TW201603649A - Calibration of photoelectromagnetic sensor in a laser source - Google Patents

Calibration of photoelectromagnetic sensor in a laser source Download PDF

Info

Publication number
TW201603649A
TW201603649A TW104119556A TW104119556A TW201603649A TW 201603649 A TW201603649 A TW 201603649A TW 104119556 A TW104119556 A TW 104119556A TW 104119556 A TW104119556 A TW 104119556A TW 201603649 A TW201603649 A TW 201603649A
Authority
TW
Taiwan
Prior art keywords
pulse
energy
pulses
power
laser
Prior art date
Application number
TW104119556A
Other languages
Chinese (zh)
Other versions
TWI569688B (en
Inventor
劉嶸
羅伯特J 拉法斯
大衛W 麥爾斯
羅伯特A 貝格斯泰德
保羅A 蒙坎茲
Original Assignee
Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/330,526 external-priority patent/US9239269B1/en
Priority claimed from US14/330,488 external-priority patent/US9239268B1/en
Application filed by Asml荷蘭公司 filed Critical Asml荷蘭公司
Publication of TW201603649A publication Critical patent/TW201603649A/en
Application granted granted Critical
Publication of TWI569688B publication Critical patent/TWI569688B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

In a laser-produced plasma (LPP) extreme ultraviolet (EUV) system, laser pulses are used to produce EUV light. To determine the energy of individual laser pulses, a photoelectromagnetic (PEM) detector is calibrated to a power meter using a calibration coefficient. When measuring a unitary laser beam comprising pulses of a single wavelength, the calibration coefficient is calculated based on a burst of the pulses. A combined laser beam has main pulses of a first wavelength alternating with pre-pulses pulses of a second wavelength. To calculate the energy of the main pulses in the combined laser beam, the calibration coefficient calculated for a unitary laser beam of the main pulses is used. To calculate the energy of the pre-pulses in the combined laser beam, a new calibration coefficient is calculated. When the calculated energy values drift beyond a pre-defined threshold, the calibration coefficients are recalculated.

Description

雷射源中之光電磁感測器之校正技術 Correction technology of optical electromagnetic sensor in laser source 發明領域 Field of invention

本申請案概有關於雷射系統,且更具言之,係有關於一雷射製造的電漿(LPP)極紫外光(EUV)系統之一雷射源中的光電磁感測器之校正。 This application is all about laser systems and, more specifically, for correction of optical electromagnetic sensors in a laser source of one of the laser-made plasma (LPP) extreme ultraviolet (EUV) systems. .

發明背景 Background of the invention

半導體產業繼續地發展微影技術,其能夠印製更小的積體電路尺寸。極紫外(“EUV”)光(有時亦稱為軟x光)一般係被界定為具有在10至102nm間之波長的電磁輻射。EUV微影術一般係被認為包含在10~14nm範圍內之波長的EUV光,且係用來製造基材譬如矽晶圓中之極小的細構(例如32nm以下的細構)。該等系統必須是高度可靠的,並能提供具成本效益的產能和合理的製程幅度。 The semiconductor industry continues to develop lithography technology, which is capable of printing smaller integrated circuit sizes. Extreme ultraviolet ("EUV") light (sometimes referred to as soft x-ray) is generally defined as electromagnetic radiation having a wavelength between 10 and 102 nm. EUV lithography is generally considered to include EUV light at wavelengths in the range of 10 to 14 nm, and is used to fabricate extremely fine structures (e.g., fine structures below 32 nm) in a substrate such as a germanium wafer. These systems must be highly reliable and provide cost-effective capacity and a reasonable process margin.

用以產生EUV光的方法包括,但不一定限制於,將一材料轉變成一電漿狀態,其具有一或多種元素(例如氙、鋰、錫、銦、銻、碲、鋁等)具有一或更多在該EUV範圍內的放射線等。在一該等方法中,通常稱為雷射製造的電漿(“LPP”),該所需的電漿能在一LPP EUV源電漿腔室內 之一照射位置以一雷射束照射一標靶材料,譬如一具有該所需放射線元素的材料之細滴、細流或串束等來被產生。 The method for producing EUV light includes, but is not necessarily limited to, converting a material into a plasma state having one or more elements (eg, antimony, lithium, tin, indium, antimony, bismuth, aluminum, etc.) having one or More radiation in the EUV range, etc. In one such method, commonly referred to as laser-made plasma ("LPP"), the desired plasma can be in a LPP EUV source plasma chamber. One of the illumination positions is generated by irradiating a target material with a laser beam, such as a fine droplet, a trickle or a bunch of materials having the desired radiation element.

圖1示出一習知技術的LPP EUV系統100之一些部件。一雷射源101,譬如一CO2雷射,會造成一雷射束102,其會通過一射束輸送系統103並穿過聚焦光件104等(包含一透鏡及一操控鏡)。聚焦光件104具有一主焦點105在一LPP EUV源電漿腔室110內之一照射位置處。一細滴產生器106會製造一適當標靶材料的細滴107等,其當在該主焦點105處被雷射束102射擊到時,會產生一電漿其會照射EUV光。一橢圓鏡(“收集器”)108會將來自該電漿的EUV光聚焦在一焦點區109(亦稱為一中間焦點位置),用以將所產生的EUV光輸送至例如一微影術掃描系統(未示出)。焦點區109典型將會在一掃描器(未示出)內,其含有晶圓等係要被曝露於該EUV光。在某些實施例中,可能有多數個雷射源101,且其射束全都會聚於聚焦光件104上。一種LPP EUV光源可能使用一CO2雷射及一硒化鋅(ZnSe)透鏡具有一防反射塗層及一大約6至8吋的透明口徑。 FIG. 1 illustrates some components of a prior art LPP EUV system 100. A laser source 101, such as a CO 2 laser, will cause a laser beam 102 that passes through a beam delivery system 103 and passes through a focusing beam 104 or the like (including a lens and a steering mirror). The focusing optic 104 has a main focus 105 at an illumination location within an LPP EUV source plasma chamber 110. A fine drop generator 106 produces a fine droplet 107 or the like of a suitable target material which, when fired at the primary focus 105 by the laser beam 102, produces a plasma which illuminates the EUV light. An elliptical mirror ("collector") 108 focuses the EUV light from the plasma in a focus region 109 (also referred to as an intermediate focus position) for delivering the generated EUV light to, for example, a lithography Scanning system (not shown). The focus area 109 will typically be in a scanner (not shown) containing wafers or the like to be exposed to the EUV light. In some embodiments, there may be a plurality of laser sources 101, and all of their beams converge on the focusing optics 104. An LPP EUV source may use a CO 2 laser and a zinc selenide (ZnSe) lens with an anti-reflective coating and a transparent aperture of about 6 to 8 inches.

該雷射源101能被以一猝發模式操作,在一猝發中會有若干個光脈衝產生,且在各猝發之間會有某些時間量。該雷射源101可包含若干個雷射,其會產生脈衝的雷射束具有各別的性質,譬如波長及/或脈衝長度。在該雷射源101、該射束輸送系統103、及聚焦光件104內,該等分開的雷射束可被組合、分裂、或者操縱。 The laser source 101 can be operated in a burst mode in which several light pulses are generated in a burst and there is some amount of time between bursts. The laser source 101 can include a plurality of lasers that produce pulsed laser beams having various properties, such as wavelength and/or pulse length. Within the laser source 101, the beam delivery system 103, and the focusing optics 104, the separate laser beams can be combined, split, or manipulated.

於該雷射束102到達該LPP EUV源電漿腔室110 之前,該射束102會在該雷射源101、該射束輸送系統103及/或該聚焦光件104內的不同點處被測量。該等測量值係使用各種會測量該雷射束102之一或更多特性的儀器來獲取。於某些實例中,該雷射束102可在其與其它被產生的射束組合之前,或在其已組合之後來被測量。但是,該等儀器可能不是直接測量該雷射束102的某些性質,或可能不是被以一能測量該雷射束102之該等性質的方式來校正。 The laser beam 102 reaches the LPP EUV source plasma chamber 110 Previously, the beam 102 would be measured at different points within the laser source 101, the beam delivery system 103, and/or the focusing optics 104. These measurements are obtained using various instruments that measure one or more characteristics of the laser beam 102. In some examples, the laser beam 102 can be measured before it is combined with other generated beams, or after it has been combined. However, such instruments may not directly measure certain properties of the laser beam 102, or may not be corrected in a manner that enables the measurement of the properties of the laser beam 102.

發明概要 Summary of invention

依據一實施例,一種系統包含:一能量監測器在一雷射製造的電漿(LPP)極紫外光(EUV)系統內,該能量監測器係構製成能測量一雷射束其包含前脈衝和主脈衝等以一時間長度分開,該能量監測器包含:一功率量計構製成能感測歷經一界定的時間週期之該等雷射脈衝的串列之一平均功率,及一光電磁(PEM)檢測器構製成能提供一電壓訊號表示在該界定的時間週期的一部份中以該時間長度與該第一主脈衝分開之該第一前脈衝的一暫時廓形;一校正模組構製成能依據一主脈衝校正係數和對應於該第一主脈衝之該電壓訊號的一部份之一脈衝積分來決定該第一主脈衝之一功率,並依據該平均功率和該第一主脈衝之該功率來決定該第一前脈衝之一功率,及依據該第一前脈衝之該功率和對應於該第一前脈衝之該電壓訊號的一部份之一積分來決定一前脈衝校正係數;及一單脈衝能量計算(SPEC)模組構製成能依據該前脈衝校正係數和由該PEM檢測器提供 之一對應於該第二前脈衝的第二電壓訊號的一部份之一脈衝積分來決定一第二前脈衝之一能量,並依據該主脈衝校正係數和對應於該第二主脈衝的第二電壓訊號的一部份之一脈衝積分來決定一第二主脈衝之一能量。 In accordance with an embodiment, a system includes: an energy monitor in a laser fabricated plasma (LPP) extreme ultraviolet (EUV) system configured to measure a laser beam prior to its inclusion The pulse and the main pulse are separated by a length of time, and the energy monitor comprises: a power meter configured to sense an average power of the series of the laser pulses over a defined period of time, and a light An electromagnetic (PEM) detector is configured to provide a voltage signal indicative of a temporary profile of the first pre-pulse separated from the first main pulse by a length of time during a portion of the defined time period; The calibration module is configured to determine a power of the first main pulse according to a main pulse correction coefficient and a pulse integral of a portion of the voltage signal corresponding to the first main pulse, and according to the average power sum The power of the first main pulse determines a power of the first pre-pulse, and is determined according to the power of the first pre-pulse and an integral of a portion of the voltage signal corresponding to the first pre-pulse a front pulse correction coefficient; and one Pulse energy calculation (SPEC) of the front module can be constructed to pulses provided by the correction coefficient and the detector based PEM One of the portions of the second voltage signal corresponding to the second pre-pulse is pulse-integrated to determine an energy of a second pre-pulse, and the correction coefficient according to the main pulse and the corresponding to the second main pulse One of the two voltage signals is pulse integrated to determine the energy of one of the second main pulses.

該系統可更包含一再校正模組,構製成能依據該PEM所提供的第二電壓訊號來計算該雷射束歷經一第二界定的時間週期之一能量,且構製成能將該所算出的雷射束能量相較於該功率量計歷經該第二界定的時間週期所感測的平均功率,並能依據該比較來指示該校正模組要更新該前脈衝校正係數。 The system may further include a re-correction module configured to calculate, according to the second voltage signal provided by the PEM, the energy of the laser beam over a second defined time period, and configured to The calculated laser beam energy is compared to the average power sensed by the power meter over the second defined time period, and the correction module is instructed to update the pre-pulse correction coefficient according to the comparison.

