TW201528538A - Low-cost back-contact cell production method suitable for mass production - Google Patents

Low-cost back-contact cell production method suitable for mass production Download PDF

Info

Publication number
TW201528538A
TW201528538A TW103114498A TW103114498A TW201528538A TW 201528538 A TW201528538 A TW 201528538A TW 103114498 A TW103114498 A TW 103114498A TW 103114498 A TW103114498 A TW 103114498A TW 201528538 A TW201528538 A TW 201528538A
Authority
TW
Taiwan
Prior art keywords
low
diffusion
cost
mass
hole
Prior art date
Application number
TW103114498A
Other languages
Chinese (zh)
Other versions
TWI536597B (en
Inventor
Zhong-Lin Lu
zhi-lei Li
wen-ting Sheng
feng-ming Zhang
Original Assignee
Nanjing Sunport Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Sunport Power Co Ltd filed Critical Nanjing Sunport Power Co Ltd
Publication of TW201528538A publication Critical patent/TW201528538A/en
Application granted granted Critical
Publication of TWI536597B publication Critical patent/TWI536597B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The invention discloses a low-cost back-contact cell production method suitable for mass production, which is used for producing solar cells. The low-cost back-contact cell production method suitable for mass production has the advantages that since a laser process (laser boring) is adopted, conventional unilateral diffusion is adopted, special leakage protection measures are taken around holes and other processes are consistent with the processes for producing conventional cells, the process is simple, the cost of added equipment is low and the product performance and the finished product rate are superior to the existing scheme.

Description

一種低成本、適合規模化量產的背接觸電池生產方法Back-contact battery production method with low cost and suitable for mass production 【0001】【0001】

本發明係一種背接觸電池生產方法,特別係應用於太陽電池的生產製造。The invention is a method for producing a back contact battery, in particular for the production of a solar cell.

【0002】【0002】

如第1圖所示,現有的常規太陽電池在正反兩面各有2-4根銀主柵線作為正負電極,這些主柵線不僅引起了較多的銀漿消耗,同時因為遮擋入射光造成了電池效率的下降。而背接觸太陽電池是透過特殊的設計將常規電池正面的銀柵線移到背面,有效降低了銀柵線遮擋而引起的功率損失,提高了入射太陽光的利用率和電池的光電轉化效率。現在背接觸電池中一個比較容易實現的方法就是所謂的金屬穿孔纏繞結構,採用導電材料將電池正面產生的電流透過孔洞引到背面,典型的例子如荷蘭國家能源研究中心(ECN)研製開發的MWT電池,如第2圖所示,電池的正面細柵彙聚的電流透過孔洞內的銀漿引到背面。其工藝步驟如下:鐳射打孔、清洗制絨、雙面擴散製備pn結、去磷矽玻璃、製備減反射膜、絲網印刷電極、烘乾燒結、鐳射絕緣隔離周邊和孔洞、測試分選。As shown in Fig. 1, the conventional conventional solar cell has 2-4 silver main gate lines as positive and negative electrodes on the front and back sides, and these main gate lines not only cause more silver paste consumption, but also block incident light. The battery efficiency has dropped. The back contact solar cell moves the silver grid line on the front side of the conventional battery to the back through a special design, which effectively reduces the power loss caused by the blockage of the silver grid line, improves the utilization of incident sunlight and the photoelectric conversion efficiency of the battery. One of the easier ways to implement a back contact battery is the so-called metal perforated winding structure, which uses a conductive material to direct the current generated by the front of the battery through the hole to the back. Typical examples are the MWT developed by the National Energy Research Center (ECN) of the Netherlands. The battery, as shown in Fig. 2, the current concentrated by the front side of the cell is led to the back through the silver paste in the hole. The process steps are as follows: laser drilling, cleaning and texturing, double-sided diffusion to prepare pn junction, dephosphorization glass, preparation of anti-reflection film, screen printing electrode, drying and sintering, laser insulation isolation perimeter and hole, and test sorting.

