JP2007019526A - Process for fabricating nitride semiconductor element - Google Patents

Process for fabricating nitride semiconductor element Download PDF

Info

Publication number
JP2007019526A
JP2007019526A JP2006220067A JP2006220067A JP2007019526A JP 2007019526 A JP2007019526 A JP 2007019526A JP 2006220067 A JP2006220067 A JP 2006220067A JP 2006220067 A JP2006220067 A JP 2006220067A JP 2007019526 A JP2007019526 A JP 2007019526A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
layer
substrate
semiconductor layer
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006220067A
Other languages
Japanese (ja)
Other versions
JP2007019526A5 (en
Inventor
Takeshi Nakahara
健 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2006220067A priority Critical patent/JP2007019526A/en
Publication of JP2007019526A publication Critical patent/JP2007019526A/en
Publication of JP2007019526A5 publication Critical patent/JP2007019526A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Weting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for fabricating a nitride semiconductor element in which a nitride semiconductor layer exhibiting excellent crystallinity is grown while growing the nitride semiconductor layer epitaxially by MOCVD using a zinc oxide based compound of good processability as a substrate without roughening the surface of the substrate by sublimation. <P>SOLUTION: A nitride semiconductor element is formed by (a) forming a protective film 15 on the exposed surface of a substrate 1 composed of a zinc oxide based compound excepting the surface on which a semiconductor layer is formed, (b) placing the substrate 1 in an MOCVD system and growing a first nitride semiconductor layer 2 composed of In<SB>y</SB>Ga<SB>1-y</SB>N (0<y≤0.5) using nitrogen gas as carrier gas, and then (c) growing a desired nitride semiconductor layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は窒化物半導体を用いた発光ダイオード(LED)やレーザダイオードなどの発光素子、HEMTなどのトランジスタ素子など、窒化物半導体結晶層を用いた半導体素子の製法に関する。さらに詳しくは、酸化亜鉛系化合物基板上に窒化物半導体層を成長することにより、基板と窒化物半導体層との格子定数差を小さくして、結晶性の優れた窒化物半導体層を成長すると共に、基板を除去する場合でも容易にウェットエッチングで除去することができる窒化物半導体素子の製法に関する。   The present invention relates to a method for manufacturing a semiconductor element using a nitride semiconductor crystal layer, such as a light emitting element such as a light emitting diode (LED) or a laser diode using a nitride semiconductor, or a transistor element such as a HEMT. More specifically, by growing a nitride semiconductor layer on a zinc oxide-based compound substrate, the lattice constant difference between the substrate and the nitride semiconductor layer is reduced, and a nitride semiconductor layer having excellent crystallinity is grown. The present invention relates to a method for manufacturing a nitride semiconductor device that can be easily removed by wet etching even when the substrate is removed.

近年、窒化物半導体を用いた青色系発光ダイオード(LED)やレーザダイオードなどの窒化物半導体発光素子が実用化されている。この窒化物半導体を用いた青色系の光を発光するLEDは、たとえば図6に示されるように、サファイア基板31上に、MOCVD法によりGaNなどからなる低温バッファ層32、GaNなどからなるn形層33と、バンドギャップエネルギーがn形層33のそれよりも小さく発光波長を定める材料、たとえばInGaN系(InとGaの比率が種々変り得ることを意味する、以下同じ)化合物半導体からなる活性層(発光層)34と、GaNなどからなるp形層35とが積層されて半導体積層部36が形成され、その表面に透光性導電層37を介して、p側電極38が設けられ、積層された半導体積層部36の一部がエッチングされて露出したn形層33の表面にn側電極39が設けられることにより形成されている。なお、n形層33およびp形層35はキャリアの閉じ込め効果を向上させるため、活性層側にAlGaN系(AlとGaの比率が種々変り得ることを意味する、以下同じ)化合物などのさらにバンドギャップエネルギーの大きい半導体層が用いられることがある。   In recent years, nitride semiconductor light emitting devices such as blue light emitting diodes (LEDs) and laser diodes using nitride semiconductors have been put into practical use. For example, as shown in FIG. 6, an LED that emits blue light using a nitride semiconductor includes a low-temperature buffer layer 32 made of GaN or the like on a sapphire substrate 31 by MOCVD, and an n-type made of GaN or the like. An active layer comprising a layer 33 and a material having a band gap energy smaller than that of the n-type layer 33 and determining an emission wavelength, for example, an InGaN-based (meaning that the ratio of In and Ga can be variously changed, the same applies hereinafter) compound semiconductor (Light emitting layer) 34 and a p-type layer 35 made of GaN or the like are laminated to form a semiconductor laminated portion 36, and a p-side electrode 38 is provided on the surface via a translucent conductive layer 37. An n-side electrode 39 is provided on the surface of the n-type layer 33 exposed by etching a part of the semiconductor laminated portion 36. Note that the n-type layer 33 and the p-type layer 35 further improve the carrier confinement effect, so that the active layer side has a further band such as an AlGaN-based compound (meaning that the ratio of Al and Ga can be changed variously, the same applies hereinafter). A semiconductor layer having a large gap energy may be used.

この窒化物半導体層をMOCVD法により積層する場合、その基板としては、殆どの場合、図6に示される例のように、サファイア基板が用いられるか、SiC基板が用いられ、窒化物半導体と格子整合しない材料が用いられている(たとえば特許文献1参照)。この他にはSi基板を用いる例もあるが、Siでは成長する窒化物半導体層の結晶性がさらに悪化するし、Siは発光した光を吸収して輝度の向上を図れないため、付加価値の高い高輝度品には不向きである。
特開平10−256662号公報(段落0002参照)
When the nitride semiconductor layer is stacked by the MOCVD method, as the substrate, in most cases, a sapphire substrate or a SiC substrate is used as in the example shown in FIG. Incompatible materials are used (see, for example, Patent Document 1). In addition to this, there is an example using a Si substrate, but in Si, the crystallinity of the growing nitride semiconductor layer is further deteriorated, and since Si cannot absorb the emitted light and improve the luminance, it has an added value. Not suitable for high brightness products.
Japanese Patent Laid-Open No. 10-256661 (see paragraph 0002)

前述のように、窒化物半導体層を成長する場合、殆どの場合はサファイア基板かSiC基板が用いられる。しかし、サファイア基板やSiC基板は、非常に硬い材料で、ウェハからチップ化する場合の切断が大変であると共に、チップに割れが入り歩留りを低下させ、コストアップになるという問題がある。また、レーザダイオードの場合には鏡面の反射面を形成するため劈開することが好ましいが、とくにサファイアは、安定した化合物で劈開することができない。   As described above, when a nitride semiconductor layer is grown, in most cases, a sapphire substrate or a SiC substrate is used. However, the sapphire substrate and the SiC substrate are very hard materials, and there are problems that cutting in the case of forming a chip from a wafer is difficult, and the chip is cracked to reduce the yield, resulting in an increase in cost. In the case of a laser diode, it is preferable to cleave in order to form a mirror reflection surface. In particular, sapphire cannot be cleaved with a stable compound.

また、SiCの場合は、基板吸収が大きく、とくに400nm近傍では吸収が大きくなる。さらに、コンタクトをとりやすくするためドープを多くすると、さらに基板吸収が多くなる。このように、発光波長が短くなると、基板により発光した光の吸収も多くなるため、基板を除去することが外部量子効率を向上させる点から好ましく、また、サファイア基板の場合、下層のたとえばn形層に電気的に接続する電極を形成するために半導体積層部の一部をメサ状にエッチング除去することなく、半導体積層部の両面に電極を形成することができるため、基板を除去することが好ましい。しかし、サファイアやSiCからなる基板を窒化物半導体層から除去するためには、基板側からレーザ光を照射して界面で剥離するか、研磨により除去する方法しかない。レーザ光の照射はウェハ1枚ずつの処理になるため、生産効率が非常に悪く、また、研磨はサファイアやSiCの両方の基板とも窒化物半導体とは格子不整合系であると共に、熱膨張係数も異なるため、研磨の最中にウェハが反ったり、割れたりして、ハンドリングが難しいという問題がある。   In the case of SiC, the substrate absorption is large, and the absorption is particularly large near 400 nm. Furthermore, if the dope is increased to facilitate contact, the substrate absorption is further increased. Thus, when the emission wavelength is shortened, the absorption of light emitted by the substrate is also increased. Therefore, it is preferable to remove the substrate from the viewpoint of improving the external quantum efficiency. In the case of a sapphire substrate, the lower layer, for example, n-type Since the electrodes can be formed on both sides of the semiconductor stack without etching a part of the semiconductor stack in a mesa shape to form an electrode electrically connected to the layer, the substrate can be removed. preferable. However, in order to remove the substrate made of sapphire or SiC from the nitride semiconductor layer, there is only a method of peeling off at the interface by irradiating laser light from the substrate side or removing by polishing. Since laser irradiation is performed for each wafer, the production efficiency is very poor. Polishing is a lattice-mismatched system with nitride semiconductors for both sapphire and SiC substrates, and the coefficient of thermal expansion. Therefore, there is a problem that the wafer is warped or cracked during polishing, and handling is difficult.

