a)側;以及負電極(9),形成於該n型氮化鎵系化合物半導體層(3)中露出之表面(3a);該製造方法包括以下步驟:該負電極(9)於該n型氮化鎵系化合物半導體層(3)之該表面(3a)上之形成,係在該n型氮化鎵系化合物半導體層(3)之該表面(3a)上,形成多層膜(90),之後,以640℃以上、700℃以下之回火溫度進行回火處理,以使該多層膜(90)熔融,並藉由進行緩冷,以形成該負電極(9);該多層膜(90)係交互層積有Al膜(91)與Ni膜(92),並於最上方之Ni膜(92)上,層積有Au膜。A method of manufacturing a semiconductor light-emitting device (100) according to a ninth aspect of the present invention, comprising: a substrate (1); and a nitride semiconductor layer (20) formed on one side (1a) side of the substrate (1) The n-type gallium nitride-based compound semiconductor layer (3), the light-emitting layer (4), and the p-type gallium nitride compound semiconductor layer (6) are sequentially provided from the one side (1a) side, and the positive electrode (8) is formed. a surface (6a) side of the p-type gallium nitride compound semiconductor layer (6); and a negative electrode (9) formed on the exposed surface (3a) of the n-type gallium nitride compound semiconductor layer (3) The manufacturing method includes the step of forming the negative electrode (9) on the surface (3a) of the n-type gallium nitride compound semiconductor layer (3) in the n-type gallium nitride compound semiconductor layer (3) forming a multilayer film (90) on the surface (3a), and then tempering at a tempering temperature of 640 ° C or higher and 700 ° C or lower to melt the multilayer film (90) by Slow cooling to form the negative electrode (9); the multilayer film (90) is an interactive layer An Al film (91) and a Ni film (92) are stacked, and an Au film is laminated on the uppermost Ni film (92).

本發明之第10態樣的半導體發光元件(100)的製造方法,係在第9態樣中,進行該緩冷時之冷卻速度,設為20~60℃/min。A method of manufacturing a semiconductor light-emitting device (100) according to a tenth aspect of the present invention is the cooling rate at the time of the slow cooling in the ninth aspect, and is 20 to 60 ° C / min.

本發明之第11態樣的半導體發光元件(100)的製造方法,係在第9或第10態樣中,該回火處理之回火時間,係30秒~3分。A method of manufacturing the semiconductor light-emitting device (100) according to the eleventh aspect of the present invention is the tempering time of the tempering treatment in the ninth or tenth aspect, wherein the tempering time is 30 seconds to 3 minutes.

以本發明之第9~第11態樣的半導體發光元件(100)的製造方法,可以製造能降低n型氮化鎵系化合物半導體層(3)與負電極(9)之接觸電阻的半導體發光元件(100)。According to the method for fabricating the semiconductor light-emitting device (100) according to the ninth to eleventh aspects of the present invention, semiconductor light emission capable of reducing the contact resistance between the n-type gallium nitride compound semiconductor layer (3) and the negative electrode (9) can be produced. Element (100).

本發明第12態樣之負電極(9)的形成方法,係於n型氮化鎵系化合物半導體層(3)之表面(3a)上,形成多層膜(90),之後,以640℃以上、700℃以下之回火溫度進行回火處理,以使該多層膜(90)熔融,並藉由進行緩冷,以形成該負電極(9);該多層膜(90)係交互層積有Al膜(91)與Ni膜(92),並於最上方之Ni膜(92)上,層積有Au膜(93)。A method of forming the negative electrode (9) according to the twelfth aspect of the present invention is to form a multilayer film (90) on the surface (3a) of the n-type gallium nitride-based compound semiconductor layer (3), and thereafter, at 640 ° C or higher. And tempering at a tempering temperature of 700 ° C or less to melt the multilayer film (90), and by slow cooling to form the negative electrode (9); the multilayer film (90) is alternately laminated The Al film (91) and the Ni film (92), and the uppermost Ni film (92), are laminated with an Au film (93).

