JP2007149984A - Manufacture of nitride semiconductor light-emitting element - Google Patents

Manufacture of nitride semiconductor light-emitting element Download PDF

Info

Publication number
JP2007149984A
JP2007149984A JP2005342576A JP2005342576A JP2007149984A JP 2007149984 A JP2007149984 A JP 2007149984A JP 2005342576 A JP2005342576 A JP 2005342576A JP 2005342576 A JP2005342576 A JP 2005342576A JP 2007149984 A JP2007149984 A JP 2007149984A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
sic substrate
layer
type
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005342576A
Other languages
Japanese (ja)
Inventor
Takeshi Nakahara
健 中原
Masayuki Sonobe
雅之 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2005342576A priority Critical patent/JP2007149984A/en
Publication of JP2007149984A publication Critical patent/JP2007149984A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a nitride semiconductor light-emitting element capable of preventing light absorption on an SiC substrate and easily performing the ohmic contact between the SiC substrate and a nitride semiconductor layer by a simple method. <P>SOLUTION: A metal film 2 is formed on the upper surface of the conductive SiC substrate 1 doped with impurities by vapor deposition or sputtering by selecting one metal from Ni, Ti, Pd, Fe, Ru, Os, Ge, Sn, V, Ta and Nb. The SiC substrate 1 where the metal film 2 is formed on the upper surface is annealed at a high temperature. An ohmic contact region 3 is formed on the interface between the SiC substrate 1 and the metal film 2 by high-temperature annealing. Then, the nitride semiconductor crystal is laminated on a surface where an ohmic contact region 3 is formed on the SiC substrate 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、窒化物半導体を使用した窒化物半導体発光素子の製造方法に関する。   The present invention relates to a method for manufacturing a nitride semiconductor light emitting device using a nitride semiconductor.

窒化物半導体は、照明、バックライト等用の光源として使われる青色LED、多色化で使用されるLED、LD等に用いられている。窒化物半導体を使用した発光ダイオードは、緑域から紫外域に発光波長をもち、ディスプレイ用の光源として期待され、また、窒化物半導体を使用したレーザは、緑域から紫外域に発光波長をもち、特に405nm帯半導体レーザ等の開発が行われている。   Nitride semiconductors are used in blue LEDs used as light sources for lighting, backlights, etc., LEDs used in multicoloring, LDs, and the like. Light emitting diodes using nitride semiconductors have an emission wavelength from the green range to the ultraviolet range and are expected as light sources for displays, and lasers using nitride semiconductors have an emission wavelength from the green range to the ultraviolet range. In particular, a 405 nm band semiconductor laser or the like has been developed.

窒化物半導体は、バルク単結晶の製造が困難なために、サファイア、SiC等の異種基板の上にMOCVD(有機金属気相成長法)を利用してGaNを成長させることが行われている。サファイア基板は、エピタキシャル成長工程の高温アンモニア雰囲気中の安定性にすぐれているので、成長用基板として特に用いられる。しかしながら、サファイア基板は絶縁性基板であり、導通がとれず、サファイア基板を挟んで電極を設けることができない。   Since it is difficult to manufacture a bulk single crystal in a nitride semiconductor, GaN is grown on a heterogeneous substrate such as sapphire or SiC by using MOCVD (metal organic chemical vapor deposition). A sapphire substrate is particularly used as a growth substrate because it is excellent in stability in a high-temperature ammonia atmosphere in an epitaxial growth process. However, the sapphire substrate is an insulating substrate, and cannot conduct, and electrodes cannot be provided with the sapphire substrate interposed therebetween.

したがって、サファイア基板上の窒化物半導体は、エピタキシャル成長後にn型窒化ガリウム層を露出するまでエッチングし、エッチングされた面にn型コンタクトを形成して、同一面側にp型とn型の二つの電極を設ける構造が一般的である。   Therefore, the nitride semiconductor on the sapphire substrate is etched until the n-type gallium nitride layer is exposed after epitaxial growth, an n-type contact is formed on the etched surface, and two p-type and n-type are formed on the same surface side. A structure in which an electrode is provided is common.