本発明はこのような問題を解決するためになされたもので、加工性のよい酸化亜鉛系化合物、具体的にはMgxZn1-xO(0≦x≦0.5)を基板として用い、MOCVD法を用いて窒化物半導体層をエピタキシャル成長しながら、MgxZn1-xO基板の表面を昇華により荒らすことなく、結晶性の優れた窒化物半導体層を成長することにより特性の優れた窒化物半導体素子の製法を提供することにある。 The present invention has been made to solve such problems, and uses a zinc oxide compound having good processability, specifically, Mg x Zn 1-x O (0 ≦ x ≦ 0.5) as a substrate. , While epitaxially growing a nitride semiconductor layer using MOCVD, the surface of the Mg x Zn 1-x O substrate is grown by sublimation, and the nitride semiconductor layer having excellent crystallinity is grown with excellent characteristics. The object is to provide a method of manufacturing a nitride semiconductor device.

本発明のさらに他の目的は、このような窒化物半導体を用い、加工や取扱いが容易で、外部量子効率などの発光特性を向上させることができる構造のLEDや半導体レーザなどの半導体発光素子の製法を提供することにある。   Still another object of the present invention is to provide a semiconductor light emitting device such as an LED or a semiconductor laser, which uses such a nitride semiconductor, is easy to process and handle, and has a structure capable of improving light emission characteristics such as external quantum efficiency. To provide a manufacturing method.

本発明者は、窒化物半導体を結晶性よく成長し、かつ、チップ化や基板の剥離を容易にすることができて取扱いの優れた基板を用いて、窒化物半導体層を成長するため鋭意検討を重ねた結果、加工が容易なMgxZn1-xO(0≦x≦0.5)のような酸化亜鉛系(ZnO系ともいう)化合物を基板とし、その基板の窒化物半導体を成長する面のみが露出するように、基板の裏面および側面をマスクして、最初の窒化物半導体層の成長時に窒素雰囲気として、さらにあまり温度を上昇させないで窒化物半導体層を成長して酸化亜鉛化合物基板の露出部をなくすることにより、その後の通常のMOCVD法による窒化物半導体層の成長においても、基板が水素により侵されて凹凸面となることはなく、きれいな結晶の窒化物半導体層を成長することができることを見出した。 The present inventor has intensively studied to grow a nitride semiconductor layer by using a substrate that can grow a nitride semiconductor with good crystallinity and can be easily formed into a chip and peeled off the substrate and can be easily handled. As a result, a zinc oxide-based (also called ZnO-based) compound such as Mg x Zn 1-x O (0 ≦ x ≦ 0.5) that is easy to process is used as a substrate, and a nitride semiconductor is grown on the substrate. A mask is formed on the back and side surfaces of the substrate so that only the surface to be exposed is exposed to a nitrogen atmosphere during the growth of the first nitride semiconductor layer. By eliminating the exposed part of the substrate, the nitride semiconductor layer is grown by a normal MOCVD method, so that the substrate is not affected by hydrogen and becomes uneven, and a clean crystal nitride semiconductor layer is grown. To do It found that it is.

すなわち、酸化亜鉛系化合物は、MOCVD法の水素雰囲気下でInを含まない窒化物半導体を結晶性よく成長することができる900℃以上の高温では、酸化亜鉛が昇華して、窒化物半導体を成長する前に基板が荒れ、結局結晶性の優れた窒化物半導体層を成長することができず、実用化されていない。しかし、前述のように、窒化物半導体を成長する面のみを露出させ、しかもキャリアガスを窒素としてできるだけ水素と高温で反応させないようにして、表面に第1の窒化物半導体層を成長することにより、窒化物半導体と格子定数の近い酸化亜鉛系化合物基板上に窒化物半導体層を成長させることができ、その第1の窒化物半導体層上には、通常の成長方法を用いても非常に結晶性の優れた窒化物半導体層を成長することができた。   In other words, zinc oxide-based compounds can grow nitride semiconductors that do not contain In in a hydrogen atmosphere of MOCVD with good crystallinity. At high temperatures of 900 ° C. or higher, zinc oxide sublimates and grows nitride semiconductors. Then, the substrate is roughened, and eventually a nitride semiconductor layer having excellent crystallinity cannot be grown and has not been put into practical use. However, as described above, the first nitride semiconductor layer is grown on the surface by exposing only the surface on which the nitride semiconductor is grown and making the carrier gas nitrogen as little as possible to react with hydrogen at a high temperature. A nitride semiconductor layer can be grown on a zinc oxide-based compound substrate having a lattice constant close to that of the nitride semiconductor, and the first nitride semiconductor layer is very crystalline even if a normal growth method is used. A nitride semiconductor layer having excellent properties could be grown.

さらに、ZnOの面内格子定数はa=3.252Å、GaNの面内格子定数はa=3.189Åで、ZnOに対してGaNの面内格子定数は小さく、△a/aZnO=−1.937%あるが、InGaN系化合物はGaNよりもa軸方向の格子定数が大きく、しかもInNのa軸の格子定数はa=5.76Åと大きいため、少しのInの添加でZnOと同じ格子定数をもつInGaN系化合物を形成し得ることに着目して、基板と1%以下、さらに好ましくは0.5%以下に格子整合させた窒化物半導体層を成長し得ることを見出した。たとえばZnOと格子整合するInGaN系化合物のInの組成yは、仮にInの組成に比例して格子定数が変化すると(実際には歪みによるボーイング効果が入るので、正確な格子定数は計算では出し難い)、ベガード則により、a(y)=3.189(1−y)+5.76y=3.252とすると、y=0.0245、すなわち2.45%含有させればZnOと完全に格子整合させることができることが分る。そのため、まず、このような格子整合をする割合のInを含有させて格子整合をとった第1の窒化物半導体層を成長することにより、非常に結晶性の優れた窒化物半導体層を得ることができることを見出した。 Furthermore, the in-plane lattice constant of ZnO is a = 3.252Å, the in-plane lattice constant of GaN is a = 3.189Å, and the in-plane lattice constant of GaN is smaller than that of ZnO, and Δa / a ZnO = −1. Although the InGaN-based compound has a lattice constant in the a-axis direction larger than that of GaN and the lattice constant in the a-axis of InN is as large as a = 5.76 、, the same lattice as ZnO can be obtained by adding a little In. Focusing on the fact that an InGaN compound having a constant can be formed, it has been found that a nitride semiconductor layer lattice-matched with the substrate at 1% or less, more preferably 0.5% or less, can be grown. For example, the In composition y of an InGaN-based compound lattice-matched with ZnO changes if the lattice constant changes in proportion to the In composition (actually, since the bowing effect due to strain is included, an accurate lattice constant is difficult to calculate. According to Vegard's law, if a (y) = 3.189 (1-y) + 5.76y = 3.252, then y = 0.0245, that is, 2.45%, it is completely lattice matched with ZnO. You can see that Therefore, a nitride semiconductor layer having very excellent crystallinity is obtained by first growing a first nitride semiconductor layer having lattice matching by containing In at such a ratio of lattice matching. I found out that I can.

なお、第1の窒化物半導体層とその上に成長する窒化物半導体層との間で格子定数の差が大きい場合には、その間に勾配層を設けたり、超格子構造を設けたりすることができるが、この第1の窒化物半導体層自身のIn組成を段階的または連続的に徐々に減らしてその上の窒化物半導体層の組成に合せたり、基板と格子整合させたInGaN系化合物層とGaN層などその上の窒化物半導体層の組成の層との超格子構造にしたりすることもできる。このようにすることにより、酸化亜鉛系化合物基板に直接格子整合をとった第1の窒化物半導体層上に、第1の窒化物半導体層と格子整合をとったn形層などの半導体素子を形成する窒化物半導体層を、歪みを緩和しながら直接成長することができる。   When the difference in lattice constant between the first nitride semiconductor layer and the nitride semiconductor layer grown thereon is large, a gradient layer or a superlattice structure may be provided between them. Although the In composition of the first nitride semiconductor layer itself is gradually reduced stepwise or continuously to match the composition of the nitride semiconductor layer thereon, or an InGaN-based compound layer lattice-matched with the substrate, A superlattice structure such as a GaN layer or a layer having a composition of a nitride semiconductor layer thereon may be used. In this way, a semiconductor element such as an n-type layer having a lattice match with the first nitride semiconductor layer is formed on the first nitride semiconductor layer having a lattice match directly with the zinc oxide compound substrate. The nitride semiconductor layer to be formed can be directly grown while relaxing the strain.

本発明による窒化物半導体素子の製法は、(a)酸化亜鉛系化合物からなる基板の半導体層積層面を除いて露出する面に保護膜を形成し、(b)前記基板をMOCVD装置内に設置して、キャリアガスとして窒素ガスを用いて、InyGa1-yN(0<y≦0.5)からなる第1の窒化物半導体層を成長し、(c)引き続き所望の窒化物半導体層を成長して窒化物半導体素子を形成することを特徴とする。 The method for manufacturing a nitride semiconductor device according to the present invention includes: (a) forming a protective film on a surface of a substrate made of a zinc oxide compound excluding the semiconductor layer lamination surface; and (b) placing the substrate in a MOCVD apparatus. Then, using a nitrogen gas as a carrier gas, a first nitride semiconductor layer made of In y Ga 1-y N (0 <y ≦ 0.5) is grown, and (c) a desired nitride semiconductor continues The layer is grown to form a nitride semiconductor device.