依據一實施例,一種方法包含:在一雷射製造的電漿(LPP)極紫外光(EUV)系統內使用一能量監測器來接收一包含前脈衝及主脈衝等的雷射束之一測量值,該雷射束之測量值包含:使用一功率量計所測得之該等雷射脈衝的串列歷經一界定的時間週期之一平均功率,及一第一電壓訊號表示以一時間長度與該等主脈衝之一第一主脈衝分開的該等前脈衝之一第一前脈衝的一暫時廓形,該第一電壓訊號由一光電磁(PEM)檢測器提供;依據一主脈衝校正係數及對應於該第一主脈衝之該第一電壓訊號的一部份之一積分來決定該第一主脈衝之一功率;依據該平均功率和該第一主脈衝之該功率來決定該第一前脈衝之一功率;依據該第一前脈衝之該功率和對應於該第一前脈衝之該第一電壓訊號的一部份之一積分來決定一前脈衝校正係數;依據該前脈衝校正係數和由該PEM檢測器提供之對應於一第二前 脈衝之一第二電壓訊號的一部份之一積分來決定該第二前脈衝之一能量;及依據該主脈衝校正係數和對應於一第二主脈衝之該第二電壓訊號的一部份之一積分來決定該第二主脈衝之一能量。 In accordance with an embodiment, a method includes: using an energy monitor in a laser-made plasma (LPP) extreme ultraviolet (EUV) system to receive a measurement of a laser beam including a pre-pulse and a main pulse a value, the measured value of the laser beam comprising: a series of the laser pulses measured using a power meter, the average power of one of the defined time periods, and a first voltage signal representing a length of time a temporary profile of a first pre-pulse of one of the pre-pulses separated from the first main pulse of the primary pulses, the first voltage signal being provided by a photo-electromagnetic (PEM) detector; corrected by a primary pulse And integrating a coefficient and a portion of the first voltage signal corresponding to the first main pulse to determine a power of the first main pulse; determining the first according to the average power and the power of the first main pulse a power of a pre-pulse; determining a pre-pulse correction coefficient according to the power of the first pre-pulse and an integral of a portion of the first voltage signal corresponding to the first pre-pulse; correcting according to the pre-pulse Coefficient and by the PEM detector For to correspond to a second front One of the portions of the second voltage signal is integrated to determine an energy of the second pre-pulse; and a portion of the second voltage signal corresponding to the second main pulse according to the main pulse correction coefficient One of the integrals determines the energy of one of the second main pulses.

依據一實施例,一非暫時性電腦可讀的媒體具有指令體現其上,該等指令可被一或更多個處理器執行來進行如下操作,包含:在一雷射製造的電漿(LPP)極紫外光(EUV)系統中使用一能量監測器來接收一包含前脈衝和主脈衝等的雷射束之一測量值,該雷射束之該測量值包含:使用一功率量計所測得之該等雷射脈衝的串列歷經一界定的時間週期之一平均功率,及一第一電壓訊號表示以一時間長度與該等主脈衝之一第一主脈衝分開的該等前脈衝之一第一前脈衝之一暫時廓形,該第一電壓訊號由一光電磁(PEM)檢測器提供;依據一主脈衝校正係數和對應於該第一主脈衝之該第一電壓訊號的一部份之一積分來決定該第一主脈衝之一功率;依據該平均功率和該第一主脈衝之該功率來決定該第一前脈衝之一功率;依據該第一前脈衝之該功率和對應於該第一前脈衝之該第一電壓訊號的一部份之一積分來決定一前脈衝校正係數;依據該前脈衝校正係數和由該PEM檢測器提供之一對應於一第二前脈衝的第二電壓訊號的一部份之一積分來決定該第二前脈衝之一能量;及依據該主脈衝校正係數和對應於一第二主脈衝之該第二電壓訊號的一部份之一積分來決定該第二主脈衝之一能量。 According to an embodiment, a non-transitory computer readable medium having instructions embodied thereon, the instructions being executable by one or more processors to perform the following operations, comprising: a plasma fabricated in a laser (LPP) An extreme ultraviolet (EUV) system uses an energy monitor to receive a measurement of a laser beam comprising a pre-pulse and a main pulse, the measurement of the laser beam comprising: measuring using a power meter The series of laser pulses are averaged over a defined period of time, and a first voltage signal is indicative of the pre-pulses separated from the first main pulse of one of the main pulses by a length of time a temporary profile of one of the first pre-pulses, the first voltage signal being provided by a photoelectromagnetic (PEM) detector; a correction coefficient according to a main pulse and a portion of the first voltage signal corresponding to the first main pulse One of the integrals determines a power of the first main pulse; determining the power of the first pre-pulse according to the average power and the power of the first main pulse; and the power and corresponding according to the first pre-pulse In the first pre-pulse Integrating a portion of the voltage signal to determine a pre-pulse correction coefficient; and determining a pre-pulse correction coefficient and a portion of the second voltage signal corresponding to a second pre-pulse provided by the PEM detector Integrating to determine an energy of the second pre-pulse; and determining an energy of the second main pulse according to the main pulse correction coefficient and an integral of a portion of the second voltage signal corresponding to a second main pulse .

依據一實施例,一種系統包含:一能量監測器在一雷射製造的電漿(LPP)極紫外光(EUV)系統之一雷射源中,該能量監測器構製成能測量具有同一波長且在一猝發中發生的雷射脈衝等,該能量監測器包含:一功率量計構製成能測量該等雷射脈衝歷經一界定的時間週期之一平均功率,及一光電磁(PEM)檢測器構製成能提供一第一電壓訊號表示該等雷射脈衝的猝發歷經該界定的時間週期的至少一部份之一暫時廓形;一校正模組構製成能依據該平均功率和該第一電壓訊號來決定一校正係數,該校正係數為由該平均功率與該第一電壓訊號之一積分來決定之該等猝發的雷射脈衝之一能量的比值;及一單脈衝能量計算(SPEC)模組構製成能依據該校正係數和由該PEM檢測器提供之表示該後續脈衝之一暫時廓形的一第二電壓訊號之一脈衝積分來決定該串列的雷射脈衝之一後續脈衝的一能量。 According to an embodiment, a system includes: an energy monitor in a laser source of a laser-made plasma (LPP) extreme ultraviolet (EUV) system, the energy monitor configured to measure the same wavelength And a laser pulse or the like occurring in a burst, the energy monitor includes: a power meter configured to measure the average power of the laser pulses over a defined period of time, and a photoelectromagnetic (PEM) The detector is configured to provide a first voltage signal indicating that the burst of the laser pulses is temporarily profiled over at least one of the defined time periods; a calibration module is configured to be based on the average power and The first voltage signal determines a correction coefficient, wherein the correction coefficient is a ratio of energy of one of the bursts of the laser pulses determined by integrating the average power with one of the first voltage signals; and calculating a single pulse energy The (SPEC) module is configured to determine the laser pulse of the series according to the correction coefficient and a pulse integral of a second voltage signal provided by the PEM detector indicating a temporary profile of the one of the subsequent pulses Follow-up pulse One energy.

該系統可更包含一再校正模組構製成能依據一表示第二猝發之一第二暫時廓形的第三電壓訊號來計算一第二猝發之一能量,且能將該第二猝發之該能量相較於一被該功率量計感測的第二平均功率,並能依據該比較來指示該校正模組要更新該校正係數。 The system can further include a recalibration module configured to calculate a second burst of energy according to a third voltage signal representing a second temporary profile of the second burst, and the second burst can be The energy is compared to a second average power sensed by the power meter, and the correction module is instructed to update the correction coefficient according to the comparison.

依據一實施例,一種方法包含:在一雷射製造的電漿(LPP)極紫外光(EUV)系統之一雷射源中,使用一能量監測器來測量具有同一波長且在一猝發中發生的雷射脈衝等,該測量包含:由一功率量計接收歷經一界定的時間週期所測得的該等雷射脈衝之一平均功率;及由一光電磁 (PEM)檢測器接收一第一電壓訊號表示在該界定的時間週期的至少一部份中所感測之該等猝發的雷射脈衝之一暫時廓形;依據該平均功率和該第一電壓訊號來決定一校正係數,該校正係數為由該平均功率與該第一電壓訊號之一積分所決定之該等猝發的雷射脈衝之一能量的比值;及依據該校正係數和由該PEM檢測器提供之一表示該後續脈衝之一暫時廓形的第二電壓訊號之一積分來決定該串列的雷射脈衝之一後續脈衝的一能量。 According to an embodiment, a method includes: using an energy monitor to measure the same wavelength and occurring in a burst in a laser source of a laser-made plasma (LPP) extreme ultraviolet (EUV) system Laser pulse or the like, the measurement comprising: receiving, by a power meter, an average power of one of the laser pulses measured over a defined period of time; and The (PEM) detector receives a first voltage signal indicative of a temporary profile of one of the bursts of the detected laser pulses in at least a portion of the defined time period; and based on the average power and the first voltage signal Determining a correction coefficient, the correction coefficient being a ratio of energy of one of the bursts of the laser pulses determined by the integration of the average power and one of the first voltage signals; and according to the correction coefficient and by the PEM detector One of the second voltage signals representing one of the subsequent pulses is integrated to determine an energy of a subsequent pulse of one of the series of laser pulses.

依據一實施例,一非暫時性電腦可讀的媒體具有指令體現其上,該等指令可被一或更多個處理器執行來進行如下操作,包含:在一雷射製造的電漿(LPP)極紫外光(EUV)系統之一雷射源中使用一能量監測器來測量具有同一波長且在一猝發中發生的雷射脈衝等,該測量包含:由一功率量計接收歷經一界定的時間週期所測得之該等雷射脈衝之一平均功率,及由一光電磁(PEM)檢測器接收一第一電壓訊號表示在該界定的時間週期的至少一部份中所感測之該等猝發的雷射脈衝之一暫時廓形;依據該平均功率和該第一電壓訊號來決定一校正係數,該校正係數為由該平均功率與該第一電壓訊號之一積分來決定之該等猝發的雷射脈衝之一能量的比值;及依據該校正係數和由該PEM檢測器提供之一表示該後續脈衝之一暫時廓形的第二電壓訊號之一積分來決定該串列的雷射脈衝之一後續脈衝的一能量。 According to an embodiment, a non-transitory computer readable medium having instructions embodied thereon, the instructions being executable by one or more processors to perform the following operations, comprising: a plasma fabricated in a laser (LPP) An energy monitor in one of the extreme ultraviolet (EUV) systems uses an energy monitor to measure laser pulses or the like that have the same wavelength and occur in a burst, the measurement comprising: receiving by a power meter over a defined The average power of one of the laser pulses measured during the time period and the receipt of a first voltage signal by a photoelectromagnetic (PEM) detector indicating that the first voltage signal is sensed in at least a portion of the defined time period One of the bursting laser pulses is temporarily shaped; a correction coefficient is determined according to the average power and the first voltage signal, and the correction coefficient is determined by integrating the average power with one of the first voltage signals a ratio of energy of one of the laser pulses; and determining the laser pulse of the series based on the correction factor and an integral of a second voltage signal provided by the PEM detector indicating a temporary profile of one of the subsequent pulses An energy of a subsequent pulse.

100‧‧‧LLP EUV系統 100‧‧‧LLP EUV system

101‧‧‧雷射源 101‧‧‧Laser source

102‧‧‧雷射束 102‧‧‧Ray beam

103‧‧‧射束輸送系統 103‧‧‧beam conveyor system

104‧‧‧聚焦光件 104‧‧‧ Focusing light parts

105‧‧‧主焦點 105‧‧‧ main focus

106‧‧‧細滴產生器 106‧‧‧Drip generator

107‧‧‧細滴 107‧‧‧fine drops

108‧‧‧橢圖鏡 108‧‧‧ Ellipsoid

109‧‧‧焦點區 109‧‧‧ Focus area

110‧‧‧LPP EUV源電漿腔室 110‧‧‧LPP EUV source plasma chamber

200、902‧‧‧能量監測器 200, 902‧‧‧ energy monitor

202‧‧‧功率量計 202‧‧‧Power meter

204‧‧‧射束分裂器 204‧‧‧beam splitter

206‧‧‧反射器 206‧‧‧ reflector

208‧‧‧光電磁檢測器 208‧‧‧Photoelectromagnetic detector

300‧‧‧示圖 300‧‧‧ diagram

302、402、602‧‧‧雷射猝發 302, 402, 602‧‧ ‧ laser bursts

304‧‧‧猝發長度 304‧‧‧ burst length

306‧‧‧範圍窗 306‧‧‧Scope window

308‧‧‧猝發週期 308‧‧‧ burst cycle

310‧‧‧上升邊緣 310‧‧‧ rising edge

312‧‧‧尖峰 312‧‧‧ spike

314‧‧‧電壓標度 314‧‧‧Voltage scale

316‧‧‧下降邊緣 316‧‧‧ falling edge

400、500、600、700、800‧‧‧圖表 400, 500, 600, 700, 800‧‧‧ charts

502、804‧‧‧主脈衝 502, 804‧‧‧ main pulse

702、802‧‧‧前脈衝 702, 802‧‧‧ pre-pulse

900‧‧‧系統 900‧‧‧ system

904‧‧‧校正模組 904‧‧‧ Calibration Module

906‧‧‧單脈衝能量計算模組 906‧‧‧ single pulse energy calculation module

908‧‧‧再校正模組 908‧‧‧Recalibration module

1000‧‧‧計算方法 1000‧‧‧ Calculation method

1002~1008、1102~1106、1202~1210‧‧‧各操作步驟 1002~1008, 1102~1106, 1202~1210‧‧‧ steps

1100、1200‧‧‧校正方法 1100, 1200‧‧‧ calibration method

圖1為依據習知技術之一LPP EUV系統的一部份之一簡圖。 1 is a simplified diagram of a portion of an LPP EUV system in accordance with one of the conventional techniques.