上記のように同一面側にp型とn型の二つの電極を設ける構成とすると、n電極に近接したメサ部分に電流が集中しやすいことにより、ESD(静電破壊)電圧を上げることができない。また、活性層に均一に電流注入するのが難しく、活性層を均等に発光させるのが困難となる。さらに、同一面側で、p電極とn電極の両方にワイヤボンディング用電極を必要とするため、いずれか一方のワイヤボンディング用電極を設ければ良い導電性基板上の窒化物半導体よりも有効発光面積を狭めてしまうとともに、チップ(素子)面積が大きくなり、同一のウエハから取れるチップ数が減少する。また、サファイアは硬度が高く、六方晶の結晶構造であるので、サファイアを成長用基板として用いた場合、サファイア基板をスクライブによりチップ分離する必要があり、製造工程が煩雑になり歩留まりが悪い。   When two p-type and n-type electrodes are provided on the same surface as described above, an ESD (electrostatic breakdown) voltage can be increased because current tends to concentrate on a mesa portion close to the n-electrode. Can not. In addition, it is difficult to uniformly inject current into the active layer, and it becomes difficult to cause the active layer to emit light uniformly. In addition, since wire bonding electrodes are required for both the p-electrode and the n-electrode on the same surface side, light emission is more effective than a nitride semiconductor on a conductive substrate, which may be provided with either wire-bonding electrode. As the area is reduced, the chip (element) area is increased, and the number of chips that can be taken from the same wafer is reduced. In addition, since sapphire has a high hardness and a hexagonal crystal structure, when sapphire is used as a growth substrate, it is necessary to separate the sapphire substrate by scribing, and the manufacturing process becomes complicated and the yield is poor.

そこで、導電性基板を用いて窒化物半導体層を挟んでp型とn型の二つの電極を対向するように設ける構造が提案されている(例えば特許文献1参照)。この導電性基板には、窒化物半導体と格子整合する六方晶系のSiC基板が最も良く用いられる。SiC基板はサファイアに比較するとGaNとの格子定数差が小さく(約3%)、放熱特性も良い。また、基板が導電性であるため、コンタクトが直接取れ、p電極とn電極が向かい合った形の素子が作れ、組立て時にワイヤボンディングがいずれか一方の電極側だけで済み、同一のウエハから取れるチップ数が多くなる等の利点がある。
特開平6−326416号公報
Therefore, a structure has been proposed in which a p-type electrode and an n-type electrode are provided so as to face each other with a nitride semiconductor layer interposed therebetween using a conductive substrate (see, for example, Patent Document 1). As this conductive substrate, a hexagonal SiC substrate that is lattice-matched with a nitride semiconductor is most often used. Compared with sapphire, the SiC substrate has a smaller lattice constant difference from GaN (about 3%) and good heat dissipation characteristics. In addition, since the substrate is conductive, a contact can be made directly, an element having a p-electrode and an n-electrode facing each other can be formed, and wire bonding can be performed on only one electrode side during assembly, and a chip that can be taken from the same wafer There are advantages such as an increase in number.
JP-A-6-326416

しかし、上記従来技術のように、導電性SiC基板を用いて窒化物半導体発光素子を形成すると以下のような問題がある。通常、導電性SiC基板は、n型の不純物をドープしたSiCが用いられる。SiC基板上に積層する最初の窒化物半導体層としてバッファ層等があるが、このバッファ層は、AlN、AlGaN、GaN等で構成されており、これらの半導体層とSiC基板とでは、バンドギャップの差が大きく、SiC基板とのコンタクトは取りにくい。   However, when a nitride semiconductor light emitting element is formed using a conductive SiC substrate as in the above-described prior art, there are the following problems. Normally, SiC doped with n-type impurities is used for the conductive SiC substrate. There is a buffer layer or the like as the first nitride semiconductor layer to be stacked on the SiC substrate. This buffer layer is made of AlN, AlGaN, GaN, etc., and the band gap between these semiconductor layers and the SiC substrate is The difference is large and it is difficult to make contact with the SiC substrate.