ここに酸化亜鉛系化合物とは、Znを含む酸化物を意味し、具体例としては、ZnOの他、IIA族元素とZn、IIB族元素とZn、またはIIA族元素およびIIB族元素とZnのそれぞれの酸化物を含むものを意味する。また、窒化物半導体とは、III族元素のGaとV族元素のNとの化合物またはIII族元素のGaの一部または全部がAl、Inなどの他のIII 族元素と置換したものおよび/またはV族元素のNの一部がP、Asなどの他のV族元素と置換した化合物(窒化物)からなる半導体をいう。   Here, the zinc oxide-based compound means an oxide containing Zn. Specific examples include ZnO, IIA group element and Zn, IIB group element and Zn, or IIA group element and IIB group element and Zn. It means what contains each oxide. The nitride semiconductor is a compound in which a group III element Ga and a group V element N or a part or all of a group III element Ga is replaced with another group III element such as Al and In, and / or Alternatively, it refers to a semiconductor made of a compound (nitride) in which a part of N of the group V element is substituted with another group V element such as P or As.

前記第1の窒化物半導体層の成長をGaNの成長温度より低い600〜900℃の低温で成長することにより、MgxZn1-xO基板が荒らされることなく窒化物半導体層が成長されるため好ましい。 By growing the first nitride semiconductor layer at a low temperature of 600 to 900 ° C. which is lower than the growth temperature of GaN, the nitride semiconductor layer is grown without the Mg x Zn 1-x O substrate being roughened. Therefore, it is preferable.

前記第1の窒化物半導体層の成長を、Inの原料ガスの流量を制御することにより超格子構造またはInの組成が徐々にもしくは段階的に減少する勾配層に形成することができる。   The growth of the first nitride semiconductor layer can be formed in a superlattice structure or a gradient layer in which the composition of In decreases gradually or stepwise by controlling the flow rate of the In source gas.

前記(c)工程の素子を形成した後に、前記基板の一部または全部をウェットエッチングにより除去することにより、基板などで発光した光が吸収されることなく取り出されるため、外部量子効率が向上して好ましい。   After forming the element in the step (c), part or all of the substrate is removed by wet etching, so that light emitted from the substrate or the like is extracted without being absorbed, thereby improving external quantum efficiency. It is preferable.

具体的には、前記第1の窒化物半導体層上に成長する所望の窒化物半導体層を、発光層を形成するように少なくともn形層とp形層とを含み、前記第1の窒化物半導体層側にn形層、表面側にp形層となるように成長することにより形成し、前記ウェットエッチングにより露出するn形の層にn側電極を形成して半導体発光素子を形成することができる。さらに、前記ウェットエッチングにより露出するn形の層の表面に凹凸を形成し、その後に前記n側電極を形成することにより、LEDにする場合、光の取出し効率が向上する。   Specifically, a desired nitride semiconductor layer grown on the first nitride semiconductor layer includes at least an n-type layer and a p-type layer so as to form a light emitting layer, and the first nitride A semiconductor light emitting device is formed by growing an n-type layer on the semiconductor layer side and a p-type layer on the surface side, and forming an n-side electrode on the n-type layer exposed by the wet etching. Can do. Further, by forming irregularities on the surface of the n-type layer exposed by the wet etching and then forming the n-side electrode, the light extraction efficiency is improved when an LED is formed.

さらに、前記第1の窒化物半導体層上に成長する所望の窒化物半導体層を、発光層を形成するように少なくともn形層とp形層とを含み、前記第1の窒化物半導体層側にn形層、表面側にp形層となるように成長することにより形成し、該表面側にp側電極を形成してからチップ化し、該p側電極側をサブマウントにダイボンディングした後に前記基板の一部または全部をウェットエッチングにより除去することにより、半導体発光素子を形成することができる。このようにすれば、素子をマウントした後に基板を除去することができるため、非常に薄い素子を確実にサブマウントなどに搭載することができる。前記サブマウントとして、金属または、AlN、SiCおよびダイヤモンドのいずれか1種もしくはこれらの表面をCuまたはAgで被覆したものなどを用いることができる。   Furthermore, the desired nitride semiconductor layer grown on the first nitride semiconductor layer includes at least an n-type layer and a p-type layer so as to form a light emitting layer, and the first nitride semiconductor layer side After forming an n-type layer and a p-type layer on the surface side, forming a p-side electrode on the surface side and then forming a chip, and die bonding the p-side electrode side to a submount A semiconductor light emitting element can be formed by removing a part or all of the substrate by wet etching. In this way, since the substrate can be removed after the element is mounted, a very thin element can be reliably mounted on the submount or the like. As the submount, a metal, any one of AlN, SiC, and diamond, or a surface thereof coated with Cu or Ag can be used.

本発明の窒化物半導体素子の製法によれば、MgxZn1-xOなどの酸化亜鉛系化合物からなる基板の半導体層積層面を除いてマスクをし、しかもキャリアガスとして窒素ガスを用いて、InyGa1-yNからなる第1の窒化物半導体層を成長しているため、MOCVD法によりチッ化ガリウム系化合物を成長しても、基板が昇華により荒らされることがなく、非常にきれいな結晶で窒化物半導体層を成長することができる。その結果、LEDやレーザダイオード(LD)などを形成しても内部量子効率が高く、しきい値電流の小さい高特性の半導体発光素子が得られるし、トランジスタなどを構成しても、リーク電流が小さく、耐圧の優れた高速のトランジスタ(HEMT)が得られる。 According to the method for manufacturing a nitride semiconductor device of the present invention, a mask is formed except for a semiconductor layer laminated surface of a substrate made of a zinc oxide compound such as Mg x Zn 1-x O, and nitrogen gas is used as a carrier gas. Since the first nitride semiconductor layer made of In y Ga 1-y N is grown, the substrate is not roughened by sublimation even when a gallium nitride compound is grown by the MOCVD method. A nitride semiconductor layer can be grown with clean crystals. As a result, even if an LED, a laser diode (LD), or the like is formed, a high-performance semiconductor light-emitting device with high internal quantum efficiency and a small threshold current can be obtained. A small high-speed transistor (HEMT) with excellent breakdown voltage can be obtained.

つぎに、図面を参照しながら本発明の窒化物半導体素子の製法について説明をする。本発明の製法により得られる窒化物半導体素子は、図1にその一例である窒化物半導体発光素子(LEDチップ)の断面説明図が示されるように、基板1上に窒化物半導体層が積層されて窒化物半導体素子を形成する場合に、基板1がMgxZn1-xO(0≦x≦0.5)のような酸化亜鉛系化合物からなっており、その基板1に接してInyGa1-yN(0<y≦0.5)からなる第1の窒化物半導体層2が設けられ、その第1の窒化物半導体層2上に半導体素子を形成するように(図1に示される例ではLEDの発光層を形成するように)、窒化物半導体層3〜7が積層されている。 Next, a method for manufacturing the nitride semiconductor device of the present invention will be described with reference to the drawings. A nitride semiconductor device obtained by the manufacturing method of the present invention has a nitride semiconductor layer laminated on a substrate 1 as shown in a sectional view of a nitride semiconductor light emitting device (LED chip) as an example in FIG. in the case of forming the nitride semiconductor device Te, the substrate 1 are made of zinc oxide based compound such as Mg x Zn 1-x O ( 0 ≦ x ≦ 0.5), in contact with the substrate 1 an in y A first nitride semiconductor layer 2 made of Ga 1-y N (0 <y ≦ 0.5) is provided, and a semiconductor element is formed on the first nitride semiconductor layer 2 (FIG. 1). In the example shown, nitride semiconductor layers 3 to 7 are stacked so as to form the light emitting layer of the LED.