本發明之第13態樣之負電極(9)的形成方法,係在第12態樣中,進行該緩冷時之冷卻速度,設為20~60℃/min。The method for forming the negative electrode (9) according to the thirteenth aspect of the present invention is the cooling rate at the time of the slow cooling in the twelfth aspect, and is set to 20 to 60 ° C / min.

本發明之第14態樣之負電極(9)的形成方法,係在第12或13態樣中,該回火處理之回火時間,係30秒~3分。The method for forming the negative electrode (9) according to the fourteenth aspect of the present invention is the tempering time of the tempering treatment in the 12th or 13th aspect, which is 30 seconds to 3 minutes.

本發明之第12~第14態樣之負電極(9)的形成方法,具有可以降低n型氮化鎵系化合物半導體層(3)與負電極(9)之接觸電阻的效果。The method for forming the negative electrode (9) of the twelfth to fourteenth aspects of the present invention has an effect of reducing the contact resistance between the n-type gallium nitride-based compound semiconductor layer (3) and the negative electrode (9).

1‧‧‧基板
1a‧‧‧第1面
1b‧‧‧第2面
2‧‧‧緩衝層
3‧‧‧n型氮化鎵系化合物半導體層
3a‧‧‧表面
4‧‧‧發光層
5‧‧‧電子阻擋層
6‧‧‧p型氮化鎵系化合物半導體層
6a‧‧‧表面
7‧‧‧p型接觸層
7a‧‧‧表面
8‧‧‧正電極
9‧‧‧負電極
9a‧‧‧Ni初晶
9aa‧‧‧Ni初晶
9b‧‧‧AlNi共晶
90‧‧‧多層膜
91‧‧‧Al膜
92‧‧‧Ni膜
93‧‧‧Au膜
10‧‧‧絶緣膜
18‧‧‧第1平頭電極
19‧‧‧第2平頭電極
191‧‧‧Al膜
192‧‧‧Ti膜
193‧‧‧Au膜
20‧‧‧氮化物半導體層
20a‧‧‧表面
22‧‧‧高台結構
22a‧‧‧頂面
22c‧‧‧側面
100‧‧‧半導體發光元件
H1‧‧‧厚度
W1‧‧‧寛度
1‧‧‧Substrate
1a‧‧‧1st
1b‧‧‧2nd
2‧‧‧buffer layer
3‧‧‧n type gallium nitride compound semiconductor layer
3a‧‧‧ surface
4‧‧‧Lighting layer
5‧‧‧Electronic barrier
6‧‧‧p-type gallium nitride compound semiconductor layer
6a‧‧‧ surface
7‧‧‧p-type contact layer
7a‧‧‧ surface
8‧‧‧ positive electrode
9‧‧‧Negative electrode
9a‧‧‧Ni crystal
9aa‧‧‧Ni crystal
9b‧‧‧AlNi eutectic
90‧‧‧Multilayer film
91‧‧‧Al film
92‧‧‧Ni film
93‧‧‧Au film
10‧‧‧Insulation film
18‧‧‧1st flat electrode
19‧‧‧2nd flat electrode
191‧‧‧Al film
192‧‧‧Ti film
193‧‧‧Au film
20‧‧‧ nitride semiconductor layer
20a‧‧‧ surface
22‧‧‧High platform structure
22a‧‧‧ top surface
22c‧‧‧ side
100‧‧‧Semiconductor light-emitting components
H1‧‧‧ thickness
W1‧‧‧寛

