TW201518317A - 北美豬生殖與呼吸綜合症候群(prrs)病毒及其用途 - Google Patents

北美豬生殖與呼吸綜合症候群(prrs)病毒及其用途 Download PDF

Info

Publication number
TW201518317A
TW201518317A TW103126455A TW103126455A TW201518317A TW 201518317 A TW201518317 A TW 201518317A TW 103126455 A TW103126455 A TW 103126455A TW 103126455 A TW103126455 A TW 103126455A TW 201518317 A TW201518317 A TW 201518317A
Authority
TW
Taiwan
Prior art keywords
amino acid
virus
seq
prrs
acid sequence
Prior art date
Application number
TW103126455A
Other languages
English (en)
Inventor
Jay Gregory Calvert
Siao-Kun Wan Welch
David Ewell Slade
Original Assignee
Zoetis Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zoetis Llc filed Critical Zoetis Llc
Publication of TW201518317A publication Critical patent/TW201518317A/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10041Use of virus, viral particle or viral elements as a vector
    • C12N2770/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10051Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10061Methods of inactivation or attenuation
    • C12N2770/10062Methods of inactivation or attenuation by genetic engineering
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10061Methods of inactivation or attenuation
    • C12N2770/10064Methods of inactivation or attenuation by serial passage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10071Demonstrated in vivo effect

Abstract

本發明提供經分離之聚核苷酸分子,其包含編碼感染性RNA序列之DNA序列,該感染性RNA序列編碼經遺傳修飾之北美PRRS病毒,其製造方法,及相關多肽、聚核苷酸及各種組分。亦提供包含經遺傳修飾之病毒及聚核苷酸的疫苗,及辨別天然感染動物及疫苗接種動物之診斷套組。

Description

北美豬生殖與呼吸綜合症候群(PRRS)病毒及其用途
本發明屬於動物健康領域且係關於正極性RNA病毒、新穎RNA病毒及其經修飾之活體形式之感染性cDNA純系,及使用該等cDNA純系建構疫苗,詳言之豬疫苗。
豬生殖與呼吸綜合症候群(PRRS)以大母豬及小母豬之流產、死產及其他生殖問題以及豬仔之呼吸道疾病為特徵。病原體為PRRS病毒(PRRSV),其為動脈炎病毒科(Arteriviridae)及套式病毒目(Nidovirale)之成員。套式病毒為具有由單股正極性RNA組成之基因體的包膜病毒。正股RNA病毒之基因體RNA滿足在遺傳資訊儲存及表現兩者中之雙重作用。套式病毒之複製或轉錄不涉及DNA。非結構蛋白直接由套式病毒之基因體RNA轉譯為大聚合蛋白,隨後由病毒蛋白酶裂解為個別功能蛋白。自基因體合成一組3'-同末端套式次基因體RNA(sgRNA)且用作信使RNA來轉譯結構蛋白。套式病毒基因體RNA再生因此為基因體複製與sgRNA合成之組合過程。
在1980年代後期,該病毒之兩種不同基因型幾乎同時出現,一者位於北美洲且另一者位於歐洲。PRRS病毒目前為幾乎所有產豬國家的地方病,且被認為是影響整個豬肉產業的最具經濟重要性的疾病之 一。另外,高毒性基因型已在中國及周邊國家分離出,且該等基因型通常與北美基因型有關。
儘管在PRRSV生物學瞭解方面已取得顯著進展,但控制該病毒仍非常困難。該領域中之動物疫苗接種已證明基本上無效。已免疫接種之畜群中通常會再出現PRRS,且大多數農場內PRRSV疫苗接種最終不能控制該疾病。
在不受理論限制的情況下,豬經野生型PRRSV感染或用此病原體之活減毒形式進行疫苗接種令人遺憾地僅引起非中和抗體的大量產生。在此時間間隔內,例如僅產生有限數量之干擾素(IFN)-γ分泌細胞。因此,PRRSV似乎本能地刺激特徵為始終旺盛的體液(基於抗體)免疫的失衡免疫反應,及可變且有限但潛在保護性T輔助細胞(Th)1樣IFN-γ反應。很可能造成應變性免疫(adaptive immunity)發展失衡的一個PRRSV感染特徵為缺乏適當的先天免疫反應。病毒感染細胞通常分泌I型干擾素「IFN」(包括IFN-α及IFN-β),其防止相鄰細胞受感染。另外,所釋放之I型IFN與一小群初始T細胞相互作用以促使其轉化為病毒特異性II型IFN(IFN-γ)分泌細胞。相比之下,豬對於PRRSV暴露之IFN-α反應幾乎不存在。由於IFN-α上調IFN-γ基因表現,故將預期該種由病原體對IFN-α產生的無效刺激對宿主應變性免疫反應之性質具有顯著影響。因此,前一細胞激素控制促進應變性免疫(亦即,T細胞介導之IFN-γ反應及峰值抗病毒免疫防禦)發展之主導路徑。
在此方面,已明顯發現病毒感染中先天性免疫與應變性免疫之間可能經由特殊類型之樹突狀細胞而進行連接,該樹突狀細胞能夠產生大量I型干擾素,且其在T細胞功能之極化中發揮關鍵作用。特定言之,不常見但值得注意的類型之樹突狀細胞,即漿細胞樣樹突狀細胞(PDC),亦稱為天然IFN-α/β產生細胞,其藉助於其促使初始T細胞分化為IFN-γ分泌細胞的能力而在抗病毒免疫中發揮關鍵作用。雖然稀 少,但PDC為IFN-α極其有效的生產者,每個細胞能夠回應病毒而產生3-10pg IFN-α。相比之下,單核細胞以每個細胞計所產生的IFN-α為1/10至1/5。已描述豬PDC之表型及一些生物特性(Summerfield等人,2003,Immunology 110:440)。最近研究已確定PRRSV不刺激豬PDC分泌IFN-α(Calzada等人,2010,Veterinary Immunology and Immunopathology 135:20)。
此事實加上發現在疫苗接種時外源添加IFN-α改良PRRSV特異性IFN-γ反應之強度(W.A.Meier等人,Vet.Immunol.Immunopath.102,第299-314頁,2004)強調IFN-α在豬經此病毒感染期間發揮關鍵作用。鑒於IFN-α對於保護性免疫發展的明顯關鍵作用,重要的是測定不同PRRS病毒原液刺激及/或抑制IFN-α產生之能力。因此,迫切需要新穎且經改良修飾之活疫苗來預防PRRS。如下所述,顯然來源於新穎感染性cDNA純系pCMV-S-P129-PK以及其他純系之病毒的表型不同於野生型P129病毒或兩種市售經修飾之活PRRS疫苗。在不受理論限制的情況下,本發明提供加強針對病毒之基於細胞之免疫反應的疫苗且定義一代新穎且有效的PRRS疫苗。
在第一實施例中,本發明提供一種經分離之聚核苷酸分子,其包括編碼感染性RNA分子之DNA序列,該感染性RNA分子編碼經遺傳修飾之PRRS病毒,以使其作為疫苗引發豬類動物針對PRRS病毒之有效免疫保護反應。在某些態樣中,本發明提供如本文提出之DNA序列,其包括SEQ ID NO.:1、SEQ ID NO.:2、SEQ ID NO.:3、SEQ ID NO.:4或SEQ ID NO:6,或與其具有至少70%一致性,較佳80%一致性且更佳85%、90%、95%、96%、97%、98%或99%一致性之序列。
在某些實施例中,本發明提供一種質體,其包括如本文所提出之經分離之聚核苷酸分子及能夠在合適宿主細胞中轉錄該聚核苷酸分子 之啟動子。在另一實施例中,本文之質體之北美或中國PRRS編碼序列進一步編碼一或多種可偵測的異源抗原決定基。本發明提供一種包括本文所提出之質體的轉染宿主細胞。