圖2為依據一實施例之一能量監測器的一簡圖。 2 is a simplified diagram of an energy monitor in accordance with an embodiment.

圖3為依據一實施例之一雷射源的一猝發模式之一圖示。 3 is a diagram of one of the burst modes of a laser source in accordance with an embodiment.

圖4為由一PEM檢測器輸出之一圖表乃示出一包含數主脈衝的猝發之一暫時廓形。 Figure 4 is a graph showing the output of a PEM detector showing a temporary profile of a burst containing a number of main pulses.

圖5為由一PEM檢測器輸出之一圖表乃示出單一主脈衝的一暫時廓形。 Figure 5 is a graph showing the output of a PEM detector showing a temporary profile of a single main pulse.

圖6為由一PEM檢測器輸出之一圖表乃示出一包含多數前脈衝的猝發之一暫時廓形。 Figure 6 is a graph showing the output of a PEM detector showing a temporary profile of a burst containing a plurality of pre-pulses.

圖7為由一PEM檢測器輸出之一圖表乃示出單一前脈衝的一暫時廓形。 Figure 7 is a graph showing the output of a PEM detector showing a temporary profile of a single pre-pulse.

圖8為由一PEM檢測器輸出之一圖表乃示出以一時間長度分開之一前脈衝與一主脈衝的一暫時廓形。 Figure 8 is a graph showing the output of a PEM detector showing a temporary profile of a pre-pulse and a main pulse separated by a length of time.

圖9為依據一實施例之一用以測量一脈衝之一能量的系統之一方塊圖。 9 is a block diagram of a system for measuring energy of a pulse in accordance with an embodiment.

圖10為依據一實施例之一測量一脈衝之一能量的方法例之一流程圖。 FIG. 10 is a flow chart showing an example of a method of measuring energy of one pulse according to an embodiment.

圖11為使用一單元雷射束的功率量計來校正一光電磁(PEM)檢測器之一方法例的一流程圖。 11 is a flow chart showing an example of a method of correcting a photoelectromagnetic (PEM) detector using a power meter of a unit laser beam.

圖12為使用一組合的雷射束之功率量計來校正一PEM檢測器之一方法例的一流程圖。 Figure 12 is a flow diagram of an example of a method for correcting a PEM detector using a combined power beam of a laser beam.

較佳實施例之詳細說明 Detailed description of the preferred embodiment

在一LPP EUV系統中,一雷射脈衝的能量會在該雷射源,該射束輸送系統,及/或該聚焦光件等之不同位置被算出。在一LPP EUV系統中被用來測量一雷射束的感測器不會直接地測量該雷射束之一脈衝的能量。該等感測器包含一功率量計,其會提供歷經一界定的時間週期所產生之該等脈衝的平均功率之一測量值。該等感測器更包含一光電磁(PEM)檢測器其會依據歷經一限定的時間週期所檢測到的紅外(IR)光來輸出一電壓訊號。該電壓訊號會提供該等各別雷射脈衝之一暫時廓形。使用由該等感測器收集到的資料,一校正係數會被算出來將該PEM檢測器校正於該功率量計。在該校正之後,該等脈衝的能量可被由該PEM檢測器所提供的該電壓訊號算出。 In an LPP EUV system, the energy of a laser pulse can be calculated at different locations of the laser source, the beam delivery system, and/or the focusing optics. A sensor used to measure a laser beam in an LPP EUV system does not directly measure the energy of one of the laser beams. The sensors include a power meter that provides a measure of the average power of the pulses produced over a defined period of time. The sensors further include a photoelectromagnetic (PEM) detector that outputs a voltage signal based on infrared (IR) light detected over a defined period of time. The voltage signal provides a temporary profile of one of the respective laser pulses. Using the data collected by the sensors, a correction factor is calculated to correct the PEM detector to the power meter. After the correction, the energy of the pulses can be calculated by the voltage signal provided by the PEM detector.

被測量的雷射束可包含相同波長的光之脈衝,稱為一單元雷射束。該單元雷射束可包含一第一波長的前脈衝或一第二波長的主脈衝等。為決定一單元雷射束中的光之一脈衝的能量,該PEM檢測器會藉算出一用於該單元雷射束的校正係數來被校正於該功率量計。對一單元雷射束而言,該校正係數乃為依據由該功率量計所接收之一測量值與由該PEM檢測器歷經一猝發所提供的電壓訊號之一比值。在校正之後,該校正係數和由該PEM檢測器提供之該電壓訊號會被用來計算該單元雷射束中的脈衝之能量。 The measured laser beam may comprise pulses of light of the same wavelength, referred to as a unit laser beam. The unit laser beam may comprise a pre-pulse of a first wavelength or a main pulse of a second wavelength, or the like. To determine the energy of a pulse of light in a unit laser beam, the PEM detector is corrected to the power meter by calculating a correction factor for the unit's laser beam. For a unit laser beam, the correction factor is a ratio of one of the measured values received by the power meter to a voltage signal provided by the PEM detector through a burst. After correction, the correction factor and the voltage signal provided by the PEM detector are used to calculate the energy of the pulses in the unit's laser beam.

在該LPP EUV系統中,當兩個不同波長的單元雷射束被組合時,所造成之組合的雷射束具有在該時間領域 中分開之交替波長的脈衝等。在所述的實施例中,於該組合雷射束中的脈衝會在該等第一波長的前脈衝與第二波長的主脈衝之間輪流交替。當計算該組合雷射束中之一主脈衝的能量時,由主脈衝的單元雷射所算出的校正係數會被使用。由於該LPP EUV系統中的光學部件在該組合雷射束中的前脈衝和主脈衝之間的不同效果,故該組合雷射束中的前脈衝之一分開的校正係數會被算出。該等前脈衝的校正係數係依據由該功率量計測出的功率與可歸屬於該組合雷射束中之主脈衝的功率間之一差異來決定。在校正後,該校正係數和由該PEM檢測器提供的電壓訊號會被用來計算該組合雷射束中的前脈衝及主脈衝等之各別的能量。 In the LPP EUV system, when two different wavelengths of unit laser beams are combined, the resulting combined laser beam has a field in that time Separate pulses of alternating wavelengths, etc. In the illustrated embodiment, the pulses in the combined laser beam alternate between the first pulse of the first wavelength and the main pulse of the second wavelength. When calculating the energy of one of the main pulses in the combined laser beam, the correction factor calculated from the unit laser of the main pulse is used. Due to the different effects between the pre-pulses and the main pulses of the optical components in the LPP EUV system in the combined laser beam, a correction factor for the separation of one of the pre-pulses in the combined laser beam is calculated. The correction coefficients of the pre-pulses are determined based on a difference between the power measured by the power meter and the power of the main pulses attributable to the combined laser beam. After the correction, the correction factor and the voltage signal provided by the PEM detector are used to calculate the respective energies of the pre-pulse and the main pulse in the combined laser beam.

圖2為依據一實施例之一能量監測器200的簡圖,包含一功率量計202及一PEM檢測器208。該能量監測器200可例如使用一射束分裂器接收來自該雷射源101內之另一部件的雷射束102。一精習於該技術者應可易知,在達到該能量監測器200之前,該雷射束102會穿過一或多個光學部件來檢取該雷射束102的一部份以供測量。此等光學部件可包括一鑽石窗,一部份反射器,或一硒化鋅窗。一可包含該能量監測器200的雷射種籽模組之一例,係被論述於2013年12月5日公開之共同讓渡的美國專利申請案公開No.2013/0321926中。 2 is a simplified diagram of an energy monitor 200, including a power meter 202 and a PEM detector 208, in accordance with an embodiment. The energy monitor 200 can receive a laser beam 102 from another component within the laser source 101, for example, using a beam splitter. It will be readily apparent to those skilled in the art that prior to reaching the energy monitor 200, the laser beam 102 passes through one or more optical components to retrieve a portion of the laser beam 102 for measurement. . These optical components may include a diamond window, a partial reflector, or a zinc selenide window. An example of a laser seed module that can include the energy monitor 200 is discussed in U.S. Patent Application Publication No. 2013/0321926, which is incorporated herein by reference.

該能量監測器200係被設成能在該雷射源101,該射束輸送系統103,或該聚焦光件104中之一特定位置來測量該雷射束102。在某些所述的實施例中,該能量監測器200 的配置會使該能量監測器200能測量包含相同波長之光的雷射脈衝(例如前脈衝或主脈衝等)之一單元雷射束102。該等光的雷射脈衝係由單一光源產生,但在其它系統中亦可被以多於一個光源來產生。在所述的其它實施例中,該能量監測器200的配置會使該能量監測器能測量由具有不同波長之二雷射源產生之一組合雷射束102。該雷射源101、射束輸送系統103、及該聚焦光件104可包含多於一個能量監測器200。 The energy monitor 200 is configured to measure the laser beam 102 at a particular location in the laser source 101, the beam delivery system 103, or the focusing optics 104. In some of the described embodiments, the energy monitor 200 The configuration enables the energy monitor 200 to measure a unit laser beam 102 of a laser pulse (eg, a pre-pulse or a main pulse, etc.) containing light of the same wavelength. The laser pulses of such light are produced by a single source, but can be produced by more than one source in other systems. In other embodiments described, the configuration of the energy monitor 200 enables the energy monitor to measure a combined laser beam 102 produced by two laser sources having different wavelengths. The laser source 101, beam delivery system 103, and the focusing optics 104 can include more than one energy monitor 200.

該雷射束102會依循一光徑穿過該能量監測器200。該雷射束102會被一射束分裂器204分裂,而使該雷射束102之一第一部份繼續沿該光徑前進,而該雷射束102的其餘部份會被導至一反射器206。該反射器206則會將該雷射束102之該其餘部份導至該功率量計202。 The laser beam 102 passes through the energy monitor 200 following a path of light. The laser beam 102 is split by a beam splitter 204 such that a first portion of the laser beam 102 continues along the optical path and the remainder of the laser beam 102 is directed to Reflector 206. The reflector 206 directs the remainder of the laser beam 102 to the power meter 202.

該功率量計202係構製成能測量該雷射束102歷經一界定的時間週期之平均功率。該測量可能含跨該雷射束102的若干次猝發。在某些實例中,該測量可含跨該雷射束102的5、10或20次猝發。該界定的時間週期可為一秒之一分數或若干秒。在某些實例中,該界定的時間週期為一秒。 The power meter 202 is configured to measure the average power of the laser beam 102 over a defined period of time. This measurement may contain several bursts across the laser beam 102. In some examples, the measurement can include 5, 10, or 20 bursts across the laser beam 102. The defined time period can be one fraction of a second or a few seconds. In some instances, the defined time period is one second.

該雷射束102未被導至該功率量計202的部份會被導至另一個射束分裂器204。由該射束分裂器204,該雷射束之一第一部份會例如被導至另外的感測器或其它的光學部件(未示出)。該雷射束102的剩餘部份會被導至該PEM檢測器208。 Portions of the laser beam 102 that are not directed to the power meter 202 are directed to another beam splitter 204. From the beam splitter 204, a first portion of the laser beam will, for example, be directed to another sensor or other optical component (not shown). The remainder of the laser beam 102 is directed to the PEM detector 208.

該PEM檢測器208會提供一電壓訊號,其表示該射束102之一暫時廓形。該暫時廓形會含跨該功率量計202所用的界定時間週期之至少一部份。該暫時廓形可含跨該雷射束102的至少一猝發。為計算一組合雷射束中的脈衝之能量,該暫時廓形會含跨一前脈衝和一主脈衝。 The PEM detector 208 provides a voltage signal indicative of a temporary profile of the beam 102. The temporary profile will contain at least a portion of the defined time period spanned by the power meter 202. The temporary profile can include at least one burst across the laser beam 102. To calculate the energy of a pulse in a combined laser beam, the temporary profile will span a pre-pulse and a main pulse.

