TW201605285A - Laser packaging system and method - Google Patents

Laser packaging system and method Download PDF

Info

Publication number
TW201605285A
TW201605285A TW104117484A TW104117484A TW201605285A TW 201605285 A TW201605285 A TW 201605285A TW 104117484 A TW104117484 A TW 104117484A TW 104117484 A TW104117484 A TW 104117484A TW 201605285 A TW201605285 A TW 201605285A
Authority
TW
Taiwan
Prior art keywords
laser
module
frit
scanning
predetermined
Prior art date
Application number
TW104117484A
Other languages
Chinese (zh)
Other versions
TWI629915B (en
Inventor
Yuan-Hao Huang
shu-cun Zhu
Wen Luo
Lei-Li Cheng
Original Assignee
Shanghai Microelectronics Equi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Microelectronics Equi filed Critical Shanghai Microelectronics Equi
Publication of TW201605285A publication Critical patent/TW201605285A/en
Application granted granted Critical
Publication of TWI629915B publication Critical patent/TWI629915B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laser Beam Processing (AREA)
  • Electroluminescent Light Sources (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present invention discloses a laser packaging system for heating glass material (122) distributed along a predetermined trajectory in a glass package (120). The system includes a controller module (201), a laser module (202) and a laser scanning module (203). The controller module (201) is used for controlling the laser scanning module (203) to project laser (100) generated by the laser module (202) onto the glass material (122), wherein the laser scanning module (203) enables the laser (100) to scan the glass material (122) periodically and quickly, so as to synchronously heat the glass material more uniformly and alleviate the problem of the non-uniform temperature distribution in the process of packaging in the prior art. The laser module (202) can emit laser with a predetermined power curve, thereby controlling the heating process of the glass material (122) on the basis of the predetermined power curve. This invention further discloses a laser packaging method.

Description

激光封裝系統和方法 Laser packaging system and method

本發明有關於光電半導體領域,特別有關於一種採用激光對玻璃封裝體進行封裝的系統和方法。 The present invention relates to the field of optoelectronic semiconductors, and more particularly to a system and method for encapsulating a glass package using a laser.

光電半導體裝置已廣泛應用於生活的各個領域。其中,OLED(有機發光二極體)由於其良好的色彩比、寬視角、高回應速度等特點,成為研究的熱點,具有良好的應用前景。然而,OLED顯示器中的電極和有機層對氧和水分十分敏感。從外界環境滲透入OLED裝置內部的氧和水分會嚴重縮短OLED裝置的壽命。因此,為OLED裝置提供有效的氣密式密封顯得非常重要。下文論述導致難以適當密封OLED裝置的某些因素: Photoelectric semiconductor devices have been widely used in various fields of life. Among them, OLED (organic light-emitting diode) has become a research hotspot due to its good color ratio, wide viewing angle and high response speed, and has a good application prospect. However, the electrodes and organic layers in OLED displays are very sensitive to oxygen and moisture. Oxygen and moisture penetrating into the interior of the OLED device from the external environment can seriously shorten the life of the OLED device. Therefore, it is very important to provide an effective hermetic seal for an OLED device. Some of the factors that make it difficult to properly seal an OLED device are discussed below:

‧氣密式密封應提供對氧(10-3cm3/m2/天)和水(10-6g/m2/天)的屏障。 • Hermetic seals should provide a barrier to oxygen (10 -3 cm 3 /m 2 /day) and water (10 -6 g/m 2 /day).

‧氣密式密封的尺寸應盡可能小(如小於2mm),從而使其不會對OLED顯示器的尺寸產生較大的影響。 ‧ The size of the hermetic seal should be as small as possible (eg less than 2mm) so that it does not have a large impact on the size of the OLED display.

‧密封過程中產生的溫度不應破壞OLED顯示器中的材料(如電極和有機層)。例如OLED顯示器中距離密封體約1-2毫米的OLED的第一圖元在密封過程中不應被加熱到高於100℃的溫度,否則會使第一圖元失效。 • The temperature generated during the sealing process should not damage the materials (such as electrodes and organic layers) in the OLED display. For example, in a OLED display, the first element of the OLED having a distance of about 1-2 mm from the sealing body should not be heated to a temperature higher than 100 ° C during the sealing process, which would otherwise invalidate the first picture element.

‧密封過程中釋放的氣體不應對OLED顯示器中的物質產生污 染。 ‧The gas released during the sealing process should not contaminate the substances in the OLED display dye.

‧氣密式密封應能使點連接構件(如薄膜鉻電極)進入OLED顯示器。 ‧ Hermetic seals should allow point-connecting components (such as thin-film chrome electrodes) to enter the OLED display.

近年來,一種使用玻璃料輔助激光加熱的密封方法被應用於OLED顯示器的密封。其中所述的玻璃料摻雜有對特定光波長具有高吸收率的材料,具有低熔點的特性。藉由採用高能激光器加熱並軟化玻璃料,使其上有玻璃料的蓋板玻璃和其上有OLED的基板玻璃之間形成氣密式密封。玻璃料通常約0.7-1毫米寬,6-100微米厚。激光器輸出可控的激光能量依次照射塗覆玻璃料的密封線,使該玻璃料先後加熱軟化,形成氣密式密封。然而,這種順序型加熱玻璃料的方式,會在玻璃料內部形成不均勻的溫度分佈(如圖1所示)。玻璃料內部的這種不均勻溫度分佈會導致裂紋、殘餘應力或脫層問題的產生,妨礙或削弱蓋板玻璃與基板玻璃之間的氣密性連接。同時,需要對密封過程的主要參數如激光功率、掃描速度等進行選擇,受到這種方式的制約,限制產率的提高。 In recent years, a sealing method using glass frit-assisted laser heating has been applied to the sealing of OLED displays. The frit described therein is doped with a material having a high absorption rate for a specific light wavelength and has a low melting point characteristic. By using a high energy laser to heat and soften the frit, a hermetic seal is formed between the cover glass on which the frit is placed and the substrate glass on which the OLED is placed. The frit is typically about 0.7-1 mm wide and 6-100 microns thick. The laser output controllable laser energy sequentially illuminates the sealing line of the glass frit, so that the glass frit is heated and softened successively to form a hermetic seal. However, this sequential heating of the frit creates an uneven temperature distribution inside the frit (as shown in Figure 1). This uneven temperature distribution inside the frit can cause cracks, residual stress or delamination problems, hinder or weaken the airtight connection between the cover glass and the substrate glass. At the same time, it is necessary to select the main parameters of the sealing process such as laser power, scanning speed, etc., which is restricted by this method and limits the improvement of the yield.

本發明的目的在於提供一種激光封裝系統和方法,用於對OLED顯示器或玻璃封裝體進行密封,可以解決上述玻璃料溫度場分佈不均勻的問題,同時其具有較寬的技術視窗,有利於提高OLED顯示器的產率。 The object of the present invention is to provide a laser packaging system and method for sealing an OLED display or a glass package, which can solve the problem that the temperature field distribution of the glass frit is uneven, and has a wide technical window, which is beneficial to improve. The yield of OLED displays.

為了實現上述目的,本發明提出一種激光封裝系統,用於加熱玻璃封裝體中沿預定軌跡分佈的玻璃料以密封玻璃封裝體,該系統包括:控制器模組;激光器模組,與該控制器模組相連且用於生成激光;以及激光掃描模組,與該控制器模組和該激光器 模組相連,用於將該激光器模組生成的該激光投射至玻璃料上,其中,該控制器模組用於即時控制該激光掃描模組,控制該激光在該玻璃料上的掃描方向,從而使該激光沿該預定軌跡掃描該玻璃料;該控制器模組還用於即時控制該激光器模組的輸出功率,使生成的激光具有與該預定軌跡即時匹配的功率曲線。 In order to achieve the above object, the present invention provides a laser packaging system for heating a glass frit distributed along a predetermined trajectory in a glass package to seal a glass package, the system comprising: a controller module; a laser module, and the controller a module connected and used to generate a laser; and a laser scanning module, the controller module and the laser The module is connected to project the laser generated by the laser module onto the glass frit, wherein the controller module is used for instantly controlling the laser scanning module to control the scanning direction of the laser on the glass frit. Thereby, the laser scans the glass frit along the predetermined trajectory; the controller module is further configured to instantly control the output power of the laser module, so that the generated laser has a power curve that instantly matches the predetermined trajectory.