在另一態樣中,本發明提供一種預防豬類動物感染PRRS病毒之疫苗。該疫苗可包括由感染性RNA分子編碼之北美或中國PRRS病毒、該感染性RNA分子或質體,其各由如本文所提出之經分離之聚核苷酸分子編碼。在另一態樣中,該疫苗包括一種包括本文之聚核苷酸的病毒載體。本文所提出之疫苗可視情況包括獸醫學使用可接受之疫苗載劑。在一重要態樣中,該疫苗與野生型P129 PRRS病毒相比具有減小之干擾素-α抑制作用(參見ATCC 203488、203489、美國專利第6,500,662號)。
在一個實施例中,本發明提供包括聚核苷酸分子之診斷套組,該等聚核苷酸分子辨別(所謂DIVA測試)天然感染PRRS病毒野毒株(field strain)之豬類動物及接種本文所提出之經修飾之活疫苗之豬類動物。
在其他實施例中,本發明提供一種預防豬類動物感染PRRS病毒株之方法,其包括向該動物投與免疫保護量之本文所提出之技術方案之疫苗。
本發明之其他及較佳實施例包括經分離之豬生殖與呼吸綜合症候群病毒(PRRS)或編碼其之聚核苷酸序列,其中由ORF1a編碼之蛋白質係選自由含有任一以下胺基酸序列之彼等蛋白質組成之群,其中加下劃線之殘基咸信為新穎的:AMANVYD(SEQ ID NO:9);IGHNAVM(SEQ ID NO:12);TVPDGNC(SEQ ID NO:15);CWWYLFD(SEQ ID NO:18);HGVHGKY(SEQ ID NO:21);AAKVDQY(SEQ ID NO:24);PSATDTS(SEQ ID NO:27);LNSLLSK(SEQ ID NO:30);APMCQDE(SEQ ID NO:33);CAPTGMD(SEQ ID NO:36);PKVAKVS(SEQ ID NO:39);AGEIVGV(SEQ ID NO:42); ADFNPEK(SEQ ID NO:45);及QTPILGR(SEQ ID NO:48)。在本發明之另一較佳實施例中,本發明提供一種經分離之北美或中國PRRS,其在由ORF1a編碼之蛋白質內含有任一上述識別序列,包括此等識別序列之任何組合(2、3、4...直至17)。
本發明進一步提供一種經分離之豬生殖與呼吸綜合症候群病毒(PRRS),其中其由ORF1a編碼之蛋白質係選自由含有以下任一者之彼等胺基酸序列組成之群:ANV(參見SEQ ID NO:9);HNA(參見SEQ ID NO:12);PDG(參見SEQ ID NO:15);WYL(參見SEQ ID NO:18);VHG(參見SEQ ID NO:21);KVD(參見SEQ ID NO:24);ATD(參見SEQ ID NO:27);SLL(參見SEQ ID NO:30);MCQ(參見SEQ ID NO:33);PTG(參見SEQ ID NO:36);VAK(參見SEQ ID NO:39);EIV(參見SEQ ID NO:42);FNP(參見SEQ ID NO:45);及PIL(參見SEQ ID NO:48),包括此等識別序列之任何組合(2、3、4...直至17)。
在另一較佳實施例中,本發明提供一種經分離之北美或中國PRRS,其中不考慮編碼該病毒之聚核苷酸或由其編碼之蛋白質中任一點與任何其他特定核苷酸或胺基酸序列位置之一致性,ORF1a病毒蛋白均含有:(a)任何以下指定序列中之特定胺基酸,胺基酸序列ANV(參見SEQ ID NO:9)內之胺基酸N;胺基酸序列HNA(參見SEQ ID NO:12)內之胺基酸N;胺基酸序列PDG(參見SEQ ID NO:15)內之胺基酸D;胺基酸序列WYL(參見SEQ ID NO:18)內之胺基酸Y;胺基酸序列VHG(參見SEQ ID NO:21)內之胺基酸H;胺基酸序列KVD(參見SEQ ID NO:24)內之胺基酸V;胺基酸序列ATD(參見SEQ ID NO:27)內之胺基酸T;胺基酸序列SLL(參見SEQ ID NO:30)內之胺基酸L; 胺基酸序列MCQ(參見SEQ ID NO:33)內之胺基酸C;胺基酸序列PTG(參見SEQ ID NO:36)內之胺基酸T;胺基酸序列VAK(參見SEQ ID NO:39)內之胺基酸A;胺基酸序列EIV(參見SEQ ID NO:42)內之胺基酸I;胺基酸序列FNP(參見SEQ ID NO:45)內之胺基酸N;及胺基酸序列PIL(參見SEQ ID NO:48)內之胺基酸I,包括此等識別序列之任何組合(2、3、4...直至17),或(b)在與如上文所指定之3-殘基序列對應之任何其他北美或中國PRRS病毒之指定3-殘基ORF1a肽序列中含有該等特定加下劃線之單個胺基酸,考慮到該等其他特定3-殘基胺基酸序列可展示一或兩個其他胺基序列改變,但仍被認為與上文所指定之序列對應。對於本發明之該實施例,「對應」意指相關序列可使用如Henikoff等人,Proc Natl.Acad.Sci.,USA,89,第10915-10919頁,1992中所述之BLOSUM算法最佳比對。
在本發明之另一較佳實施例中,提供一種經分離之豬生殖與呼吸綜合症候群病毒(PRRS),其中其由ORF1a編碼之蛋白質具有含有變體(a)、(b)、(c)及(d)之一或多者的胺基酸序列,其中該等變體各定義如下:變體(a),胺基酸序列ANV(參見SEQ ID NO:9)內之胺基酸N;胺基酸序列HNA(參見SEQ ID NO:12)內之胺基酸N;胺基酸序列PDG(參見SEQ ID NO:15)內之胺基酸D;胺基酸序列WYL(參見SEQ ID NO:18)內之胺基酸Y;胺基酸序列VHG(參見SEQ ID NO:21)內之胺基酸H,或變體(a)之任何子集;變體(b), 胺基酸序列KVD(參見SEQ ID NO:24)內之胺基酸V;胺基酸序列ATD(參見SEQ ID NO:27)內之胺基酸T;胺基酸序列SLL(參見SEQ ID NO:30)內之胺基酸L;胺基酸序列MCQ(參見SEQ ID NO:33)內之胺基酸C,或變體(b)之任何子集;變體(c),胺基酸序列PTG(參見SEQ ID NO:36)內之胺基酸T;胺基酸序列VAK(參見SEQ ID NO:39)內之胺基酸A,或變體(c)之任何子集;及變體(d),胺基酸序列EIV(參見SEQ ID NO:42)內之胺基酸I;胺基酸序列FNP(參見SEQ ID NO:45)內之胺基酸N;胺基酸序列PIL(參見SEQ ID NO:20)內之胺基酸I,或其變體(d)之任何子集。
該等PRRS病毒可進一步含有變體(a)中所識別之五種胺基酸序列中之兩者或兩者以上、及/或變體(b)中所識別之四種胺基酸序列中之兩者或兩者以上、及/或變體(c)中所識別之兩種胺基酸序列、及/或變體(d)中所識別之三種胺基酸序列中之兩者或兩者以上。
本發明亦提供一種質體,其能夠直接轉染合適宿主細胞且由所轉染之合適宿主細胞表現豬生殖與呼吸綜合症候群病毒(PRRS),該質體包含:(a)編碼感染性RNA分子之DNA序列,該感染性RNA分子編碼PRRS病毒,及(b)能夠轉錄該感染性RNA分子之啟動子,其中該病毒之由ORF1a編碼之蛋白質具有含有以下之胺基酸序列:(1)胺基酸序列ANV(參見SEQ ID NO:9)內之胺基酸N;胺基酸序列HNA(參見SEQ ID NO:12)內之胺基酸N;胺基酸序列PDG(參見SEQ ID NO:15)內之胺基酸D; 胺基酸序列WYL(參見SEQ ID NO:18)內之胺基酸Y;胺基酸序列VHG(參見SEQ ID NO:21)內之胺基酸H,或其任何子集;及/或(2)胺基酸序列KVD(參見SEQ ID NO:24)內之胺基酸V;胺基酸序列ATD(參見SEQ ID NO:27)內之胺基酸T;胺基酸序列SLL(參見SEQ ID NO:30)內之胺基酸L;胺基酸序列MCQ(參見SEQ ID NO:33)內之胺基酸C,或其任何子集;及/或(3)胺基酸序列PTG(參見SEQ ID NO:36)內之胺基酸T;胺基酸序列VAK(參見SEQ ID NO:39)內之胺基酸A,或其任何子集;及/或(4)胺基酸序列EIV(參見SEQ ID NO:42)內之胺基酸I;胺基酸序列FNP(參見SEQ ID NO:45)內之胺基酸N;胺基酸序列PIL(參見SEQ ID NO:48)內之胺基酸I,或其任何子集。
應瞭解ORF1a編碼包含蛋白酶功能之聚合蛋白,且ORF1b編碼包含複製酶(RNA聚合酶)及解螺旋酶功能之聚合蛋白。可例如在美國專利第7,132,106號中發現關於PRRS之由各種ORF(開放閱讀框架)編碼之蛋白質功能的其他資訊。關於ORF7及其他開放閱讀框架之功能亦參見美國專利第7,544,362號。如此項技術中所瞭解,預期ORF1編碼之蛋白質具有已知及未知的其他功能,且適用於本發明實踐中之新穎胺基酸改變並不經由其對ORF1編碼之蛋白質的任一特定功能的影響而受限。