【圖1】 圖1係實施形態之半導體發光元件的概略剖面圖。 【圖2】 圖2係實施形態之半導體發光元件的概略立體圖。 【圖3】 圖3係實施形態之半導體發光元件中的主要部位之示意剖面圖。 【圖4】 圖4係實施形態之半導體發光元件中的凝固組織之示意圖。 【圖5】 圖5係實施形態之半導體發光元件的負電極的光學顯微鏡照片,係由基板之第2面側觀察所得。 【圖6】 圖6係實施形態之半導體發光元件中的主要部位之剖面SEM影像。 【圖7】 圖7係用以說明實施形態之半導體發光元件製造方法的主要製程剖面圖。 【圖8】 圖8A係實施形態之半導體發光元件製造方法的說明圖。圖8B係實施形態之半導體發光元件製造方法的說明圖。圖8C係實施形態之半導體發光元件製造方法的說明圖。 【圖9】 圖9A係實施形態之半導體發光元件製造方法的說明圖。圖9B係實施形態之半導體發光元件製造方法的說明圖。圖9C係實施形態之半導體發光元件製造方法的說明圖。 【圖10】 圖10A係實施形態之半導體發光元件製造方法的說明圖。圖10B係實施形態之半導體發光元件製造方法的說明圖。圖10C係實施形態之半導體發光元件製造方法的說明圖。Fig. 1 is a schematic cross-sectional view showing a semiconductor light emitting device according to an embodiment. Fig. 2 is a schematic perspective view of a semiconductor light emitting device according to an embodiment. Fig. 3 is a schematic cross-sectional view showing a main part of a semiconductor light emitting device according to an embodiment. Fig. 4 is a schematic view showing a solidified structure in a semiconductor light-emitting device of an embodiment. Fig. 5 is an optical micrograph of a negative electrode of a semiconductor light-emitting device of the embodiment, which is observed from the second surface side of the substrate. Fig. 6 is a cross-sectional SEM image of a main portion of a semiconductor light-emitting device of an embodiment. Fig. 7 is a cross-sectional view showing main processes for explaining a method of manufacturing a semiconductor light emitting element according to an embodiment. Fig. 8A is an explanatory view showing a method of manufacturing a semiconductor light emitting element according to an embodiment. Fig. 8B is an explanatory view showing a method of manufacturing a semiconductor light emitting element according to an embodiment. Fig. 8C is an explanatory diagram of a method of manufacturing a semiconductor light emitting element according to an embodiment. Fig. 9A is an explanatory view showing a method of manufacturing a semiconductor light emitting element according to an embodiment. Fig. 9B is an explanatory diagram of a method of manufacturing a semiconductor light emitting element according to an embodiment. Fig. 9C is an explanatory view showing a method of manufacturing a semiconductor light emitting element according to an embodiment. Fig. 10A is an explanatory view showing a method of manufacturing a semiconductor light emitting element according to an embodiment. Fig. 10B is an explanatory view showing a method of manufacturing a semiconductor light emitting element according to an embodiment. Fig. 10C is an explanatory view showing a method of manufacturing a semiconductor light emitting element according to an embodiment.

no

1‧‧‧基板 1‧‧‧Substrate

1a‧‧‧第1面 1a‧‧‧1st

1b‧‧‧第2面 1b‧‧‧2nd

2‧‧‧緩衝層 2‧‧‧buffer layer

3‧‧‧n型氮化鎵系化合物半導體層 3‧‧‧n type gallium nitride compound semiconductor layer

3a‧‧‧表面 3a‧‧‧ surface

4‧‧‧發光層 4‧‧‧Lighting layer

5‧‧‧電子阻擋層 5‧‧‧Electronic barrier

6‧‧‧p型氮化鎵系化合物半導體層 6‧‧‧p-type gallium nitride compound semiconductor layer

6a‧‧‧表面 6a‧‧‧ surface

7‧‧‧p型接觸層 7‧‧‧p-type contact layer

7a‧‧‧表面 7a‧‧‧ surface

8‧‧‧正電極 8‧‧‧ positive electrode

9‧‧‧負電極 9‧‧‧Negative electrode

10‧‧‧絶緣膜 10‧‧‧Insulation film

18‧‧‧第1平頭電極 18‧‧‧1st flat electrode

19‧‧‧第2平頭電極 19‧‧‧2nd flat electrode

20‧‧‧氮化物半導體層 20‧‧‧ nitride semiconductor layer

20a‧‧‧表面 20a‧‧‧ surface

22‧‧‧高台結構 22‧‧‧High platform structure

22a‧‧‧頂面 22a‧‧‧ top surface

22c‧‧‧側面 22c‧‧‧ side

100‧‧‧半導體發光元件 100‧‧‧Semiconductor light-emitting components

Claims (14)