【0003】[0003]

和常規太陽電池相比,以上的MWT電池增加了鐳射打孔和絕緣隔離兩道工序,同時需要將單面擴散改成雙面擴散,由此需要增加一倍數量的擴散爐,這些增加的設備和工序顯著提高了產線的投資和生產的成本,並不適合低成本規模化生產的需要,這也是目前該技術產業化較慢的重要原因。Compared with conventional solar cells, the above MWT batteries have increased the number of processes of laser drilling and insulation isolation, and it is necessary to change the single-sided diffusion to double-sided diffusion, thereby requiring a doubling of the number of diffusion furnaces. And the process significantly increases the investment and production cost of the production line, and is not suitable for the needs of low-cost large-scale production, which is also an important reason for the slow industrialization of the technology.

【0004】[0004]

發明目的:針對現有技術工藝步驟複雜、設備投入和生產成本偏高的問題,本發明提供一種增加設備少、工藝簡單的背接觸電池生產方法,適合低成本、大產能的規模化生產的需求。OBJECT OF THE INVENTION: In view of the problems of complicated process steps, high equipment investment and high production cost in the prior art, the present invention provides a method for producing a back contact battery with less equipment and simple process, and is suitable for large-scale production with low cost and large capacity.

【0005】[0005]

技術方案:一種低成本、適合規模化量產的背接觸電池生產方法,只使用一道鐳射工序(鐳射打孔),採取常規的單面擴散,孔洞附近採取特殊的防漏電保護措施,其他工序都和常規電池一致,工藝簡單、增加設備投入低,同時產品性能和成品率優於現有方案。Technical solution: A low-cost, large-scale mass production of back contact battery production method, using only one laser process (laser drilling), adopting conventional single-sided diffusion, adopting special anti-leakage protection measures near the hole, and other processes Consistent with conventional batteries, the process is simple, the equipment investment is low, and the product performance and yield are superior to the existing solutions.

【0006】[0006]

具體的方法如下步驟:The specific method is as follows:

【0007】【0007】

(1)使用鐳射器在晶體矽片上開孔;(1) using a laser to make a hole in the crystal cymbal;

【0008】[0008]

(2)對打孔後的矽片進行前清洗與制絨,去除矽片表面和孔洞內的損傷層,降低光生載流子的複合速率,同時在矽片表面製成絨面降低反射率;(2) pre-cleaning and texturing the punched bracts to remove the damaged layer on the surface of the bract and the holes, reducing the recombination rate of the photo-generated carriers, and forming a suede on the surface of the bracts to reduce the reflectivity;

【0009】【0009】

(3)在上述矽片襯底澱積摻雜源並進行擴散製備PN結,矽片採取常規的背靠背的方式插在擴散爐的石英卡槽裡進行摻雜源擴散;常用的擴散源包括POCl3(針對P型矽片)和BBr3(針對N型矽片);(3) depositing a doping source on the above-mentioned ruthenium substrate and performing diffusion to prepare a PN junction, and the ruthenium is inserted into a quartz card slot of the diffusion furnace in a conventional back-to-back manner for doping source diffusion; a commonly used diffusion source includes POCl3. (for P-type cymbals) and BBr3 (for N-type cymbals);

【0010】[0010]

(4)在太陽能電池的背表面,以孔洞為中心製備一層絕緣保護層;(4) preparing an insulating protective layer on the back surface of the solar cell with the hole as the center;

【0011】[0011]

(5)後清洗,去除太陽能電池周邊及背面未被保護的背結,去磷矽玻璃;(5) After cleaning, remove the unprotected back junction around the solar cell and the back surface, and remove the phosphorous bismuth glass;

【0012】[0012]

(6)在太陽能電池的正面蒸鍍減反膜;(6) evaporating the anti-reflection film on the front side of the solar cell;

【0013】[0013]

(7)採用絲網印刷的方法印刷正面和背面電極;(7) printing the front and back electrodes by screen printing;

【0014】[0014]

(8)烘乾、燒結或者退火以形成良好的歐姆接觸。(8) Drying, sintering or annealing to form a good ohmic contact.