すなわち、本発明は、MOCVD法により窒化物半導体層を積層するのに、基板1としてMgxZn1-xOなどの酸化亜鉛系化合物の基板を用い、その基板表面に直接InyGa1-yN層が第1の窒化物半導体層2として設けられていることに特徴がある。前述のように、MOCVD法により窒化物半導体層を成長しようとする場合、成長温度が高い方が窒化物半導体の膜質が良いため、水素雰囲気下の900〜1100℃程度で成長しようとすると、酸化亜鉛が昇華してしまい、基板のエピタキシャル成長する表面が凸凹になり、膜質の良い窒化物半導体層を成長することができない。そのため、MgxZn1-xOのようなZnO系化合物を基板として用いることは行われていない。しかし、前述のように、本発明者が鋭意検討を重ねた結果、エピタキシャル成長する面のみを露出させて他の部分を保護膜で被覆し、基板1のクリーニングなどは窒素雰囲気で行って酸素に晒さず、しかも最初の第1の窒化物半導体層2を成長する場合は、キャリアガスに窒素を用い、800℃以下の温度で成長することにより、さらに好ましくは、第1の窒化物半導体層2として、Inを含む層またはInを含む層とGaN層とを交互に積層する超格子構造に形成することにより、ZnO系化合物からなる基板が荒らされることなく、結晶性の優れた窒化物半導体層を成長することができることを見出したのである。 That is, the present invention uses a substrate of a zinc oxide compound such as Mg x Zn 1-x O as the substrate 1 to laminate the nitride semiconductor layer by the MOCVD method, and the In y Ga 1- The feature is that the yN layer is provided as the first nitride semiconductor layer 2. As described above, when a nitride semiconductor layer is to be grown by the MOCVD method, the higher the growth temperature, the better the quality of the nitride semiconductor film. Therefore, if the nitride semiconductor layer is grown at about 900 to 1100 ° C. in a hydrogen atmosphere, Zinc is sublimated, and the epitaxially growing surface of the substrate becomes uneven, and a nitride semiconductor layer with good film quality cannot be grown. Therefore, a ZnO-based compound such as Mg x Zn 1-x O has not been used as a substrate. However, as described above, as a result of extensive studies by the present inventors, only the surface on which epitaxial growth is performed is exposed and the other part is covered with a protective film, and the substrate 1 is cleaned in a nitrogen atmosphere and exposed to oxygen. In addition, when the first first nitride semiconductor layer 2 is grown, it is more preferable that the first nitride semiconductor layer 2 is grown by using nitrogen as a carrier gas at a temperature of 800 ° C. or lower. By forming an In-containing layer or a superlattice structure in which an In-containing layer and a GaN layer are alternately stacked, a nitride semiconductor layer having excellent crystallinity can be obtained without damaging a substrate made of a ZnO-based compound. They found that they could grow.

第1の窒化物半導体層2が10nm程度以上の厚さ形成されることにより、基板の成長面以外はマスクで覆われているため、その後の窒化物半導体層の成長は従来と同様の成長工程を用いて行っても基板が荒らされて凸凹になることはなく、しかも基板と格子定数の近い第1の窒化物半導体層2上に窒化物半導体層を成長するため、全体の半導体層が結晶性のよい半導体層として成長する。   Since the first nitride semiconductor layer 2 is formed to a thickness of about 10 nm or more, and the growth surface of the substrate is covered with a mask, the subsequent growth of the nitride semiconductor layer is the same as the conventional growth process. The substrate is not roughened and roughened even if it is used, and the nitride semiconductor layer is grown on the first nitride semiconductor layer 2 having a lattice constant close to that of the substrate. It grows as a good semiconductor layer.

基板1は、MgxZn1-xOなどのZnO系化合物、たとえばZnO基板1が用いられる。このような酸化物であれば、ウェットエッチングにより簡単に除去することができるし、半導体で導電性があるため、基板の裏面から一方の電極を取り出すことができるし、何よりも窒化物半導体と格子定数が近いため、格子整合をとりやすく、適当な量のInを窒化物半導体に含有させることにより、完全に基板と格子整合をとることができる。なお、基板1はZnOでなくても、たとえば発光素子にする場合に発光波長が短い場合には、その光を吸収しないようにMgを混晶させたMgxZn1-xOなどを使用することができる。 As the substrate 1, a ZnO-based compound such as Mg x Zn 1-x O, for example, a ZnO substrate 1 is used. Such an oxide can be easily removed by wet etching, and since the semiconductor is conductive, one electrode can be taken out from the back side of the substrate, and above all, the nitride semiconductor and the lattice Since the constants are close, it is easy to achieve lattice matching, and by adding an appropriate amount of In to the nitride semiconductor, it is possible to achieve perfect lattice matching with the substrate. Even if the substrate 1 is not ZnO, Mg x Zn 1-x O mixed with Mg so as not to absorb the light is used when the light emitting wavelength is short, for example, when the light emitting element is used. be able to.

この基板1は、前述のように、高温で水素雰囲気に晒されると露出面からZnOが昇華してしまい、表面が凸凹になり、基板自身の結晶性も低下すると共に、その上に成長する窒化物半導体層の結晶性は大幅に低下してしまう。そのため、たとえば図2に示されるように、ZnO基板1の裏面および側面から表面の端部までをSiO、SiNまたはPtなどの高温で蒸発しない保護膜15で被覆して保護してから、MOCVD装置のカーボンまたはモリブデンなどからなる受け台16上にZnO基板1(ウェハ)を載置して、窒化物半導体層を成長する。   As described above, when the substrate 1 is exposed to a hydrogen atmosphere at a high temperature, ZnO is sublimated from the exposed surface, the surface becomes uneven, the crystallinity of the substrate itself is lowered, and nitriding is grown on the surface. The crystallinity of the physical semiconductor layer is greatly reduced. Therefore, for example, as shown in FIG. 2, the surface of the ZnO substrate 1 is covered and protected with a protective film 15 that does not evaporate at a high temperature, such as SiO, SiN, or Pt, after being covered with the MOCVD apparatus. A ZnO substrate 1 (wafer) is placed on a cradle 16 made of carbon or molybdenum, and a nitride semiconductor layer is grown.

第1の窒化物半導体層2は、前述のように、ZnO基板1の表面を荒らさないようにまず表面を被覆すると共に、ZnO基板1と格子整合をとる層として設けられているが、元々ZnO基板1と窒化物半導体層との間の格子不整合は、サファイア基板と窒化物半導体層のように大きくないため、ZnO基板1の昇華を防止することが第一義で、格子定数を完全に合せることは第二義である。すなわち、前述のように、ZnO基板1を用いてMOCVD法により窒化物半導体層を成長しようとすると、窒化物半導体層を成長する900℃以上の高温ではZnO基板1が昇華して表面が荒れ、結晶性のよい窒化物半導体層を成長することができないのであるが、InGaN系化合物の成長は、成長温度を900℃以下に低くする方がむしろ成長に好ましく、しかもキャリアガスとして水素を用いると成長し難く、窒素ガスを用いる方が成長しやすいという性質を有していることから、まずInGaN系化合物をZnO基板1に成長するものである。このように、900℃以下で、しかも窒素ガス雰囲気下でInGaN系化合物からなる窒化物半導体層を成長することにより、ZnO基板1の表面を全く荒らすことなく、結晶性の優れた窒化物半導体層を成長することができる。なお、第1の窒化物半導体層は、基板1の裏面に一方の電極を形成する場合には、基板1の導電形に合せる必要があるが、基板1の裏面に電極を形成しない場合には、アンドープでもSi(nドーパント)などをドーピングしてもどちらでもよい。   As described above, the first nitride semiconductor layer 2 is provided as a layer that first covers the surface of the ZnO substrate 1 so as not to roughen the surface and is lattice-matched with the ZnO substrate 1. Since the lattice mismatch between the substrate 1 and the nitride semiconductor layer is not as great as that of the sapphire substrate and the nitride semiconductor layer, the primary purpose is to prevent sublimation of the ZnO substrate 1, and the lattice constant is completely set. Matching is secondary. That is, as described above, when trying to grow a nitride semiconductor layer by the MOCVD method using the ZnO substrate 1, the ZnO substrate 1 is sublimated at a high temperature of 900 ° C. or higher when the nitride semiconductor layer is grown, and the surface becomes rough. Although it is impossible to grow a nitride semiconductor layer with good crystallinity, it is preferable for the growth of an InGaN-based compound to lower the growth temperature to 900 ° C. or lower, and when hydrogen is used as a carrier gas. It is difficult to grow using nitrogen gas, so that an InGaN compound is first grown on the ZnO substrate 1. Thus, by growing a nitride semiconductor layer made of an InGaN-based compound at 900 ° C. or lower and in a nitrogen gas atmosphere, the nitride semiconductor layer having excellent crystallinity is obtained without causing any rough surface of the ZnO substrate 1. Can grow. The first nitride semiconductor layer needs to match the conductivity type of the substrate 1 when one electrode is formed on the back surface of the substrate 1, but when the electrode is not formed on the back surface of the substrate 1. Either undoped or Si (n dopant) may be doped.

一方、第1の窒化物半導体層2は、必ずしもInを含有する層でなければならないものではなく、たとえば図3(a)に示されるように、InGaN系化合物層21とGaN層22とを、たとえば5nm程度づつ交互に積層する超格子構造で形成することもできる(断面図の右側にGaNとInGaNの組成変化の様子を示す)。この場合、図3(b)に同様の説明図が示されるように、超格子構造のInGaN系化合物層21のInの組成を表面側に行くに従って小さくし、n形層3の組成に近づけるとなお好ましい。   On the other hand, the first nitride semiconductor layer 2 does not necessarily have to be a layer containing In. For example, as shown in FIG. 3A, an InGaN-based compound layer 21 and a GaN layer 22 are For example, it can also be formed with a superlattice structure in which about 5 nm is alternately laminated (showing the composition change of GaN and InGaN on the right side of the cross-sectional view). In this case, when a similar explanatory diagram is shown in FIG. 3B, the In composition of the superlattice InGaN-based compound layer 21 is reduced toward the surface side and closer to the composition of the n-type layer 3. It is preferable.