進一步的,該激光封裝系統還包括一溫度測量模組,該溫度測量模組與該控制器模組相連,用於即時測量被激光照射到的玻璃料的表面溫度,並將所測得的表面溫度即時回饋至該控制器模組。 Further, the laser packaging system further includes a temperature measuring module connected to the controller module for instantly measuring the surface temperature of the glass frit irradiated by the laser, and measuring the surface The temperature is instantly fed back to the controller module.

進一步的,該溫度測量模組為一高溫計。 Further, the temperature measuring module is a pyrometer.

進一步的,該激光封裝系統還包括一電腦,該電腦與該控制器模組相連,用於與該控制器模組進行資料交換。 Further, the laser packaging system further includes a computer connected to the controller module for exchanging data with the controller module.

進一步的,該控制器模組為單個控制器、多個控制器組成的控制系統或者是集成安裝於該電腦內部的控制板卡。 Further, the controller module is a single controller, a control system composed of multiple controllers or a control board integrated inside the computer.

進一步的,該激光掃描模組內設有一伺服運動機構,該伺服運動機構用於改變激光的方向及激光沿該預定軌跡掃描玻璃料的速度和/或加速度。 Further, the laser scanning module is provided with a servo motion mechanism for changing the direction of the laser and scanning the speed and/or acceleration of the glass frit along the predetermined trajectory.

本發明還提出一種激光封裝方法,用於加熱玻璃封裝體中沿預定軌跡分佈的玻璃料以密封玻璃封裝體,包括步驟:啟動激光器模組,使該激光器模組發出激光;啟動激光掃描模組,將激光器模組發出的該激光投射至玻璃料上;藉由控制器模組即時控制激光掃描模組將激光投射至玻璃料上的方向,使該激光沿該預定軌跡掃描玻璃料; 藉由控制器模組即時控制該激光器模組的輸出功率,使生成的激光具有與該預定軌跡即時匹配的功率曲線;以及使該激光沿該預定軌跡掃描玻璃料多個週期,直至玻璃料被加熱至熔點。 The invention also provides a laser packaging method for heating a glass frit distributed along a predetermined track in a glass package to seal the glass package, comprising the steps of: starting a laser module, causing the laser module to emit laser light; and starting the laser scanning module Projecting the laser light emitted by the laser module onto the glass frit; the controller module instantly controls the laser scanning module to project the laser onto the glass frit, so that the laser scans the glass frit along the predetermined trajectory; Instantly controlling the output power of the laser module by the controller module, so that the generated laser has a power curve that instantly matches the predetermined trajectory; and causing the laser to scan the frit along the predetermined trajectory for a plurality of cycles until the frit is Heat to the melting point.

進一步的,該預定軌跡包括一個或多個直線段與一個或多個彎曲段,該功率曲線包括與該一個或多個直線段相對應的一個或多個直線段加熱功率曲線和與該一個或多個彎曲段相對應的一個或多個彎曲段加熱功率曲線,該直線段加熱功率曲線對應的輸出功率與該彎曲段加熱功率曲線對應的輸出功率相異。 Further, the predetermined trajectory includes one or more straight segments and one or more curved segments, the power curve including one or more straight segment heating power curves corresponding to the one or more straight segments and the one or The one or more curved segments corresponding to the plurality of curved segments heat the power curve, and the output power corresponding to the straight segment heating power curve is different from the output power corresponding to the curved segment heating power curve.

進一步的,該多個週期的掃描採用不變的或者逐漸減小的激光器模組的輸出功率。 Further, the scanning of the plurality of cycles uses the output power of the unchanged or gradually decreasing laser module.

進一步的,該激光封裝方法還包括使用溫度測量模組測量並回饋該玻璃料表面的即時溫度至該控制器模組,藉由該控制器模組調整掃描的週期次數、激光器模組的輸出功率以及激光沿該預定軌跡掃描玻璃料的速率中的至少一者使該玻璃料的溫度變化符合預設的溫度曲線。 Further, the laser packaging method further comprises: measuring and feeding back the instantaneous temperature of the surface of the frit to the controller module by using a temperature measuring module, and adjusting the number of scanning cycles and the output power of the laser module by the controller module And at least one of the rates at which the laser scans the frit along the predetermined trajectory causes the temperature change of the frit to conform to a predetermined temperature profile.

進一步的,該激光沿該預定軌跡掃描玻璃料的速率範圍是1m/s-5m/s。 Further, the laser scans the frit along the predetermined trajectory at a rate ranging from 1 m/s to 5 m/s.

進一步的,在啟動該激光器模組之前,先啟動該激光掃描模組,直至該激光掃描模組能夠使激光以預定的速度沿該預定軌跡投射至玻璃料上再啟動激光器模組。 Further, before the laser module is activated, the laser scanning module is activated until the laser scanning module can project the laser along the predetermined trajectory to the glass frit at a predetermined speed to restart the laser module.

進一步的,該激光封裝方法還包括在該玻璃料被加熱至熔點後,立即關閉該激光器模組,使該玻璃料自然冷卻。 Further, the laser packaging method further comprises: immediately after the glass frit is heated to a melting point, the laser module is turned off, and the glass frit is naturally cooled.

進一步的,該激光封裝方法還包括在關閉激光器模組 後,使該激光掃描模組繼續運作一段時間,再停止激光掃描模組。 Further, the laser packaging method further includes turning off the laser module After that, the laser scanning module continues to operate for a period of time, and then stops the laser scanning module.

進一步的,該激光封裝方法還包括在該玻璃料被加熱至熔點後,降低該激光器模組的輸出功率至一冷卻功率值,繼續使該激光沿該預定軌跡對玻璃料進行週期性掃描,直至該玻璃料冷卻至預定溫度。 Further, the laser packaging method further comprises: after the glass frit is heated to a melting point, reducing the output power of the laser module to a cooling power value, and continuing to cause the laser to periodically scan the glass frit along the predetermined trajectory until: The frit is cooled to a predetermined temperature.

進一步的,該激光封裝方法還包括在該玻璃料冷卻至預定溫度後,繼續進行自然冷卻。 Further, the laser packaging method further includes continuing the natural cooling after the glass frit is cooled to a predetermined temperature.

進一步的,在該激光封裝方法中,同步啟動激光器模組和激光掃描模組,並逐漸提升激光器模組的輸出功率,使得在該激光掃描模組能夠使激光以預定的速度沿該預定軌跡投射至玻璃料上的同時該激光器模組的輸出功率達到預定的功率。 Further, in the laser packaging method, the laser module and the laser scanning module are synchronously activated, and the output power of the laser module is gradually increased, so that the laser scanning module can project the laser along the predetermined trajectory at a predetermined speed. The output power of the laser module reaches a predetermined power while on the frit.

進一步的,該激光封裝方法還包括在該玻璃料被加熱至熔點後,同步調整該激光器模組的輸出功率及該激光沿該預定軌跡掃描玻璃料的速率,使該輸出功率及掃描速率逐漸減小直至同時為零。 Further, the laser packaging method further comprises: after the glass frit is heated to a melting point, synchronously adjusting the output power of the laser module and the rate at which the laser scans the frit along the predetermined trajectory, so that the output power and the scanning rate are gradually reduced. Small until it is zero at the same time.

與現有技術相比,本發明的有益效果主要體現在:該激光掃描模組能使激光快速的在玻璃料上進行週期性掃描,從而能夠較均勻的同步加熱玻璃料,改善現有技術封裝過程中溫度場分佈不均勻的問題;在提出的激光封裝方法中激光器模組能夠發出具有預定功率曲線的激光,從而可以根據預定功率曲線控制玻璃料的加熱過程。 Compared with the prior art, the beneficial effects of the present invention are mainly embodied in: the laser scanning module enables the laser to be periodically scanned on the glass frit, thereby enabling relatively uniform simultaneous heating of the glass frit, improving the prior art packaging process. The problem of uneven temperature field distribution; in the proposed laser packaging method, the laser module can emit a laser with a predetermined power curve, so that the heating process of the frit can be controlled according to a predetermined power curve.

進一步的,添加的溫度測量模組能夠測量和回饋玻璃料表面的即時溫度,可以採用預設升溫或者預設降溫等方式使玻璃料依照預定的升溫或者降溫曲線進行加熱或者冷卻。 Further, the added temperature measuring module can measure and feed back the instantaneous temperature of the surface of the frit, and the glass frit can be heated or cooled according to a predetermined heating or cooling curve by a preset heating or a preset cooling.