【0015】[0015]

需要說明的是:在步驟(3)的擴散環節,採用了現有成熟的背靠背單面擴散工藝,在單面擴散的過程中,部分的擴散源會從孔洞中擴散到背表面,擴散的範圍為直徑10mm左右,透過步驟(4)的保護掩膜(絕緣保護層)可以保留孔洞和周邊部分PN結,防止漏電。It should be noted that in the diffusion step of step (3), the existing mature back-to-back single-side diffusion process is adopted, and in the process of single-sided diffusion, part of the diffusion source will diffuse from the hole to the back surface, and the diffusion range is With a diameter of about 10 mm, the protective mask (insulating protective layer) of step (4) can retain the hole and the peripheral portion of the PN junction to prevent leakage.

【0016】[0016]

進一步地,步驟(4)中絕緣保護層的厚度為1~10mm,保護層的材料是耐酸鹼性的有機或無機材料,製備方法包括絲網印刷、噴墨列印和鍍膜等方式。Further, the thickness of the insulating protective layer in the step (4) is 1 to 10 mm, and the material of the protective layer is an acid- or alkaline-resistant organic or inorganic material, and the preparation methods include screen printing, inkjet printing, and coating.

【0017】[0017]

另外,對步驟(4)還需要說明的是,推薦的絕緣保護材料是石蠟和聚酯薄膜等抗酸鹼性材料。這層絕緣保護也可以放在步驟(6)鍍膜工序中同時進行,因為現在的部分常規電池也開始採取正反兩面鍍膜的方式,透過調整電池反面鍍膜的類型和厚度同樣可以起到孔洞附近絕緣保護的作用。In addition, it should be noted in the step (4) that the recommended insulating protective material is an acid-resistant alkaline material such as paraffin wax or polyester film. This layer of insulation protection can also be placed in the step (6) coating process at the same time, because some of the conventional batteries are now also adopting the method of coating on both sides of the front and back. By adjusting the type and thickness of the coating on the reverse side of the battery, it is also possible to provide insulation near the hole. The role of protection.

【0018】[0018]

進一步地,步驟(6)中推薦使用氮化矽薄膜作為太陽能電池的正面蒸鍍減反膜,可以備選的使用具有大的折射率,具有與矽處理的相容性且與矽有良好介面特性的其他材料(如可見光透明的介電材料,包括但不局限於TiO2或Al2O3、SiNxCy或SiNxOy等)。Further, in the step (6), it is recommended to use a tantalum nitride film as the front surface evaporation anti-reflection film of the solar cell, which may alternatively have a large refractive index, have compatibility with ruthenium treatment, and have good interface characteristics with ruthenium. Other materials (such as visible light transparent dielectric materials, including but not limited to TiO2 or Al2O3, SiNxCy or SiNxOy, etc.).

【0019】[0019]

有益效果:與現有技術相比,本發明提供的低成本、適合規模化量產的背接觸電池生產方法,簡化了現有技術工藝,減少了雙面擴散和電池片周邊和孔洞附近鐳射絕緣隔離的複雜工序,也大大減少了設備的投入和生產的成本,同時減少了鐳射對電池片的損失,適合規模化的生產需要。Advantageous Effects: Compared with the prior art, the present invention provides a low-cost, mass-produced, back-contact battery production method that simplifies the prior art process, reduces double-sided diffusion, and laser insulation isolation around the cell sheet and near the hole. Complex processes also greatly reduce the cost of equipment investment and production, while reducing the loss of laser to the battery, suitable for large-scale production needs.