一種半導體發光元件,包括: 基板; 氮化物半導體層,形成於該基板之一面側,從該一面側依序具有n型氮化鎵系化合物半導體層、發光層及p型氮化鎵系化合物半導體層; 正電極,形成於該p型氮化鎵系化合物半導體層之表面側;以及 負電極,形成於該n型氮化鎵系化合物半導體層中露出之表面; 該負電極,係由以Ni與Al為主成分之凝固組織所構成。A semiconductor light-emitting device comprising: a substrate; a nitride semiconductor layer formed on one surface side of the substrate, and having an n-type gallium nitride compound semiconductor layer, a light-emitting layer, and a p-type gallium nitride compound semiconductor sequentially from the one side a positive electrode formed on a surface side of the p-type gallium nitride compound semiconductor layer; and a negative electrode formed on a surface exposed in the n-type gallium nitride compound semiconductor layer; the negative electrode is made of Ni It is composed of a solidified structure mainly composed of Al. 如申請專利範圍第1項之半導體發光元件,其中,該凝固組織有與該n型氮化鎵系化合物半導體層之表面相接之複數的Ni初晶、以及與該n型氮化鎵系化合物半導體層之表面相接之AlNi共晶混在一起。The semiconductor light-emitting device of claim 1, wherein the solidified structure has a plurality of Ni primary crystals in contact with a surface of the n-type gallium nitride-based compound semiconductor layer, and the n-type gallium nitride compound The AlNi eutectic, which is in contact with the surface of the semiconductor layer, is mixed together. 如申請專利範圍第2項之半導體發光元件,其中,該複數之Ni初晶,包含滿足下述條件之Ni初晶; 條件:連續區域之寛度,大於該負電極之厚度;該連續區域,係形成為涵蓋該負電極之厚度方向的全長,且在該負電極之一面內方向,與該n型氮化鎵系化合物半導體層相接。The semiconductor light-emitting device of claim 2, wherein the plurality of primary crystals of Ni comprise a primary crystal of Ni satisfying the following conditions; condition: a temperature of the continuous region is greater than a thickness of the negative electrode; the continuous region, It is formed so as to cover the entire length of the negative electrode in the thickness direction, and is in contact with the n-type gallium nitride-based compound semiconductor layer in the in-plane direction of the negative electrode. 如申請專利範圍第2或3項之半導體發光元件,其中,該Ni初晶係樹枝狀結晶;而正交於該n型氮化鎵系化合物半導體層之厚度方向的剖面形狀為樹枝狀。The semiconductor light-emitting device according to claim 2, wherein the Ni primary crystal dendrites are in a dendritic shape in a thickness direction orthogonal to the n-type gallium nitride-based compound semiconductor layer. 如申請專利範圍第1至3項中任一項之半導體發光元件,其中,該n型氮化鎵系化合物半導體層為n型AlGaN層。The semiconductor light-emitting device according to any one of claims 1 to 3, wherein the n-type gallium nitride-based compound semiconductor layer is an n-type AlGaN layer. 如申請專利範圍第1項之半導體發光元件,其中,該負電極之形成,係藉由對形成於該n型氮化鎵系化合物半導體層之該表面上之多層膜,以640℃以上、700℃以下之回火溫度進行回火處理加以熔融,並進行緩冷而形成; 該多層膜係交互層積有Al膜與Ni膜,並於最上方之Ni膜上,層積有Au膜。The semiconductor light-emitting device of claim 1, wherein the negative electrode is formed by using a multilayer film formed on the surface of the n-type gallium nitride compound semiconductor layer at 640 ° C or higher and 700 The tempering temperature below °C is tempered and melted, and is formed by slow cooling; the multilayer film is alternately laminated with an Al film and a Ni film, and an Au film is laminated on the uppermost Ni film. 如申請專利範圍第6項之半導體發光元件,其中,進行該緩冷時之冷卻速度,設為20~60℃/min。The semiconductor light-emitting device of claim 6, wherein the cooling rate at the time of the slow cooling is 20 to 60 ° C / min. 如申請專利範圍第6或7項之半導體發光元件,其中,該回火處理之回火時間,係30秒~3分。The semiconductor light-emitting device of claim 6 or 7, wherein the tempering time of the tempering treatment is 30 seconds to 3 minutes. 