100‧‧‧激光 100‧‧‧Laser

110‧‧‧光斑 110‧‧‧ spot

120‧‧‧OLED顯示器 120‧‧‧OLED display

121‧‧‧蓋板玻璃 121‧‧‧ Cover glass

122‧‧‧玻璃料 122‧‧‧Frit

123‧‧‧基板玻璃 123‧‧‧Substrate glass

124‧‧‧電極 124‧‧‧Electrode

125‧‧‧OLED層 125‧‧‧OLED layer

200‧‧‧電腦 200‧‧‧ computer

201‧‧‧控制器模組 201‧‧‧Controller Module

202‧‧‧激光器模組 202‧‧‧ laser module

203‧‧‧激光掃描模組 203‧‧‧Laser scanning module

204‧‧‧溫度測量模組 204‧‧‧Temperature measurement module

210‧‧‧電腦 210‧‧‧ computer

220‧‧‧控制器 220‧‧‧ Controller

230‧‧‧掃描振鏡組 230‧‧‧Scanning galvanometer group

240‧‧‧高溫計 240‧‧‧ pyrometer

250‧‧‧激光器 250‧‧‧Laser

圖1為現有技術中採用順序型加熱玻璃料不同時刻溫度的分佈圖;圖2為玻璃料密封OLED顯示器的俯視圖;圖3為本發明實施例一中激光封裝系統的模組圖;圖4為本發明實施例一中OLED顯示器玻璃料激光掃描路徑示意圖;圖5為本發明實施例一中單個掃描週期中激光預定功率曲線的曲線示意圖;圖6A和圖6B為本發明實施例一中激光速率和功率對玻璃料的溫度變化影響模擬曲線示意圖;圖7為本發明實施例一中啟停區域激光掃描模組和激光輸出的採用第一種同步控制方式的示意圖;圖8為本發明實施例二中激光封裝系統的模組圖;圖9為本發明實施例二中激光封裝系統的結構示意圖;圖10為啟停區域激光掃描模組和激光輸出的採用第二種同步控制方式的示意圖;圖11為本發明實施例二中預設升溫和預設降溫的曲線示意圖;以及圖12為本發明實施例一或二中採用激光封裝系統和方法加熱後玻璃料不同時刻溫度的分佈圖。 1 is a view showing a temperature distribution of a sequential heat-cured glass material at different times in the prior art; FIG. 2 is a plan view of a glass-sealed OLED display; FIG. 3 is a block diagram of a laser packaging system according to a first embodiment of the present invention; FIG. 5 is a schematic diagram of a laser predetermined power curve in a single scanning period according to Embodiment 1 of the present invention; FIG. 6A and FIG. 6B are laser rates in Embodiment 1 of the present invention; FIG. 7 is a schematic diagram showing the first synchronous control mode of the laser scanning module and the laser output in the start-stop area according to the first embodiment of the present invention; FIG. 8 is a schematic diagram of the first embodiment of the present invention; 2 is a schematic diagram of a laser packaging system; FIG. 9 is a schematic structural view of a laser packaging system according to a second embodiment of the present invention; FIG. 10 is a schematic diagram of a second synchronous control mode of a laser scanning module and a laser output in a start-stop region; 11 is a schematic diagram of a preset temperature rise and a preset temperature drop in the second embodiment of the present invention; and FIG. 12 is a laser used in the first or second embodiment of the present invention. Loading system and method for heating glass frit temperature profile of different times.

下面將結合示意圖對本發明的激光掃描密封玻璃封 裝體的系統和方法進行更詳細的描述,其中表示本發明的較佳實施例,應該理解本領域技術人員可以修改在此描述的本發明,而仍然實現本發明的有利效果。因此,下列描述應當被理解為對於本領域技術人員的廣泛知道,而並不作為對本發明的限制。 The laser scanning sealing glass seal of the present invention will be described below in conjunction with the schematic diagram. The system and method of the present invention are described in more detail, which is a preferred embodiment of the present invention, and it is understood that those skilled in the art can modify the invention described herein while still achieving the advantageous effects of the present invention. Therefore, the following description is to be understood as a broad understanding of the invention.

為了清楚,不描述實際實施例的全部特徵。在下列描述中,不詳細描述習知的功能和結構,因為它們會使本發明由於不必要的細節而混亂。應當認為在任何實際實施例的開發中,必須做出大量實施細節以實現開發者的特定目標,例如按照有關系統或有關商業的限制,由一個實施例改變為另一個實施例。另外,應當認為這種開發工作可能是複雜和耗費時間的,但是對於本領域技術人員來說僅僅是常規工作。 In the interest of clarity, not all features of the actual embodiments are described. In the following description, well-known functions and structures are not described in detail, as they may obscure the invention in unnecessary detail. It should be understood that in the development of any actual embodiment, a large number of implementation details must be made to achieve a particular goal of the developer, such as changing from one embodiment to another in accordance with the limitations of the system or related business. Additionally, such development work should be considered complex and time consuming, but is only routine work for those skilled in the art.

在下列段落中參照附圖以舉例方式更具體地描述本發明。根據下面說明和申請專利範圍,本發明的優點和特徵將更清楚。需說明的是,附圖均採用非常簡化的形式且均使用非精準的比例,僅用以方便、清晰地輔助說明本發明實施例的目的。 The invention is more specifically described in the following paragraphs by way of example with reference to the accompanying drawings. Advantages and features of the present invention will be apparent from the description and appended claims. It should be noted that the drawings are in a very simplified form and both use non-precise proportions, and are only for convenience and clarity to assist the purpose of the embodiments of the present invention.

[實施例一] [Example 1]

請參考圖2和圖3,在本實施例中,提出了一種激光封裝系統,其用於對OLED顯示器120採用玻璃料形成氣密式密封,其中,OLED顯示器120是典型的玻璃封裝體,該OLED顯示器120主要結構包括蓋板玻璃121、玻璃料122、基板玻璃123、OLED層125和多個電極124。其中,該玻璃料122位於OLED顯示器120的基板玻璃123上,其橫截面圖如圖3中所示,俯視圖如圖2所示。該玻璃料122藉由絲網印刷、預燒結步驟預固化在基板玻璃123上,形成具有一定厚度 的圓角矩形密封線。基板玻璃123上的OLED層125位於玻璃料122密封線的內側,同時基板玻璃123上存在連接OLED顯示器120內的外部的多個電極124。 Referring to FIG. 2 and FIG. 3, in the embodiment, a laser packaging system is proposed for forming a hermetic seal on the OLED display 120 by using a glass frit, wherein the OLED display 120 is a typical glass package. The main structure of the OLED display 120 includes a cover glass 121, a frit 122, a substrate glass 123, an OLED layer 125, and a plurality of electrodes 124. The frit 122 is located on the substrate glass 123 of the OLED display 120, and its cross-sectional view is as shown in FIG. 3, and the top view is as shown in FIG. 2. The frit 122 is pre-cured on the substrate glass 123 by a screen printing, pre-sintering step to form a certain thickness. Rounded rectangular seal line. The OLED layer 125 on the substrate glass 123 is located inside the sealing line of the frit 122, while the substrate glass 123 has a plurality of electrodes 124 connected to the outside of the OLED display 120.

在本實施例中,該激光封裝系統包括:控制器模組201、激光器模組202以及激光掃描模組203,其中,該控制器模組201分別與該激光器模組202、激光掃描模組203相連,用於控制該激光器模組202及該激光掃描模組203,該激光器模組202與激光掃描模組203相連,該激光器模組202用於生成激光,以預定功率將激光發送至該激光掃描模組203,該激光掃描模組203用於改變激光100傳送方向及運動特徵;該系統還包括一電腦200,該電腦200與該控制器模組201相連,用於與該控制器模組201進行資料交換。 In this embodiment, the laser package system includes a controller module 201, a laser module 202, and a laser scanning module 203. The controller module 201 and the laser module 202 and the laser scanning module 203 are respectively included. Connected to control the laser module 202 and the laser scanning module 203. The laser module 202 is connected to a laser scanning module 203. The laser module 202 is configured to generate a laser to transmit laser light to the laser at a predetermined power. The scanning module 203 is configured to change the direction and motion characteristics of the laser 100. The system further includes a computer 200 connected to the controller module 201 for use with the controller module. 201 for data exchange.

其中,該控制器模組201可以是單個控制器,也可以是多個控制器組合形成的控制系統,或是可以集成安裝於電腦200內部的控制板卡。 The controller module 201 can be a single controller, a control system formed by combining a plurality of controllers, or a control board that can be integrated and installed inside the computer 200.