【0049】[0049]

1‧‧‧電池正面主柵線電極1‧‧‧ battery front main grid electrode

2‧‧‧電池正面細柵線2‧‧‧Battery front fine grid line

3‧‧‧電池背面主柵線電極3‧‧‧Battery main grid electrode on the back of the battery

4‧‧‧鋁背場4‧‧‧Aluminum back field

1‧‧‧P型矽基片1‧‧‧P type 矽 substrate

2‧‧‧鐳射孔洞2‧‧‧Laser holes

3‧‧‧雙面PN結擴散層3‧‧‧Double PN junction diffusion layer

4‧‧‧正面柵線電極4‧‧‧Front grid electrode

5‧‧‧鋁背場5‧‧‧Aluminum back field

6‧‧‧背電極6‧‧‧Back electrode

7‧‧‧鐳射絕緣隔離7‧‧‧Laser insulation isolation

1‧‧‧P型矽基片1‧‧‧P type 矽 substrate

2‧‧‧鐳射孔洞2‧‧‧Laser holes

3‧‧‧PN結擴散層3‧‧‧PN junction diffusion layer

4‧‧‧正面柵線電極4‧‧‧Front grid electrode

5‧‧‧鋁背場5‧‧‧Aluminum back field

6‧‧‧背電極6‧‧‧Back electrode

1‧‧‧孔洞電極1‧‧‧ hole electrode

2‧‧‧細柵線2‧‧‧fine grid line

3‧‧‧背面電極3‧‧‧Back electrode

4‧‧‧鋁背場4‧‧‧Aluminum back field

【0020】[0020]

第1圖是現有技術中常規太陽電池正反兩面平面圖。Figure 1 is a plan view of the front and back sides of a conventional solar cell in the prior art.

【0021】[0021]

第2圖是目前背接觸電池結構截面圖。Figure 2 is a cross-sectional view of the current back contact cell structure.

【0022】[0022]

第3圖是本發明所述的背接觸電池結構截面圖。Figure 3 is a cross-sectional view showing the structure of the back contact battery of the present invention.

【0023】[0023]

第4圖是本發明所述的背接觸電池正反兩面平面圖。Fig. 4 is a plan view showing the front and back sides of the back contact battery of the present invention.

【0024】[0024]

下面結合具體實施例,進一步闡明本發明,應理解這些實施例僅用於說明本發明而不用於限制本發明的範圍,在閱讀了本發明之後,本領域技術人員對本發明的各種等價形式的修改均落於本發明之申請專利範圍所限定的範圍。The invention is further clarified by the following examples, which are to be construed as illustrative only and not to limit the scope of the invention. Modifications are within the scope defined by the scope of the invention as claimed.

【0025】[0025]

透過本發明背接觸電池生產方法生產的太陽能電池如第3圖所示,在方法實施過程中,只使用一道鐳射打孔工序,採取常規的單面擴散,孔洞附近採取特殊的放漏電保護措施,其他工序都和常規電池一致,工藝簡單、增加設備投入低,同時產品性能和成品率優於現有方案,下面通過兩個具體的實施例進行說明。The solar cell produced by the back contact battery production method of the present invention is as shown in Fig. 3. During the implementation of the method, only one laser drilling process is used, and conventional single-sided diffusion is adopted, and special leakage protection measures are taken near the hole. Other processes are consistent with conventional batteries, the process is simple, the equipment investment is increased, and the product performance and yield are superior to the existing ones. The following two specific embodiments are described.

【0026】[0026]

實施例1Example 1

【0027】[0027]

背接觸電池生產方法,包括以下具體步驟:The method of producing a back contact battery includes the following specific steps:

【0028】[0028]

(1) 採用太陽能級P型單晶或者多晶矽片作為襯底;(1) using a solar grade P-type single crystal or polycrystalline germanium as a substrate;

【0029】[0029]

(2) 按照第4圖所示鐳射開孔,孔洞的形狀為圓形,直徑在0.1~0.5mm;進一步地,使用鐳射器在晶體矽片上開孔,孔洞形狀可以為圓形、方形或者錐形等,尺寸在0.05~1mm之間,孔洞的數量和分佈不限於第4圖所示;(2) According to the laser opening shown in Figure 4, the shape of the hole is circular and the diameter is 0.1~0.5mm; further, the hole is made in the crystal cymbal using a laser, and the shape of the hole may be circular, square or Cone and the like, the size is between 0.05 and 1 mm, and the number and distribution of the holes are not limited to those shown in Fig. 4;