しかし、第1の窒化物半導体層2は、前述のように、Inの組成を調整することにより、基板1と面内格子定数を完全に合せることができ、材料の異なる基板と窒化物半導体層との格子整合を図ることにより、非常に結晶性のよい窒化物半導体層を成長することができるため好ましい。このような基板1と格子整合が図られ、結晶性の優れた第1の窒化物半導体層2が成長されれば、その上に積層される窒化物半導体は、その材料組成の相違により格子定数が多少異なっていても、同種の窒化物半導体材料であるため、結晶性よく成長することができるが、さらにその間に超格子構造や勾配層などを挟んで積層することにより、組成が異なることによる歪みを緩和することができるため、より一層結晶性を良好にすることができる。この場合、図1に示される第1の窒化物半導体層2とn形コンタクト層3との間に両組成の差に基づく格子不整合を解消する超格子構造または勾配層を設けてもよいし、図3(a)または(b)に示されるように、第1の窒化物半導体層2自身を超格子構造にしてもよいし、図3(c)に示されるように、第1の窒化物半導体層2を勾配層23で形成してもよい。   However, as described above, the first nitride semiconductor layer 2 can completely match the in-plane lattice constant with the substrate 1 by adjusting the composition of In, and the substrate and nitride semiconductor layer of different materials can be used. Therefore, it is preferable that a nitride semiconductor layer with very good crystallinity can be grown. If the first nitride semiconductor layer 2 having excellent crystallinity is grown with lattice matching with such a substrate 1, the nitride semiconductor laminated thereon has a lattice constant due to the difference in material composition. Can be grown with good crystallinity even if they are slightly different, but they can be grown with good crystallinity, but by stacking with a superlattice structure or gradient layer between them, the composition is different. Since strain can be relaxed, crystallinity can be further improved. In this case, a superlattice structure or a gradient layer may be provided between the first nitride semiconductor layer 2 and the n-type contact layer 3 shown in FIG. As shown in FIG. 3 (a) or (b), the first nitride semiconductor layer 2 itself may have a superlattice structure, or as shown in FIG. The physical semiconductor layer 2 may be formed of the gradient layer 23.

すなわち、図3(c)において、最初の10nm程度はZnO基板1と格子整合させたInGaN層21が設けられ、その上には、徐々にInの組成を少なくして最後は、その上に成長するn形層3の組成と合せたGaN層になるように形成されている。この勾配層を含んだ全体の厚さは制限されないが、1μm以下であることが好ましい。この例も断面図の右側にGaNとInGaNとの組成変化の様子を示してある。この勾配層は、図3(c)に示される例のように、連続的に変化させてもよいし、階段状に変化させてもよい。このような組成の変化は、第1の窒化物半導体層のMOCVD法による成長中に、たとえばInの原料ガスであるトリメチルインジウム(TMIn)の量を連続的にまたは段階的に減らすことにより得られる。   That is, in FIG. 3C, an InGaN layer 21 lattice-matched with the ZnO substrate 1 is provided for the first 10 nm or so, and the In composition is gradually decreased on the first layer, and finally, the InGaN layer 21 is grown thereon. It is formed so as to be a GaN layer combined with the composition of the n-type layer 3. The total thickness including the gradient layer is not limited, but is preferably 1 μm or less. This example also shows a state of composition change between GaN and InGaN on the right side of the cross-sectional view. This gradient layer may be changed continuously as in the example shown in FIG. 3C, or may be changed stepwise. Such a change in composition can be obtained, for example, by continuously or stepwise reducing the amount of trimethylindium (TMIn) that is a source gas of In during the growth of the first nitride semiconductor layer by the MOCVD method. .

他の半導体積層部6は、図1に示される例では、SiをドープしたGaNからなるコンタクト層3aとInGaN系化合物/GaNからなる超格子層3bとからなるn形層3が1〜10μm程度、アンドープのInGaN系化合物/GaN−MQW層4a(たとえば1〜3nmのIn0.17Ga0.83Nからなるウェル層と10〜20nmのIn0.01Ga0.99Nからなるバリア層とが3〜8ペア積層される多重量子井戸構造)とアンドープのGaN層4bからなる活性層4が全体で0.05〜0.3μm程度、MgをドープしたGaNからなるp形層5が0.2〜1μm程度、それぞれ設けられることにより形成されている。 In the example shown in FIG. 1, the other semiconductor laminated portion 6 includes an n-type layer 3 composed of a contact layer 3a made of Si-doped GaN and a superlattice layer 3b made of InGaN-based compound / GaN of about 1 to 10 μm. Undoped InGaN-based compound / GaN-MQW layer 4a (for example, 3 to 8 pairs of a well layer made of In 0.17 Ga 0.83 N of 1 to 3 nm and a barrier layer made of In 0.01 Ga 0.99 N of 10 to 20 nm are laminated. The active layer 4 composed of a multi-quantum well structure) and an undoped GaN layer 4b is provided in a total of about 0.05 to 0.3 μm, and the p-type layer 5 composed of Mg-doped GaN is provided in a range of about 0.2 to 1 μm. It is formed by.

なお、半導体積層部6の構成は、製造する半導体素子に応じて必要な構成に積層され、LEDの場合でも、上述の例に限定されるものではなく、n形層3およびp形層5は、活性層側にバンドギャップエネルギーの大きい層(障壁層)を設ける複層構造にすることもできるし、組成の異なる半導体層間に超格子構造または勾配層を設けることもできるし、逆に上述の超格子層3bやアンドープのGaN層4bなどを省略することもできる。さらに、この例では、n形層3とp形層5とで活性層4が挟持されたダブルヘテロ接合構造であるが、n形層とp形層とが直接接合するヘテロ接合構造のものでもよい。要は、LEDを構成する場合には、発光層を形成するようにn形層3とp形層5が設けられていればよい。また、前述の例では、LEDの例であったが、ストライプ状の発光領域を形成してレーザダイオードを同様に形成することもできる。   In addition, the structure of the semiconductor lamination part 6 is laminated | stacked on a required structure according to the semiconductor element to manufacture, and also in the case of LED, it is not limited to the above-mentioned example, The n-type layer 3 and the p-type layer 5 are In addition, a multilayer structure in which a layer (barrier layer) having a large band gap energy is provided on the active layer side, a superlattice structure or a gradient layer can be provided between semiconductor layers having different compositions, and conversely, The superlattice layer 3b and the undoped GaN layer 4b can be omitted. Further, in this example, the active layer 4 is sandwiched between the n-type layer 3 and the p-type layer 5, but the heterojunction structure in which the n-type layer and the p-type layer are directly joined is also used. Good. In short, when an LED is configured, the n-type layer 3 and the p-type layer 5 may be provided so as to form a light emitting layer. In the above-described example, the example is an LED. However, a laser diode can be similarly formed by forming a stripe-shaped light emitting region.

つぎに、図1に示される窒化物半導体発光素子の製法について説明をする。まず、たとえばn形に形成されたZnO基板1の成長面以外に、図2に示されるように、保護膜15を形成したウェハをMOCVD装置に入れ、窒素キャリアガス中で700〜900℃程度に上げて、基板表面をクリーニングする。この場合、サファイア基板などのように、1000℃を超える基板クリーニングを行うと、ZnOが昇華して、エピタキシャル成長表面が凸凹になるので注意する必要がある。   Next, a method for manufacturing the nitride semiconductor light emitting device shown in FIG. 1 will be described. First, for example, in addition to the growth surface of the ZnO substrate 1 formed in an n-type, as shown in FIG. 2, the wafer on which the protective film 15 is formed is put in an MOCVD apparatus and heated to about 700 to 900 ° C. in a nitrogen carrier gas. And clean the substrate surface. In this case, care must be taken because if the substrate cleaning is performed at a temperature exceeding 1000 ° C., such as a sapphire substrate, ZnO sublimates and the surface of the epitaxial growth becomes uneven.

つぎに窒素キャリアガスのまま800℃程度まで温度を下げ、基板1と格子整合する、たとえばInGaN系化合物からなる第1の窒化物半導体層2をSiドープで10〜100nm程度成長する。このSiドープは基板1の裏面に電極を形成する場合に必要であるが、基板裏面に電極を形成しない場合には、アンドープでもよい。その後、キャリアガスを水素に変えると共に、基板温度を900〜1200℃程度、たとえば1000℃程度の高温に上げて、SiをドープしたGaNからなるコンタクト層3aを成長し、温度を600〜800℃に下げてSiドープでInGaN系化合物/GaNからなる超格子層3bを成長することにより、n形層3を1〜10μm程度積層する。この超格子層3bは、とくに結晶性が必要とされる活性層4への格子歪みがかからないようにするため設けられている。   Next, the temperature is lowered to about 800 ° C. while keeping the nitrogen carrier gas, and a first nitride semiconductor layer 2 made of, for example, an InGaN-based compound that is lattice-matched with the substrate 1 is grown by Si doping to about 10 to 100 nm. This Si doping is necessary when an electrode is formed on the back surface of the substrate 1, but may be undoped when an electrode is not formed on the back surface of the substrate. Thereafter, the carrier gas is changed to hydrogen, the substrate temperature is raised to a high temperature of about 900 to 1200 ° C., for example, about 1000 ° C., and the contact layer 3a made of GaN doped with Si is grown, and the temperature is raised to 600 to 800 ° C. The n-type layer 3 is laminated by about 1 to 10 μm by lowering and growing a superlattice layer 3b made of InGaN-based compound / GaN by Si doping. This superlattice layer 3b is provided so as not to apply lattice distortion to the active layer 4 which requires crystallinity.