在其他較佳實施例中,該質體含有啟動子,其為能夠允許目標真核細胞中DNA起始轉錄之真核啟動子或能夠引導質體活體外轉錄之原核或噬菌體啟動子。本發明同樣提供一種產生PRRS病毒之方法,該 方法包含用合適質體轉染合適宿主細胞且獲得由該轉染細胞產生之PRRS病毒。
因此,在一特定較佳實施例中,本發明提供一種經分離之聚核苷酸分子,其包含編碼感染性RNA分子之DNA序列,該感染性RNA分子編碼北美PRRS病毒,其中該DNA序列係選自由以下組成之群:(a)SEQ ID NO:6;(b)與(a)之DNA序列具有至少85%一致性的序列,其中其由ORF1a編碼之蛋白質具有含有以下之胺基酸序列:來自群(b)(1)胺基酸序列ANV(參見SEQ ID NO:9)內之胺基酸N;胺基酸序列HNA(參見SEQ ID NO:12)內之胺基酸N;胺基酸序列PDG(參見SEQ ID NO:15)內之胺基酸D;胺基酸序列WYL(參見SEQ ID NO:18)內之胺基酸Y;胺基酸序列VHG(參見SEQ ID NO:21)內之胺基酸H,或其任何子集;及/或來自群(b)(2)胺基酸序列KVD(參見SEQ ID NO:24)內之胺基酸V;胺基酸序列ATD(參見SEQ ID NO:27)內之胺基酸T;胺基酸序列SLL(參見SEQ ID NO:30)內之胺基酸L;胺基酸序列MCQ(參見SEQ ID NO:33)內之胺基酸C,或其任何子集;及/或來自群(b)(3)胺基酸序列PTG(參見SEQ ID NO:36)內之胺基酸T;胺基酸序列VAK(參見SEQ ID NO:39)內之胺基酸A,或其任何子集;及/或來自群(b)(4) 胺基酸序列EIV(參見SEQ ID NO:42)內之胺基酸I;胺基酸序列FNP(參見SEQ ID NO:45)內之胺基酸N;胺基酸序列PIL(參見SEQ ID NO:20)內之胺基酸I,或其任何子集;及(c)在高度嚴格條件下與(a)或(b)之DNA序列的互補序列雜交之DNA序列,該等條件包含在65℃下在0.5M NaHPO4、7% SDS、1mM EDTA中與過濾器結合之DNA雜交及在68℃下在0.1 SSC/0/1% SDS中洗滌。
本發明亦提供用聚核苷酸分子轉染之宿主細胞且提供預防豬類動物感染PRRS病毒之疫苗,該疫苗包含:(a)由該等上述聚核苷酸分子所編碼之經遺傳修飾之北美PRRS病毒,或(b)該感染性分子,或(c)呈質體形式之該聚核苷酸分子,或(d)包含該聚核苷酸分子之病毒載體,其中該PRRS病毒在有效產生針對感染之免疫保護的量下能夠引發針對PRRS病毒感染之有效免疫保護反應;及適於獸醫學使用之載劑。
本發明亦提供與以下對應(亦即藉由具有互補鹼基編碼序列)之RNA聚核苷酸序列:(a)SEQ ID NO:6之DNA序列;(b)與(a)之DNA序列具有至少85%一致性的DNA序列,其中其由ORF1a編碼之蛋白質具有含有以下任一者及以下任一者之任何組合的胺基酸序列:胺基酸序列ANV(參見SEQ ID NO:9)內之胺基酸N;胺基酸序列HNA(參見SEQ ID NO:12)內之胺基酸N;胺基酸序列PDG(參見SEQ ID NO:15)內之胺基酸D;胺基酸序列WYL(參見SEQ ID NO:18)內之胺基酸Y;胺基酸序列VHG(參見SEQ ID NO:21)內之胺基酸H; 胺基酸序列KVD(參見SEQ ID NO:24)內之胺基酸V;胺基酸序列ATD(參見SEQ ID NO:27)內之胺基酸T;胺基酸序列SLL(參見SEQ ID NO:30)內之胺基酸L;胺基酸序列MCQ(參見SEQ ID NO:33)內之胺基酸C;胺基酸序列PTG(參見SEQ ID NO:36)內之胺基酸T;胺基酸序列VAK(參見SEQ ID NO:39)內之胺基酸A;胺基酸序列EIV(參見SEQ ID NO:42)內之胺基酸I;胺基酸序列FNP(參見SEQ ID NO:45)內之胺基酸N;胺基酸序列PIL(參見SEQ ID NO:20)內之胺基酸I,或(c)在高度嚴格條件下與(a)或(b)之DNA序列的互補序列雜交之DNA序列,該等條件包含在65℃下在0.5M NaHPO4、7% SDS、1mM EDTA中與過濾器結合之DNA雜交及在68℃下在0.1 SSC/0/1% SDS中洗滌。
因此,本發明亦提供包含聚核苷酸分子之診斷套組,該等聚核苷酸分子辨別天然感染PRRS病毒野毒株之豬類動物及接種本發明之疫苗的豬類動物,該等疫苗(病毒)較佳顯示與野生型P129 PRRS病毒(SEQ ID NO:5)相比減小的干擾素-α抑制作用。
圖1展示疫苗接種後之直腸溫度。
圖2展示用毒性PRRSV NADC20攻毒後之直腸溫度。
圖3展示疫苗接種後及攻毒後之體重。
圖4展示攻毒後具有PRRS病變之肺之百分比數據。
圖5展示攻毒後關於所觀察病變之嚴重程度的肺評估得分(LAS)。
圖6為描述疫苗接種後及攻毒後血清中抗PRRSV抗體含量之直方圖(ELISA S/P比率)。
圖7為攻毒後血清中之病毒負載之圖示說明(log TCID50/ml,在 PAM細胞上)。
圖8為獲得如本文中所揭示之包括SEQ ID NO:1至SEQ ID NO:6之疫苗的方法的圖示說明。
如本說明書及隨附申請專利範圍中所用,除非上下文另外明確規定,否則單數形式「一」及「該」包括複數個指代物。因此,舉例而言,提及「該方法」包括一或多種本文所述類型之方法及/或步驟,其將在熟習此項技術者閱讀本發明後而變得顯而易見,等等。
除非另外規定,否則所有本文中所用之技術及科學術語具有與一般熟習本發明所屬技術者通常所瞭解相同的含義。雖然與本文所述類似或等效的任何方法及材料可用於本發明之實踐或測試中,但現在描述較佳方法及材料。
除非特定指示與此相反,否則本發明之實踐將採用此項技術技能內之病毒學、免疫學、微生物學、分子生物學及重組DNA技術之習知方法,其中有許多出於說明之目的描述於下文。該等技術於文獻中充分說明。參見例如Sambrook等人,Molecular Cloning:A Laboratory Manual(第2版,1989);Maniatis等人,Molecular Cloning:A Laboratory Manual(1982);DNA Cloning:A Practical Approach,第I卷及第II卷(D.Glover,編);Oligonucleotide Synthesis(N.Gait,編,1984);Nucleic Acid Hybridization(B.Hames及S.Higgins,編,1985);Transcription and Translation(B.Hames及S.Higgins,編,1984);Animal Cell Culture(R.Freshney,編,1986);Perbal,A Practical Guide to Molecular Cloning(1984)。
「北美PRRS病毒」意指具有與北美PRRS病毒分離株相關之遺傳特徵的任何PRRS病毒,諸如(但不限於)大約在1990年代早期美國首次分離之PRRS病毒(參見例如Collins,J.E.,等人,1992,J.Vet.Diagn. Invest.4:117-126);北美PRRS病毒分離株MN-1b(Kwang,J.等人,1994,J.Vet.Diagn.Invest.6:293-296);PRRS之Quebec LAF-exp91病毒株(Mardassi,H.等人1995,Arch.Virol.140:1405-1418);及北美PRRS病毒分離株VR 2385(Meng,X.-J等人,1994,J.Gen.Virol.75:1795-1801)。遺傳特徵係指北美PRRS病毒株所共有的基因體核苷酸序列相似性及胺基酸序列相似性。中國PRRS病毒株通常顯示與北美病毒株具有約80-93%核苷酸序列相似性。
「歐洲PRRS病毒」係指具有與大約在1991年首次於歐洲分離之PRRS病毒相關之遺傳特徵的任何PRRS病毒株(參見例如Wensvoort,G.,等人,1991,Vet.Q.13:121-130)。「歐洲PRRS病毒」有時在此項技術中亦稱為「萊利斯塔德病毒(Lelystad virus)」。
對於本發明,「有效免疫保護反應」、「免疫保護」及類似術語意指針對病原體之一或多種抗原決定基以預防接種疫苗之動物受該病原體感染的免疫反應。對於本發明,預防病原體感染不僅包括絕對預防感染,而且包括病原體感染程度或速率發生任何可偵測的減小、或與未接種疫苗之感染動物相比接種疫苗之動物受病原體感染所導致的疾病嚴重程度或任何症狀或病狀發生任何可偵測的減小。可誘發先前未受病原體感染及/或在疫苗接種時未受病原體感染之動物的有效免疫保護反應。亦可誘發在疫苗接種時已受病原體感染之動物的有效免疫保護反應。
若經遺傳修飾之PRRS病毒毒性小於其未修飾之親本病毒株,則其為「減毒」PRRS病毒。若病毒株在測定疾病嚴重程度之一或多個參數方面展示統計上顯著減小,則其「毒性較小」。該等參數可包括病毒敗血症程度、發燒、呼吸窘迫之嚴重程度、生殖症狀之嚴重程度、或肺病變之數目或嚴重程度等。