雖只有一個PEM檢測器208被示於圖2中,但添加的PEM檢測器(未示出)亦可被包含在該能量監測器200中。又,該雷射束102在被該PEM檢測器208測量之前,可被使用例如一透鏡(未示出)或擴散器組(未示出)來調修。該能量監測器200可被以一罩殼封閉並附接於該雷射源101之一口孔,或被封閉在該雷射源101內。 Although only one PEM detector 208 is shown in FIG. 2, an added PEM detector (not shown) may also be included in the energy monitor 200. Again, the laser beam 102 can be conditioned using, for example, a lens (not shown) or a diffuser set (not shown) prior to being measured by the PEM detector 208. The energy monitor 200 can be enclosed by a housing and attached to one of the apertures of the laser source 101 or enclosed within the laser source 101.

圖9示出一依據一實施例之用以測量一脈衝之一能量的系統900之方塊圖。該系統900包含一能量監測器902,一校正模組904,一單脈衝能量計算(SPEC)模組906,及一選擇性再校正模組908。該系統900可被以精習於該技術者所知的多種方式來實施,包括但不限於,如一電腦裝置具有一處理器可進入一記憶體其能儲存可執行的指令。該電腦裝置可包含一或多個輸入和輸出部件,包含某些部件等可透過一網路或其它的通訊方式來與其它的電腦裝置傳訊。該系統900包含一或更多個模組體現成運算邏輯或可執行的代碼。 FIG. 9 illustrates a block diagram of a system 900 for measuring energy of a pulse in accordance with an embodiment. The system 900 includes an energy monitor 902, a calibration module 904, a single pulse energy calculation (SPEC) module 906, and a selective recalibration module 908. The system 900 can be implemented in a variety of ways known to those skilled in the art, including, but not limited to, a computer device having a processor that can access a memory to store executable instructions. The computer device can include one or more input and output components, including certain components, for communicating with other computer devices via a network or other communication means. The system 900 includes one or more modules embodied as operational logic or executable code.

該能量監測器902係構製成能接收有關該雷射束102之雷射脈衝的資料。該能量監測器902包含,或電子地導通,一功率量計及一PEM檢測器。在某些實例中,該能 量監測器902係為該能量監測器200,包含該功率量計202和該PEM檢測器208。該功率量計係構製成能測量該等雷射脈衝歷經一界定的時間週期之平均功率。該界定的時間週期可為例如一秒。該PEM檢測器係構製成能提供一電壓訊號,表示歷經該界定的時間週期之至少一部份的該等雷射脈衝之一暫時廓形。 The energy monitor 902 is configured to receive information about laser pulses of the laser beam 102. The energy monitor 902 includes, or is electrically conductive, a power meter and a PEM detector. In some instances, the energy The quantity monitor 902 is the energy monitor 200 and includes the power meter 202 and the PEM detector 208. The power meter is configured to measure the average power of the laser pulses over a defined period of time. The defined time period can be, for example, one second. The PEM detector is configured to provide a voltage signal indicative of a temporary profile of one of the laser pulses over at least a portion of the defined time period.

當該能量監測器200或902被置於該LPP EUV系統100內來接受一單元雷射束102時,該校正模組904係構製成能依據該功率量計(例如功率量計202)和該PEM檢測器(例如PEM檢測器208)所收集的資料來決定一校正係數。一校正係數會針對每一單元雷射束來被算出。該校正係數係用以依據於後收集的PEM檢測器資料來算出一單獨脈衝的能量(例如單一主脈衝502或單一前脈衝702)。該校正係數為由該平均功率與該電壓訊號之一積分所決定之一比值。 When the energy monitor 200 or 902 is placed in the LPP EUV system 100 to receive a unit laser beam 102, the correction module 904 is configured to be responsive to the power meter (eg, the power meter 202) and The data collected by the PEM detector (e.g., PEM detector 208) determines a correction factor. A correction factor is calculated for each unit of the laser beam. The correction factor is used to calculate the energy of a single pulse (eg, a single main pulse 502 or a single pre-pulse 702) based on the post-collected PEM detector data. The correction coefficient is a ratio determined by the integration of the average power and one of the voltage signals.

為決定一單元雷射束102中的校正係數,脈衝的猝發會被分析。圖3為依據一實施例之雷射脈衝的二猝發302之一示圖300。該示圖300為由該PEM檢測器208提供的暫時廓形之一廓線,示出一漸變的電壓為時間(以毫秒(ms)測計)之一函數。 To determine the correction factor in a unit of laser beam 102, the burst of pulses is analyzed. 3 is a diagram 300 of a second burst 302 of a laser pulse in accordance with an embodiment. The diagram 300 is a profile of the temporary profile provided by the PEM detector 208, showing a gradual voltage as a function of time (measured in milliseconds (ms)).

每一猝發302在該示圖300中係被示為一曲線,具有一上升邊緣310,尖峰312,嗣在以一下降邊緣316結束之前維持一低於一最高標度的電壓標度314有一時間長度。該猝發302開始於該上升邊緣310而終止於該下降邊緣。當計算該猝發302的能量來計算一校正係數時係如在其它處所 說明者,該PEM檢測器208具有一範圍窗306其至少會含括該猝發長度304。該範圍窗306可被加長來抓取二猝發302之間的時間,或被縮短來僅抓取該猝發302中的一或二個脈衝。 Each burst 302 is shown in the diagram 300 as a curve having a rising edge 310, a peak 312, and maintaining a voltage scale 314 below a highest scale for a time before ending with a falling edge 316. length. The burst 302 begins at the rising edge 310 and terminates at the falling edge. When calculating the energy of the burst 302 to calculate a correction factor, as in other locations As an illustration, the PEM detector 208 has a range window 306 that at least includes the burst length 304. The range window 306 can be lengthened to capture the time between the two bursts 302, or shortened to grab only one or two pulses in the burst 302.

一猝發週期308係指由一第一猝發302的上升邊緣310至一第二猝發302的上升邊緣310。該猝發週期308可由一表示歷經一界定的時間週期(例如一秒)之猝發的數次之該等猝發302之一重複率或“rep rate”來被決定。該猝發重複率可被表示為一頻率,譬如5赫茲(Hz)、10Hz或20Hz。 A burst period 308 is referred to as a rising edge 310 of a first burst 302 to a rising edge 310 of a second burst 302. The burst period 308 can be determined by a repetition rate or "rep rate" of the bursts 302 representing a number of bursts over a defined period of time (e.g., one second). The burst repetition rate can be expressed as a frequency, such as 5 Hertz (Hz), 10 Hz, or 20 Hz.

圖4為一圖表400乃示出由該PEM檢測器208的輸出所提供之一包含主脈衝的單元雷射束102之一猝發402的暫時廓形。該圖表400為圖3中所示的輸出之一實際例子。該單元雷射束102係由一單雷射源所產生。在一實施例中,該等主脈衝具有一10.59微米的波長。如所示,該猝發402會持續大約3.5ms,且包含一預定數目的雷射脈衝。依據不同的實施例,一猝發402可依據該猝發長度而包含不同數目的雷射脈衝。該等雷射脈衝具有一寬度(以一時間長度測計)及一振幅。作為計算該校正係數的一部份,歷經圖表400中所示之一時間長度,該校正模組904能積分該猝發402的脈衝。 4 is a diagram 400 showing the temporary profile of one of the bursts of unit lasers 102 including one of the primary pulses provided by the output of the PEM detector 208. This chart 400 is a practical example of one of the outputs shown in FIG. The unit laser beam 102 is produced by a single laser source. In one embodiment, the main pulses have a wavelength of 10.59 microns. As shown, the burst 402 will last for approximately 3.5 ms and will contain a predetermined number of laser pulses. According to various embodiments, a burst 402 can include a different number of laser pulses depending on the length of the burst. The laser pulses have a width (measured over a length of time) and an amplitude. As part of calculating the correction factor, the correction module 904 can integrate the pulses of the burst 402 over a length of time shown in the graph 400.

圖6為由該PEM檢測器208輸出之一圖表600,示出一包含前脈衝之單元雷射束102的一猝發602之一暫時廓形。該圖表600為圖3中所示的輸出之一實際例子。該單元雷射束102係由單一雷射源所產生,但在其它系統中可被由 多數個雷射源產生。在一實施例中,該等前脈衝具有一10.26微米的波長。如所示,該猝發602具有一大約3.5ms的持續時間,且包含一預定數目的雷射脈衝。依據不同的實施例,一猝發602可根據該猝發長度而包含不同數目的雷射脈衝。該等雷射脈衝具有一寬度(以一時間長度測計)及一振幅。作為計算該校正係數的一部份,歷經圖表600中所示之一時間長度,該校正模組904能積分該猝發602的脈衝等。 6 is a graph 600 output by the PEM detector 208 showing a temporary profile of a burst 602 of a unit laser beam 102 including a pre-pulse. This chart 600 is a practical example of one of the outputs shown in FIG. The unit laser beam 102 is generated by a single laser source, but can be used in other systems. Most laser sources are produced. In one embodiment, the pre-pulses have a wavelength of 10.26 microns. As shown, the burst 602 has a duration of approximately 3.5 ms and includes a predetermined number of laser pulses. According to various embodiments, a burst 602 can include a different number of laser pulses depending on the burst length. The laser pulses have a width (measured over a length of time) and an amplitude. As part of calculating the correction factor, the correction module 904 can integrate the pulses of the burst 602, etc., over a length of time shown in the graph 600.

用於該單元雷射束102的校正係數係被以用於包含主脈衝的單元射束和包含前脈衝之單元射束的相同方法來算出。首先,該校正模組904會由該平均功率來決定該雷射脈衝之猝發的能量。歷經該功率被測量之該界定的時間週期所產生的能量會被決定:E total =P measured * T period 其中E total 為該電射束102歷經該界定的時間週期之能量,P measured 係由該功率量計202取得的功率測量值,T period 為該功率量計202之該界定的時間週期(例如1秒)。由E total ,在一猝發中的能量之量會被使用該猝發重複率來算出: 其中E burst 為一猝發的能量,E total 係該單元雷射束102歷經該界定的時間週期(例如一秒)之能量,而f burst 為該猝發重複率。 The correction coefficients for the unit laser beam 102 are calculated in the same way for the unit beam containing the main pulse and the unit beam containing the pre-pulse. First, the correction module 904 determines the energy of the burst of the laser pulse from the average power. The energy produced by the defined time period over which the power is measured is determined: E total = P measured * T period where E total is the energy of the electrical beam 102 over the defined period of time, P measured by The power measurement taken by the power meter 202, T period is the defined time period (eg, 1 second) of the power meter 202. From E total , the amount of energy in a burst is calculated using the burst repetition rate: Where E burst is the energy of a burst, E total is the energy of the unit's laser beam 102 over the defined period of time (eg, one second), and f burst is the burst repetition rate.

為決定該校正係數K p ,以下公式會被使用:K p ʃ V dt=E burst 因此 其中K p 為該校正係數,V是由該PEM檢測器208接收的電壓訊號,因此該積分ʃ V dt係為歷經該猝發的時間長度由該PEM檢測器208所提供之電壓訊號曲線底下的面積,而E burst 為由該功率量計202所接收的平均功率資料來決定之一猝發的能量。該校正係數K p 具有W/V的單位。 To determine the correction factor K p , the following formula will be used: K p ʃ V dt = E burst Where K p is the correction coefficient, and V is the voltage signal received by the PEM detector 208, so the integral ʃ V dt is the area under the voltage signal curve provided by the PEM detector 208 over the length of the burst. And E burst is the energy of one of the bursts determined by the average power data received by the power meter 202. The correction coefficient K p has a unit of W/V.

該SPEC模組906係構製成能使用由該校正模組904算出的校正係數來計算一單脈衝的能量。該SPEC模組906會由該PEM檢測器208接收電壓資料,其包含一單元雷射束中的單一脈衝(例如單主脈衝502或單前脈衝702)之一暫時廓形。 The SPEC module 906 is configured to calculate the energy of a single pulse using the correction coefficients calculated by the correction module 904. The SPEC module 906 receives the voltage data from the PEM detector 208, which includes a temporary profile of a single pulse (e.g., a single main pulse 502 or a single pre-pulse 702) in a unit laser beam.