【0030】[0030]

(3) 使用常規化學清洗和織構化方法進行清洗和織構化;(3) Cleaning and texturing using conventional chemical cleaning and texturing methods;

【0031】[0031]

(4) 使用POCl3擴散源進行高溫背靠背單面擴散,擴散方阻控制在40~120Ω/□;(4) Using a POCl3 diffusion source for high-temperature back-to-back single-sided diffusion, the diffusion square resistance is controlled at 40~120 Ω/□;

【0032】[0032]

(5) 在矽片背表面孔洞為圓心,製備直徑2~8mm的圓形石蠟掩膜,製備方法為噴墨列印法或者絲網印刷法;(5) A circular paraffin mask having a diameter of 2 to 8 mm is prepared on the back surface of the cymbal, and the preparation method is an inkjet printing method or a screen printing method;

【0033】[0033]

(6) 使用化學溶液進行化學後清洗,去除周邊及背面未被有機薄層保護的背結、清洗有機薄層、去除擴散後矽襯底表面形成的磷矽玻璃;(6) chemical cleaning after chemical cleaning, removing the back layer which is not protected by the organic thin layer on the periphery and the back surface, cleaning the organic thin layer, and removing the phosphorous glass formed on the surface of the germanium substrate after diffusion;

【0034】[0034]

(7) 用PECVD設備蒸鍍SiNx減反膜,折射率在1.9~2.1之間,膜厚在70~90nm;(7) evaporation of SiNx anti-reflection film by PECVD equipment, the refractive index is between 1.9 and 2.1, and the film thickness is between 70 and 90 nm;

【0035】[0035]

(8) 採用絲網印刷的方法印刷背電極、鋁背場和正面柵線電極;(8) printing the back electrode, the aluminum back field and the front gate line electrode by screen printing;

【0036】[0036]

(9) 在鏈式爐中進行烘乾和燒結。燒結後,正面和背面電極都形成良好的歐姆接觸。(9) Drying and sintering in a chain furnace. After sintering, both the front and back electrodes form a good ohmic contact.

【0037】[0037]

本實施例中採用的多晶矽片製備的背接觸太陽電池經測試,電池的轉換效率提高了0.5%。The back contact solar cell prepared by the polycrystalline silicon wafer used in this embodiment was tested, and the conversion efficiency of the battery was improved by 0.5%.

【0038】[0038]

實施例2Example 2

【0039】[0039]

背接觸電池生產方法,包括以下具體步驟:The method of producing a back contact battery includes the following specific steps:

【0040】[0040]

(1) 採用太陽能級的P型單晶或者多晶矽片作為襯底;(1) using a solar grade P-type single crystal or polycrystalline germanium as a substrate;

【0041】[0041]

(2) 按照第4圖所示鐳射開孔,孔洞的形狀為圓形,直徑在0.1~0.5mm;(2) According to the laser opening shown in Figure 4, the shape of the hole is circular and the diameter is 0.1~0.5mm;

【0042】[0042]

(3) 使用常規化學清洗和織構化方法進行清洗和織構化;(3) Cleaning and texturing using conventional chemical cleaning and texturing methods;

【0043】[0043]

(4) 使用POCl3擴散源進行高溫背靠背單面擴散,擴散方阻控制在40~120Ω/□;(4) Using a POCl3 diffusion source for high-temperature back-to-back single-sided diffusion, the diffusion square resistance is controlled at 40~120 Ω/□;

【0044】[0044]

(5) 使用化學溶液進行化學後清洗,去除周邊及背面pn結、去除擴散後矽襯底表面形成的磷矽玻璃;(5) After chemical cleaning with a chemical solution, the peripheral and back pn junctions are removed, and the phosphorous glass formed on the surface of the germanium substrate after diffusion is removed;

【0045】[0045]