そこで、バッファ層等の窒化物半導体層とのオーミックコンタクトを取りやすくするためにn型不純物のドープ量を増加させると、SiC基板に色がつき、可視光を吸収してしまう。窒化物半導体発光素子の発光領域から全方位に放射された光の一部が、SiC基板によって光吸収されるので、光の取出効率低下し、高輝度の発光素子を得ることができない。   Therefore, if the doping amount of the n-type impurity is increased in order to facilitate the ohmic contact with the nitride semiconductor layer such as the buffer layer, the SiC substrate is colored and absorbs visible light. Since a part of the light emitted in all directions from the light emitting region of the nitride semiconductor light emitting device is absorbed by the SiC substrate, the light extraction efficiency is lowered, and a high luminance light emitting device cannot be obtained.

一方、光吸収を減少させるために、n型不純物のドープ量を下げると、n電極との接触抵抗が大きくなるとともにSiC基板の比抵抗も上昇して、駆動電圧が上昇する。また、SiC基板のキャリア濃度が小さいので、発光領域へのキャリア注入効率が低下して発光量が低下し、レーザにおいては発振しない場合もある。これらの問題を解決するためには、SiC基板と窒化物半導体層との接触抵抗を低減しなければならない。接触抵抗を低減するためには、バンドギャップの差を小さくする必要があり、SiC基板と窒化物半導体層との間にバンドギャップがSiC基板と窒化物半導体層との中間になるような半導体層をさらに設けて電流を流れやすくしたものがある。   On the other hand, when the doping amount of the n-type impurity is decreased in order to reduce the light absorption, the contact resistance with the n-electrode is increased and the specific resistance of the SiC substrate is increased, so that the driving voltage is increased. Further, since the carrier concentration of the SiC substrate is low, the efficiency of carrier injection into the light emitting region is reduced, the light emission amount is reduced, and the laser may not oscillate. In order to solve these problems, the contact resistance between the SiC substrate and the nitride semiconductor layer must be reduced. In order to reduce the contact resistance, it is necessary to reduce the difference in the band gap, and the semiconductor layer in which the band gap is between the SiC substrate and the nitride semiconductor layer between the SiC substrate and the nitride semiconductor layer. Is further provided to facilitate the flow of current.

しかし、この手法では、中間の半導体層を増やしていく必要があり、製造工程が煩雑になるとともに、素子の大きさも大きくなり、また、適切なバンドギャップを有する材料を見つけるのが困難な場合がある。   However, this method requires an increase in the number of intermediate semiconductor layers, which complicates the manufacturing process, increases the size of the device, and sometimes makes it difficult to find a material having an appropriate band gap. is there.

本発明は、上述した課題を解決するために創案されたものであり、SiC基板の光吸収が起こらないようにし、簡単な手法でSiC基板と窒化物半導体層とのオーミックコンタクトを取りやすくすることができる窒化物半導体発光素子の製造方法を提供することを目的としている。   The present invention was devised to solve the above-described problems, and prevents light absorption of the SiC substrate and facilitates ohmic contact between the SiC substrate and the nitride semiconductor layer by a simple method. It is an object of the present invention to provide a method for manufacturing a nitride semiconductor light emitting device that can be manufactured.