圖5為由該PEM檢測器208輸出之一圖表500,示出該單位雷射束102中之一單主脈衝502的暫時廓形。該單主脈衝502可為該猝發402中之一脈衝,或可為一後續的猝發中之一脈衝。該單主脈衝502係藉縮減該PEM檢測器208的範圍窗306所抓取者。該主脈衝502具有一振幅及一寬度(以時間長度測計)。作為計算該脈衝502之能量的一部份,該SPEC模組906能積分該主脈衝502。 FIG. 5 is a graph 500 output by the PEM detector 208 showing the temporary profile of one of the single main pulses 502 in the unit laser beam 102. The single main pulse 502 can be one of the pulses in the burst 402 or can be one of a subsequent burst. The single main pulse 502 is reduced by the grabber of the range window 306 of the PEM detector 208. The main pulse 502 has an amplitude and a width (measured in length of time). The SPEC module 906 can integrate the main pulse 502 as part of calculating the energy of the pulse 502.

圖7為由一PEM檢測器輸出之一圖表700,乃示出該單元雷射束102中之一單前脈衝702。該單前脈衝702係藉減少該PEM檢測器208測量該雷射束102所經歷的時間長度來抓取者。該前脈衝702具有一振幅及一寬度(以一時間長 度測計)。作為計算該前脈衝702的能量之一部份,該SPEC模組906能積分該前脈衝702。 FIG. 7 is a graph 700 of a PEM detector output showing a single pre-pulse 702 in the unit laser beam 102. The single pre-pulse 702 is a grabber by reducing the length of time that the PEM detector 208 measures the laser beam 102. The front pulse 702 has an amplitude and a width (for a long time) Degree meter). The SPEC module 906 can integrate the pre-pulse 702 as part of calculating the energy of the pre-pulse 702.

使用一單脈衝之該暫時廓形,該單脈衝的能量會依據公式被算出:E pulse =K p ʃ V dt其中E pulse 是該脈衝的能量,K p 為用於被測量的脈衝波長之脈衝的校正係數,而V係由該PEM檢測器接收之表示被測量的脈衝之一暫時廓形的電壓訊號,因此該積分ʃ Vdt為該PEM檢測器208歷經該脈衝的時間長度所提供之該電壓訊號曲線底下的面積。 Using the temporary profile of a single pulse, the energy of the single pulse is calculated according to the formula: E pulse = K p ʃ V dt where E pulse is the energy of the pulse and K p is the pulse for the pulse wavelength being measured a correction factor, and V is a voltage signal received by the PEM detector that represents a temporary profile of one of the measured pulses, such that the integral ʃ Vdt is the voltage provided by the PEM detector 208 over the length of the pulse. The area under the signal curve.

該選擇性再校正模組908係構製成能決定是否要再校正該PEM檢測器208。該等校正係數經久之後可能會喪失精確性,例如,由於儀器偏差,設備老化,或接收該雷射束的雷射分裂器劣化所致。在一單元雷射束中,當一後續的雷射脈衝之猝發(例如猝發402或猝發602)時,該再校正模組908係構製成能將該功率量計202測量值相較於一使用該PEM檢測器208提供的資料算出之該雷射束102的功率。如前所述,該比較係使用一秒的時間週期來作成。如精習於該技術者依據以下說明將可易知,其它的時間週期亦可被使用,譬如一猝發長度304或一猝發週期308,或數個猝發週期。 The selective recalibration module 908 is configured to determine whether to recalibrate the PEM detector 208. These correction factors may lose accuracy after prolonged, for example, due to instrumental deviation, aging of the device, or degradation of the laser splitter receiving the laser beam. In a unit laser beam, when a subsequent laser burst is generated (e.g., burst 402 or burst 602), the recalibration module 908 is configured to compare the measured value of the power meter 202 to one. The power of the laser beam 102 is calculated using the information provided by the PEM detector 208. As mentioned earlier, this comparison is made using a one second time period. As will be readily apparent to those skilled in the art, other time periods can be used, such as a burst length 304 or a burst period 308, or a number of burst periods.

為計算該雷射束102歷經一秒的週期之該等脈衝的功率,歷經一猝發(例如猝發402或602)之該等脈衝的能量 會被使用該校正係數來決定:E burst =K p ʃ V dt其中K p 是該校正係數,V為由該PEM檢測器208接收的電壓訊號,因此該積分ʃ V dt係為歷經該猝發的時間長度由該PEM檢測器208所提供之該電壓訊號曲線底下的面積,而E burst 是所算出之一猝發的能量。該雷射脈衝能量的總和係用來決定歷經該時間週期之該雷射束102的總能量:E total E burst 其中E burst 為一猝發的能量,E total 為歷經該界定的時間週期(例如一秒)之該雷射束102被算出的能量,而ΣE burst 為歷經該界定的時間週期之雷射脈衝能量的總和。為決定該等脈衝的功率,該總能量會被除以該時間週期(例如一秒) 其中E total 為歷經該界定的時間週期之該雷射束102被算出的能量,P calculated 為由該PEM檢測器208接收的該電壓訊號算出之一功率值,而T period 是該界定的時間週期(例如一秒)。 To calculate the power of the pulses of the laser beam 102 over a one second period, the energy of the pulses after a burst (e.g., burst 402 or 602) is determined using the correction factor: E burst = K p ʃ V dt where K p is the correction coefficient, and V is the voltage signal received by the PEM detector 208 , so the integral ʃ V dt is the voltage signal curve provided by the PEM detector 208 over the length of time of the burst The area underneath, and E burst is one of the calculated energy. The sum of the laser pulse energies is used to determine the total energy of the laser beam 102 over the time period: E total = Σ E burst where E burst is a burst of energy and E total is the defined time period ( For example, one second of the laser beam 102 is calculated as energy, and Σ E burst is the sum of the laser pulse energies over the defined time period. To determine the power of the pulses, the total energy is divided by the time period (eg, one second) Where E total is the energy calculated by the laser beam 102 over the defined time period, P calculated is a power value calculated by the voltage signal received by the PEM detector 208, and T period is the defined time period (for example, one second).

為決定是否要指示該校正模組904重計算該校正係數,該再校正模組908能夠計算該算出的功率與測量的功率間之一差異。該差異可被以%來表示。為決定是否要再校正,該再校正模組908可將該差異比較於一臨界值。在某些實例中,若該二功率值係相差大於15%,則該再校正模組908會指示該校正模組904來重計算該校正係數。依據該 比較,該再校正管理器908能指示該校正模組904藉在該雷射束102的脈衝之一後續的猝發時重計算該校正係數而來更新該校正係數。 To determine whether the correction module 904 is instructed to recalculate the correction factor, the recalibration module 908 can calculate a difference between the calculated power and the measured power. This difference can be expressed in %. To determine whether to recalibrate, the recalibration module 908 can compare the difference to a threshold. In some examples, if the two power values differ by more than 15%, the recalibration module 908 instructs the correction module 904 to recalculate the correction coefficient. According to this In comparison, the recalibration manager 908 can instruct the correction module 904 to update the correction coefficient by recalculating the correction coefficient upon subsequent bursts of one of the pulses of the laser beam 102.

當該能量監測器200或902被置於該LPP EUV系統100中來接收一組合的雷射束102時,圖9的系統900係更構製成能決定校正係數用來決定一組合雷射束102中之一前脈衝的能量。該能量監測器902係被設在該LPP EUV系統100中來測量一組合雷射束102。 When the energy monitor 200 or 902 is placed in the LPP EUV system 100 to receive a combined laser beam 102, the system 900 of FIG. 9 is further configured to determine a correction factor for determining a combined laser beam. The energy of one of the pre-pulses in 102. The energy monitor 902 is disposed in the LPP EUV system 100 to measure a combined laser beam 102.

為計算一組合雷射束102中之該等前脈衝的校正係數,該校正模組904會使用一與當校正一單元雷射束時所用者不同的計算組。該等計算會使用為該等主脈衝之單元雷射束102算出的校正係數來決定由該功率量計202所測出之可歸屬於該等主脈衝的功率之一部份,嗣用該功率的剩餘部份來決定用於該組合雷射束中之該等前脈衝的校正係數。 To calculate the correction coefficients for the pre-pulses in a combined laser beam 102, the correction module 904 uses a different computational group than that used when correcting a unit laser beam. These calculations use the correction coefficients calculated for the unit laser beam 102 of the main pulses to determine a portion of the power that can be attributed to the main pulses as measured by the power meter 202, using the power. The remainder of the decision is made to determine the correction factor for the pre-pulses in the combined laser beam.

圖8為一包含一前脈衝與一主脈衝以一時間長度分開的組合脈衝之由一PEM檢測器208輸出的電壓訊號之一暫時廓形例800。該組合雷射束102係藉將該等單元雷射束102組合成單一雷射束所產生,因此,在該組合雷射束102之一猝發中,該猝發602的前脈衝等會與該猝發402的主脈衝等輪流交替。如圖8中所示,一前脈衝802會比一主脈衝804在前15微秒。該等雷射脈衝具有一寬度(以一時間長度測計)及一振幅。歷經一如該圖表800中所示的時間長度,該校正模組904和該SPEC模組906能分開於該主脈衝804來 積分該前脈衝802。該積分係用來決定供計算該前脈衝的能量之校正係數,及計算一組合雷射束中之後續前脈衝的能量。 8 is a temporary profile 800 of a voltage signal output by a PEM detector 208 comprising a combined pulse of a pre-pulse and a main pulse separated by a length of time. The combined laser beam 102 is generated by combining the unit laser beams 102 into a single laser beam. Therefore, in one burst of the combined laser beam 102, the pre-pulse of the burst 602, etc., and the burst The main pulse of 402 alternates in turn. As shown in Figure 8, a pre-pulse 802 will be in the first 15 microseconds than a main pulse 804. The laser pulses have a width (measured over a length of time) and an amplitude. The correction module 904 and the SPEC module 906 can be separated from the main pulse 804 as long as the length of time shown in the chart 800. The pre-pulse 802 is integrated. The integral is used to determine a correction factor for calculating the energy of the pre-pulse and to calculate the energy of a subsequent pre-pulse in a combined laser beam.

該校正模組904會依據由該PEM檢測器208所提供之表示該組合脈衝中的主脈衝之暫時廓形的一部份之電壓訊號來計算該組合射束之主脈衝的功率。使用該暫時廓形,該主脈衝的能量會依據如下公式被算出:E main pulse =K mp ʃ V dt其中E main pulse 為該主脈衝的能量,K mp 為被算出用於該單元雷射束102之主脈衝的校正係數,而V是由該PEM檢測器接收之表示被測量的主脈衝之一暫時廓形的電壓訊號,因此該積分ʃ V dt係為歷經該主脈衝的時間長度由該PEM檢測器208提供之該電壓訊號曲線底下的面積。 The correction module 904 calculates the power of the main pulse of the combined beam according to a voltage signal provided by the PEM detector 208 indicating a portion of the temporary profile of the main pulse in the combined pulse. Using this temporary profile, the energy of the main pulse is calculated according to the following formula: E main pulse = K mp ʃ V dt where E main pulse is the energy of the main pulse and K mp is calculated for the unit laser beam a correction factor of the main pulse of 102, and V is a voltage signal received by the PEM detector that represents a temporary profile of one of the measured main pulses, such that the integral ʃ V dt is the length of time through the main pulse The PEM detector 208 provides the area under the voltage signal curve.

該組合脈衝的平均功率會被該功率量計202歷經該界定的時間週期(例如一秒)來測出。依據該主脈衝的能量,歷經該界定的時間週期之可歸屬於該等主脈衝的功率會被算出為: 其中E main pulse 為該主脈衝的能量,P main pulse 是所算出的主脈衝之功率,T period 為該功率量計202所用之界定的時間週期,而ΣE main pulses 為歷經該功率量計202使用之界定的時間週期所發生之該等主脈衝的能量總和。為決定該功率量計 202所測得之該功率可歸屬於該等前脈衝的部份,該校正模組904會決定該差:P pre-pulse =P measured -P main pulse 其中P pre-pulse 為歷經該界定的時間週期由該功率量計測出的功率之可歸屬於該組合脈衝之前脈衝的部份,P measured 是該功率量計202所測得之該組合脈衝的功率,而P main pulse 為該等主脈衝之算出的功率。 The average power of the combined pulses is measured by the power meter 202 over the defined period of time (e.g., one second). Depending on the energy of the main pulse, the power attributable to the main pulses over the defined time period is calculated as: Wherein E main pulse is the energy of the main pulse , P main pulse is the calculated power of the main pulse, T period is the defined time period used by the power meter 202, and Σ E main pulses is the power meter 202 The sum of the energies of the main pulses that occur during the defined time period. To determine that the power measured by the power meter 202 can be attributed to the portion of the pre-pulse , the correction module 904 determines the difference: P pre-pulse = P measured - P main pulse where P pre-pulse The portion of the power measured by the power meter over the defined period of time that can be attributed to the pulse before the combined pulse, P measured is the power of the combined pulse measured by the power meter 202, and P main pulse The calculated power for these main pulses.