「能夠支持PRRS病毒複製之宿主細胞」意指當受本發明病毒感 染時能夠產生感染性PRRS之細胞。該等細胞包括單核細胞/巨噬細胞系之豬細胞,諸如豬肺泡巨噬細胞及衍生物;MA-104猴腎細胞及衍生物,諸如MARC-145細胞;及受PRRS病毒受體轉染之細胞。術語「能夠支持PRRS病毒複製之宿主細胞」亦可包括活豬內之細胞。
如本文所用,「開放閱讀框架」或「ORF」意指編碼特定PRRS病毒蛋白所需且無終止密碼子介入的最小核苷酸序列。
「豬(Porcine)」及「豬(swine)」在本文中可互換使用且係指為豬科(Suidae)成員之任何動物,諸如豬。除非另外指明,否則如本文所用之術語「PRRS病毒」意指北美PRRS病毒或歐洲PRRS病毒之任何病毒株。
「PRRS」涵蓋豬由PRRS病毒感染所引起之疾病症狀。該等症狀之實例包括(但不限於)發燒、懷孕母畜流產、呼吸窘迫、肺病變、食慾不振及豬仔死亡。如本文所用,「不能產生PRRS」之PRRS病毒係指會感染豬但該豬不產生通常與PRRS感染相關之任何病徵的病毒。
如本文所用,PRRSV「N蛋白」或「ORF7」定義為由PRRS病毒之歐洲基因型及北美基因型兩者之ORF7編碼的多肽。目前已知的N蛋白之特定同型之實例為由寄存編號PRU87392記錄於Genbank之北美PRRS原型分離株VR2322之含123個胺基酸的多肽及以Genbank寄存編號A26843記錄之歐洲原型PRRS分離株萊利斯塔德之含128個殘基的N蛋白。
「PRRSV N蛋白NLS-1區」或「PRRSV ORF7 NLS-1區」係指位於成熟N蛋白之約前15個N端殘基內之含有四個連續鹼性胺基酸(離胺酸或精胺酸)或三個鹼性殘基及組胺酸或脯胺酸之「pat4」或「nuc1」核定位信號(Nakai及Kanehisa,1992;Rowland及Yoo,2003)。舉例而言,VR2332 NLS-1區序列為KRKK且位於殘基9-12,而萊利斯塔德分離株序列為KKKK且位於N蛋白之殘基10-13。
「PRRSV N蛋白NLS-2區」或「PRRSV ORF7 NLS-2區」係指N蛋白內之第二核定位信號,其可採用兩種形式之一。在北美PRRS病毒中,NLS-2具有吾等已命名為「pat8」基元之模式,其以脯胺酸開始,之後三個殘基內為五個殘基中含有至少三個鹼性殘基(K或R)之含五個殘基的序列(由Nakai及Kanehisa,1992;Rowland及Yoo,2003描述之「pat7」或「nuc2」基元之輕微修飾)。舉例而言,該種序列位於北美PRRSV分離株VR2332之N蛋白殘基41-47且由序列P...K表示。在歐洲PRRS病毒中,NLS-2具有「pat4」或「nuc1」基元,其為四個鹼性胺基酸或三個與組胺酸或脯胺酸相關之鹼性殘基的連續延伸段(Nakai及Kanehisa,1992;Rowland及Yoo,2003)。歐洲PRRSV分離株萊利斯塔德之NLS-2位於殘基47-50且由序列K..K表示。
「PRRSV N蛋白NoLS區」或「PRRSV ORF7 NoLS區」係指具有約32個胺基酸之總長度且在其胺基端附近併有NLS-2區之核仁定位信號。舉例而言,VR2332 NoLS區序列位於殘基41-72且由序列P...R表示(Rowland及Yoo,2003)且對應萊利斯塔德分離株序列位於殘基42-73且由序列P..R表示。
「經轉染之宿主細胞」意指如美國專利第5,600,662號中所述當用PRRS病毒RNA轉染時可產生至少第一輪PRRS病毒粒子之幾乎任何宿主細胞。
對於本發明,「感染性DNA分子」為編碼支持自合適宿主細胞複製、轉錄及轉譯為功能性病毒粒子所需元件的DNA分子。
同樣,「經分離之聚核苷酸分子」係指包含由天然存在狀態(若存在)純化至任何可偵測之程度的本發明之聚核苷酸分子的目標組合物。
對於本發明,若基於遺傳密碼子之簡併性第二聚核苷酸分子(RNA或DNA)之核苷酸序列與第一聚核苷酸分子之核苷酸序列編碼相 同的聚胺基酸,或當其編碼之聚胺基酸與該第一聚核苷酸分子之核苷酸序列編碼之聚胺基酸足夠類似以便適用於實踐本發明時,該第二聚核苷酸分子之核苷酸序列與該第一聚核苷酸分子之核苷酸序列「同源」,或與該第一聚核苷酸分子具有「一致性」。同源聚核苷酸序列亦指有意義股及反義股,且在所有情況下指任何該等股之互補序列。對於本發明,若聚核苷酸分子可用作診斷探針以例如藉由標準雜交或擴增技術偵測受感染豬之體液或組織樣品中PRRS病毒或病毒聚核苷酸之存在,則其適用於實踐本發明,且因此同源或具有一致性。通常,若基於BLASTN算法(美國國立衛生研究院(the United States National Institute of Health)之國家生物技術信息中心(National Center for Biotechnology Information),另稱為NCBI(Bethesda,Maryland,USA))第二聚核苷酸分子之核苷酸序列與第一聚核苷酸分子之核苷酸序列具有至少約70%核苷酸序列一致性,則其與該第一聚核苷酸分子之核苷酸序列同源。在根據本發明之實踐計算之特定實例中,涉及BLASTP 2.2.6[Tatusova TA及TL Madden,"BLAST 2 sequences- a new tool for comparing protein and nucleotide sequences."(1999)FEMS Microbiol Lett.174:247-250.]。簡言之,使用空隙開放罰分10、空隙擴展罰分0.1及Henikoff及Henikoff之「blosum62」計分矩陣(Proc.Nat.Acad.Sci.USA 89:10915-10919.1992)比對兩條胺基酸序列以使比對得分最佳化。接著如下計算一致性百分比:一致匹配總數×100/較長序列長度+引入該較長序列中以比對該兩條序列之空隙數。
同源核苷酸序列較佳具有至少約75%核苷酸序列一致性,甚至更佳至少約80%、85%、90%、95%、96%、97%、98%及99%核苷酸序列一致性。由於遺傳密碼子簡併,同源核苷酸序列可包括任意數目之「沉默」鹼基變化,亦即雖然核苷酸取代但仍編碼相同胺基酸。
同源核苷酸序列可進一步含有非沉默突變,亦即鹼基取代、缺 失、或添加,使得所編碼聚胺基酸存在胺基酸差異,只要該序列保持與由該第一核苷酸序列所編碼之聚胺基酸至少約70%一致或另外適用於實踐本發明即可。在此方面,可進行某些保守胺基酸取代,其通常被認為不會使整體蛋白質功能不活化:諸如對於帶正電荷的胺基酸(反之亦然),離胺酸、精胺酸及組胺酸;對於帶負電荷的胺基酸(反之亦然),天冬胺酸及麩胺酸;及對於某些群組之帶中性電荷的胺基酸(且在所有情況下,反之亦然),(1)丙胺酸及絲胺酸,(2)天冬醯胺、麩胺醯胺及組胺酸,(3)半胱胺酸及絲胺酸,(4)甘胺酸及脯胺酸,(5)異白胺酸、白胺酸及纈胺酸,(6)甲硫胺酸、白胺酸及異白胺酸,(7)苯丙胺酸、甲硫胺酸、白胺酸及酪胺酸,(8)絲胺酸及蘇胺酸,(9)色胺酸及酪胺酸,(10)及例如酪胺酸、色胺酸及苯丙胺酸。胺基酸可根據物理性質及對二級及三級蛋白質結構之貢獻而分類。保守取代在此項技術中被認定為一個胺基酸經具有類似特性之另一胺基酸取代。例示性保守取代可見於1997年3月13日公開之WO 97/09433,第10頁(1996年9月6日申請之PCT/GB96/02197)。或者,保守胺基酸可如Lehninger(Biochemistry,第二版;Worth Publishers,Inc.NY:NY(1975),第71-77頁)中所述分組。其他合適保守改變及其應用描述如下。
同源核苷酸序列可例如藉由使用上述BLASTN比較核苷酸序列來判定。或者,同源核苷酸序列可藉由在所選條件下雜交來判定。舉例而言,若第二聚核苷酸分子之核苷酸序列在中等嚴格條件(例如在65℃下在0.5M NaHPO4、7%十二烷基硫酸鈉(SDS)、1mM EDTA中與過濾器結合之DNA雜交且在42℃下在0.2xSSC/0.1% SDS中洗滌(參見Ausubel等人編,Protocols in Molecular Biology,Wiley and Sons,1994,第6.0.3至6.4.10頁))或將以不同方式使得如下所定義之編碼PRRS病毒之序列雜交的條件下與SEQ ID NO:1之互補序列雜交,則其與SEQ ID NO:1(或任何其他特定聚核苷酸序列)同源。可憑經驗確定或基於探針 鳥苷/胞苷(GC)鹼基配對之長度及百分比精確計算來改進雜交條件。雜交條件可如Sambrook,等人,(編),Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Laboratory Press:Cold Spring Harbor,New York(1989),第9.47至9.51頁中所述計算。