上記目的を達成するために、請求項1記載の発明は、導電性SiC基板上に窒化物半導体結晶を積層した窒化物半導体発光素子の製造方法において、前記窒化物半導体結晶を積層する側の導電性SiC基板上にNi、Ti、Pd、Fe、Ru、Os、Ge、Sn、V、Ta、Nbのいずれかの金属を用いた金属膜を成膜してアニ−ル処理によりオーミック接触を形成した後、前記金属膜を除去し、前記導電性SiC基板上に窒化物半導体結晶を積層することを特徴とする窒化物半導体発光素子の製造方法である。   In order to achieve the above object, the invention described in claim 1 is a method of manufacturing a nitride semiconductor light emitting device in which a nitride semiconductor crystal is stacked on a conductive SiC substrate, and the conductive on the side on which the nitride semiconductor crystal is stacked. A metal film using any one of Ni, Ti, Pd, Fe, Ru, Os, Ge, Sn, V, Ta, and Nb is formed on a conductive SiC substrate, and an ohmic contact is formed by annealing. Thereafter, the metal film is removed, and a nitride semiconductor crystal is laminated on the conductive SiC substrate.

本発明によれば、窒化物半導体結晶を積層する側の導電性SiC基板上にNi、Ti、Pd、Fe、Ru、Os、Ge、Sn、V、Ta、Nbのいずれかの金属を用いた金属膜を成膜してアニ−ル処理によりオーミック接触を形成した後に、金属膜を取り除き、窒化物半導体結晶を積層するようにしているので、SiC基板と窒化物半導体結晶とのオーミックコンタクトを容易に取ることができ、また、導電性SiC基板の不純物濃度を高くして接触抵抗を減少させる必要がなく、可視光吸収が起こらないようにすることができる。   According to the present invention, any one of Ni, Ti, Pd, Fe, Ru, Os, Ge, Sn, V, Ta, and Nb is used on the conductive SiC substrate on the side where the nitride semiconductor crystal is laminated. After forming a metal film and forming an ohmic contact by annealing, the metal film is removed and a nitride semiconductor crystal is stacked, so that an ohmic contact between the SiC substrate and the nitride semiconductor crystal is easy. In addition, it is not necessary to increase the impurity concentration of the conductive SiC substrate to reduce the contact resistance, and visible light absorption can be prevented.

以下、図面を参照して本発明の一実施形態を説明する。図1〜図4は本発明の窒化物半導体発光素子の製造方法を示す。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 to 4 show a method for manufacturing a nitride semiconductor light emitting device of the present invention.

まず、導電性SiC基板として、例えばn型不純物の窒素をドープしたn型SiC基板を用意する。この導電性SiC基板1には、不純物が1018cm−3以下、例えば1017cm−3台でドーピングされており、導電性SiC基板1が可視光を吸収しないように構成されている。 First, as a conductive SiC substrate, for example, an n-type SiC substrate doped with nitrogen of an n-type impurity is prepared. The conductive SiC substrate 1 is doped with impurities at 10 18 cm −3 or less, for example, 10 17 cm −3 , so that the conductive SiC substrate 1 does not absorb visible light.

SiC基板1の上面に、図1に示すように、Ni、Ti、Pd、Fe、Ru、Os、Ge、Sn、V、Ta、Nbから一つの金属を選んで蒸着、もしくはスパッタで金属膜2を形成する。金属膜2の厚みは10nm〜1μm望ましくは10nm〜100nmで形成する。   As shown in FIG. 1, a metal film 2 is formed on the upper surface of the SiC substrate 1 by selecting one metal from Ni, Ti, Pd, Fe, Ru, Os, Ge, Sn, V, Ta, and Nb by vapor deposition or sputtering. Form. The thickness of the metal film 2 is 10 nm to 1 μm, preferably 10 nm to 100 nm.