使用可歸屬於該等前脈衝的功率,可歸屬於該等前脈衝的能量會被決定如下: 其中E pre-pulse 為歷經該功率量計202使用之該界定的時間週期之該等前脈衝的總能量,P pre-pulse 為歷經該界定的時間週期由該功率量計所測得的功率可歸屬於該組合脈衝之前脈衝的部份,T period 是該功率量計202之該界定的時間週期(例如一秒)。 Using the power attributable to the pre-pulses, the energy attributable to the pre-pulses will be determined as follows: Wherein E pre-pulse is the total energy of the pre-pulses of the defined time period used by the power meter 202, and P pre-pulse is the power measured by the power meter over the defined time period. The portion of the pulse that is attributed to the combined pulse, T period is the defined period of time (e.g., one second) of the power meter 202.

為決定該組合雷射束中之前脈衝的校正係數,以下的公式會被使用: 其中K pp 是該組合雷射束中之前脈衝的校正係數,V為由該PEM檢測器208接收的電壓訊號,因此該積分ʃ V dt係為歷經該界定的時間週期之至少一部份由該PEM檢測器208提供之該電壓訊號曲線底下的面積,而E pre-pulse 為歷經該功 率量計202使用之該界定的時間週期之前脈衝的總能量。該校正係數K pp 具有W/V的單位。 To determine the correction factor for the previous pulse in the combined laser beam, the following formula is used: Where K pp is the correction factor of the previous pulse in the combined laser beam, and V is the voltage signal received by the PEM detector 208, such that the integral ʃ V dt is at least a portion of the defined time period The PEM detector 208 provides the area under the voltage signal curve, and E pre-pulse is the total energy of the pulse prior to the defined time period used by the power meter 202. The correction coefficient K pp has a unit of W/V.

當該組合雷射束中的前脈衝之校正係數被決定後,該SPEC模組906會由該PEM檢測器208接收電壓資料,其包含一組合雷射束中之一對的前脈衝和主脈衝之一暫時廓形。該SPEC模組906嗣能使用以下公式來決定一後續前脈衝的能量:E pre-pulse =K pp ʃ V dt其中E pre-pulse 是該單前脈衝的能量,K pp 為用於該組合雷射束102中的前脈衝之脈衝的校正係數,而V為由該PEM檢測器208接收之表示被測量的前脈衝之一暫時廓形的該電壓訊號,因此該積分ʃ V dt係為歷經該前脈衝的時間長度由該PEM檢測器208提供之該電壓訊號曲線底下的面積。 When the correction factor of the pre-pulse in the combined laser beam is determined, the SPEC module 906 receives the voltage data from the PEM detector 208, which includes a pair of pre-pulses and main pulses of a combined laser beam. One of the temporary profiles. The SPEC module 906 can determine the energy of a subsequent pre-pulse using the following formula: E pre-pulse = K pp ʃ V dt where E pre-pulse is the energy of the single prepulse, and K pp is used for the combined thunder a correction factor for the pulse of the pre-pulse in the beam 102, and V is the voltage signal received by the PEM detector 208 that represents a temporary profile of one of the measured pre-pulses, such that the integral ʃ V dt is the The length of the pre-pulse is the area under the voltage signal curve provided by the PEM detector 208.

該選擇性再校正模組908更能決定是否要使用該功率量計202來為該組合雷射束102中的前脈衝再校正該PEM檢測器208,如前所述。針對該組合雷射束,該再校正模組908會藉加總歷經一界定的時間週期之該組合雷射束中的脈衝能量來決定對應於該功率量計202的脈衝功率。該再校正模組908嗣會將由該總合算出之一功率相較於由該功率量計202測出的功率,如前所述。 The selective recalibration module 908 is more capable of determining whether the power meter 202 is to be used to recalibrate the PEM detector 208 for the prepulse in the combined laser beam 102, as previously described. For the combined laser beam, the recalibration module 908 determines the pulse power corresponding to the power meter 202 by adding the pulse energy in the combined laser beam for a defined period of time. The recalibration module 908 will calculate one of the powers calculated from the sum as compared to the power measured by the power meter 202, as previously described.

圖10為依據一實施例之計算一脈衝的能量之一舉例方法1000的流程圖。該方法1000可藉該系統900來進行。 10 is a flow diagram of an exemplary method 1000 for calculating the energy of a pulse, in accordance with an embodiment. The method 1000 can be performed by the system 900.

在一操作1002時,一PEM檢測器會被使用一功率量計針對一第一雷射束來校正。該第一雷射能在一單元雷射束中造成主脈衝或前脈衝等,如前所述,圖11為一使用一功率量計校正一PEM檢測器來決定一單元雷射束中的脈衝能量之一舉例方法1100的流程圖。該方法1100可被例如以該系統900的能量監測器200或900及該校正模組904來進行作為操作1002的一部份。 At an operation 1002, a PEM detector is calibrated for a first laser beam using a power meter. The first laser can cause a main pulse or a prepulse in a unit laser beam. As described above, FIG. 11 is a method of using a power meter to correct a PEM detector to determine a pulse in a unit laser beam. One of the energies is an example flow chart of method 1100. The method 1100 can be performed as part of operation 1002, for example, by the energy monitor 200 or 900 of the system 900 and the correction module 904.

在一操作1102時,一功率測量值會被由該功率量計(例如功率量計202)接收。該功率測量值表示該單元雷射束102歷經一時間週期的脈衝之平均功率。 At an operation 1102, a power measurement is received by the power meter (e.g., power meter 202). The power measurement represents the average power of the pulse of the unit laser beam 102 over a period of time.

在一操作1104時,歷經一時間長度之一電壓訊號會被由一PEM檢測器(例如PEM檢測器208)接收。該電壓訊號為該單元雷射束102之一猝發的脈衝之一暫時廓形。被該PEM檢測器208收集的資料所經歷的該時間長度係為該功率量計202之該時間週期內的至少一猝發。 At an operation 1104, a voltage signal over a length of time is received by a PEM detector (e.g., PEM detector 208). The voltage signal is a temporary profile of one of the bursts of one of the unit laser beams 102. The length of time experienced by the data collected by the PEM detector 208 is at least one burst of the power meter 202 during the time period.

在一操作1106時,該雷射束102的校正係數會被算出。該校正係數係如相關於該校正模具904所述地被算出。該校正係數可由該校正模組904算出。 At an operation 1106, the correction factor for the laser beam 102 is calculated. This correction factor is calculated as described in relation to the correction mold 904. The correction factor can be calculated by the correction module 904.

若該能量監測器200係測量一單元雷射束,則該方法1000會跳過操作1004前進至一操作1006。在該操作1006中,一脈衝的能量會被算出。該脈衝的能量會被算出,例如,在別處相關於該SPEC模組906所述者。在某些實例中,該SPEC模組906會進行該操作1006。 If the energy monitor 200 is measuring a unit laser beam, the method 1000 skips operation 1004 and proceeds to an operation 1006. In this operation 1006, the energy of a pulse is calculated. The energy of the pulse will be calculated, for example, as described elsewhere with respect to the SPEC module 906. In some examples, the SPEC module 906 performs the operation 1006.

在一選擇性操作1008時,一決定會被作成即是否 要例如以該再校正模組908來再校正該PEM檢測器。該決定係藉將一由該PEM檢測器所提供之該電壓訊號算出的功率相較於由該功率量計所測出的功率而來進行。若該決定係要再校正,則該方法1000會回到操作1002,或在某些實例中,會回到操作1004。若該決定係不要再校正,則該方法1000會回到操作1006。 In a selective operation 1008, a decision will be made, ie whether The PEM detector is to be recalibrated, for example, with the recalibration module 908. The decision is made by comparing the power calculated by the voltage signal provided by the PEM detector with the power measured by the power meter. If the decision is to be recalibrated, the method 1000 will return to operation 1002, or in some instances, return to operation 1004. If the decision is not to be corrected, the method 1000 will return to operation 1006.

當被該能量監測器200測量的雷射束是一組合雷射束時,該方法1000會由該操作1002前進至該操作1004。該PEM檢測器會針對一組合射束來被校對,以決定該組合射束內之一前脈衝的能量。一第二雷射能造成各猝發中的前脈衝等,如前所述,其會與一組合雷射束102中的主脈衝等組合。在該操作1004時,針對該組合雷射束102中之該等前脈衝的校正係數會被決定。該組合雷射束102中之該等前脈衝的校正係數係分開於該單元雷射束102中之前脈衝者來被決定,因為該LPP EUV系統100的光學部件在該等單元雷射束102組合之後,會影響該前脈衝的暫時廓形與被該功率量計202測出的功率之間的關係。該等前脈衝的校正係數係依據由該功率量計測出的功率與可歸屬於該組合雷射束中之主脈衝的功率間之一差來被決定。 When the laser beam measured by the energy monitor 200 is a combined laser beam, the method 1000 proceeds from the operation 1002 to the operation 1004. The PEM detector is collimated for a combined beam to determine the energy of one of the pre-pulses within the combined beam. A second laser can cause a prepulse or the like in each burst, which, as previously described, is combined with a main pulse or the like in a combined laser beam 102. At operation 1004, the correction coefficients for the pre-pulses in the combined laser beam 102 are determined. The correction coefficients for the pre-pulses in the combined laser beam 102 are determined separately from the previous pulse in the unit laser beam 102 because the optical components of the LPP EUV system 100 are combined in the unit laser beam 102 Thereafter, the relationship between the temporary profile of the pre-pulse and the power measured by the power meter 202 is affected. The correction coefficients of the pre-pulses are determined based on a difference between the power measured by the power meter and the power of the main pulses attributable to the combined laser beam.

圖12為在一具有前脈衝和主脈衝等之組合雷射束上使用一功率量計(例如功率量計202)來校正一PEM檢測器(例如PEM檢測器208)之一舉例方法1200的流程圖。該方法1200係當被該能量監測器200測量的雷射束為一組合雷射束時之進行該方法1000的操作1004之一方法例。該方法 1200可藉例如該系統900的校正模組904來進行。 12 is a flow diagram of an exemplary method 1200 of using a power meter (eg, power meter 202) to calibrate a PEM detector (eg, PEM detector 208) on a combined laser beam having a pre-pulse and a main pulse, and the like. Figure. The method 1200 is an example of a method of performing the operation 1004 of the method 1000 when the laser beam measured by the energy monitor 200 is a combined laser beam. this method 1200 can be performed, for example, by calibration module 904 of system 900.

在一操作1202時,該電壓資料會被從該能量監測器200或902中的該PEM檢測器208接收。該電壓資料為該組合雷射束102之一暫時廓形,如圖8中所示。被該PEM檢測器208所收集的資料經歷的時間長度是該功率量計202之該時間週期的至少一部份。 At an operation 1202, the voltage data is received from the PEM detector 208 in the energy monitor 200 or 902. The voltage data is a temporary profile of one of the combined laser beams 102, as shown in FIG. The length of time experienced by the data collected by the PEM detector 208 is at least a portion of the time period of the power meter 202.

在一操作1204時,可歸屬於該等主脈衝的功率會被決定。該等主脈衝的功率係被如相關於該校正模組904和該SPEC模組906所述地來決定。 At an operation 1204, the power attributable to the main pulses will be determined. The power of the main pulses is determined as described in relation to the correction module 904 and the SPEC module 906.

在一操作1206時,該功率資料會被由該功率量計202接收。該功率資料表示該組合雷射束102歷經一時間週期的脈衝之平均功率。 At an operation 1206, the power profile is received by the power meter 202. The power data represents the average power of the combined laser beam 102 over a period of time.

在一操作1208時,該組合雷射束102中之可歸屬於該等前脈衝的功率會被決定。該等前脈衝的功率係如相關於該校正模組904和該SPEC模組906所述地被決定。 At an operation 1208, the power in the combined laser beam 102 attributable to the pre-pulses may be determined. The power of the pre-pulses is determined as described in relation to the correction module 904 and the SPEC module 906.