在另一實施例中,若第二核苷酸序列在高度嚴格條件下,如此項技術中已知例如在65℃下在0.5M NaHPO4、7% SDS、1mM EDTA中與過濾器結合之DNA雜交且在68℃下在0.1xSSC/0.1% SDS中洗滌(Ausebel等人,Current Protocols in Molecular Biology,Greene Publishing and Wiley Interscience,New York,1989),與SEQ ID NO:1之互補序列雜交,則其與SEQ ID NO:1(或本發明之任何其他序列)同源。
此外應瞭解,本發明之經分離之聚核苷酸分子及經分離之RNA分子包括合成分子及經由重組技術(諸如藉由活體外選殖及轉錄)獲得之分子兩者。
可使用一般熟習此項技術者已知的重組技術使聚核苷酸分子遺傳突變,包括如此項技術中已知藉由定點突變誘發、或藉由隨機突變誘發,諸如藉由暴露於化學誘變劑或輻射。突變可藉由此項技術中已知的標準方法進行,例如所述感染性複本(例如Meulenberg等人,Adv.Exp.Med.Biol.,1998,440:199-206)之定點突變誘發(參見例如Sambrook等人(1989)Molecular Cloning:A Laboratory Manual,第2版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.)。
因此,本發明進一步提供一種製造經遺傳修飾之北美PRRS病毒的方法,該方法包含使編碼感染性RNA分子之DNA序列突變,該感染性RNA分子編碼如上所述之PRRS病毒,及使用合適表現系統表現該經遺傳修飾之PRRS病毒。經遺傳修飾之PRRS病毒可使用此項技術中通常已知的合適表現系統由經分離之聚核苷酸分子表現,該等表現系 統之實例描述於本申請案中。舉例而言,經分離之聚核苷酸分子可呈能夠在合適宿主細胞中活體外表現所編碼病毒之質體形式,如下文進一步詳細描述。
北美PRRSV N蛋白序列高度保守且所報導之序列彼此具有約93-100%一致性。北美PRRSV N蛋白與歐洲PRRSV N蛋白具有約57-59%一致性且共有共同結構基元。通常,當比較可能關於特定核苷酸或所編碼胺基酸不同編號的PRRS編碼序列及分離株時,合適區之識別易於藉由識別所關注PRRS病毒株中所保留的特徵胺基酸且將其與參考病毒株比對來達成。
重組DNA技術包含旨在於DNA層面上修飾核酸且可在分子層面上分析及修飾基因體的極其多變且有效的分子生物學技術。在此方面,諸如PRRS病毒之病毒由於其基因體之尺寸適當而尤其適於該等操作。然而,重組DNA技術不可立即應用於非反轉錄病毒性RNA病毒,因為此等病毒在其複製過程中不涵蓋DNA中間步驟。對於該等病毒,必須產生感染性cDNA純系,隨後才可將重組DNA技術應用於其基因體以產生經修飾之病毒。感染性純系可經由建構所研究病毒之全長(基因體長度)cDNA(此處使用廣義上RNA之DNA複本而非僅嚴格意義上mRNA之DNA複本)而獲得,此後在用該全長cDNA轉染之細胞中活體內合成感染性轉錄本,但感染性轉錄本亦可藉由在具有原核啟動子之質體中在轉錄混合液存在下由全長cDNA活體外轉錄,或再在活體外使用包含完整病毒基因體之接合部分長度cDNA片段來獲得。在所有情況下,經轉錄RNA攜有已引入cDNA之所有修飾且可用於進一步繼代由此經修飾之病毒。
歐洲PRRS病毒分離株或萊利斯塔德病毒之感染性純系的製備描述於美國專利第6,268,199號中,其因此以引用的方式完全併入。命名為P129(Lee等人,2005;Yoo等人,2004)之北美PRRS病毒分離株感染 性cDNA純系的製備描述於美國專利第6,500,662號中,其因此以引用的方式完全併入。P129 cDNA之序列揭示於Genbank寄存編號AF494042及美國專利第6,500,662號中。下文吾等研究使用在質體情況下由CMV即刻早期啟動子表現且已命名為pCMV-S-P129並亦揭示於美國專利第6,500,662號內之該種感染性純系。如美國專利第6,500,662號中所述,存在適用於本文之其他質體及啟動子。
鑒於所關注之任何開放閱讀框架的完整序列及所關注胺基酸殘基之位置,一般熟習此項技術者僅需要查閱密碼子表便可設計所需特定位置處的改變。
密碼子在mRNA及其對應cDNA分子中構成核苷酸三聯體序列。密碼子當存在於mRNA分子中時特徵為鹼基尿嘧啶(U),但當存在於DNA中時特徵為鹼基胸苷(T)。聚核苷酸內相同胺基酸殘基之密碼子的簡單改變將不會改變所編碼多肽之序列或結構。顯然當短語陳述特定含3個核苷酸之序列「編碼」任何特定胺基酸時,一般熟習此項技術者將認識到上表提供識別討論中特定核苷酸的方式。舉例而言,若特定含三個核苷酸之序列編碼離胺酸,則上表揭示兩種可能的三聯體序列為AAA及AAG。甘胺酸由GGA、GGC、GGT(若在RNA中為GGU)及GGG編碼。為將所編碼蛋白質中之離胺酸變為甘胺酸殘基,吾人可在編碼核酸中用GGA及GGC、GGT或GGG之任一者置換AAA或AAG三聯體。
如上所述,本發明係關於提供PRRS疫苗株,其中藉由干擾素途徑所介導之針對該病毒之宿主反應以及其他反應並未下調。如下文詳細描述,存在在此方面有效的對於病毒基因體之各種修飾,尤其如本文中所揭示之ORF1a中所發現之彼等修飾,及其組合。應注意,類似修飾點可見於亦如本文中所揭示之PRRS基因體的其他開放閱讀框架中(參見表9)。
值得注意的是,修飾PRRS聚核苷酸之某些其他先前方法已成功地使PRRS病毒減毒,可能提供疫苗使用之適用性,但所得減毒之確切原因並非廣泛已知。舉例而言,已揭示藉由使病毒核衣殼中之NLS-2區、NoLS區或NES區或N蛋白(由ORF7編碼)突變或缺失以包括開放閱讀框架7(ORF7)缺失來使毒性PRRS病毒減毒。在另一態樣中,ORF7缺失處於編碼衣殼蛋白之核定位信號(NLS)的序列內。編碼NLS之序列內的ORF7缺失可包括在位置43-48處缺失一或多個胺基酸或在位置43及44之任一者或兩者處缺失一個胺基酸。參見例如美國專利7,544,362之全部揭示內容,其以引用的方式併入。由ORF7編碼之PRRSV的核衣殼蛋白(N)為磷酸化(Wootton,Rowland,及Yoo,2002)且形成均二聚體(Wootton及Yoo,2003)之小型鹼性蛋白。最近已確定晶體結構(Doan及Dokland,2003)。N蛋白在受感染細胞中似乎具有多種功能。除形成封包基因體RNA(細胞質中發生的過程)之球形衣殼結構之外,一部分N蛋白轉運至受感染細胞之核且特定言之核仁中。N蛋白之胺基酸序列含有兩個核定位信號(NLS)、一個核仁定位信號(NoLS)及一個核輸出信號(NES),其分別有助於轉運至核及核仁中及自核輸出(Rowland等人,1999;Rowland等人,2003;Rowland及Yoo,2003)。當在核仁中時,N蛋白與小型核仁RNA相關蛋白核仁纖維蛋白(fibrillarin)相互作用,且可調控受感染細胞中之rRNA加工及核糖體生物合成以便於病毒複製(Yoo等人,2003)。此類型病毒突變單獨或與其他減毒突變組合時對於設計新穎PRRS疫苗係有價值的。在已減毒之PRRS病毒的另一實例中,使用修飾為ORF1a。使用編碼ORF1a之非結構蛋白2編碼區中高變區的胺基酸616至752之間的抗原決定基之DNA序列缺失,參見美國專利7,618,797,其以全文引用的方式併入。
關於PRRS病毒免疫生物學之研究表明PRRS病毒與PDC之相互作 用有益於檢驗。此細胞類型佔人類、小鼠、大鼠、豬及猴外周血液單核細胞之0.2%-0.8%。儘管稀少,但此細胞為先天性免疫系統之重要組分且能夠在病毒刺激後分泌大量IFN-α。PDC係經由分泌IFN-α在調控抗病毒先天性及應變性免疫中起重要作用,因為其加強自然殺手細胞、B細胞及T細胞之功能。此外,豬來源於單核細胞之樹突狀細胞(MoDC)之成熟係藉助於PDC分泌之IFN-α,使得MoDC呈現抗原及活化T細胞之能力增強。在病毒感染後期,PDC分化為獨特類型之成熟樹突狀細胞,其直接調控T細胞功能且引導T細胞分化為能夠分泌IFN-γ之細胞,IFN-γ為針對包括PRRS病毒在內之病毒之抗病毒免疫的主要介體。不意外的是,存在已知能抑制PDC分泌IFN-α之能力的人類病毒,諸如呼吸道融合性病毒及麻疹病毒。咸信此抑制作用在體液免疫反應之主導性及由於感染此等病毒所觀察到之相關免疫病理學以及宿主對繼發性細菌及病毒感染之敏感性增加中起作用。