金属膜2が上面に形成されたSiC基板1を、窒素雰囲気中1000℃〜1400℃で加熱する。このようにすることにより、SiC基板1中のSiとCとの結合が分断され、SiC基板1と金属膜2との界面にSiと金属膜2で使用された金属との化合物シリサイドができ、オーミック接触領域3が形成される。ところで、オーミック接触領域3を形成する場合に、金属膜2には、上記Ni、Ti、Pd、Fe、Ru、Os、Ge、Sn、V、Ta、Nbのうち一つの金属を用いているが、これらの金属は仕事関数が小さく、化合物を形成しやすい特徴を持っている。また、上記金属のうち、Ni、Ti、Pdが蒸着法での取り扱いが簡単なのでより望ましい。   SiC substrate 1 on which metal film 2 is formed is heated at 1000 ° C. to 1400 ° C. in a nitrogen atmosphere. By doing so, the bond between Si and C in the SiC substrate 1 is broken, and a compound silicide of Si and the metal used in the metal film 2 is formed at the interface between the SiC substrate 1 and the metal film 2, An ohmic contact region 3 is formed. By the way, when the ohmic contact region 3 is formed, the metal film 2 uses one of the metals Ni, Ti, Pd, Fe, Ru, Os, Ge, Sn, V, Ta, and Nb. These metals have a small work function and are easy to form compounds. Of the above metals, Ni, Ti, and Pd are more desirable because they are easy to handle by vapor deposition.

次に、図2に示すように、金属膜2をエッチングにより除去する。その後、図3に示すようにMOCVD法により窒化物半導体結晶4を形成する。   Next, as shown in FIG. 2, the metal film 2 is removed by etching. Thereafter, nitride semiconductor crystal 4 is formed by MOCVD as shown in FIG.

窒化物半導体結晶4をエピタキシャル成長させた後、蒸着、もしくはスパッタによりn電極6とp電極5を形成すると、図4に示す窒化物半導体発光素子が完成する。   After the nitride semiconductor crystal 4 is epitaxially grown and then the n-electrode 6 and the p-electrode 5 are formed by vapor deposition or sputtering, the nitride semiconductor light emitting device shown in FIG. 4 is completed.

可視光を吸収しないように低濃度で不純物がドーピングされている導電性SiC基板と窒化物半導体結晶4を構成するAlGaN半導体層、AlN半導体層やGaN半導体層等との界面では、通常、バンドギャップ差が大きく、界面のポテンシャルバリアが大きくなっているので、電流が流れにくくなって、駆動電圧の上昇等を招くものであるが、上記のように、SiC基板1に熱アロイによりオーミック接触領域3を形成しているので、導電性SiC基板とAlGaN半導体層、AlN半導体層やGaN半導体層等との界面でのポテンシャルバリアを小さくすることができ、駆動電圧の上昇を防止することができる。   At the interface between the conductive SiC substrate doped with impurities at a low concentration so as not to absorb visible light and the AlGaN semiconductor layer, the AlN semiconductor layer, the GaN semiconductor layer, etc. constituting the nitride semiconductor crystal 4, a band gap is usually used. Since the difference is large and the potential barrier at the interface is large, it becomes difficult for current to flow, leading to an increase in driving voltage, etc. As described above, the ohmic contact region 3 is applied to the SiC substrate 1 by thermal alloying. Therefore, the potential barrier at the interface between the conductive SiC substrate and the AlGaN semiconductor layer, the AlN semiconductor layer, the GaN semiconductor layer, or the like can be reduced, and an increase in driving voltage can be prevented.

図4に示された窒化物半導体発光素子の一例として半導体レーザの構造を図5に示す。   FIG. 5 shows a structure of a semiconductor laser as an example of the nitride semiconductor light emitting device shown in FIG.