在一操作1210時,該組合雷射束102中之該等前脈衝的校正係數會被算出。該校正係數係如相關於該校正模組904所述地被算出。 At an operation 1210, the correction coefficients for the pre-pulses in the combined laser beam 102 are calculated. The correction factor is calculated as described in relation to the correction module 904.

當被該能量監測器200測量的雷射束為一組合雷射束時會前進至該操作1006,該組合雷射束中之各別的主脈衝和前脈衝之能量會被如於前針對操作1006所述地來算出。被算出用於主脈衝的單元射束之該操作1002的校正係數,會被用來計算該組合雷射束中之一主脈衝的能量。為計算該組合雷射束中之前脈衝的能量,該操作1004的校正 係數會被使用。當被該能量監測器200測量的雷射束為一組合雷射束時,該方法1000則可前進至如前所述的選擇性操作1008。 When the laser beam measured by the energy monitor 200 is a combined laser beam, it proceeds to the operation 1006, and the energy of each of the main pulse and the pre-pulse in the combined laser beam is manipulated as before. Calculated in the manner of 1006. The correction factor of the operation 1002 calculated for the unit beam of the main pulse is used to calculate the energy of one of the main laser pulses in the combined laser beam. To calculate the energy of the previous pulse in the combined laser beam, the correction of operation 1004 The coefficients will be used. When the laser beam measured by the energy monitor 200 is a combined laser beam, the method 1000 can proceed to the selective operation 1008 as previously described.

所揭的方法和裝置已被參照數個實施例說明於上。精習於該技術者在參閱本揭露後將會輕易得知其它的實施例。所述方法和裝置的某些態樣可使用不同於如以上實施中所述的構造,或配合不同於上述的元件等來被輕易地實施。例如,可能比所述者更為複雜的不同運算法及/或邏輯電路等,以及可能不同類型的雷射束產生系統等,亦可被使用。 The disclosed methods and apparatus have been described above with reference to a few embodiments. Other embodiments will be readily apparent to those skilled in the art upon review of this disclosure. Certain aspects of the methods and apparatus may be readily implemented using configurations other than those described in the above embodiments, or in conjunction with elements other than those described above. For example, different algorithms and/or logic circuits, etc., which may be more complex than the above, and possibly different types of laser beam generating systems, etc., may also be used.

又,亦應請瞭解所述的方法和裝置能被以許多方式來實施,包括作為一製法,一裝置,或一系統。於此所述的方法可被以能指示一處理器來進行該等方法的程式指令來實施,且該等指令記錄在一非暫時性電腦可讀的儲存媒體上,譬如一硬碟驅動器,軟碟,光碟比如唯讀光碟(CD)或數位多用途光碟(DVD),快閃記憶體等,或被傳通於一電腦網路上,其中該等程式指令會在光學或電子的通訊鏈上被傳送。應請注意所述的方法之各步驟的順序可能被改變而仍在本揭露的範圍內。 Also, it should be appreciated that the methods and apparatus described can be implemented in many ways, including as a method, a device, or a system. The methods described herein can be implemented with program instructions that can instruct a processor to perform the methods, and the instructions are recorded on a non-transitory computer readable storage medium, such as a hard disk drive, soft Discs, such as CD-ROMs or digital versatile discs (DVDs), flash memory, etc., or transmitted to a computer network, where the program instructions are placed on an optical or electronic communication link. Transfer. It should be noted that the order of the various steps of the method described may be varied while remaining within the scope of the disclosure.

應請瞭解所提供的各例係僅為說明之目的,且可被以不同的習慣和技術延伸至其它的應用例和實施例。雖有若干個實施例被揭述,但無意要將本揭露限制於所揭的該等實施例。相反地,乃意圖要涵蓋熟悉該技術者可易得知的所有變化、修正、及等同物。 It should be understood that the examples provided are for illustrative purposes only and may be extended to other applications and embodiments with different conventions and techniques. While a few embodiments are disclosed, it is not intended to limit the disclosure to the embodiments disclosed. On the contrary, it is intended to cover all such changes, modifications, and equivalents

在以上說明中,本發明係參照其之特定實施例來被描述,但精習於該技術者將會瞭解本發明並不限制於此。上述發明的各種特徵和態樣可被個別地或一起地使用。又,本發明能被利用於超出於此所述者之任意數目的環境和用途中,而不偏離於本說明書之較廣義的精神及範圍。因此,本說明書和圖式等係被視為舉例說明而非限制性的。應請瞭解該等“包含”、“包括”及“具有”若被用於此,係明確地意圖要被解讀為技術的開放端式用語。 In the above description, the present invention has been described with reference to the specific embodiments thereof, but those skilled in the art will understand that the invention is not limited thereto. The various features and aspects of the above described invention may be used individually or together. Further, the present invention can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the disclosure. Accordingly, the specification and drawings are to be regarded as It should be understood that such "including", "including" and "having", if used herein, are intended to be interpreted as open-ended terms of technology.

900‧‧‧系統 900‧‧‧ system

902‧‧‧能量監測器 902‧‧‧Energy monitor

904‧‧‧校正模組 904‧‧‧ Calibration Module

906‧‧‧單脈衝能量計算模組 906‧‧‧ single pulse energy calculation module

908‧‧‧再校正模組 908‧‧‧Recalibration module

Claims (22)

一種系統,包含:一能量監測器在一雷射製造的電漿(LPP)極紫外光(EUV)系統內,該能量監測器構製成能測量一雷射束其包含以一時間長度分開的前脈衝和主脈衝等,該能量監測器包含:一功率量計構製成能感測歷經一界定的時間週期之該等雷射脈衝的串列之一平均功率,及一光電磁(PEM)檢測器構製成能提供一電壓訊號,表示在該界定的時間週期之一部份期間以該時間長度與該第一主脈衝分開的該第一前脈衝之一暫時廓形;一校正模組構製成能依據一主脈衝校正係數和對應於該第一主脈衝之該電壓訊號的一部份之一脈衝積分來決定該第一主脈衝之一功率,並依據該平均功率和該第一主脈衝的功率來決定該第一前脈衝之一功率,及依據該第一前脈衝之該功率和對應於該第一前脈衝之該電壓訊號的一部份之一積分來決定一前脈衝校正係數;及一單脈衝能量計算(SPEC)模組構製成能依據該前脈衝校正係數和由該PEM檢測器提供之一第二電壓訊號對應於該第二前脈衝的一部份之一脈衝積分來決定一第二前脈衝之一能量,並依據該主脈衝校正係數和該第二電壓訊號對應於該第二主脈衝的一部份之一脈衝 積分來決定一第二主脈衝之一能量。 A system comprising: an energy monitor in a laser-made plasma (LPP) extreme ultraviolet (EUV) system, the energy monitor configured to measure a laser beam comprising a length of time separated The pre-pulse and the main pulse, etc., the energy monitor comprises: a power meter configured to sense an average power of the series of the laser pulses over a defined period of time, and a photoelectromagnetic (PEM) The detector is configured to provide a voltage signal indicative of a temporary profile of the first pre-pulse separated from the first main pulse by the length of time during a portion of the defined time period; a calibration module Determining, according to a main pulse correction coefficient and a pulse integral of a portion of the voltage signal corresponding to the first main pulse, determining a power of the first main pulse, and according to the average power and the first The power of the main pulse determines a power of the first pre-pulse, and determines a pre-pulse correction according to the power of the first pre-pulse and an integral of a portion of the voltage signal corresponding to the first pre-pulse Coefficient; and a single pulse energy The calculation (SPEC) module is configured to determine a second front according to the pre-pulse correction coefficient and one of the second voltage signals provided by the PEM detector corresponding to a pulse integral of a portion of the second pre-pulse One of the pulses of energy, and the pulse corresponding to the main pulse correction coefficient and the second voltage signal corresponding to a portion of the second main pulse Integration determines the energy of one of the second main pulses. 如請求項1的系統,更包含一再校正模組構製成能依據該PEM提供的該第二電壓訊號來計算歷經一第二界定的時間週期之該雷射束的一能量。 The system of claim 1, further comprising a recalibration module configured to calculate an energy of the laser beam over a second defined time period based on the second voltage signal provided by the PEM. 如請求項2的系統,其中該再校正模組係更構製成能將該雷射束之被算出的能量比較於歷經該第二界定的時間週期由該功率量計感測的該平均功率,並能依據該比較來指示該校正模組要更新該前脈衝校正係數。 The system of claim 2, wherein the recalibration module is further configured to compare the calculated energy of the laser beam to the average power sensed by the power meter over the second defined time period And according to the comparison, the correction module is required to update the pre-pulse correction coefficient. 如請求項3的系統,其中該再校正模組係構製成如果該比較超過一臨界值則會指示該校正模組要更新該前脈衝校正係數。 The system of claim 3, wherein the recalibration module is configured to indicate that the correction module is to update the pre-pulse correction coefficient if the comparison exceeds a threshold. 如請求項1的系統,其中該校正模組係構製成能藉由歷經該界定的時間週期之該平均功率減去在該界定的時間週期中可歸屬於該等主脈衝的功率而來決定該第一前脈衝的功率。 The system of claim 1, wherein the correction module is configured to be determined by subtracting the power attributable to the main pulses during the defined time period by the average power over the defined time period The power of the first pre-pulse. 一種方法,包含:在一雷射製造的電漿(LPP)極紫外光(EUV)系統中使用一能量監測器來接收一包含前脈衝和主脈衝等的雷射束之一測量值,該雷射束之該測量值包含:使用一功率量計測得之歷經一界定的時間週期之該等雷射脈衝的串列之一平均功率,及一第一電壓訊號表示以一時間長度與該等主脈衝之一第一主脈衝分開的該等前脈衝之一第一前脈衝的一暫時廓形,該第一電壓訊號由一光電磁(PEM)檢測器提供; 依據一主脈衝校正係數和該第一電壓訊號對應於該第一主脈衝的一部份之一積分來決定該第一主脈衝之一功率;依據該平均功率和該第一主脈衝的功率來決定該第一前脈衝之一功率;依據該第一前脈衝的功率和該第一電壓訊號對應於該第一前脈衝的一部份之一積分來決定一前脈衝校正係數;依據該前脈衝校正係數和由該PEM檢測器提供之一第二電壓訊號對應於該第二前脈衝的一部份之一積分來決定一第二前脈衝之一能量;及依據該主脈衝校正係數和該第二電壓訊號對應於該第二主脈衝的一部份之一積分來決定一第二主脈衝之一能量。 A method comprising: using an energy monitor in a laser-made plasma (LPP) extreme ultraviolet (EUV) system to receive a measurement of a laser beam comprising a pre-pulse and a main pulse, the radar The measured value of the beam includes: an average power of the series of the laser pulses measured over a defined period of time using a power meter, and a first voltage signal representing the length of the master with a length of time a temporary profile of the first pre-pulse of one of the pre-pulses separated by one of the first main pulses, the first voltage signal being provided by a photoelectromagnetic (PEM) detector; Determining a power of the first main pulse according to a main pulse correction coefficient and an integral of the first voltage signal corresponding to a portion of the first main pulse; according to the average power and the power of the first main pulse Determining a power of the first pre-pulse; determining a pre-pulse correction coefficient according to the power of the first pre-pulse and the integral of the first voltage signal corresponding to a portion of the first pre-pulse; And a correction coefficient and a second voltage signal provided by the PEM detector corresponding to one of a portion of the second pre-pulse to determine an energy of a second pre-pulse; and the correction coefficient according to the main pulse and the first The two voltage signals are integrated with one of a portion of the second main pulse to determine an energy of a second main pulse. 如請求項6的方法,更包含依據該PEM所提供之該第二電壓訊號來計算歷經一第二界定的時間週期之該雷射束的一能量。 The method of claim 6, further comprising calculating an energy of the laser beam over a second defined time period based on the second voltage signal provided by the PEM. 如請求項7的方法,更包含將該雷射束之被算出的能量比較於歷經該第二界定的時間週期之平均功率,並依據該比較來更新該前脈衝校正係數。 The method of claim 7, further comprising comparing the calculated energy of the laser beam to an average power over the second defined time period, and updating the pre-pulse correction coefficient according to the comparison. 如請求項8的方法,其中該前脈衝校正係數係依據該比較超過一臨界值。 The method of claim 8, wherein the pre-pulse correction coefficient is based on the comparison exceeding a threshold. 如請求項6的方法,其中決定該第一前脈衝的功率係藉由歷經該界定的時間週期之該平均功率減去在該界定 的時間週期中可歸屬於該等主脈衝的功率來進行。 The method of claim 6, wherein determining the power of the first pre-pulse is subtracted from the average power over the defined time period The power of the main pulses can be performed in the time period. 一種系統,包含:一能量監測器在一雷射製造的電漿(LPP)極紫外光(EUV)系統之一雷射源內,該能量監測器構製成能測量具有一波長且在一猝發中發生的雷射脈衝等,該能量監測器包含:一功率量計構製成能測量歷經一界定的時間週期之該等雷射脈衝的一平均功率,及一光電磁(PEM)檢測器構製成能提供一第一電壓訊號表示歷經該界定的時間週期的至少一部份之該等雷射脈衝的該猝發之一暫時廓形;一校正模組構製成能依據該平均功率和該第一電壓訊號來決定一校正係數,該校正係數為由該平均功率決定的該等雷射脈衝的該猝發之一能量與該第一電壓訊號之一積分的一比值;及一單脈衝能量計算(SPEC)模組構製成能依據該校正係數和由該PEM檢測器提供之表示該後續脈衝的一暫時廓形之一第二電壓訊號的一脈衝積分來決定該等雷射脈衝的該串列之一後續脈衝的一能量。 A system comprising: an energy monitor in a laser source of a laser-made plasma (LPP) extreme ultraviolet (EUV) system, the energy monitor configured to measure a wavelength and be in a burst a laser pulse or the like occurring in the medium, the energy monitor comprising: a power meter configured to measure an average power of the laser pulses over a defined period of time, and a photoelectromagnetic (PEM) detector structure Forming a temporary profile of the burst capable of providing a first voltage signal indicative of at least a portion of the defined time period; a calibration module configured to be responsive to the average power and The first voltage signal determines a correction coefficient, wherein the correction coefficient is a ratio of the energy of the burst of the laser pulses determined by the average power to an integral of the first voltage signal; and a single pulse energy calculation a (SPEC) module configured to determine the string of the laser pulses based on the correction factor and a pulse integral of a second voltage signal representative of a temporary profile of the subsequent pulse provided by the PEM detector Subsequent pulse An energy. 如請求項11的系統,更包含一再校正模組構製成能依據一表示一第二猝發之一第二暫時廓形的第三電壓訊號來計算該第二猝發之一能量。 The system of claim 11, further comprising a recalibration module configured to calculate a second burst of energy based on a third voltage signal representing a second temporary profile of the second burst. 如請求項12的系統,其中該再校正模組係更構製成能將該第二猝發之該能量比較於由該功率量計感測之一第 二平均功率,並能依據該比較來指示該校正模組要更新該校正係數。 The system of claim 12, wherein the recalibration module is further configured to compare the energy of the second burst to one of the sensing by the power meter The average power is based on the comparison to indicate that the correction module is to update the correction coefficient. 如請求項13的系統,其中該再校正模組係構製成如果該比較超過一臨界值則會指示該校正模組要更新該校正係數。 The system of claim 13, wherein the recalibration module is configured to indicate that the correction module is to update the correction coefficient if the comparison exceeds a threshold. 如請求項11的系統,其中該等雷射脈衝係為主脈衝。 The system of claim 11, wherein the laser pulses are primary pulses. 如請求項11的系統,其中該等雷射脈衝係為前脈衝。 The system of claim 11, wherein the laser pulses are pre-pulses. 一種方法,包含:在一雷射製造的電漿(LPP)極紫外光(EUV)系統之一雷射源內使用一能量監測器來測量具有同一波長且在一猝發中發生的雷射脈衝等,該測量包含:由一功率量計接收歷經一界定的時間週期所測得之該等雷射脈衝之一平均功率;及由一光電磁(PEM)檢測器接收一第一電壓訊號表示在該界定的時間週期之至少一部份期間所感測的該等雷射脈衝之一暫時廓形;依據該平均功率和該第一電壓訊號來決定一校正係數,該校正係數係為由該平均功率決定的該等雷射脈衝之一能量與該第一電壓訊號之一積分的一比值;及依據該校正係數和由該PEM檢測器提供之表示該後續脈衝之一暫時廓形的一第二電壓訊號之一積分來決定該等雷射脈衝之該串列的一後續脈衝之一能量。 A method comprising: using an energy monitor in a laser source of a laser-made plasma (LPP) extreme ultraviolet (EUV) system to measure laser pulses having the same wavelength and occurring in a burst The measuring comprises: receiving, by a power meter, an average power of the ones of the laser pulses measured over a defined period of time; and receiving a first voltage signal by a photoelectromagnetic (PEM) detector One of the laser pulses sensed during at least a portion of the defined time period is temporarily profiled; a correction coefficient is determined based on the average power and the first voltage signal, the correction coefficient being determined by the average power And a ratio of an energy of one of the laser pulses to an integral of the first voltage signal; and a second voltage signal according to the correction coefficient and a temporary profile of the subsequent pulse provided by the PEM detector One of the integrals determines the energy of one of the subsequent pulses of the string of the laser pulses. 如請求項17的方法,更包含依據表示該第二猝發之一暫時廓形的一第三電壓訊號來計算一第二猝發之一能量。 The method of claim 17, further comprising calculating a second burst of energy based on a third voltage signal indicative of a temporary profile of the second burst. 如請求項18的方法,更包含將該第二猝發之該能量比較於由該功率量計所感測之一第二平均功率,並依據該比較來更新該校正係數。 The method of claim 18, further comprising comparing the energy of the second burst to a second average power sensed by the power meter, and updating the correction coefficient according to the comparison. 如請求項19的方法,其中更新該校正係數係依據該比較超過一臨界值。 The method of claim 19, wherein updating the correction coefficient is based on the comparison exceeding a threshold. 如請求項17的方法,其中該等雷射脈衝係為主脈衝。 The method of claim 17, wherein the laser pulses are main pulses. 如請求項17的方法,其中該等雷射脈衝係為前脈衝。 The method of claim 17, wherein the laser pulses are pre-pulses.
TW104119556A 2014-07-14 2015-06-17 Calibration of photoelectromagnetic sensor in a laser source TWI569688B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/330,526 US9239269B1 (en) 2014-07-14 2014-07-14 Calibration of photoelectromagnetic sensor in a laser source
US14/330,488 US9239268B1 (en) 2014-07-14 2014-07-14 Calibration of photoelectromagnetic sensor in a laser source