在本實施例中,該激光掃描模組203可以是掃描振鏡。該激光掃描模組203內有一伺服運動機構(未圖示),其具有改變激光100傳送方向的功能,使激光100能夠以空間某一固定軸為基準,沿任意方向偏轉一定角度θ,偏轉角度θ具有最大上限值。激光100的偏轉方向和偏轉角度θ是可控的,其變化規律由控制器模組201發送至激光掃描模組203的控制信號決定。該伺服運動機構能夠快速準確的改變激光100的偏轉姿態,並能夠根據控制信號控制該改變掃描過程中激光100的偏轉運動特徵,如角速度、角加速度等。該激光掃描模組203將激光100投射於玻璃料122上。激光100在玻璃料122表面形成具有特定形狀和尺寸的光斑110。 In this embodiment, the laser scanning module 203 can be a scanning galvanometer. The laser scanning module 203 has a servo motion mechanism (not shown) having a function of changing the direction in which the laser light 100 is transmitted, so that the laser light 100 can be deflected by a certain angle θ in any direction based on a fixed axis of the space, and the deflection angle is θ has the largest upper limit. The deflection direction and the deflection angle θ of the laser 100 are controllable, and the variation law is determined by the control signal sent from the controller module 201 to the laser scanning module 203. The servo motion mechanism can quickly and accurately change the deflection posture of the laser 100, and can control the deflection motion characteristics of the laser light 100 during the scanning process according to the control signal, such as angular velocity, angular acceleration, and the like. The laser scanning module 203 projects the laser light 100 onto the frit 122. The laser light 100 forms a spot 110 having a specific shape and size on the surface of the frit 122.

該激光器模組202能夠生成特定波長的激光100,以預定功率將激光100的光能量傳送至激光掃描模組203。該預定功率的激光100的光能量是即時可調的,激光100的光能量的調整以及激光100傳送的開啟和停止均由控制器模組201發送至激光器模組202的控制信號決定。 The laser module 202 is capable of generating a laser 100 of a specific wavelength and transmitting the light energy of the laser 100 to the laser scanning module 203 at a predetermined power. The light energy of the laser 100 of the predetermined power is instantly adjustable, and the adjustment of the light energy of the laser 100 and the opening and stopping of the laser 100 transmission are determined by the control signals sent from the controller module 201 to the laser module 202.

該控制器模組201能夠同步控制激光器模組202與激光掃描模組203,使激光器模組201輸出激光100的開啟與停止、激光功率的調節能夠與激光掃描模組203中伺服運動機構的運動相匹配。或者,該控制器模組201能夠以高於激光掃描模組203控制解析度的高解析度來控制激光器模組202,並使兩者的控制相匹配。控制器模組201與電腦200之間能夠進行資料通訊,控制器模組201接收電腦200發送來的運動軌跡、速度曲線、功率曲線、延時、目標溫度、開啟、停止等資訊,同時將各模組工作狀態等資訊傳送給電腦。 The controller module 201 can synchronously control the laser module 202 and the laser scanning module 203, so that the laser module 201 outputs the opening and stopping of the laser 100, the adjustment of the laser power, and the movement of the servo motion mechanism in the laser scanning module 203. Match. Alternatively, the controller module 201 can control the laser module 202 with a high resolution higher than the resolution controlled by the laser scanning module 203, and match the control of the two. The controller module 201 and the computer 200 can perform data communication, and the controller module 201 receives the motion trajectory, speed curve, power curve, delay, target temperature, start and stop information sent by the computer 200, and simultaneously Information such as the group work status is transmitted to the computer.

在本實施例的另一面,還提出一種激光封裝方法,採用如上文所述的激光封裝系統,該方法包括步驟:S100:該控制器模組201控制該激光器模組202,使該激光器模組202發出具有預定功率曲線的激光100;S200:該控制器模組201控制該激光掃描模組203,使該激光100藉由該激光掃描模組203投射至玻璃料122上,該激光掃描模組203使該激光100保持預定速度和運動軌跡沿著該玻璃料122進行週期性掃描,對該玻璃料122加熱,直至玻璃料122達到熔點,形成氣密式密封。 In another aspect of the embodiment, a laser packaging method is further provided, which adopts a laser packaging system as described above, the method comprising the steps of: S100: the controller module 201 controls the laser module 202 to make the laser module 202 emits a laser 100 having a predetermined power curve; S200: the controller module 201 controls the laser scanning module 203 to cause the laser 100 to be projected onto the glass frit 122 by the laser scanning module 203, the laser scanning module 203 maintains the laser 100 at a predetermined speed and motion trajectory along the frit 122 for periodic scanning, and heats the frit 122 until the frit 122 reaches a melting point, forming a hermetic seal.

具體的,控制激光器模組202和激光掃描模組203,將 激光100投射至玻璃料122上,使具有預定功率和較高速率的激光100沿著玻璃料122圖案(即密封線)移動,如圖4中帶箭頭的運動軌跡所示,其中,該速率範圍是1m/s-5m/s,例如是3m/s;激光100以一定形狀和尺寸的光斑110照射在圖4中的a2點玻璃料122上,開始輸出,沿密封線掃描一周,回到a2點算作一個掃描週期。a2點為示例點,這裡所說的激光100輸出開啟點不限於該位置。在一個掃描週期內,該玻璃料122吸收激光100能量後被依次加熱,由於掃描速度較快,可以近似認為密封線上的玻璃料是進同時加熱的;正常情況下,一個掃描週期無法為玻璃料122提供足夠的能量,因此,其無法僅藉由一個掃描週期就將兩塊玻璃基板121和123連接在一起,形成氣密式的密封。 Specifically, the control laser module 202 and the laser scanning module 203 will The laser 100 is projected onto the frit 122 to move the laser 100 having a predetermined power and a higher rate along the pattern of the frit 122 (i.e., the seal line) as shown by the arrowed motion trajectory in FIG. 4, wherein the rate range Is 1m / s - 5m / s, for example, 3m / s; laser 100 with a certain shape and size of the spot 110 is irradiated on the a2 point frit 122 in Figure 4, start output, scan a week along the seal line, back to a2 The count is counted as one scan cycle. The point a2 is an example point, and the output point of the laser 100 output here is not limited to this position. In one scanning cycle, the frit 122 absorbs the energy of the laser 100 and is sequentially heated. Due to the faster scanning speed, it can be approximated that the frit on the sealing line is heated simultaneously; under normal circumstances, one scanning cycle cannot be a frit. 122 provides sufficient energy so that it is not possible to join the two glass substrates 121 and 123 together by only one scanning cycle to form a hermetic seal.

在一個掃描週期內,掃描控制方式是藉由控制器模組201控制激光器模組202和激光掃描模組203(以下和附圖中也簡稱為掃描振鏡或振鏡)使激光100移動操作和激光功率調整操作同步。根據預定功率曲線方式,如圖5中激光功率曲線所示,但不僅限於這種功率曲線,使激光功率在預定位置b1-b2、c1-c2、d1-d2以及e1-e2處發生線性或非線性變化,如圖4可知預定位置b1-b2、c1-c2、d1-d2以及e1-e2為圓角矩形的拐角處,由於拐角處所需要的能量小於直線處,因此此處的激光功率應小於直線處的激光功率,即,預定功率曲線包括加熱段功率和彎曲段功率,該加熱段功率為激光100掃描直線處的激光功率,該彎曲段功率為激光100掃描拐角處的激光功率,兩者存在一定差異,從而使密封線上的玻璃料122能夠獲得相對均勻的能量,發生相對均勻的溫升。 In one scan cycle, the scan control mode is controlled by the controller module 201 to control the laser module 202 and the laser scanning module 203 (hereinafter also referred to as a scanning galvanometer or galvanometer in the drawings) to move the laser 100 and The laser power adjustment operation is synchronized. According to the predetermined power curve mode, as shown by the laser power curve in FIG. 5, but not limited to such a power curve, the laser power is linear or non-linear at predetermined positions b1-b2, c1-c2, d1-d2, and e1-e2. Linear change, as shown in Figure 4, the predetermined positions b1-b2, c1-c2, d1-d2, and e1-e2 are the corners of the rounded rectangle. Since the energy required at the corner is less than the straight line, the laser power here should be less than The laser power at the line, ie, the predetermined power curve, includes heating segment power and laser segment power, the heating segment power being the laser power at the laser 100 scanning straight line, the bending segment power being the laser power at the laser 100 scanning corner, both There are certain differences in that the frit 122 on the seal line is able to achieve relatively uniform energy, with a relatively uniform temperature rise.