一種半導體發光元件的製造方法,該半導體發光元件包括: 基板; 氮化物半導體層,形成於該基板之一面側,從該一面側依序具有n型氮化鎵系化合物半導體層、發光層及p型氮化鎵系化合物半導體層; 正電極,形成於該p型氮化鎵系化合物半導體層之表面側;以及 負電極,形成於該n型氮化鎵系化合物半導體層中露出之表面; 該製造方法包括以下步驟: 該負電極於該n型氮化鎵系化合物半導體層之該表面上之形成,係在該n型氮化鎵系化合物半導體層之該表面上,形成多層膜,之後,以640℃以上、700℃以下之回火溫度進行回火處理,以使該多層膜熔融,並藉由進行緩冷,以形成該負電極; 該多層膜係交互層積有Al膜與Ni膜,並於最上方之Ni膜上,層積有Au膜。A method of manufacturing a semiconductor light-emitting device, comprising: a substrate; a nitride semiconductor layer formed on one surface side of the substrate, and having an n-type gallium nitride compound semiconductor layer, a light-emitting layer, and p in this order from the one surface side a gallium nitride-based compound semiconductor layer; a positive electrode formed on a surface side of the p-type gallium nitride compound semiconductor layer; and a negative electrode formed on a surface exposed in the n-type gallium nitride compound semiconductor layer; The manufacturing method includes the steps of: forming a negative electrode on the surface of the n-type gallium nitride compound semiconductor layer on the surface of the n-type gallium nitride compound semiconductor layer to form a multilayer film, and thereafter, The tempering treatment is performed at a tempering temperature of 640 ° C or higher and 700 ° C or lower to melt the multilayer film, and the negative electrode is formed by slow cooling; the multilayer film is alternately laminated with an Al film and a Ni film. And on the uppermost Ni film, an Au film is laminated. 如申請專利範圍第9項之半導體發光元件的製造方法,其中,進行該緩冷時之冷卻速度,設為20~60℃/min。The method for producing a semiconductor light-emitting device according to claim 9, wherein the cooling rate at the time of the slow cooling is 20 to 60 ° C / min. 如申請專利範圍第9或10項之半導體發光元件的製造方法,其中,該回火處理之回火時間,係30秒~3分。The method for producing a semiconductor light-emitting device according to claim 9 or 10, wherein the tempering time of the tempering treatment is 30 seconds to 3 minutes. 一種負電極的形成方法,係於n型氮化鎵系化合物半導體層之表面上,形成多層膜,之後,以640℃以上、700℃以下之回火溫度進行回火處理,以使該多層膜熔融,並藉由進行緩冷,以形成電極; 該多層膜係交互層積有Al膜與Ni膜,並於最上方之Ni膜上,層積有Au膜。A method for forming a negative electrode is formed on a surface of an n-type gallium nitride-based compound semiconductor layer to form a multilayer film, and then tempered at a tempering temperature of 640 ° C or higher and 700 ° C or lower to make the multilayer film The electrode is melted and slowly cooled to form an electrode; the multilayer film is alternately laminated with an Al film and a Ni film, and an Au film is laminated on the uppermost Ni film. 如申請專利範圍第12項之負電極的形成方法,其中,進行該緩冷時之冷卻速度,設為20~60℃/min。The method for forming a negative electrode according to claim 12, wherein the cooling rate at the time of the slow cooling is set to 20 to 60 ° C / min. 如申請專利範圍第12或13項之負電極的形成方法,其中,該回火處理之回火時間,係30秒~3分。The method for forming a negative electrode according to claim 12 or 13, wherein the tempering time of the tempering treatment is 30 seconds to 3 minutes.
TW104129458A 2014-09-09 2015-09-07 Semiconductor light emitting device, method of manufacturing semiconductor light emitting device, and method of forming negative electrode TW201622175A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014183394A JP2016058533A (en) 2014-09-09 2014-09-09 Semiconductor light emission element and method of manufacturing semiconductor light emission element