(6) 在電池片正面蒸鍍SiNx減反膜,折射率在1.9~2.1之間,膜厚在70~90nm;在電池片背面蒸鍍AlOx/SiNx疊層鈍化保護膜,AlOx厚度為5~50nm,SiNx為50~200nm,和常規背面鈍化電池製備工序一致;(6) The SiNx anti-reflection film is deposited on the front side of the cell, the refractive index is between 1.9 and 2.1, and the film thickness is 70-90 nm. The AlOx/SiNx laminated passivation protective film is deposited on the back side of the cell sheet, and the AlOx thickness is 5~50 nm. , SiNx is 50~200nm, which is consistent with the conventional back passivation cell preparation process;

【0046】[0046]

(7) 採用絲網印刷的方法印製正面和背面電極,和常規背面鈍化電池製備方法相同;(7) The front and back electrodes are printed by screen printing, which is the same as the conventional back passivation battery;

【0047】[0047]

(8) 在鏈式爐中進行烘乾、燒結。燒結後,正面和背面電極都形成良好的歐姆接觸;(8) Drying and sintering in a chain furnace. After sintering, both the front and back electrodes form a good ohmic contact;

【0048】[0048]

本實施例中採用的多晶矽片製備的背接觸太陽電池經測試,電池的轉換效率提高1%。The back contact solar cell prepared by the polycrystalline silicon wafer used in this embodiment was tested, and the conversion efficiency of the battery was improved by 1%.

國內寄存資訊【請依寄存機構、日期、號碼順序註記】Domestic registration information [please note according to the registration authority, date, number order]

no

國外寄存資訊【請依寄存國家、機構、日期、號碼順序註記】Foreign deposit information [please note according to the country, organization, date, number order]

no

no

1‧‧‧P型矽基片 1‧‧‧P type 矽 substrate

2‧‧‧鐳射孔洞 2‧‧‧Laser holes

3‧‧‧PN結擴散層 3‧‧‧PN junction diffusion layer

4‧‧‧正面柵線電極 4‧‧‧Front grid electrode

5‧‧‧鋁背場 5‧‧‧Aluminum back field

6‧‧‧背電極 6‧‧‧Back electrode

Claims (5)