控制激光器模組和振鏡,使激光100重複上述的掃描 週期,利用多個掃描週期的激光100進行掃描,使玻璃料122獲得足夠的能量,將該兩塊玻璃基板121和123連接在一起,形成氣密式密封,該激光100完成一次週期性掃描後,其功率值可以保持不變或者採用升溫逐漸減小的功率值進行下一次週期性掃描,藉由後者可以使玻璃料122以一種溫升逐漸減小的溫度曲線來加熱,可以藉由增加掃描次數,來達到目標溫度,或針對每一次掃描週期,均採用不同的功率曲線。 Control the laser module and the galvanometer to cause the laser 100 to repeat the above scan The cycle is performed by using the laser 100 of a plurality of scanning cycles to obtain sufficient energy for the frit 122 to connect the two glass substrates 121 and 123 together to form a hermetic seal. After the laser 100 completes a periodic scan The power value can be kept constant or the next periodic scan can be performed with the power value gradually decreasing, and the latter can heat the frit 122 with a temperature profile whose temperature rise is gradually reduced, by increasing the scan. The number of times to reach the target temperature, or for each scan cycle, a different power curve.

請參考圖6A和6B,其中6A所示的是激光功率P同為400W,且同對長度L為0.3m的玻璃料122掃描10次(n=10),但曲線a激光100的掃描速率v為3m/s,而曲線b的速率v為1m/s,可見兩者因為速率相差較大,得到的升溫曲線也具有較大的差異;圖6B中曲線1、2和3顯示的是掃描次數n以及掃描速率v均相同時,激光功率p不同所獲得的升溫曲線圖,同時,曲線4還提供功率p相同,速率v和掃描次數n不同時,能夠獲得的升溫曲線。因此,由圖6A和6B中可知,可以藉由改變掃描次數、速率和激光功率這三個參數獲得合適的升溫曲線。 Please refer to FIG. 6A and FIG. 6B, wherein 6A shows that the laser power P is 400W, and the glass frit 122 with the length L of 0.3m is scanned 10 times (n=10), but the scanning rate of the curve a laser 100 is v. It is 3m/s, and the rate v of the curve b is 1m/s. It can be seen that the temperature rise curves of the two are also greatly different because of the large difference in the rates; the curves 1, 2 and 3 in Fig. 6B show the number of scans. When n and the scanning rate v are the same, the laser power p is different from the obtained temperature rise graph, and at the same time, the curve 4 also provides the temperature rise curve which can be obtained when the power p is the same and the rate v and the number of scans n are different. Therefore, as can be seen from FIGS. 6A and 6B, a suitable temperature rise curve can be obtained by changing the three parameters of the number of scans, the rate, and the laser power.

在使密封線上的玻璃料122吸收足夠能量(達到預定溫度後)的那一次掃描週期完成後,對玻璃料122進行冷卻,一種冷卻方式採用自然冷卻方式,直接關閉激光輸出,使玻璃料122自然冷卻,由於密封線上的玻璃料122是同步加熱的,因此其冷卻速率相對順序型更為緩和;另一種冷卻方式是採用比加熱的功率值低的冷卻功率值進行週期性掃描,直至該玻璃料冷卻至預定溫度,即,加熱完成之後,仍然重複掃描週期,藉由預定功率曲線方式,以較低的激光功率掃描玻璃料122,使玻璃料122按照預定的冷卻曲線進 行冷卻。能夠控制冷卻曲線具有緩和的冷卻速率,因此在較小溫差冷卻過程中可以產生較好的熱應力。後一種控制玻璃料122冷卻的方式可以是對玻璃料122冷卻全過程的控制,也可以是針對玻璃料122在自然冷卻過程中某一段冷卻速率較快的部分進行控制,而其餘部分採用自然冷卻。 After the scanning cycle of absorbing the sufficient energy (after reaching the predetermined temperature) of the frit 122 on the sealing line is completed, the frit 122 is cooled, and a cooling method is adopted to cool the laser output directly, so that the frit 122 is naturally Cooling, since the frit 122 on the seal line is heated synchronously, the cooling rate is more moderate than the sequential type; the other cooling method is to periodically scan the cooling power value lower than the heating power value until the frit After cooling to a predetermined temperature, that is, after the heating is completed, the scanning cycle is repeated, and the frit 122 is scanned at a lower laser power by a predetermined power curve to cause the frit 122 to follow a predetermined cooling curve. Line cooling. The ability to control the cooling curve has a moderate cooling rate, so better thermal stress can be produced during the small temperature difference cooling process. The latter method of controlling the cooling of the frit 122 may be the control of the whole process of cooling the frit 122, or may be controlled for the portion of the frit 122 which has a relatively fast cooling rate during the natural cooling process, and the rest is cooled by natural cooling. .

對激光100掃描的開啟區域和停止區域採用最佳化的控制方法。一種最佳化方法為:在開啟區域,如圖4中的a1至a2區域,控制振鏡運動而不打開激光輸出,使振鏡內部伺服機構在到達a2點之前進入預定的運動軌跡和運動速率,然後在a2點打開激光輸出,此時激光100也就具有預定的運動軌跡和運動速率,當所有掃描週期完成後,在a2點關閉激光輸出,而振鏡內部伺服機構保持預定的運動軌跡和速率運行一段時間,在a3點停止伺服機構的運動,如圖7所示。 An optimized control method is employed for the open area and the stop area of the laser 100 scan. An optimization method is: in the open area, as in the area of a1 to a2 in FIG. 4, the galvanometer motion is controlled without opening the laser output, so that the internal servo of the galvanometer enters a predetermined motion trajectory and motion rate before reaching the a2 point. Then, the laser output is turned on at point a2, at which time the laser 100 has a predetermined motion trajectory and motion rate. When all the scanning periods are completed, the laser output is turned off at point a2, and the internal servo of the galvanometer maintains a predetermined motion trajectory and The rate runs for a while, stopping the motion of the servo at point a3, as shown in Figure 7.

[實施例二] [Embodiment 2]

請參考圖8,在本實施例中,提出的激光封裝系統相較於實施例一多了溫度測量模組204,該溫度測量模組204與該控制器模組201相連,用於測量激光100照射至玻璃料122表面上光斑110的即時溫度,並將光斑的即時溫度回饋至該控制器模組201。該溫度測量模組204能夠非接觸的、即時的測量光斑110所在位置的玻璃料122的溫度,並將其回饋至控制器模組201,其一特徵為,當光斑110作高速運動時,該溫度測量模組204仍能有足夠的時間/空間解析度來測量光斑110所在處玻璃料122的溫度。控制器模組201能夠採集處理溫度測量模組204回饋的溫度信號,並與激光器模組202藉由控制 信號構成閉回路控制回路。閉回路控制回路具有匹配或高於激光掃描模組203的控制解析度。 Referring to FIG. 8 , in the embodiment, the proposed laser package system has a temperature measurement module 204 compared to the first embodiment. The temperature measurement module 204 is connected to the controller module 201 for measuring the laser 100. The instantaneous temperature of the spot 110 on the surface of the frit 122 is illuminated and the instantaneous temperature of the spot is fed back to the controller module 201. The temperature measuring module 204 can measure the temperature of the frit 122 at the location of the spot 110 in a non-contact manner and feed it back to the controller module 201. The feature is that when the spot 110 is moving at a high speed, the temperature measuring module 204 The temperature measurement module 204 can still have sufficient time/space resolution to measure the temperature of the frit 122 where the spot 110 is located. The controller module 201 is capable of collecting the temperature signal fed back by the processing temperature measuring module 204, and is controlled by the laser module 202. The signal forms a closed loop control loop. The closed loop control loop has a control resolution that matches or is higher than the laser scanning module 203.

請參考圖9,提出激光掃描密封玻璃封裝體的系統包括電腦210、控制器220、激光器250、掃描振鏡組230和高溫計240,其中,該高溫計240即為溫度測量模組。 Referring to FIG. 9, a system for laser scanning a sealed glass package includes a computer 210, a controller 220, a laser 250, a scanning galvanometer 230, and a pyrometer 240. The pyrometer 240 is a temperature measuring module.

因此,本實施例中提出的激光封裝方法與實施例一具有如下區別:可以採用預設升溫的方式對該玻璃料122以預設的溫度曲線進行加熱;採用預設降溫的方式對該玻璃料122以預設的溫度曲線進行降溫。 Therefore, the laser packaging method proposed in the embodiment has the following difference from the first embodiment: the glass frit 122 can be heated by a preset temperature profile by using a preset temperature rise; the glass frit is preset by a cooling method. 122 is cooled by a preset temperature profile.