Publications (1)

Publication Number Publication Date
TW201622175A true TW201622175A (en) 2016-06-16

Family

ID=55458628

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104129458A TW201622175A (en) 2014-09-09 2015-09-07 Semiconductor light emitting device, method of manufacturing semiconductor light emitting device, and method of forming negative electrode

Country Status (3)

Country Link
JP (1) JP2016058533A (en)
TW (1) TW201622175A (en)
WO (1) WO2016038856A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088301A1 (en) * 2016-11-11 2018-05-17 スタンレー電気株式会社 Ultraviolet emitting diode
US10937928B2 (en) * 2017-11-09 2021-03-02 Asahi Kasei Kabushiki Kaisha Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element
JP6689244B2 (en) * 2017-11-10 2020-04-28 日機装株式会社 Method for manufacturing semiconductor light emitting device
JP6837593B1 (en) * 2020-08-07 2021-03-03 日機装株式会社 Semiconductor light emitting element and manufacturing method of semiconductor light emitting element
KR20230117793A (en) * 2022-02-03 2023-08-10 삼성전기주식회사 Multilayered electronic component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010581A (en) * 2006-06-28 2008-01-17 Rohm Co Ltd Semiconductor light emitting element, and its manufacturing method
JP2009123836A (en) * 2007-11-13 2009-06-04 Rohm Co Ltd Nitride semiconductor light-emitting element
WO2015029281A1 (en) * 2013-08-26 2015-03-05 パナソニックIpマネジメント株式会社 Semiconductor light emitting element and method for manufacturing semiconductor light emitting element

Also Published As

Publication number Publication date
WO2016038856A1 (en) 2016-03-17
JP2016058533A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP4833383B2 (en) Nitride-based semiconductor light-emitting device and manufacturing method thereof
US7863637B2 (en) Semiconductor light emitting element, method for manufacturing the same, and light emitting device
JP5136765B2 (en) Nitride-based semiconductor device and manufacturing method thereof
WO2007055202A1 (en) Nitride semiconductor light emitting element and method for producing nitride semiconductor light emitting element
US8309984B2 (en) Nitride-based semiconductor device having electrode on m-plane
WO2006121000A1 (en) Nitride semiconductor element and production method therefor
WO2007072871A1 (en) Method for manufacturing nitride semiconductor light emitting element
TW201622175A (en) Semiconductor light emitting device, method of manufacturing semiconductor light emitting device, and method of forming negative electrode
TW201539786A (en) Method for manufacturing N-P-N nitride-semiconductor light-emitting element, and N-P-N nitride-semiconductor light-emitting element
JP2014096460A (en) Ultraviolet semiconductor light emitting element and manufacturing method thereof
WO2007091651A1 (en) Nitride semiconductor element
JP2012028547A (en) Semiconductor element and manufacturing method of the same
TW200807752A (en) III group nitride semiconductor light emitting element, process for producing III group nitride semiconductor light emitting element, and lamp
JP6331204B2 (en) Semiconductor device and ultraviolet light emitting element
JP2007158100A (en) Manufacturing method of nitride semiconductor light-emitting element
JP2007207869A (en) Nitride semiconductor light-emitting device
JP2007149983A (en) Manufacture of nitride semiconductor light-emitting element
JP6323782B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP5379703B2 (en) Ultraviolet semiconductor light emitting device
JP2007324546A (en) Method of manufacturing gallium nitride compound semiconductor light-emitting element, gallium nitride compound semiconductor light-emitting element, and lamp
JP6327564B2 (en) Semiconductor device
JP2015043468A (en) Ultraviolet semiconductor light-emitting element
JP2007019526A (en) Process for fabricating nitride semiconductor element
JP2019106494A (en) Nitride semiconductor light emitting element
JP2007149984A (en) Manufacture of nitride semiconductor light-emitting element