まず、図1に示す方法で、導電性のn型SiC基板1にオーミック接触領域3を形成し、その後、MOCVD法で、SiドープのAlGaNからなるn型バッファ層43、SiドープのAlGaNからなるn型クラッド層44、SiドープのGaNからなるn型光ガイド層45、InGaN井戸層とGaN又はInGaNバリア層とを交互に積層した多重量子井戸構造で構成されたMQW活性層46、MgドープのGaNからなるp型光ガイド層47、MgドープのAlGaNからなるp型クラッド層48、MgドープのGaNからなるp型コンタクト層49を順に形成する。最後にp電極5、n電極6を蒸着又はスパッタにより形成する。ここで、n型バッファ層43〜p型コンタクト層49までが、図4に示す窒化物半導体結晶4に相当する。 First, an ohmic contact region 3 is formed on a conductive n-type SiC substrate 1 by the method shown in FIG. 1, and then an n-type buffer layer 43 made of Si-doped AlGaN and Si-doped AlGaN are formed by MOCVD. n-type cladding layer 44, n-type light guide layer 45 made of Si-doped GaN, MQW active layer 46 having a multiple quantum well structure in which InGaN well layers and GaN or InGaN barrier layers are alternately stacked, Mg-doped A p-type light guide layer 47 made of GaN, a p-type cladding layer 48 made of Mg-doped AlGaN, and a p-type contact layer 49 made of Mg-doped GaN are sequentially formed. Finally, the p electrode 5 and the n electrode 6 are formed by vapor deposition or sputtering. Here, the n-type buffer layer 43 to the p-type contact layer 49 correspond to the nitride semiconductor crystal 4 shown in FIG.

AlGaNで構成されたn型バッファ層43と、AlGaNで構成されたクラッド層44、48、GaNで構成された光ガイド層45、47やコンタクト層49及びMQW活性層46中のバリア層等は、温度が1100℃程度まで昇温して成長させるが、MQW活性層46中のInGaN井戸層については、700℃〜800℃の低温で成長させる。   The n-type buffer layer 43 made of AlGaN, the cladding layers 44 and 48 made of AlGaN, the light guide layers 45 and 47 made of GaN, the contact layer 49, the barrier layer in the MQW active layer 46, etc. The temperature is increased to about 1100 ° C. to grow, but the InGaN well layer in the MQW active layer 46 is grown at a low temperature of 700 ° C. to 800 ° C.

上述したように、導電性のn型SiC基板1にオーミック接触領域3を形成し、その上にSiドープのAlGaNで構成されたn型バッファ層43を成膜するようにしているので、SiC基板1とn型バッファ層43との界面でのポテンシャルバリアを小さくすることができ、駆動電圧の上昇を防止することができる。   As described above, the ohmic contact region 3 is formed on the conductive n-type SiC substrate 1, and the n-type buffer layer 43 made of Si-doped AlGaN is formed thereon, so that the SiC substrate The potential barrier at the interface between 1 and the n-type buffer layer 43 can be reduced, and an increase in driving voltage can be prevented.

図6は、図4に示された窒化物半導体発光素子の一例としてLEDの構造を示したものである。まず、図1に示す方法で、導電性のn型SiC基板1にオーミック接触領域3を形成し、その後、MOCVD法で、n型窒化物半導体22、活性層23、p型窒化物半導体24を順に形成する。   FIG. 6 shows the structure of an LED as an example of the nitride semiconductor light emitting device shown in FIG. First, the ohmic contact region 3 is formed on the conductive n-type SiC substrate 1 by the method shown in FIG. 1, and then the n-type nitride semiconductor 22, the active layer 23, and the p-type nitride semiconductor 24 are formed by MOCVD. Form in order.

n型窒化物半導体層22は、例えば、n型不純物SiドープのGaNコンタクト層又はn型不純物SiドープのAlGaNコンタクト層とn型不純物SiドープのInGaN/GaN超格子層とで構成される。発光領域としての活性層23は、一例として、InGaN井戸層とGaN又はInGaNバリア層を交互に積層した多重量子井戸構造が用いられる。p型窒化物半導体層24は、例えば、p型不純物MgドープのAlGaN電子バリア層とp型不純物MgドープのGaNコンタクト層との積層により構成される。最後にp電極25、n電極26を蒸着又はスパッタにより形成する。   The n-type nitride semiconductor layer 22 includes, for example, an n-type impurity Si-doped GaN contact layer or an n-type impurity Si-doped AlGaN contact layer and an n-type impurity Si-doped InGaN / GaN superlattice layer. As an example, the active layer 23 as the light emitting region has a multiple quantum well structure in which InGaN well layers and GaN or InGaN barrier layers are alternately stacked. The p-type nitride semiconductor layer 24 is configured by, for example, a stack of a p-type impurity Mg-doped AlGaN electron barrier layer and a p-type impurity Mg-doped GaN contact layer. Finally, the p electrode 25 and the n electrode 26 are formed by vapor deposition or sputtering.