引き続き、アンドープで、たとえば1〜3nm程度のIn0.17Ga0.83Nからなるウェル層と10〜20nm程度のGaNからなるバリア層とを交互に3〜8ペア程度積層してMQW層4a、さらにアンドープのGaN層4bからなる活性層4を0.05〜0.3μm程度積層する。これらは、1×1017〜5×1018cm-3程度にSiがドープされていてもよい。ついで、成長装置内の温度を900〜1200℃程度、たとえば1000℃程度に上げて、MgをドープしたGaNからなるp形層5を0.2〜1μm程度成長することにより半導体積層部6を形成する。 Subsequently, for example, about 3 to 8 pairs of well layers made of In 0.17 Ga 0.83 N of about 1 to 3 nm and barrier layers made of GaN of about 10 to 20 nm are alternately stacked to form an MQW layer 4a, and further undoped. The active layer 4 composed of the GaN layer 4b is laminated to about 0.05 to 0.3 μm. These may be doped with Si to about 1 × 10 17 to 5 × 10 18 cm −3 . Next, the temperature in the growth apparatus is raised to about 900 to 1200 ° C., for example, about 1000 ° C., and the p-type layer 5 made of Mg-doped GaN is grown by about 0.2 to 1 μm, thereby forming the semiconductor laminated portion 6. To do.

なお、前述のn形層3からの各半導体層を成長する場合、キャリアガスのH2 と共にトリメチリガリウム(TMG)、アンモニア(NH3)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMIn)などの反応ガスおよびn形にする場合のドーパントガスとしてのSiH4 、p形にする場合のドーパントガスとしてのシクロペンタジエニルマグネシウム(Cp2 Mg)などの必要なガスを供給して、所望の組成で、所望の導電形の半導体層を所望の厚さに形成することができる。また、InGaN系化合物のInの組成を変えるには、Inの原料ガスであるTMInの流量を制御することにより変えることができる。 When growing each semiconductor layer from the n-type layer 3, the carrier gas H 2 is used together with trimethylethylene gallium (TMG), ammonia (NH 3 ), trimethylaluminum (TMA), trimethylindium (TMIn), etc. A necessary gas such as SiH 4 as a dopant gas for forming the reaction gas and n-type, and cyclopentadienylmagnesium (Cp 2 Mg) as the dopant gas for forming the p-type is supplied to obtain a desired composition. A semiconductor layer having a desired conductivity type can be formed to a desired thickness. The In composition of the InGaN-based compound can be changed by controlling the flow rate of TMIn, which is the In source gas.

その後、半導体積層部6の表面に、たとえばZnOなどからなり、p形半導体層5とオーミックコンタクトをとることができる透光性導電層7を0.01〜5μm程度設ける。このZnOは、Gaをドープして3〜5×10-4Ω・cm程度の比抵抗になるように成膜する。この透光性導電層7は、ZnOに限定されるものではなく、ITOやNiとAuとの2〜100nm程度の薄い合金層でも、光を透過させながら、電流をチップ全体に拡散することができる。 Thereafter, a light-transmitting conductive layer 7 made of, for example, ZnO or the like and capable of making ohmic contact with the p-type semiconductor layer 5 is provided on the surface of the semiconductor multilayer portion 6 by about 0.01 to 5 μm. This ZnO is formed by doping Ga so as to have a specific resistance of about 3 to 5 × 10 −4 Ω · cm. The translucent conductive layer 7 is not limited to ZnO, and even a thin alloy layer of about 2 to 100 nm of ITO or Ni and Au can diffuse current throughout the chip while transmitting light. it can.

そして、基板1の裏面を研磨して基板1の厚さを100μm程度にした後に、その裏面にTi/AuまたはCr/Pt/Auなどを積層してn側電極9を形成し、さらに、透光性導電層7の表面にリフトオフ法により、Ti/Auの積層構造でp側電極8を形成し、最後にプラズマCVD法により図示しないSiON膜でチップ全体を覆い、電極部に開口部を形成する。その後、ウェハからチップ化することにより、図1に示される構造の発光素子チップが形成される。なお、チップ化する際に、半導体積層部6のチップ境界部分は、予めドライエッチングによりメサ状にエッチングする。n側電極9は、後述するように、基板1の裏面に形成しないで、積層された半導体積層部6の一部をエッチングして露出するn形層3の表面に形成することもできる。   Then, after polishing the back surface of the substrate 1 so that the thickness of the substrate 1 is about 100 μm, an n-side electrode 9 is formed by laminating Ti / Au or Cr / Pt / Au or the like on the back surface. The p-side electrode 8 is formed with a Ti / Au laminated structure on the surface of the photoconductive layer 7 by a lift-off method, and finally the entire chip is covered with a SiON film (not shown) by a plasma CVD method, and an opening is formed in the electrode portion. To do. Thereafter, the wafer is chipped to form a light emitting element chip having the structure shown in FIG. In addition, when chip-izing, the chip | tip boundary part of the semiconductor lamination part 6 is etched to mesa shape by dry etching previously. As will be described later, the n-side electrode 9 can be formed on the surface of the n-type layer 3 exposed by etching a part of the laminated semiconductor laminated portion 6 without being formed on the back surface of the substrate 1.

本発明によれば、ZnO系化合物基板に窒化物半導体層を積層しているため、基板の裏面に一方の電極を形成することができ、チップの上下に一対の電極を形成する垂直型の素子とすることができる。しかし、このような半導体基板が用いられる場合でも、図4(a)に示されるように、積層した半導体積層部6の一部をドライエッチングによりエッチングして露出するn形層3にn側電極9を形成することができる。なお、半導体積層部などの構造は図1に示される例と同じで、同じ部分には同じ符号を付してその説明を省略する。この上面を下に向けて実装基板などに直接ハンダ付けなどにより一対の電極を接続して実装することができるフリップチップ構造にしてもよい。   According to the present invention, since a nitride semiconductor layer is laminated on a ZnO-based compound substrate, one electrode can be formed on the back surface of the substrate, and a vertical element that forms a pair of electrodes above and below the chip. It can be. However, even when such a semiconductor substrate is used, as shown in FIG. 4A, an n-side electrode is exposed on the n-type layer 3 exposed by etching a part of the laminated semiconductor laminated portion 6 by dry etching. 9 can be formed. It should be noted that the structure of the semiconductor laminated portion and the like is the same as the example shown in FIG. 1, and the same portions are denoted by the same reference numerals and description thereof is omitted. A flip chip structure in which a pair of electrodes can be connected and mounted directly on a mounting substrate or the like with the upper surface facing down may be employed.

また、本発明では、ZnO系化合物基板を用いているため、このような構造にする場合、図4(b)に示されるように、基板を、HClなどを用いたウェットエッチングにより簡単に除去することができる。すなわち、窒化物半導体層はウェットエッチングによりエッチングすることができないため、電極部分などの表面側をマスクしてウェットエッチングをすることにより、容易に基板を除去することができ、発光波長が短くなって、基板で吸収されるような場合でも、そのような基板を除去することにより、外部量子効率を向上させることができる。なお、この例も、半導体積層部6などの他の構造は図1に示される例と同じで、同じ部分には同じ符号を付してその説明を省略する。なお、ZnO基板のZn極性方向に窒化物半導体層が成長され、ウェットエッチングされる側がO極性となるように、ZnOのZn極性面にInGaN系化合物を成長させることにより、エッチングが早く進み生産性がよい。   In the present invention, since a ZnO-based compound substrate is used, in the case of such a structure, as shown in FIG. 4B, the substrate is easily removed by wet etching using HCl or the like. be able to. That is, since the nitride semiconductor layer cannot be etched by wet etching, the substrate can be easily removed by masking the surface side of the electrode portion or the like, and the emission wavelength is shortened. Even when absorbed by the substrate, the external quantum efficiency can be improved by removing the substrate. In this example as well, other structures such as the semiconductor stacked portion 6 are the same as the example shown in FIG. 1, and the same portions are denoted by the same reference numerals and description thereof is omitted. In addition, by growing an InGaN-based compound on the Zn polar surface of ZnO so that the nitride semiconductor layer is grown in the Zn polarity direction of the ZnO substrate and the wet-etched side becomes O polarity, the etching proceeds faster and the productivity is increased. Is good.