Publications (2)

Publication Number Publication Date
TW201603649A true TW201603649A (en) 2016-01-16
TWI569688B TWI569688B (en) 2017-02-01

Family

ID=55078910

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104119556A TWI569688B (en) 2014-07-14 2015-06-17 Calibration of photoelectromagnetic sensor in a laser source

Country Status (5)

Country Link
JP (1) JP6820747B2 (en)
KR (1) KR102439233B1 (en)
CN (1) CN106488826B (en)
TW (1) TWI569688B (en)
WO (1) WO2016010673A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058522A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Laser machining device
CN111521264B (en) * 2020-07-02 2020-09-22 北京瑞通科悦科技有限公司 Rapid calculation method and device for pulse energy measurement
CN113567903B (en) * 2021-07-21 2023-04-28 清华大学 Method, device, computer storage medium and terminal for realizing sensor calibration

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3542359B2 (en) * 1992-12-24 2004-07-14 キヤノン株式会社 Pulse laser device and exposure apparatus using the same
JP2844288B2 (en) * 1993-02-09 1999-01-06 ミヤチテクノス株式会社 Laser monitoring device
US6141081A (en) * 1997-08-08 2000-10-31 Cymer, Inc. Stepper or scanner having two energy monitors for a laser
KR101024559B1 (en) * 2002-05-07 2011-03-31 사이머 인코포레이티드 High power deep ultraviolet laser with long life optics
DE10251435B3 (en) * 2002-10-30 2004-05-27 Xtreme Technologies Gmbh Radiation source for extreme UV radiation for photolithographic exposure applications for semiconductor chip manufacture
DE10355866B3 (en) * 2003-11-27 2005-04-14 Jenoptik Laser, Optik, Systeme Gmbh Optical device for extraction of measuring signal for laser power measurement uses optical surfaces on opposite sides of contamination-free hermetically sealed inner space for deflecting laser radiation onto sensor
US7164144B2 (en) * 2004-03-10 2007-01-16 Cymer Inc. EUV light source
US7482609B2 (en) * 2005-02-28 2009-01-27 Cymer, Inc. LPP EUV light source drive laser system
US20060256679A1 (en) * 2005-05-10 2006-11-16 Kuang-Jung Chang Laser power controlling method for recording data and related apparatus
US7394083B2 (en) * 2005-07-08 2008-07-01 Cymer, Inc. Systems and methods for EUV light source metrology
US7615730B2 (en) * 2007-11-30 2009-11-10 Intel Corporation Device and method for measuring wavelength of an optical signal
CN101429865A (en) * 2008-12-05 2009-05-13 北京六合伟业科技有限公司 Parameter-embedded analog transducer calibration method
JP5314433B2 (en) * 2009-01-06 2013-10-16 ギガフォトン株式会社 Extreme ultraviolet light source device
CN102353446A (en) * 2011-07-08 2012-02-15 西安炬光科技有限公司 Method and system for testing power of pulsing laser
CN102394704B (en) * 2011-07-15 2013-10-30 华中科技大学 Device for automatically adjusting output power of array calibration signal source
JP6021454B2 (en) * 2011-10-05 2016-11-09 ギガフォトン株式会社 Extreme ultraviolet light generation apparatus and extreme ultraviolet light generation method
CN102435829B (en) * 2011-10-28 2013-08-14 哈尔滨工业大学 Self-calibration method for optical voltage sensor
JP5818721B2 (en) * 2012-03-06 2015-11-18 住友重機械工業株式会社 Laser processing apparatus and laser processing method
JP6050607B2 (en) * 2012-05-15 2016-12-21 株式会社アマダミヤチ Laser processing apparatus and laser output calibration method
US8811440B2 (en) * 2012-09-07 2014-08-19 Asml Netherlands B.V. System and method for seed laser mode stabilization

Also Published As

Publication number Publication date
TWI569688B (en) 2017-02-01
CN106488826B (en) 2019-08-23
JP6820747B2 (en) 2021-01-27
KR102439233B1 (en) 2022-08-31
CN106488826A (en) 2017-03-08
WO2016010673A1 (en) 2016-01-21
KR20170031102A (en) 2017-03-20
JP2017529553A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US11275059B2 (en) Apparatus and method for in-situ calibration of a photoacoustic sensor
JP6633197B2 (en) Photodetector and electronic equipment
CN102384761B (en) Method for calibrating absolute spectral response ratio of photoelectric detector
JP6508772B2 (en) Flame detection system
TWI569688B (en) Calibration of photoelectromagnetic sensor in a laser source
KR102367123B1 (en) Controlling method in distance measuring device using TOF
KR101564391B1 (en) System and method for compensating for thermal effects in an euv light source
JPH02177313A (en) Exposure controller
US9426872B1 (en) System and method for controlling source laser firing in an LPP EUV light source
US9239269B1 (en) Calibration of photoelectromagnetic sensor in a laser source
US9239268B1 (en) Calibration of photoelectromagnetic sensor in a laser source
KR101073940B1 (en) Method and apparatus for measuring bandwidth of an optical spectrum output of a very small wavelength very narrow bandwidth high power laser
JP6866471B2 (en) EUV light generator
JP2007155356A (en) Range finder and distance measuring method
CN107314887B (en) Method for estimating absolute light response rate of photomultiplier under low light intensity condition
JP4733913B2 (en) Method for stabilizing radiation output in a pulsed gas discharge pumped EUV radiation source
RU2700338C1 (en) Method of radiation pyrometer calibration and object temperature measurement
CN107091730B (en) Device for estimating absolute light response rate of photomultiplier
CN207540768U (en) Estimate the device of absolute light responsiveness of the photomultiplier under low light-intensity conditions
TWI807378B (en) Predictive calibration scheduling apparatus and method
JP6382747B2 (en) Method for measuring effective lifetime of excess minority carrier and apparatus for measuring effective lifetime of excess minority carrier
JPH11192570A (en) Device and method of laser beam machining
Fuhrland et al. A system for one-way ranging and positioning using differential TCSPC
JP2012099766A (en) Exposure device and exposure amount control method therefor