具體的,在一個掃描週期內,藉由控制器220控制激光器250和掃描振鏡組230,使激光100移動操作和激光功率調整操作同步,利用高溫計240檢測當前激光100的光斑110處的即時溫度,控制器220藉由採集高溫計240回饋的溫度資訊並與預設的目標溫度進行比較和計算,控制激光功率即時變化,從而使密封線上各處的玻璃料122能夠獲得相對均勻的能量,達到預定的溫度,完成以玻璃料122溫度為目標的閉回路控制;在溫度回饋的控制方式下,採用預設溫升的方式,使玻璃料122以預設的溫度曲線來加熱,最終達到目標溫度,如圖11中a-b段所示的溫度曲線。 Specifically, in one scan period, the laser 250 and the scanning galvanometer group 230 are controlled by the controller 220 to synchronize the laser 100 moving operation with the laser power adjusting operation, and the pyrometer 240 is used to detect the instant at the spot 110 of the current laser 100. Temperature, the controller 220 controls the instantaneous change of the laser power by collecting the temperature information fed back by the pyrometer 240 and comparing and calculating with the preset target temperature, so that the frit 122 around the sealing line can obtain relatively uniform energy. The predetermined temperature is reached, and the closed loop control aiming at the temperature of the glass frit 122 is completed; in the temperature feedback control mode, the glass frit 122 is heated by a preset temperature curve by using a preset temperature rise, and finally reaches the target. Temperature, as shown in the ab section of Figure 11, the temperature profile.

在使密封線上的玻璃料吸收足夠能量(達到預定溫度後)的那一次掃描週期完成後,冷卻方式可以是仍然重複掃描週期,藉由溫度回饋控制方式,以較低的激光功率掃描玻璃料122,使玻璃料122按照預定的冷卻曲線進行冷卻,如圖11中b-c段所示的溫度曲線。這種控制玻璃料冷卻的方式可以是對玻璃料122冷卻全 過程的控制,也可以是針對玻璃料122在自然冷卻過程中某一段冷卻速率較快的部分進行控制,而其餘部分採用自然冷卻,如圖11中c-d所示的溫度曲線。 After the scanning cycle in which the frit on the seal line absorbs sufficient energy (after reaching a predetermined temperature) is completed, the cooling mode may be that the scan cycle is still repeated, and the frit 122 is scanned at a lower laser power by the temperature feedback control mode. The frit 122 is cooled according to a predetermined cooling curve, as shown by the temperature curve shown in paragraph bc of FIG. This way of controlling the frit cooling can be to cool the frit 122 The control of the process may also be controlled for a portion of the frit 122 that has a relatively fast cooling rate during natural cooling, while the remainder is naturally cooled, as shown by the temperature profile shown by c-d in FIG.

對激光100掃描的開啟區域和停止區域,本實施例還提出另一種最佳化控制方法為,開啟階段在a1點同步開啟振鏡運動和激光輸出,控制激光輸出功率由較低的功率逐漸上升,在a2點到達預定功率,同時振鏡也進入預定的運動狀態,之後進行正常的週期性掃描;在結束階段,在a2點調整激光輸出功率,使其逐漸減小,在a3點同步停止激光輸出及振鏡運動,具體的控制曲線如圖10所示。 For the open area and the stop area of the laser 100 scanning, another optimization control method is proposed in the embodiment, in which the galvanometer motion and the laser output are synchronously turned on at the a1 point, and the control laser output power is gradually increased from the lower power. At a point a2, the predetermined power is reached, and the galvanometer also enters a predetermined motion state, and then a normal periodic scan is performed; at the end stage, the laser output power is adjusted at a2 point to gradually decrease, and the laser is stopped synchronously at point a3. Output and galvanometer motion, the specific control curve is shown in Figure 10.

採用本實施例提出的激光封裝系統和方法,加熱的均勻性可以從圖12的溫度分佈看出,相較現有技術中採用的順序周線封裝方法玻璃料122具有更均勻的溫度場分佈,空間掃描結果也顯示相較現有技術玻璃料122具有更為均勻的空間溫度場分佈。 With the laser packaging system and method proposed in this embodiment, the uniformity of heating can be seen from the temperature distribution of FIG. 12, which has a more uniform temperature field distribution and space than the sequential circumferential packaging method used in the prior art. The scan results also show a more uniform spatial temperature field distribution than prior art frit 122.

同時,本技術方案具有較寬的技術視窗,有利於OLED顯示器的產率的提高:以4.3英寸OLED顯示器為例,其密封玻璃料周線總長約0.3m。現有的順序周線封裝方法,受技術約束,最高激光掃描速度約為20mm/s,則單個的封裝時間約15s。而採用本技術方案的方法進行封裝時,由於技術視窗寬(可以選擇不同的掃描次數、激光功率和速率),掃描速率可提升至300mm/s以上,激光功率可升至200W以上,能夠極大的提高封裝效率。 At the same time, the technical solution has a wide technical window, which is beneficial to the improvement of the yield of the OLED display: taking a 4.3-inch OLED display as an example, the total length of the sealed glass frit circumference is about 0.3 m. The existing sequential circumferential packaging method is technically constrained, and the highest laser scanning speed is about 20 mm/s, and the single packaging time is about 15 s. When the method of the present technical solution is used for packaging, the scanning speed can be increased to more than 300 mm/s due to the wide technical window (the number of scanning times, laser power and speed can be selected), and the laser power can be increased to more than 200 W, which can greatly Improve packaging efficiency.

由於在本技術方案中,密封線上各處玻璃料122溫度近似同步均勻變化,因此本技術方案可以藉由控制週期性掃描的次數、每一圈的激光功率或激光運動速率的變化來近似控制密封玻璃 料122的升溫、降溫曲線,實現現有技術方案無法實現的對玻璃料122按照預定升溫曲線和降溫曲線的控制。 Since in the present technical solution, the temperature of the frit 122 varies approximately synchronously and uniformly throughout the sealing line, the present technical solution can approximate the control seal by controlling the number of periodic scans, the laser power per revolution, or the change of the laser motion rate. glass The temperature rise and temperature drop curves of the material 122 are controlled by the prior art solution to control the glass frit 122 according to a predetermined temperature rise curve and a temperature drop curve.

除此之外,本技術方案能夠滿足OLED顯示器的氣密密封的要求,可以解決OLED顯示器的激光密封過程中的開啟區域和停止區域密封問題等。 In addition, the technical solution can meet the requirements of the hermetic sealing of the OLED display, and can solve the sealing problem of the opening area and the stopping area in the laser sealing process of the OLED display.

綜上,在本發明實施例提供的激光封裝系統和方法中,該激光掃描模組能使激光快速的在玻璃料上進行週期性掃描,從而能夠較均勻的同步加熱玻璃料,改善現有技術封裝過程中溫度場分佈不均勻的問題;在提出的激光封裝方法中激光器模組能夠發出具有預定功率曲線的激光,從而可以根據預定功率曲線控制玻璃料的加熱過程。 In summary, in the laser packaging system and method provided by the embodiments of the present invention, the laser scanning module enables the laser to perform periodic scanning on the glass frit, thereby enabling uniform heating of the glass frit and improving the prior art packaging. The problem of uneven temperature field distribution in the process; in the proposed laser packaging method, the laser module can emit a laser with a predetermined power curve, so that the heating process of the frit can be controlled according to a predetermined power curve.

進一步的,添加的溫度測量模組能夠測量和回饋玻璃料表面的即時溫度,可以採用預設升溫或者預設降溫等方式使玻璃料依照預定的升溫或者降溫曲線進行加熱或者冷卻。 Further, the added temperature measuring module can measure and feed back the instantaneous temperature of the surface of the frit, and the glass frit can be heated or cooled according to a predetermined heating or cooling curve by a preset heating or a preset cooling.

上述僅為本發明的較佳實施例而已,並不對本發明起到任何限制作用。任何所屬技術領域的技術人員,在不脫離本發明的技術方案的範圍內,對本發明揭露的技術方案和技術內容做任何形式的等同替換或修改等變動,均屬未脫離本發明的技術方案的內容,仍屬於本發明的保護範圍之內。 The above are only the preferred embodiments of the present invention and do not limit the invention in any way. Any changes in the technical solutions and technical contents disclosed in the present invention may be made by those skilled in the art without departing from the technical scope of the present invention. The content is still within the scope of protection of the present invention.