【第1項】[Item 1] 適合規模化量產的背接觸電池生產方法,其特徵在於,包括如下步驟:
(1)使用鐳射器在晶體矽片上開孔;
(2)對打孔後的該矽片進行前清洗與制絨,去除該矽片表面和孔洞內的損傷層,降低光生載流子的複合速率,同時在該矽片表面製成絨面降低反射率;
(3)在該矽片襯底澱積摻雜源並進行擴散製備PN結,該矽片採取背靠背的方式插在擴散爐的石英卡槽裡進行摻雜源擴散;常用的擴散源包括POCl3和BBr3;
(4)在太陽能電池的背表面,以該孔洞為中心製備一層絕緣保護層;
(5)後清洗,去除該太陽能電池周邊及背面未被保護的背結,去磷矽玻璃;
(6)在該太陽能電池的正面蒸鍍減反膜;
(7)採用絲網印刷的方法印刷正面和背面電極;(8)烘乾、燒結或者退火以形成良好的歐姆接觸。
A method for producing a back contact battery suitable for mass production, characterized in that it comprises the following steps:
(1) using a laser to make a hole in the crystal cymbal;
(2) pre-cleaning and texturing the punched sheet, removing the damaged layer on the surface of the sheet and the hole, reducing the recombination rate of the photo-generated carriers, and reducing the surface of the sheet on the surface of the sheet. Reflectivity;
(3) depositing a doping source on the ruthenium substrate and performing diffusion to prepare a PN junction, the ruthenium is inserted into the quartz card slot of the diffusion furnace in a back-to-back manner for dopant source diffusion; commonly used diffusion sources include POCl3 and BBr3;
(4) preparing an insulating protective layer on the back surface of the solar cell with the hole as a center;
(5) After cleaning, removing the unprotected back junction of the solar cell and the back surface, and removing the phosphorous bismuth glass;
(6) evaporating the anti-reflection film on the front side of the solar cell;
(7) Printing the front and back electrodes by screen printing; (8) drying, sintering or annealing to form a good ohmic contact.
【第2項】[Item 2] 如申請專利範圍第1項所述的低成本、適合規模化量產的背接觸電池生產方法,其中該步驟(4)中該絕緣保護層的厚度為1~10mm,該保護層的材料是耐酸鹼性的有機或無機材料,製備方法包括絲網印刷、噴墨列印和鍍膜等方式。The method for producing a low-cost, mass-produced back contact battery according to the first aspect of the patent application, wherein the thickness of the insulating protective layer in the step (4) is 1 to 10 mm, and the material of the protective layer is resistant. Acid-alkaline organic or inorganic materials, including preparation methods such as screen printing, inkjet printing and coating. 【第3項】[Item 3] 如申請專利範圍第1項或第2項所述的低成本、適合規模化量產的背接觸電池生產方法,其中該步驟(4)中的該絕緣保護材料是石蠟和聚酯薄膜等抗酸鹼性材料。The method for producing a low-cost, mass-produced back contact battery according to the first or second aspect of the patent application, wherein the insulating protective material in the step (4) is an acid-resistant such as a paraffin wax or a polyester film. Alkaline material. 【第4項】[Item 4] 如申請專利範圍第3項所述的低成本、適合規模化量產的背接觸電池生產方法,其中該步驟(4)中的該絕緣保護層也可以放在該步驟(6)鍍膜工序中同時進行,因為現在的部分常規電池也開始採取正反兩面鍍膜的方式,透過調整電池反面鍍膜的類型和厚度同樣可以起到該孔洞附近絕緣保護的作用。The method for producing a low-cost, mass-produced back contact battery according to claim 3, wherein the insulating protective layer in the step (4) can also be placed in the coating step of the step (6). This is because some of the conventional batteries are now adopting the positive and negative coating methods. By adjusting the type and thickness of the coating on the reverse side of the battery, the insulation protection around the hole can also be achieved. 【第5項】[Item 5] 如申請專利範圍第1項所述的低成本、適合規模化量產的背接觸電池生產方法,其中該步驟(6)中推薦使用氮化矽薄膜作為該太陽能電池的正面蒸鍍減反膜;可以備選的使用具有大的折射率,具有與矽處理的相容性且與矽有良好介面特性的其他材料;其他材料為可見光透明的介電材料,包括TiO2或Al2O3、SiNxCy或SiNxOy。The low-cost, mass-produced back contact battery production method according to the first aspect of the patent application, wherein the step (6) recommends using a tantalum nitride film as the front evaporation coating anti-reflection film of the solar cell; Alternative materials having a large refractive index, compatibility with ruthenium treatment, and good interface properties with ruthenium are used; other materials are visible light transparent dielectric materials including TiO2 or Al2O3, SiNxCy or SiNxOy.
TW103114498A 2014-01-14 2014-04-22 A low cost, suitable for mass production of back contact with the battery production methods TWI536597B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410016190.6A CN103746040A (en) 2014-01-14 2014-01-14 Low-cost back-contact cell production method suitable for mass production

Publications (2)

Publication Number Publication Date
TW201528538A true TW201528538A (en) 2015-07-16
TWI536597B TWI536597B (en) 2016-06-01

Family

ID=50503047

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103114498A TWI536597B (en) 2014-01-14 2014-04-22 A low cost, suitable for mass production of back contact with the battery production methods

Country Status (2)