n型窒化物半導体22と活性層23とp型窒化物半導体24におけるGaN層やAlGaN層は、1100℃程度の温度まで昇温して成長させるが、MQW活性層46中のInGaN井戸層やSiドープのInGaN/GaN超格子層のInGaN層については、700℃〜800℃の低温で成長させる。   The GaN layer and the AlGaN layer in the n-type nitride semiconductor 22, the active layer 23, and the p-type nitride semiconductor 24 are grown to a temperature of about 1100 ° C., but the InGaN well layer or Si in the MQW active layer 46 is grown. The InGaN layer of the doped InGaN / GaN superlattice layer is grown at a low temperature of 700 ° C. to 800 ° C.

上述したように、導電性のn型SiC基板1にオーミック接触領域3を形成し、その上にn型GaNコンタクト層又はn型AlGaNコンタクト層を成膜するようにしているので、SiC基板1とn型GaNコンタクト層又はn型AlGaNコンタクト層との界面でのポテンシャルバリアを小さくすることができ、駆動電圧の上昇を防止することができる。   As described above, the ohmic contact region 3 is formed on the conductive n-type SiC substrate 1, and the n-type GaN contact layer or the n-type AlGaN contact layer is formed thereon. The potential barrier at the interface with the n-type GaN contact layer or the n-type AlGaN contact layer can be reduced, and an increase in driving voltage can be prevented.

また、導電性SiC基板1には、n型の不純物が可視光を吸収しない濃度でドーピングされているので、活性層23から放射された光は、SiC基板1で吸収されることなく、外部に取り出すことができ、オーミック接触領域3の形成により光取出効率の低下を防止することができる。
In addition, since the n-type impurity is doped in the conductive SiC substrate 1 at a concentration that does not absorb visible light, the light emitted from the active layer 23 is not absorbed by the SiC substrate 1 and is exposed to the outside. The formation of the ohmic contact region 3 can prevent the light extraction efficiency from being lowered.

本発明における窒化物半導体発光素子の製造方法の最初の製造工程を示す図である。It is a figure which shows the first manufacturing process of the manufacturing method of the nitride semiconductor light-emitting device in this invention. 窒化物半導体発光素子の製造方法の製造工程を示す図である。It is a figure which shows the manufacturing process of the manufacturing method of a nitride semiconductor light-emitting device. 窒化物半導体発光素子の製造方法の製造工程を示す図である。It is a figure which shows the manufacturing process of the manufacturing method of a nitride semiconductor light-emitting device. 窒化物半導体発光素子の製造方法の製造工程を示す図である。It is a figure which shows the manufacturing process of the manufacturing method of a nitride semiconductor light-emitting device. 窒化物半導体発光素子の一例として半導体レーザの構造を示す図である。It is a figure which shows the structure of a semiconductor laser as an example of the nitride semiconductor light-emitting device. 窒化物半導体発光素子の一例としてLEDの構造を示す図である。It is a figure which shows the structure of LED as an example of the nitride semiconductor light-emitting device.

符号の説明Explanation of symbols

1 SiC基板
2 金属膜
3 オーミック接触領域
4 窒化物半導体結晶
5 p電極
6 n電極
DESCRIPTION OF SYMBOLS 1 SiC substrate 2 Metal film 3 Ohmic contact area 4 Nitride semiconductor crystal 5 P electrode 6 N electrode

Claims (1)