100‧‧‧激光 100‧‧‧Laser

110‧‧‧光斑 110‧‧‧ spot

120‧‧‧OLED顯示器 120‧‧‧OLED display

121‧‧‧蓋板玻璃 121‧‧‧ Cover glass

122‧‧‧玻璃料 122‧‧‧Frit

123‧‧‧基板玻璃 123‧‧‧Substrate glass

124‧‧‧電極 124‧‧‧Electrode

125‧‧‧OLED層 125‧‧‧OLED layer

200‧‧‧電腦 200‧‧‧ computer

201‧‧‧控制器模組 201‧‧‧Controller Module

202‧‧‧激光器模組 202‧‧‧ laser module

203‧‧‧激光掃描模組 203‧‧‧Laser scanning module

Claims (18)

一種激光封裝系統,用於加熱一玻璃封裝體中沿一預定軌跡分佈的一玻璃料以密封該玻璃封裝體,該系統包括:一控制器模組;一激光器模組,與該控制器模組相連且用於生成一激光;以及一激光掃描模組,與該控制器模組和該激光器模組相連,用於將該激光器模組生成的該激光投射至該玻璃料上,其中,該控制器模組用於即時控制該激光掃描模組,控制該激光在該玻璃料上的掃描方向,從而使該激光沿該預定軌跡掃描該玻璃料;該控制器模組還用於即時控制該激光器模組的一輸出功率,使生成的該激光具有與該預定軌跡即時匹配的一功率曲線。 A laser packaging system for heating a glass frit distributed along a predetermined trajectory in a glass package to seal the glass package, the system comprising: a controller module; a laser module, and the controller module Connected and used to generate a laser; and a laser scanning module coupled to the controller module and the laser module for projecting the laser generated by the laser module onto the frit, wherein the control The module is used for instantly controlling the laser scanning module, controlling the scanning direction of the laser on the frit, so that the laser scans the frit along the predetermined trajectory; the controller module is also used for controlling the laser in real time. An output power of the module causes the generated laser to have a power curve that instantly matches the predetermined trajectory. 如申請專利範圍第1項之激光封裝系統,其中,該激光封裝系統還包括一溫度測量模組,該溫度測量模組與該控制器模組相連,用於即時測量被該激光照射到的該玻璃料的表面溫度,並將所測得的表面溫度即時回饋至該控制器模組。 The laser package system of claim 1, wherein the laser package system further comprises a temperature measurement module, the temperature measurement module being connected to the controller module for instantly measuring the laser light being irradiated by the laser The surface temperature of the frit and the measured surface temperature is immediately fed back to the controller module. 如申請專利範圍第2項之激光封裝系統,其中,該溫度測量模組為一高溫計。 The laser packaging system of claim 2, wherein the temperature measuring module is a pyrometer. 如申請專利範圍第1項之激光封裝系統,其中,該系統還包括一電腦,該電腦與該控制器模組相連,用於與該控制器模組進行資料交換。 The laser package system of claim 1, wherein the system further comprises a computer connected to the controller module for exchanging data with the controller module. 如申請專利範圍第4項之激光封裝系統,其中,該控制器模組為單個控制器、多個控制器組成的一控制系統或者是集成安裝於該電腦內部的一控制板卡。 The laser package system of claim 4, wherein the controller module is a single controller, a control system composed of a plurality of controllers or a control board integrated in the computer. 如申請專利範圍第1項之激光封裝系統,其中,該激光掃描模 組內設有一伺服運動機構,該伺服運動機構用於改變該激光的方向及該激光沿該預定軌跡掃描該玻璃料的一速度和/或一加速度。 The laser packaging system of claim 1, wherein the laser scanning mode A servo motion mechanism is provided in the group for changing the direction of the laser and scanning the glass frit along the predetermined trajectory for a speed and/or an acceleration. 一種激光封裝方法,用於加熱一玻璃封裝體中沿一預定軌跡分佈的一玻璃料以密封該玻璃封裝體,包括步驟:啟動一激光器模組,使該激光器模組發出一激光;啟動一激光掃描模組,將該激光器模組發出的該激光投射至該玻璃料上;藉由一控制器模組即時控制該激光掃描模組將該激光投射至該玻璃料上的方向,使該激光沿該預定軌跡掃描該玻璃料;藉由該控制器模組即時控制該激光器模組的一輸出功率,使生成的該激光具有與該預定軌跡即時匹配的一功率曲線;以及使該激光沿該預定軌跡掃描該玻璃料多個週期,直至該玻璃料被加熱至熔點。 A laser encapsulation method for heating a glass frit distributed along a predetermined trajectory in a glass package to seal the glass package, comprising the steps of: starting a laser module, causing the laser module to emit a laser; and starting a laser a scanning module, projecting the laser light emitted by the laser module onto the glass frit; and controlling, by a controller module, the laser scanning module to project the laser onto the glass frit, so that the laser edge The predetermined trajectory scans the glass frit; the controller module instantly controls an output power of the laser module, so that the generated laser has a power curve that instantly matches the predetermined trajectory; and the laser is advanced along the predetermined The trajectory scans the frit for multiple cycles until the frit is heated to the melting point. 如申請專利範圍第7項之激光封裝方法,其中,該預定軌跡包括一個或多個直線段與一個或多個彎曲段,該功率曲線包括與該一個或多個直線段相對應的一個或多個直線段加熱功率曲線和與該一個或多個彎曲段相對應的一個或多個彎曲段加熱功率曲線,該直線段加熱功率曲線對應的該輸出功率與該彎曲段加熱功率曲線對應的該輸出功率相異。 The laser encapsulation method of claim 7, wherein the predetermined trajectory comprises one or more straight segments and one or more curved segments, the power curve comprising one or more corresponding to the one or more straight segments a straight line segment heating power curve and one or more curved segment heating power curves corresponding to the one or more curved segments, the output power corresponding to the straight segment heating power curve and the output corresponding to the bending segment heating power curve The power is different. 如申請專利範圍第7項之激光封裝方法,其中,該多個週期的掃描採用不變的或者逐漸減小的該激光器模組的該輸出功率。 The laser packaging method of claim 7, wherein the scanning of the plurality of cycles uses the output power of the laser module that is constant or gradually decreasing. 如申請專利範圍第7項之激光封裝方法,其中,還包括使用一溫度測量模組測量並回饋該玻璃料表面的即時溫度至該控制器模組,藉由該控制器模組調整掃描的週期次數、該激光器模組的該 輸出功率以及該激光沿該預定軌跡掃描該玻璃料的速率中的至少一者,使該玻璃料的溫度變化符合預設的一溫度曲線。 The laser packaging method of claim 7, wherein the method further comprises: measuring and feeding back an instantaneous temperature of the surface of the frit to the controller module by using a temperature measuring module, wherein the controller module adjusts a scanning period Number of times, the laser module At least one of the output power and the rate at which the laser scans the frit along the predetermined trajectory causes the temperature change of the frit to conform to a predetermined temperature profile. 如申請專利範圍第10項之激光封裝方法,其中,該激光沿該預定軌跡掃描該玻璃料的速率範圍是1m/s-5m/s。 The laser encapsulation method of claim 10, wherein the laser scans the frit along the predetermined trajectory at a rate ranging from 1 m/s to 5 m/s. 如申請專利範圍第7項之激光封裝方法,其中,在啟動該激光器模組之前,先啟動該激光掃描模組,直至該激光掃描模組能夠使該激光以預定的速度沿該預定軌跡投射至該玻璃料上再啟動該激光器模組。 The laser packaging method of claim 7, wherein the laser scanning module is activated before the laser module is activated until the laser scanning module can project the laser along the predetermined trajectory at a predetermined speed to The laser module is activated on the frit. 如申請專利範圍第7項之激光封裝方法,其中,還包括在該玻璃料被加熱至熔點後,立即關閉該激光器模組,使該玻璃料自然冷卻。 The laser encapsulation method of claim 7, wherein the laser module is immediately turned off after the glass frit is heated to a melting point, so that the glass frit is naturally cooled. 如申請專利範圍第13項之激光封裝方法,其中,還包括在關閉該激光器模組後,使該激光掃描模組繼續運作一段時間,再停止該激光掃描模組。 The laser packaging method of claim 13, wherein the laser scanning module is further operated for a period of time after the laser module is turned off, and then the laser scanning module is stopped. 如申請專利範圍第7項之激光封裝方法,其中,還包括在該玻璃料被加熱至熔點後,降低該激光器模組的該輸出功率至一冷卻功率值,繼續使該激光沿該預定軌跡對該玻璃料進行週期性掃描,直至該玻璃料冷卻至一預定溫度。 The laser encapsulation method of claim 7, wherein the method further comprises: after the frit is heated to a melting point, reducing the output power of the laser module to a cooling power value, and continuing to cause the laser to follow the predetermined trajectory. The frit is periodically scanned until the frit cools to a predetermined temperature. 如申請專利範圍第15項之激光封裝方法,其中,還包括在該玻璃料冷卻至該預定溫度後,繼續進行自然冷卻。 The laser packaging method of claim 15, wherein the method further comprises: after the glass frit is cooled to the predetermined temperature, the natural cooling is continued. 如申請專利範圍第7項之激光封裝方法,其中,同步啟動該激光器模組和該激光掃描模組,並逐漸提升該激光器模組的該輸出功率,使得在該激光掃描模組能夠使該激光以預定的速度沿該預定軌跡投射至該玻璃料上的同時該激光器模組的該輸出功率達到預 定的功率。 The laser packaging method of claim 7, wherein the laser module and the laser scanning module are synchronously activated, and the output power of the laser module is gradually increased, so that the laser scanning module can enable the laser The output power of the laser module reaches the pre-projection at a predetermined speed along the predetermined trajectory onto the frit The power is fixed. 如申請專利範圍第17項之激光封裝方法,其中,還包括在該玻璃料被加熱至熔點後,同步調整該激光器模組的該輸出功率及該激光沿該預定軌跡掃描該玻璃料的速率,使該輸出功率及掃描速率逐漸減小直至同時為零。 The laser encapsulation method of claim 17, further comprising, after the frit is heated to a melting point, synchronously adjusting the output power of the laser module and the rate at which the laser scans the frit along the predetermined trajectory, The output power and scan rate are gradually reduced until they are zero at the same time.
TW104117484A 2014-07-29 2015-05-29 Laser packaging system and method TWI629915B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201410367513.6 2014-07-29
CN201410367513.6A CN105336877B (en) 2014-07-29 2014-07-29 The system and method for laser scanning seal glass packaging body