相比之下,野生型PRRSV分離株以及兩種Ingelvac PRRS疫苗株(參見下文實例5及其後內容)抑制經純化之豬PDC群體產生IFN-α之能力,而新穎P129-PK-FL及P129-PK-d43/44病毒原液(參見下文)展現對此PDC功能之最小至無抑制作用。此等觀察之重要性部分在於IFN-α在調節針對病毒之應變性免疫反應發生中的重要性。因此,來源於最低IFN-α抑制病毒之減毒病毒疫苗很可能會引起強烈的抗病毒保護性免疫反應。先前已證明IFN-α對Ingelvac PRRS MLV疫苗誘發之病毒特異性T細胞介導之IFN-γ反應之輔助作用,且由該疫苗引發之病毒特異性T細胞介導之IFN-γ反應的強度與在野外及實驗室條件下針對該病毒之保護性免疫具有正相關性。因此,雖然不受理論限制,但可合理地預期非IFN-α抑制性PRRSV引發之細胞介導之免疫反應及保護性免疫程度將顯著大於展現野生型(IFN-α抑制性)表型之PRRSV分離株。
關於本發明,值得注意的是P129-PK-FL病毒以及來源於pCMV-S- P129-PK感染性cDNA純系之所有五種缺失突變體均喪失抑制IFN-α產生之能力。因此,此不尋常表型不能僅歸因於缺失,而必須至少部分地歸因於在感染性純系建構期間變得固定的遺傳改變。引人注意地,在PK-9細胞上連續繼代63次之未選殖P129病毒保留抑制IFN誘發之能力(表1)。對於所有來源於感染性純系之病毒中發現常見IFN表型之最可能的解釋為在產生感染性純系期間併入一或多種突變。此等突變已可能以低含量存在於用以建構感染性純系之病毒RNA中。最終,突變可能已存在於豬之原始(第0代)病毒中,或其可能在使病毒適應在PK-9細胞上生長進行16次繼代的過程中產生及富集。不能排除突變為所得PCR誘發之錯誤或選殖人為產物的可能性。無論如何,造成IFN-α抑制功能喪失的突變在感染性純系建構期間變得「固定」,且將預期存在於來源於此特定感染性純系之所有病毒中。
鑒於已知PRRSV容易因病毒RNA依賴性RNA聚合酶之錯誤而產生隨機遺傳多樣性,因此在該用以構築cDNA純系之病毒RNA中預先存在造成該改變IFN-α抑制表型之突變係有可能的。病毒準種包含在活體內病毒複製期間天然出現的密切相關之基因變異體的異種混合物。甚至更相關的是來源於感染性cDNA純系之PRRSV經多次活體外繼代後觀察到之病毒準種。此為值得注意的,因為先前進行的研究中病毒基因體之起始群體由遺傳上同源的群體組成,且在細胞培養物中繼代期間迅速產生序列多樣性。在當前研究中,基因體異質性程度已較高,因為原始P129病毒在達到感染性純系建構的16次PK-9繼代之前並未選殖(生物學上或分子上)。因此,由準種中隨機選擇造成IFN-α抑制功能喪失的PRRSV RNA變異體及併入pCMV-SP129-PK17-FL感染性cDNA純系中似乎合理。在一些情況下,鑒於所有衍生病毒應共有此獨特生物表型,該表型可能證明對於開發下一代有效PRRS疫苗重要,此等突變併入感染性純系中可能被視為偶然發生。
野生型PRRS病毒株P129如同此病毒之其他病毒株亦對外周血液單核細胞(PBMCs)及漿細胞樣樹突狀細胞(PDCs)產生干擾素(IFN)-α之能力展現強抑制作用。另一方面,來源於P129之感染性cDNA純系(pCMV-S-P129-PK17-FL)的病毒展現IFN-α抑制表型明顯減少。此感染性純系係由先前適應在CD163表現豬腎細胞株PK-9上生長歷經16次連續繼代過程之病毒建構(參見美國專利7,754,464,其以全文引用的方式併入)。P129-PK-FL及P129-PK-d43/44之IFN-α抑制表型介於較少至可忽略之範圍內,且與兩種Ingelvac PRRS經修飾之活病毒疫苗株之任一者展現的IFN-α抑制表型(兩者皆為高度抑制性)鮮明對比。此等結果表明P129-PK-FL及P129-PK-d43/44病毒在生物學上不同於親本低繼代P129分離株、其他野生型PRRS病毒及兩種Ingelvac PRRS疫苗。討論IFN-α抑制表型減少之潛在意義以及表型改變的可能原因。
本發明之胺基酸修飾
根據本發明之實踐,可現場識別PRRS(無論北美基因型或中國基因型)之新穎分離株,其在由ORF1編碼之蛋白質中的特殊位置處含有特定胺基酸,且其賦予此等病毒以所需表型。或者,如上所述,可使用標準遺傳程序來修飾所編碼ORF1蛋白之遺傳序列(且因此修飾胺基酸序列),再由其產生經修飾之北美PRRS病毒及中國PRRS病毒、及感染性純系、及疫苗,其皆提供該等表型。在較佳實例中,表型包括(但不限於)與野生型PRRS病毒相比減小的干擾素-α抑制作用,及視情況在宿主動物(豬)中繁殖或存留同時觸發強烈的免疫反應但幾乎沒有可偵測病變之能力。
因此,在本發明之實踐中,可充當有用起始點之北美PRRS病毒株或分離株包括例如美國專利6,500,662;7,618,797;7,691,389;7,132,106;6,773,908;7,264,957;5,695,766;5,476,778;5,846,805;6,042,830;6,982,160;6,241,990;及6,110,468中所揭示 之北美PRRS病毒株或分離株。關於可充當有用起始點之中國PRRS病毒株及分離株,參見例如關於TJM-92病毒的中國申請案CN201633909之公開中國申請案CN200910091233.6。
關於下文論述,對於由DNA編碼的最常見胺基酸使用國際上公認的單字母及三字母名稱:丙胺酸(Ala,A);精胺酸(Arg,R);天冬醯胺(Asn,N);天冬胺酸(Asp,D);半胱胺酸(Cys,C);麩胺酸(Glu,E);麩胺醯胺(Gln,Q);甘胺酸(Gly,G);組胺酸(His,H);異白胺酸(Ile,I);白胺酸(Leu,L);離胺酸(Lys,K);甲硫胺酸(Met,M);苯丙胺酸(Phe,F);脯胺酸(Pro,P);絲胺酸(ser,S);蘇胺酸(Thr,T);色胺酸(Trp,W);酪胺酸(Tyr,Y)及纈胺酸(Val,V)。
表9及10識別所觀察到的造成北美(及中國)PRRS中之減毒作用的胺基酸改變,其與對干擾素α活性之抑制作用降低有關,由此可產生針對疫苗之安全且強烈的免疫反應。表10識別ORF1a內在此方面極佳的胺基酸修飾,且關於自其他P129培養物繼代展示如何產生此等突變(應注意,檢查此來歷亦有助於設計突變誘發策略以視需要(再)建構具有本發明之任何胺基酸改變的編碼DNA)。在此方面,對於ORF1a之最佳胺基酸改良(如由第52代P129所證明)包括:在182處之天冬醯胺、在189處之天冬醯胺、在273處之酪胺酸、在302處之組胺酸、在665處之蘇胺酸、在943處之半胱胺酸、在1429處之蘇胺酸、在1505處之丙胺酸、在2410處之天冬醯胺,其亦可能增加許多糖基化機會且其可進一步改變蛋白質功能。
因此,本發明提供一種經分離之豬生殖與呼吸綜合症候群病毒(PRRS),其中其由ORF1a編碼之蛋白質係選自由含有以下任一者之胺基酸序列組成之群:胺基酸序列AMANVYD(SEQ ID NO:9)內之胺基酸N;胺基酸序列IGHNAVM(SEQ ID NO:12)內之胺基酸N; 胺基酸序列TVPDGNC(SEQ ID NO:15)內之胺基酸D;胺基酸序列CWWYLFD(SEQ ID NO:18)內之胺基酸Y;胺基酸序列HGVHGKY(SEQ ID NO:21)內之胺基酸H;胺基酸序列AAKVDQY(SEQ ID NO:24)內之胺基酸V;胺基酸序列PSATDTS(SEQ ID NO:27)內之胺基酸T;胺基酸序列LNSLLSK(SEQ ID NO:30)內之胺基酸L;胺基酸序列APMCQDE(SEQ ID NO:33)內之胺基酸C;胺基酸序列CAPTGMD(SEQ ID NO:36)內之胺基酸T;胺基酸序列PKVAKVS(SEQ ID NO:39)內之胺基酸A;胺基酸序列AGEIVGV(SEQ ID NO:42)內之胺基酸I;胺基酸序列ADFNPEK(SEQ ID NO:45)內之胺基酸N;及胺基酸序列QTPILGR(SEQ ID NO:48)內之胺基酸I
更特定言之,本發明提供一種經分離之豬生殖與呼吸綜合症候群病毒(PRRS),其中其由ORF1a編碼之蛋白質係選自由含有以下任一者之胺基酸序列組成之群:胺基酸序列ANV(參見SEQ ID NO:9)內之胺基酸N;胺基酸序列HNA(參見SEQ ID NO:12)內之胺基酸N;胺基酸序列PDG(參見SEQ ID NO:15)內之胺基酸D;胺基酸序列WYL(參見SEQ ID NO:18)內之胺基酸Y;胺基酸序列VHG(參見SEQ ID NO:21)內之胺基酸H;胺基酸序列KVD(參見SEQ ID NO:24)內之胺基酸V;胺基酸序列ATD(參見SEQ ID NO:27)內之胺基酸T;胺基酸序列SLL(參見SEQ ID NO:30)內之胺基酸L;胺基酸序列MCQ(參見SEQ ID NO:33)內之胺基酸C;胺基酸序列PTG(參見SEQ ID NO:36)內之胺基酸T;胺基酸序列VAK(參見SEQ ID NO:39)內之胺基酸A; 胺基酸序列EIV(參見SEQ ID NO:42)內之胺基酸I;胺基酸序列FNP(參見SEQ ID NO:45)內之胺基酸N;及胺基酸序列PIL(參見SEQ ID NO:48)內之胺基酸I