導電性SiC基板上に窒化物半導体結晶を積層した窒化物半導体発光素子の製造方法において、前記窒化物半導体結晶を積層する側の導電性SiC基板上にNi、Ti、Pd、Fe、Ru、Os、Ge、Sn、V、Ta、Nbのいずれかの金属を用いた金属膜を成膜してアニ−ル処理によりオーミック接触を形成した後、前記金属膜を除去し、前記導電性SiC基板上に窒化物半導体結晶を積層することを特徴とする窒化物半導体発光素子の製造方法。
In the method for manufacturing a nitride semiconductor light emitting device in which a nitride semiconductor crystal is stacked on a conductive SiC substrate, Ni, Ti, Pd, Fe, Ru, Os is formed on the conductive SiC substrate on the nitride semiconductor crystal stacking side. , Ge, Sn, V, Ta, and Nb, and after forming an ohmic contact by annealing, the metal film is removed and the conductive SiC substrate is formed on the conductive SiC substrate. A method of manufacturing a nitride semiconductor light emitting device, comprising: laminating a nitride semiconductor crystal.
JP2005342576A 2005-11-28 2005-11-28 Manufacture of nitride semiconductor light-emitting element Withdrawn JP2007149984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342576A JP2007149984A (en) 2005-11-28 2005-11-28 Manufacture of nitride semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342576A JP2007149984A (en) 2005-11-28 2005-11-28 Manufacture of nitride semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JP2007149984A true JP2007149984A (en) 2007-06-14

Family

ID=38211018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342576A Withdrawn JP2007149984A (en) 2005-11-28 2005-11-28 Manufacture of nitride semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JP2007149984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033740A1 (en) * 2013-09-05 2015-03-12 富士電機株式会社 Silicon carbide semiconductor element and method for manufacturing silicon carbide semiconductor element
JP2017162847A (en) * 2016-03-07 2017-09-14 セントラル硝子株式会社 Planarization method for substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033740A1 (en) * 2013-09-05 2015-03-12 富士電機株式会社 Silicon carbide semiconductor element and method for manufacturing silicon carbide semiconductor element
JP5885284B2 (en) * 2013-09-05 2016-03-15 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JPWO2015033740A1 (en) * 2013-09-05 2017-03-02 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
US9923062B2 (en) 2013-09-05 2018-03-20 Fuji Electric Co., Ltd. Silicon carbide semiconductor device and method of manufacturing a silicon carbide semiconductor device
JP2017162847A (en) * 2016-03-07 2017-09-14 セントラル硝子株式会社 Planarization method for substrate

Similar Documents

Publication Publication Date Title
JP5283436B2 (en) Nitride semiconductor light emitting device
JP4872450B2 (en) Nitride semiconductor light emitting device
JP5000612B2 (en) Gallium nitride light emitting diode
US20170256673A1 (en) Nitride semiconductor structure
JP2006086489A (en) Nitride semiconductor light emitting device having electrostatic discharge protection capability
JP4503570B2 (en) Nitride semiconductor device
US20110272730A1 (en) Light emitting device
WO2007091651A1 (en) Nitride semiconductor element
WO2016002419A1 (en) Nitride-semiconductor light-emitting element
JP4642801B2 (en) Nitride semiconductor light emitting device
JP5162809B2 (en) Nitride semiconductor device
JP2008078297A (en) GaN-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE
JP2007180142A (en) Nitride-based semiconductor element and manufacturing method therefor
JP2007149983A (en) Manufacture of nitride semiconductor light-emitting element
JP2009164572A (en) Group iii nitride semiconductor light-emitting device
JPWO2005029587A1 (en) Nitride semiconductor device
KR101928479B1 (en) Iii-nitride semiconductor light emitting device
CN102544290A (en) Nitirde semiconductor light emitting diode
KR20050096010A (en) Nitride semiconductor light emitting diode and fabrication method thereof
KR20090109598A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP2007149984A (en) Manufacture of nitride semiconductor light-emitting element
KR100631970B1 (en) Nitride semiconductor light emitting device for flip chip
KR101124470B1 (en) Semiconductor light emitting device
JP2015176961A (en) Semiconductor light-emitting device and method of manufacturing the same
TWI610460B (en) Nitride semiconductor structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203