Publications (2)

Publication Number Publication Date
TW201605285A true TW201605285A (en) 2016-02-01
TWI629915B TWI629915B (en) 2018-07-11

Family

ID=55216738

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104117484A TWI629915B (en) 2014-07-29 2015-05-29 Laser packaging system and method

Country Status (6)

Country Link
JP (1) JP6374093B2 (en)
KR (1) KR101920286B1 (en)
CN (1) CN105336877B (en)
SG (1) SG11201700622VA (en)
TW (1) TWI629915B (en)
WO (1) WO2016015515A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331590B (en) * 2016-04-29 2019-06-25 上海微电子装备(集团)股份有限公司 Plesiochronous laser package system and method
CN107665826B (en) * 2016-07-29 2019-11-26 上海微电子装备(集团)股份有限公司 Laser package method and laser package device
CN106206985B (en) * 2016-08-19 2017-11-07 京东方科技集团股份有限公司 Encapsulating structure and preparation method, display panel and display device
CN106425088B (en) * 2016-10-25 2019-09-17 昆山国显光电有限公司 The method and package sealing with laser system of package sealing with laser frit
CN109093251B (en) * 2017-06-20 2020-08-04 上海微电子装备(集团)股份有限公司 Laser packaging device and packaging method
CN109422449B (en) * 2017-09-01 2021-03-09 上海微电子装备(集团)股份有限公司 Laser scanning packaging system and method
CN109542449A (en) * 2018-10-29 2019-03-29 大族激光科技产业集团股份有限公司 A kind of non-linear laser power control NC programmed method and laser power control system
CN110018668A (en) * 2019-04-11 2019-07-16 湖北三江航天红峰控制有限公司 A kind of laser power follow-up control method
CN110031327A (en) * 2019-04-19 2019-07-19 西北核技术研究所 Composite material mechanical behavior under high temperature-rate of temperature rise relevance parameter test macro and method
CN111138076B (en) * 2019-12-30 2022-04-19 武汉华工激光工程有限责任公司 Laser glass welding control system and method
CN112171056B (en) * 2020-08-14 2023-04-07 大族激光科技产业集团股份有限公司 OLED laser packaging device
CN115890009B (en) * 2023-03-03 2023-05-12 北京金橙子科技股份有限公司 Laser and galvanometer data processing system, method and medium based on function upgrading

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205216A (en) * 2005-01-28 2006-08-10 Pioneer Electronic Corp Laser welding equipment and laser welding method
US7537504B2 (en) * 2005-12-06 2009-05-26 Corning Incorporated Method of encapsulating a display element with frit wall and laser beam
CN101512709B (en) * 2005-12-06 2011-03-23 康宁股份有限公司 Hermetically sealed glass package and method of manufacture
TWI327757B (en) * 2005-12-06 2010-07-21 Corning Inc System and method for frit sealing glass packages
CN201002157Y (en) * 2006-12-08 2008-01-09 华南理工大学 Selective laser micro-braze-welding system based on vibration mirror scanning
US8247730B2 (en) * 2007-09-28 2012-08-21 Corning Incorporated Method and apparatus for frit sealing with a variable laser beam
KR101117732B1 (en) * 2010-01-19 2012-02-24 삼성모바일디스플레이주식회사 Laser beam irradiation apparatus for substrate sealing and manufacturing method of organic light emitting display device using the same
CN102248304A (en) * 2011-01-13 2011-11-23 苏州德龙激光有限公司 CO2 laser high-speed slotting device and method for backlight source processing
CN102690045A (en) * 2011-03-21 2012-09-26 上海微电子装备有限公司 Packaging device and packaging method
CN102694132B (en) * 2011-03-21 2016-04-20 上海微电子装备有限公司 A kind of packaging system and method for packing
JP2013125718A (en) * 2011-12-16 2013-06-24 Sharp Corp Display device and manufacturing method thereof
JP6116170B2 (en) * 2012-09-24 2017-04-19 株式会社半導体エネルギー研究所 Manufacturing method of sealing body
CN102945054A (en) * 2012-10-12 2013-02-27 上海大学 Photoelectric device encapsulation and laser bonding temperature collection and control system and method
CN103482857A (en) * 2013-09-30 2014-01-01 上海大学 Laser quasi-synchronous scanning method and system
CN103474587B (en) * 2013-09-30 2015-12-02 上海大学 OLED packaging system
CN103553312A (en) * 2013-10-18 2014-02-05 昆山思拓机器有限公司 Temperature control device and method for laser welding OLED (organic light-emitting diode) glass

Also Published As

Publication number Publication date
SG11201700622VA (en) 2017-03-30
JP2017524538A (en) 2017-08-31
CN105336877A (en) 2016-02-17
KR20170041779A (en) 2017-04-17
KR101920286B1 (en) 2018-11-20
JP6374093B2 (en) 2018-08-15
WO2016015515A1 (en) 2016-02-04
TWI629915B (en) 2018-07-11
CN105336877B (en) 2018-01-26

Similar Documents

Publication Publication Date Title
TWI629915B (en) Laser packaging system and method
US9150450B2 (en) System and method for frit sealing glass packages
US10259144B2 (en) Laser sintering apparatus and laser sintering method
TWI623120B (en) Laser sealed glass package packaging system and packaging method
TW201213031A (en) Laser beam irradiation apparatus for substrate sealing, and method of manufacturing organic light emitting display device by using the laser beam irradiation apparatus
CN106607645A (en) Laser packaging system and method for temperature control in laser packaging process
US9393642B2 (en) Sealing apparatus, substrate-sealing apparatus including the same and substrate-sealing method
TWI674691B (en) Laser package device and packaging method
CN105226204A (en) A kind of laser package equipment and method for packing
KR101605079B1 (en) Rapid thermal processing apparatus
CN104761132B (en) The laser assisted frit package system and method for a kind of Two-beam Coupling
CN107331590B (en) Plesiochronous laser package system and method
CN107785286A (en) Laser package method
US20160300769A1 (en) Encapsulation system and encapsulation method
US10882211B2 (en) Cement sintering device and cement sintering method
CN105895828A (en) Stepping type laser packaging temperature and power detection-control device and method
CN105810847B (en) The frit packaging system and method for laser assisted
CN106158669B (en) A kind of device and control method of plesiochronous encapsulation
KR102493187B1 (en) Substrate positioning apparatus and methods
CN105023880A (en) Sealing device of glass packaging body
KR20120019333A (en) Method for sealing frit using laser
TW202105648A (en) Thermal processing system with temperature non-uniformity control