如上所述,存在北美PRRS及中國PRRS之許多已知病毒株及分離株,且新穎病毒株繼續進化或分離。雖然所有該等病毒株之間存在較高程度之胺基酸序列同源性,但熟習此項技術者應即刻認識到存在一些變異,且實際上可利用此等差異及相似性以進一步改良所有疫苗株之表型特性。
首先,關於由如上文剛剛指定(第27-28頁)之SEQ ID NO所定義之所有胺基酸基元,即使相鄰胺基酸已另外相對於指定的SEQ ID NO序列發生改變,加下劃線且較佳的胺基酸(如由第52代P129所提供)通常仍十分有利。因此關於作為特定及代表性實例之AMANVYD(SEQ ID NO:9),通常可檢查任何北美或中國PRRS之對應ORF1表現蛋白質序列以發現對應胺基酸基元,即使在該等其他病毒株中已由於進化而出現其他改變從而引起取代及/或缺失或添加亦如此。如熟習此項技術者應瞭解,儘管直接5'或3'至第52代指定胺基酸之整個胺基酸序列中有其他改變,由第52代P129所證明之較佳胺基酸改變因此亦仍為可操作的。若比較胺基酸改變視為保守的,則尤其如此。因此關於AMANVYD(SEQ ID NO:9)及其子序列ANV,若例如其中之纈胺酸經異白胺酸或白胺酸或任何其他殘基置換,或若殘基僅丟失或添加其他殘基,則應可容易地識別另一PRRS病毒株中之類似基元。現有許多電腦程式可識別比對且由此判定多肽序列基元是否對應例如所謂之Blosum表(基於指定程度的一致性百分比),參見S.Henikoff等人"Amino Acid Substitution matrices from protein blocks",Proc Natl Acad Sci,USA,89(22),第10915-10919頁,Nov 15,1992.,且亦參見A.L.Lehninger等人Principles of Biochemistry,2005,MacMillan and Company,第4版。亦基於5大類的分類來辨識保守胺基酸改變:巰基(Cys);芳族(Phe、Tyr及Trp);鹼性(Lys、Arg、His);脂族(Val、Ileu、Leu、Met)及親水性(Ala、Pro、Gly、Glu、Asp、Gln、Asn、Ser及Thr)。因此,修飾任何北美或中國PRRS編碼核苷酸序列以在合適且對應位置處併入對於第52代P129所指定的任何胺基酸改變處於本發明之實踐內,即使與指定位置鄰近之一或多個其他胺基酸已添加、缺失或替代。
另外,基於類似原理,熟習此項技術者應認識到一旦根據本發明實踐自對於ORF1a所識別之特定第52代改變識別較佳胺基酸,即亦可在P129變異體中或關於任何其他北美或中國病毒株使用任何該等第52代胺基酸之保守置換,而實質上維持所要的第52代表型。因此,作為代表性實例:關於SLL(在SEQ ID NO:30內),指定白胺酸殘基可進一步經異白胺酸、纈胺酸或甲硫胺酸置換;關於FNP(在SEQ ID NO:45內),指定天冬醯胺可經Ala、Pro、Gly、Glu、Asp、Gln、Ser及Thr之任一者置換;且關於VAK(參見SEQ ID NO:39),指定丙胺酸可經Asn、Pro、Gly、Glu、Asp、Gln、Ser及Thr之任一者置換;全部及其類似物,但應容易認識到本發明不需要在指定位置處任何該等置換胺基酸均如最初識別之獨特第52代胺基酸改變般良好地起作用。當然,本發明中亦實踐使用根據任何其他公認模型之標準保守胺基酸改變。舉例而言,且在所有情況下包括相反情況,Asp置換Glu及相反情況、Asn置換Gln、Arg置換Lys、Ser置換Cys或Thr、Phe置換Tyr、Val置換Leu或Ileu、Ala置換Gly,及其類似情況。
此外,在本發明之實踐內,雖然任何個別第52代胺基酸改變(如對於上文ORF1a所識別)可有效置放於具有所需表型效應之任何北美或中國PRRS中,但進一步較佳在最終構築物中包括儘可能多的表9或表10之胺基酸選擇,如通常藉由適當修飾編碼聚核苷酸序列所提供。 因此,本發明之實踐包括提供中國或北美PRRS病毒(及對應編碼聚核苷酸),其提供2、3、4、5、6、7、8、9及直至任何約17個所識別之第52代ORF1a改變,(表9)其全部在最終病毒序列內,以包括所有識別之第52代胺基酸改變之任何特定對、三聯體或其他更多元組合。當然,該等胺基酸改變可藉由定點突變誘發、PCR及如此項技術中所熟知之其他技術引入病毒之對應編碼核苷酸序列中。
為證明特定經遺傳修飾之病毒株為減毒株,可使用如下所述之實驗。
各試驗中包括每組至少10隻母豬,其來源於無PRRSV之農場。測試動物不含PRRS病毒特異性血清抗體且為PRRSV陰性。試驗中所包括之所有動物為相同來源及品種。將動物隨機分配至各組中。
在懷孕第90天,以每個鼻孔鼻內施用1ml具有105 TCID50之PRRSV來進行攻毒。各測試設置具有至少三組:一組用於P129攻毒;一個測試組用於以可能減毒的病毒攻毒;及一個嚴格對照組。
當嚴格對照組在整個研究期內均保持PRRSV陰性且P129攻毒組中出生的活的健康小豬與嚴格對照組相比少至少25%時,該研究視為有效的。
減毒,換言之較小毒性,定義為測定繁殖能力或其他症狀學之一或多個參數統計上顯著的變化:與未修飾之親本病毒株感染組相比,測試組(可能減毒的病毒)之至少一個以下參數顯著減小將指示減毒:a)死產頻率b)在懷孕第112天或之前流產c)木乃伊化小豬的數目d)較不活潑且虛弱的小豬數目e)斷乳前死亡。
此外,與未修飾之親本病毒株感染組相比,測試組之以下參數之一顯著增大為較佳:f)每隻大母豬斷乳小豬的數目g)每隻大母豬所生的活的健康小豬的數目或者,可檢驗PRRSV感染之呼吸症狀及其他症狀來確定減毒。
減毒株對於調配疫苗係有價值的。若本發明之疫苗預防豬感染PRRS病毒,則其為有效的。若在向一或多隻未受感染之豬投與疫苗後,隨後用生物學上純的病毒分離株(例如VR 2385、VR 2386、P129等)攻毒使得任何總的或組織病理學改變(例如肺病變)及/或疾病症狀之嚴重程度與未經預防接種的類似豬由該分離株通常所引起之改變或症狀相比(亦即相對於合適對照)減輕,則該疫苗預防豬感染PRRS病毒。更特定言之,可藉由向一或多隻有需要之合適豬投藥本發明之疫苗,接著在適當的一段時間(例如4週)後,用生物學上純的PRRSV分離株之大樣品(10(3-7) TCID(50))攻毒來展示該疫苗為有效的。接著在約一週後自經攻毒豬抽取血液樣品,且接著嘗試著自該血液樣品分離病毒。分離大量病毒表明該疫苗可能並不有效,而病毒分離量減小(或無病毒)表明該疫苗可能有效。
因此,本發明疫苗之有效性可定量(亦即與合適對照組相比實變肺組織之百分比減小)或定性(例如自血液分離PRRSV,藉由免疫檢定偵測肺、扁桃體或淋巴結組織樣品中之PRRSV抗原)評估。豬生殖與呼吸疾病之症狀可定量(例如溫度/發燒)或半定量(例如存在或不存在一或多種症狀或一或多種症狀之嚴重程度降低,諸如發紺、肺炎、肺病變等)評估。
未受感染之豬為未暴露於豬生殖與呼吸疾病感染物,或已暴露於豬生殖與呼吸疾病感染物但並未展示該疾病症狀之豬。受感染之豬展示PRRS症狀或自其可分離PRRSV之豬。
本發明之疫苗可根據公認之慣例調配以包括動物(包括人類(若適用))可接受之載劑,諸如標準緩衝劑、穩定劑、稀釋劑、防腐劑及/或增溶劑,且亦可經調配以便於持續釋放。稀釋劑包括水、生理食鹽水、右旋糖、乙醇、甘油及其類似物。等滲性添加劑尤其包括氯化鈉、右旋糖、甘露糖醇、山梨糖醇及乳糖。穩定劑尤其包括白蛋白。其他合適疫苗媒劑及添加劑,包括尤其適用於調配經修飾之活疫苗的疫苗媒劑及添加劑,為熟習此項技術者已知的或顯而易見的。參見例如Remington's Pharmaceutical Science,第18版,1990,Mack Publishing,其以引用的方式併入本文中。
本發明之疫苗可進一步包含一或多種其他免疫調節組分,諸如尤其佐劑或細胞激素。可用於本發明疫苗之佐劑的非限制性實例包括RIBI佐劑系統(Ribi Inc.,Hamilton,Mont.)、礬、礦物質凝膠(諸如氫氧化鋁凝膠)、水包油型乳液、油包水型乳液(諸如弗氏完全及不完全佐劑)、嵌段共聚物(CytRx,Atlanta,Ga.)、QS-21(Cambridge Biotech Inc.,Cambridge Mass.)、SAF-M(Chiron,Emeryville Calif.)、AMPHIGEN.RTM.佐劑、皂角苷、Quil A或其他皂角苷部分、單磷醯脂質A及阿夫立定(Avridine)脂質-胺佐劑。適用於本發明疫苗之水包油型乳液的非限制性實例包括改良之SEAM62及SEAM 1/2調配物。改良之SEAM62為含有5%(v/v)角鯊烯(Sigma)、1%(v/v)SPAN.RTM.85清潔劑(ICI Surfactants)、0.7%(v/v)TWEEN.RTM.80清潔劑(ICI Surfactants)、2.5%(v/v)乙醇、200pg/ml Quil A、100[mg]g/ml膽固醇及0.5%(v/v)卵磷脂之水包油型乳液。改良之SEAM 1/2為包含5%(v/v)角鯊烯、1%(v/v)SPAN.RTM.85清潔劑、0.7%(v/v)Tween 80清潔劑、2.5%(v/v)乙醇、100μg/ml Quil A及50μg/ml膽固醇之水包油型乳液。可包括於疫苗中之其他免疫調節劑包括例如一或多種介白素、干擾素或其他已知細胞激素。