このような基板を除去する構造としては、必ずしも一面側に両電極を形成しなくても、基板を除去して露出する窒化物半導体層に一方の電極を形成することもできる。すなわち、図1に示される構造のウェハの状態で、p側電極8を形成した後に、表面の全体にSiO、SiNまたはAl23などの絶縁膜10を形成し、p側電極8上を開口して露出させ、表面全体にAg/Ti/Pt/Auの積層金属膜11を形成して、ミラー構造とすることもできる。この状態でHCl溶液に浸漬することにより、金属膜および窒化物半導体層はエッチングされないで、ZnO基板1のみを除去することができる。その露出面にn側電極9を形成し、その露出面側を光の取り出し面とすることができる。この場合、露出するn形層は、n形に形成された第1の窒化物半導体層でもよいし、その上に成長したn形層3でもよい。また、ZnO基板1をn形に形成しておいて、その一部が残存したものでもよい。なお、前述の金属膜11をダイボンディング基板などにAu-Sn合金などで直接ダイボンディングすることができる。 As a structure for removing such a substrate, one electrode can be formed on the nitride semiconductor layer exposed by removing the substrate without necessarily forming both electrodes on one surface side. That is, after the p-side electrode 8 is formed in the state of the wafer having the structure shown in FIG. 1, an insulating film 10 such as SiO, SiN or Al 2 O 3 is formed on the entire surface, and the p-side electrode 8 is formed on the surface. It is possible to form a mirror structure by opening and exposing and forming a laminated metal film 11 of Ag / Ti / Pt / Au on the entire surface. By immersing in the HCl solution in this state, the metal film and the nitride semiconductor layer are not etched, and only the ZnO substrate 1 can be removed. The n-side electrode 9 can be formed on the exposed surface, and the exposed surface side can be used as a light extraction surface. In this case, the exposed n-type layer may be the first nitride semiconductor layer formed in the n-type, or the n-type layer 3 grown thereon. Alternatively, the ZnO substrate 1 may be formed in an n-type and a part thereof may remain. The metal film 11 described above can be directly die-bonded to a die bonding substrate or the like with an Au—Sn alloy or the like.

また、半導体レーザのように、フェースダウンで熱伝導のよいサブマウントなどにマウントするような場合には、ウェハの状態でp側電極を形成した後にチップ化し、そのp側電極側をサブマウント表面にボンディングした後に、前述のエッチング液を用いて基板をエッチングにより除去することができる。このような方法によれば、取扱い時の破損などを全く生じさせることなく、非常に薄型の素子を実装することができる。LEDでもこのような構成にすることにより、発光した光を非常に有効に利用することができる。なお、熱伝導の良好なサブマウントとしては、金属または、AlN、SiCおよびダイヤモンドのいずれか1種もしくはこれらの表面をCuまたはAgで被覆したものなどを用いることができる。   In addition, when mounting on a submount having good thermal conductivity face down, such as a semiconductor laser, a p-side electrode is formed in the wafer state and then chipped, and the p-side electrode side is formed on the submount surface. After bonding to the substrate, the substrate can be removed by etching using the etching solution described above. According to such a method, a very thin element can be mounted without causing any damage during handling. Even in the case of an LED, the light emitted can be used very effectively. In addition, as a submount with favorable heat conduction, a metal, any one of AlN, SiC, and diamond, or a surface thereof coated with Cu or Ag can be used.

さらに、前述のn形層を露出させてその露出面にn側電極を形成する場合、露出面に凹凸をエッチングなどにより形成しておくと、LEDの場合、光の取出し効率が向上するため好ましい。この場合、窒化物半導体層に凹凸を形成する場合、ドライエッチングにより形成するか、サンドブラストなどの機械的に凹凸を形成することになるが、ZnO基板の一部を残存させてウェットエッチングにより凹凸を形成することもできる。   Furthermore, when the n-type electrode is exposed on the exposed surface and the n-side electrode is formed on the exposed surface, it is preferable to form irregularities on the exposed surface by etching or the like, because in the case of an LED, the light extraction efficiency is improved. . In this case, when the unevenness is formed in the nitride semiconductor layer, the unevenness is formed by dry etching or mechanically formed by sandblasting or the like, but the unevenness is formed by wet etching while leaving a part of the ZnO substrate. It can also be formed.

図5は、前述のZnO系酸化物基板1の表面にInGaN系化合物からなる第1の窒化物半導体層2を形成して結晶性のよい窒化物半導体層を積層することにより、トランジスタを構成した断面説明図である。発光素子の場合と同様に、MOCVD装置で、窒素ガスをキャリアガスとして800℃以下の低温で、まず第1の窒化物半導体層2を成長し、引き続き前述と同様に必要な有機金属ガスを導入して、アンドープのGaN層23を4μm程度、アンドープのAlGaN系化合物電子走行層24を10nm程度、n形のGaN層25を5nm程度、順次成長し、ゲート長とする1.5μm程度の所定の間隔が設けられるようにn形のGaN層25の一部をエッチング除去して電子走行層24を露出させる。そして、所定の間隔を設けて残されたn形のGaN層25上にソース電極26とドレイン電極27を、たとえばTi膜とAu膜とで形成し、アンドープのAlGaN系化合物層24の表面に、たとえばPt膜とAu膜との積層によりゲート電極28を形成することにより、トランジスタを構成している。このような基板表面に単結晶の緩衝層2を形成して、その上にGaN層を成長させることにより、非常に結晶性の優れた窒化物半導体層が得られ、リーク電流が小さく、耐圧の優れた高速のトランジスタ(HEMT)が得られる。   FIG. 5 shows a transistor formed by forming a first nitride semiconductor layer 2 made of an InGaN-based compound on the surface of the ZnO-based oxide substrate 1 and laminating a nitride semiconductor layer having good crystallinity. FIG. As in the case of the light emitting element, the first nitride semiconductor layer 2 is first grown at a low temperature of 800 ° C. or lower using nitrogen gas as a carrier gas in the MOCVD apparatus, and then the necessary organometallic gas is introduced as described above. Then, an undoped GaN layer 23 of about 4 μm, an undoped AlGaN-based compound electron transit layer 24 of about 10 nm, and an n-type GaN layer 25 of about 5 nm are sequentially grown to have a gate length of about 1.5 μm. A part of the n-type GaN layer 25 is removed by etching so that the space is provided, so that the electron transit layer 24 is exposed. Then, a source electrode 26 and a drain electrode 27 are formed of, for example, a Ti film and an Au film on the n-type GaN layer 25 left with a predetermined interval, and on the surface of the undoped AlGaN-based compound layer 24, For example, a transistor is configured by forming the gate electrode 28 by stacking a Pt film and an Au film. By forming a single-crystal buffer layer 2 on such a substrate surface and growing a GaN layer thereon, a nitride semiconductor layer with very excellent crystallinity can be obtained, a leakage current is small, An excellent high speed transistor (HEMT) is obtained.

以上のように、本発明によれば、窒化物半導体層を積層するのに、ZnOのようなZnO系化合物などを基板としながら、その表面に基板と格子整合し得るInGaN系化合物からなる第1の窒化物半導体層を設けて、その上に窒化物半導体層が積層されているため、非常に結晶性の優れた窒化物半導体素子を形成することができる。その結果、発光特性の優れたLEDやLD(レーザダイオード)などの窒化物半導体発光素子やリーク電流が小さく耐圧に優れたHEMTなどの窒化物トランジスタなど、窒化物半導体を用いた素子特性を大幅に向上させることができる。   As described above, according to the present invention, the first layer of the InGaN-based compound that can be lattice-matched to the surface of the ZnO-based compound such as ZnO is used as the substrate while the nitride semiconductor layer is stacked. Since the nitride semiconductor layer is provided and the nitride semiconductor layer is laminated on the nitride semiconductor layer, a nitride semiconductor element having extremely excellent crystallinity can be formed. As a result, device characteristics using nitride semiconductors, such as nitride semiconductor light emitting devices such as LEDs and LDs (laser diodes) with excellent light emission characteristics, and nitride transistors such as HEMT with low leakage current and excellent withstand voltage, are greatly improved. Can be improved.

本発明の製法により得られる窒化物半導体素子の一例であるLEDの断面説明図である。It is sectional explanatory drawing of LED which is an example of the nitride semiconductor element obtained by the manufacturing method of this invention. 本発明の製法により基板に窒化物半導体層を成長する場合の保護膜の例を示す断面説明図である。It is sectional explanatory drawing which shows the example of the protective film in the case of growing a nitride semiconductor layer on a board | substrate by the manufacturing method of this invention. 本発明により基板上に形成する第1の窒化物半導体層の構造例である。It is a structural example of the 1st nitride semiconductor layer formed on a board | substrate by this invention. 本発明の製法により得られる窒化物半導体発光素子の他の構造例を示す断面説明図である。It is sectional explanatory drawing which shows the other structural example of the nitride semiconductor light-emitting device obtained by the manufacturing method of this invention. 本発明の製法により形成したトランジスタの構成断面説明図である。FIG. 5 is a cross-sectional explanatory view of a transistor formed by the manufacturing method of the present invention. 従来の窒化物半導体を用いたLEDの構成例を示す図である。It is a figure which shows the structural example of LED using the conventional nitride semiconductor.