Country Link
CN (1) CN103746040A (en)
TW (1) TWI536597B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409572B (en) * 2014-11-24 2017-02-22 新奥光伏能源有限公司 Manufacturing method of heterojunction solar cell
CN104600134A (en) * 2014-12-30 2015-05-06 南京日托光伏科技有限公司 Solar cell and preparation method thereof
CN105304758B (en) * 2015-10-30 2018-08-10 南京日托光伏科技有限公司 A method of it reduces and leaks electricity at back contacts photovoltaic cell perforation electrode
CN106981522B (en) 2017-03-03 2018-07-10 浙江爱旭太阳能科技有限公司 PERC solar cells of photoelectric conversion efficiency and preparation method thereof can be improved
CN108183147A (en) * 2017-12-15 2018-06-19 南京日托光伏科技股份有限公司 A kind of preparation method of MWT silicon solar cells
CN108878545B (en) * 2018-05-29 2020-03-10 江苏日托光伏科技股份有限公司 MWT battery capable of reducing arrangement of positive electrode points and preparation method
CN109713053A (en) * 2018-12-27 2019-05-03 江苏日托光伏科技股份有限公司 A kind of preparation method of MWT solar battery
CN112059441B (en) * 2020-09-14 2022-03-29 捷和电机(江西)有限公司 Gas cost determination method, device and equipment for laser cutting of parts and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610666A (en) * 2011-01-20 2012-07-25 无锡尚德太阳能电力有限公司 MWT (metal wrap through) back-contact solar cell, preparation method and module thereof
US9153713B2 (en) * 2011-04-02 2015-10-06 Csi Cells Co., Ltd Solar cell modules and methods of manufacturing the same
CN102760777A (en) * 2011-04-29 2012-10-31 无锡尚德太阳能电力有限公司 Solar cell, solar cell module and preparation method thereof
CN102361040A (en) * 2011-11-08 2012-02-22 天威新能源控股有限公司 Solar cell and preparation method thereof
CN102820375B (en) * 2012-08-14 2015-03-11 苏州阿特斯阳光电力科技有限公司 Preparation method for back contact solar battery
CN103413858B (en) * 2013-06-08 2016-01-06 中山大学 A kind of preparation method of MWT crystal silicon solar energy battery

Also Published As

Publication number Publication date
CN103746040A (en) 2014-04-23
TWI536597B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
TWI536597B (en) A low cost, suitable for mass production of back contact with the battery production methods
CN102623517B (en) Back contact type crystalline silicon solar cell and production method thereof
CN107394006B (en) A kind of N-type double-side cell preparation method
CN105870215A (en) Rear surface passivation contact battery electrode structure and preparation method thereof
CN104538464B (en) Silicon heterojunction solar cell and manufacturing method thereof
CN106876491A (en) A kind of P-type crystal silicon back contact battery structure and preparation method without front gate line
CN103594529A (en) MWT and passivation combined crystal silicon solar cell and manufacturing method thereof
CN205657066U (en) Back passivation contact battery electrode structure
CN109473492A (en) It is suitble to the MWT hetero-junction silicon solar cell and preparation method thereof of scale volume production
CN102655185A (en) Heterojunction solar cell
WO2019128073A1 (en) Method for preparing efficient mwt solar cell
CN103383975A (en) Two-sided passivation efficient heterojunction battery and manufacturing method thereof
CN102751371A (en) Solar thin film battery and manufacturing method thereof
CN103474506A (en) Method for manufacturing bifacial solar cell
CN105789343A (en) N type dual-face solar cell having transparent electrode and preparation method thereof
CN102931268B (en) N-type silicon substrate based back contact type HIT (Heterojunction with Intrinsic Thin layer) solar cell structure and preparation method thereof
CN108172658A (en) A kind of preparation method of N-type hetero-junctions double-sided solar battery
CN102270668B (en) Heterojunction solar cell and preparation method thereof
CN205564764U (en) Back passivation contact battery structure
CN206672943U (en) A kind of P-type crystal silicon back contacts double-side cell structure of no front gate line
CN203674218U (en) Crystalline silicon solar cell integrating MWP and passive emitter and rear cell technologies
CN209056506U (en) It is suitble to the MWT hetero-junction silicon solar cell of scale volume production
CN107046070A (en) A kind of P-type crystal silicon battery structure and preparation method thereof
CN103151398A (en) Heterojunction battery and manufacturing method thereof
CN206864485U (en) A kind of P-type crystal silicon battery structure