符号の説明Explanation of symbols

1 基板
2 第1の窒化物半導体層
3 n形層
4 活性層
5 p形層
6 半導体積層部
7 透光性導電層
8 p側電極
9 n側電極
DESCRIPTION OF SYMBOLS 1 Substrate 2 1st nitride semiconductor layer 3 N-type layer 4 Active layer 5 P-type layer 6 Semiconductor laminated part 7 Translucent conductive layer 8 P-side electrode 9 N-side electrode

Claims (8)

(a)酸化亜鉛系化合物からなる基板の半導体層積層面を除いて露出する面に保護膜を形成し、(b)前記基板をMOCVD装置内に設置して、キャリアガスとして窒素ガスを用いて、InyGa1-yN(0<y≦0.5)からなる第1の窒化物半導体層を成長し、(c)引き続き所望の窒化物半導体層を成長して窒化物半導体素子を形成することを特徴とする窒化物半導体素子の製法。 (A) A protective film is formed on the surface of the substrate made of a zinc oxide compound excluding the semiconductor layer lamination surface, and (b) the substrate is placed in an MOCVD apparatus, and nitrogen gas is used as a carrier gas. , A first nitride semiconductor layer made of In y Ga 1-y N (0 <y ≦ 0.5) is grown, and (c) a desired nitride semiconductor layer is subsequently grown to form a nitride semiconductor element. A method for producing a nitride semiconductor device, comprising: 前記第1の窒化物半導体層の成長をGaNの成長温度より低い600〜900℃の低温で成長する請求項1記載の窒化物半導体素子の製法。   The method for producing a nitride semiconductor device according to claim 1, wherein the growth of the first nitride semiconductor layer is performed at a low temperature of 600 to 900 ° C. lower than a growth temperature of GaN. 前記第1の窒化物半導体層の成長を、Inの原料ガスの流量を制御することにより超格子構造またはInの組成が徐々にもしくは段階的に減少する勾配層に形成する請求項1または2記載の窒化物半導体素子の製法。   3. The growth of the first nitride semiconductor layer is formed in a superlattice structure or a gradient layer in which the composition of In decreases gradually or stepwise by controlling the flow rate of the In source gas. A method of manufacturing a nitride semiconductor device. 前記(c)工程の素子を形成した後に、前記基板の一部または全部をウェットエッチングにより除去する請求項1ないし3のいずれか1項記載の窒化物半導体素子の製法。   The method for producing a nitride semiconductor device according to any one of claims 1 to 3, wherein a part or all of the substrate is removed by wet etching after the device of step (c) is formed. 前記第1の窒化物半導体層上に成長する所望の窒化物半導体層を、発光層を形成するように少なくともn形層とp形層とを含み、前記第1の窒化物半導体層側にn形層、表面側にp形層となるように成長することにより形成し、前記ウェットエッチングにより露出するn形の層にn側電極を形成して半導体発光素子を形成する請求項4記載の窒化物半導体素子の製法。   A desired nitride semiconductor layer grown on the first nitride semiconductor layer includes at least an n-type layer and a p-type layer so as to form a light-emitting layer, and n is formed on the first nitride semiconductor layer side. 5. The nitridation according to claim 4, wherein a semiconductor light emitting device is formed by forming a p-type layer on the surface side so as to become a p-type layer, and forming an n-side electrode on the n-type layer exposed by the wet etching. Manufacturing method for semiconductor devices. 前記ウェットエッチングにより露出するn形の層の表面に凹凸を形成し、その後に前記n側電極を形成する請求項5記載の窒化物半導体素子の製法。   6. The method for producing a nitride semiconductor device according to claim 5, wherein irregularities are formed on a surface of the n-type layer exposed by the wet etching, and then the n-side electrode is formed. 前記第1の窒化物半導体層上に成長する所望の窒化物半導体層を、発光層を形成するように少なくともn形層とp形層とを含み、前記第1の窒化物半導体層側にn形層、表面側にp形層となるように成長することにより形成し、該表面側にp側電極を形成してからチップ化し、該p側電極側をサブマウントにダイボンディングした後に前記基板の一部または全部をウェットエッチングにより除去することにより、半導体発光素子を形成する請求項1ないし6のいずれか1項記載の窒化物半導体素子の製法。   A desired nitride semiconductor layer grown on the first nitride semiconductor layer includes at least an n-type layer and a p-type layer so as to form a light-emitting layer, and n is formed on the first nitride semiconductor layer side. The substrate is formed by growing a p-type layer on the surface side to form a p-type layer, forming a p-side electrode on the surface side, and then die-bonding the p-side electrode side to a submount. The method for producing a nitride semiconductor device according to claim 1, wherein a semiconductor light emitting device is formed by removing a part or all of the substrate by wet etching. 前記サブマウントとして、金属または、AlN、SiCおよびダイヤモンドのいずれか1種もしくはこれらの表面をCuまたはAgで被覆したものを用いる請求項7記載の窒化物半導体素子の製法。   8. The method of manufacturing a nitride semiconductor device according to claim 7, wherein the submount is a metal, one of AlN, SiC, and diamond, or a surface thereof coated with Cu or Ag.
JP2006220067A 2006-08-11 2006-08-11 Process for fabricating nitride semiconductor element Pending JP2007019526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220067A JP2007019526A (en) 2006-08-11 2006-08-11 Process for fabricating nitride semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006220067A JP2007019526A (en) 2006-08-11 2006-08-11 Process for fabricating nitride semiconductor element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005136180A Division JP3924303B2 (en) 2005-05-09 2005-05-09 Nitride semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007019526A true JP2007019526A (en) 2007-01-25
JP2007019526A5 JP2007019526A5 (en) 2008-06-26

Family

ID=37756340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220067A Pending JP2007019526A (en) 2006-08-11 2006-08-11 Process for fabricating nitride semiconductor element

Country Status (1)

Country Link
JP (1) JP2007019526A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198744A (en) * 2007-02-09 2008-08-28 Furukawa Electric Co Ltd:The Semiconductor element and its manufacturing method
WO2010047289A1 (en) * 2008-10-22 2010-04-29 Panasonic Electric Works Co., Ltd. Semi-conductor light emitting device
JP2012028476A (en) * 2010-07-22 2012-02-09 Nichia Chem Ind Ltd Method for manufacturing light emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213878A (en) * 1990-12-10 1992-08-04 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element
JPH05206513A (en) * 1992-01-28 1993-08-13 Sharp Corp Semiconductor light-emitting element
JPH0661527A (en) * 1992-08-07 1994-03-04 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element and its manufacture
JP2002124737A (en) * 2000-10-17 2002-04-26 Sanyo Electric Co Ltd Nitride semiconductor laser element
JP2004087762A (en) * 2002-08-27 2004-03-18 Sony Corp Nitride-based semiconductor light emitting device
JP2004095959A (en) * 2002-09-02 2004-03-25 Nichia Chem Ind Ltd Nitride semiconductor light emitting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213878A (en) * 1990-12-10 1992-08-04 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element
JPH05206513A (en) * 1992-01-28 1993-08-13 Sharp Corp Semiconductor light-emitting element
JPH0661527A (en) * 1992-08-07 1994-03-04 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element and its manufacture
JP2002124737A (en) * 2000-10-17 2002-04-26 Sanyo Electric Co Ltd Nitride semiconductor laser element
JP2004087762A (en) * 2002-08-27 2004-03-18 Sony Corp Nitride-based semiconductor light emitting device
JP2004095959A (en) * 2002-09-02 2004-03-25 Nichia Chem Ind Ltd Nitride semiconductor light emitting element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198744A (en) * 2007-02-09 2008-08-28 Furukawa Electric Co Ltd:The Semiconductor element and its manufacturing method
WO2010047289A1 (en) * 2008-10-22 2010-04-29 Panasonic Electric Works Co., Ltd. Semi-conductor light emitting device
JP2010103247A (en) * 2008-10-22 2010-05-06 Panasonic Electric Works Co Ltd Semiconductor light-emitting element
KR101254520B1 (en) 2008-10-22 2013-04-19 파나소닉 주식회사 Semi-conductor light emitting device
US8536585B2 (en) 2008-10-22 2013-09-17 Panasonic Corporation Semiconductor light emitting device including anode and cathode having the same metal structure
JP2012028476A (en) * 2010-07-22 2012-02-09 Nichia Chem Ind Ltd Method for manufacturing light emitting device

Similar Documents

Publication Publication Date Title
JP3924303B2 (en) Nitride semiconductor device and manufacturing method thereof
KR100755656B1 (en) Method of manufacturing nitride-based semiconductor light emitting device
JP4451811B2 (en) Manufacturing method of nitride semiconductor device
KR100867518B1 (en) Method of manufacturing nitride-based semiconductor light emitting device
JP4988179B2 (en) Zinc oxide compound semiconductor device
WO2010100844A1 (en) Nitride semiconductor element and method for manufacturing same
WO2007060931A1 (en) Nitride semiconductor device
JP2007150066A (en) Nitride semiconductor light-emitting element
WO2007046465A1 (en) Nitride semiconductor device and method for manufacturing same
JP2008288397A (en) Semiconductor light-emitting apparatus
JP2016058693A (en) Semiconductor device, semiconductor wafer, and method of manufacturing semiconductor device
US9614121B1 (en) Method of fabricating semiconductor light emitting device
JP2006269821A (en) Zinc oxide based compound semiconductor element
JP2008118049A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
JP2007180142A (en) Nitride-based semiconductor element and manufacturing method therefor
US20100051939A1 (en) Nitride based semiconductor device and method of manufacturing the same
KR20120039324A (en) Gallium nitride type semiconductor light emitting device and method of fabricating the same
JP2007019526A (en) Process for fabricating nitride semiconductor element
JP2007019526A5 (en)
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
WO2008056632A1 (en) GaN SEMICONDUCTOR LIGHT EMITTING ELEMENT
JP2007142345A (en) Nitride semiconductor light-emitting element
JP2002289914A (en) Nitride semiconductor element
JP2007042944A (en) Method of manufacturing nitride semiconductor element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004