本發明之疫苗可視情況經調配用於持續釋放本發明之病毒、感染性RNA分子、質體或病毒載體。該等持續釋放調配物之實例包括病毒、感染性RNA分子、質體或病毒載體以及諸如以下之生物相容性聚合物之複合物:聚(乳酸)、聚(乳酸-共-乙醇酸)、甲基纖維素、玻糖醛酸、膠原蛋白及其類似物。藥物傳遞媒劑中可降解之聚合物的結構、選擇及用途已在若干公開案中評述,包括A.Domb等人,1992,Polymers for Advanced Technologies 3:279-292,其以引用的方式併入本文中。關於醫藥調配物中選擇及使用聚合物的其他規則可見於此項技術中已知的文本中,例如M.Chasin及R.Langer(編),1990,"Biodegradable Polymers as Drug Delivery Systems",Drugs and the Pharmaceutical Sciences,第45卷,M.Dekker,N.Y.,其亦以引用的方式併入本文中。或者或另外,可使病毒、質體或病毒載體微囊化以改良投與及功效。使抗原微囊化之方法為此項技術中所熟知,且包括例如美國專利第3,137,631號;美國專利第3,959,457號;美國專利第4,205,060號;美國專利第4,606,940號;美國專利第4,744,933號;美國專利第5,132,117號;及國際專利公開案WO 95/28227中所述之技術,其皆以引用的方式併入本文中。
亦可使用脂質體來提供病毒、質體或病毒載體之持續釋放。關於如何製造及使用脂質調配物的詳情可尤其見於美國專利第4,016,100號;美國專利第4,452,747號;美國專利第4,921,706號;美國專利第4,927,637號;美國專利第4,944,948號;美國專利第5,008,050號;及美國專利第5,009,956號,其皆以引用的方式併入本文中。
可藉由習知手段,以低劑量病毒、病毒蛋白質體或病毒載體起始,隨後增加劑量同時監測效應來確定任何上述疫苗之有效量。可在單次投與疫苗後或在多次投與疫苗後獲得有效量。當確定每隻動物的最佳劑量時,可考慮已知因素。此等因素包括該動物之物種、體型、 年齡及一般狀況,該動物中其他藥物的存在及其類似因素。較佳在考慮其他動物研究之結果後選擇實際劑量(參見例如下文實例2及3)。
一種偵測是否已獲得適當免疫反應的方法為在疫苗接種後測定動物之血清轉化及抗體效價。疫苗接種之時間選擇及加強劑(若存在)的數目將較佳由醫師或獸醫基於所有相關因素(其中一些如上所述)之分析來確定。
可使用已知技術,考慮可由一般熟習此項技術者確定的因素(諸如待接種疫苗動物之重量)來確定本發明之病毒、蛋白質、感染性DNA分子、質體或病毒載體的有效劑量。本發明之疫苗中本發明之病毒的劑量較佳在約101至約109pfu(空斑形成單位)範圍內、更佳在約102至約108pfu範圍內且最佳在約103至約107pfu範圍內。本發明之疫苗中本發明之質體的劑量較佳在約0.1mg至約100mg範圍內、更佳在約1mg至約10mg範圍內、甚至更佳在約10mg至約1mg範圍內。本發明之疫苗中本發明之感染性DNA分子的劑量較佳在約0.1mg至約100mg範圍內、更佳在約1mg至約10mg範圍內、甚至更佳在約10mg至約1mg範圍內。本發明之疫苗中本發明之病毒載體的劑量較佳在約101pfu至約109pfu範圍內、更佳在約102pfu至約108pfu範圍內且甚至更佳在約103至約107pfu範圍內。合適劑量大小在約0.5ml至約10ml範圍內且更佳在約1ml至約5ml範圍內。
根據本發明之實踐,病毒蛋白或肽疫苗之合適劑量如可藉由標準方法測定通常在每劑1微克至50微克範圍內或更大量,佐劑的量可藉由關於各該物質的公認方法測定。在關於豬疫苗接種之本發明之一較佳實例中,動物之最佳年齡目標為在斷乳前約1天至21天,其亦可與諸如針對豬肺炎黴漿菌(Mycoplasma hyopneumoniae)或PCV之其他計劃內疫苗接種對應。另外,育種大母豬之較佳疫苗接種計劃將包括類似劑量,及每年再接種計劃。
可藉由習知手段,以低劑量病毒、質體或病毒載體起始,隨後增加劑量同時監測效應來確定任何上述疫苗之有效量。可在單次投與疫苗後或在多次投與疫苗後獲得有效量。當確定每隻動物的最佳劑量時,可考慮已知因素。此等因素包括該動物之物種、體型、年齡及一般狀況,該動物中其他藥物的存在及其類似因素。較佳在考慮其他動物研究之結果後選擇實際劑量。
一種偵測是否已獲得適當免疫反應的方法為在疫苗接種後測定動物之血清轉化及抗體效價。疫苗接種之時間選擇及加強劑(若存在)的數目將較佳由醫師或獸醫基於所有相關因素(其中一些如上所述)之分析來確定。
可使用已知技術,考慮可由一般熟習此項技術者確定的因素(諸如待接種動物之重量)來確定本發明之病毒、感染性DNA分子、質體或病毒載體的有效劑量。舉例而言,疫苗可經口、非經腸、皮內、皮下、肌內、鼻內或靜脈內傳遞。經口傳遞可涵蓋例如添加組合物至動物之飼料或飲水中。與疫苗劑量有關的因素包括(例如)豬的重量及年齡。
本發明進一步提供一種製備包含本文所述之PRRS病毒、感染性RNA分子、質體或病毒載體之疫苗的方法,該方法包含使有效量之本發明之PRRS病毒、感染性RNA分子、質體或病毒載體中之一者與適於醫藥或獸醫學使用之載劑組合。
另外,可如美國專利第6,500,662號中所述修飾本發明之活減毒疫苗以編碼使用已知重組技術插入PRRS病毒基因體中之異源抗原決定基。亦參見美國專利7,132,106,其以全文引用的方式併入。適用作本發明之異源抗原決定基的抗原決定基包括除PRRS病毒以外之豬病原體的抗原決定基,其包括(但不限於)選自由以下組成之群之豬病原體的抗原決定基:豬小病毒、豬環病毒、豬輪狀病毒、豬流行性感冒、 偽狂犬病病毒、傳染性胃腸炎病毒、豬呼吸冠狀病毒、經典豬瘟病毒、非洲豬瘟病毒、腦心肌炎病毒、豬副黏病毒、細環病毒(torque teno virus)、胸膜肺炎放線桿菌(Actinobacillus pleuropneumoniae)、豬放線桿菌(Actinobacillus suis)、炭疽桿菌(Bacillus anthraci)、支氣管敗血性博代氏桿菌(Bordetella bronchiseptica)、溶血梭菌(Clostridium haemolyticum)、產氣莢膜梭菌(Clostridium perfringens)、破傷風梭菌(Clostridium tetani)、大腸桿菌(Escherichia coli)、豬丹毒桿菌(Erysipelothrix rhusiopathiae)、副豬嗜血桿菌(Haemophilus parasuis)、鉤端螺旋體屬(Leptospira spp.)、豬肺炎黴漿菌、豬鼻黴漿菌(Mycoplasma hyorhinis)、豬關節滑膜黴漿菌(Mycoplasma hyosynovia)、多殺巴斯德桿菌(Pasteurella multocida)、豬霍亂沙門桿菌(Salmonella choleraesuis)、鼠傷寒沙門桿菌(Salmonella typhimurium)、類馬鏈球菌(Streptococcus equismilis)及豬鏈球菌(Streptococcus suis)。編碼上述豬病原體之抗原決定基的核苷酸序列為此項技術中已知且可自全球資訊網上之公用基因資料庫獲得,諸如(美國)國家生物技術信息中心之Genbank。
熟習此項技術者經由本申請案之全文(包括實施方式)將對本發明之其他特徵及變化顯而易見,且所有該等特徵均意欲為本發明之態樣。同樣,本文所述之本發明特徵可再組合成其他實施例,該等實施例亦意欲為本發明之態樣,不論該特徵組合是否在上文作為本發明之態樣或實施例特定提及。同樣,僅本文描述為本發明之關鍵所在的該等侷限性應照此考慮;無本文未描述為關鍵的侷限性之本發明變化預期為本發明之態樣。顯然本發明可以與上文描述及實例中特定描述不同的方式實踐。
根據以上教示,本發明之許多修飾及變化為可能的,且因此在本發明之範疇內。
以下實例意欲說明而非限制本發明。
實例1
PRRSV分離株P129至PK-9細胞之適應及減毒
1995年在印地安那州普渡大學(Purdue University)動物疾病診斷實驗室(Animal Disease Diagnostic Laboratory)自病豬中分離毒性PRRS分離株P129。使此豬之血清樣品在高健康狀態的豬中繼代一次以擴增血清及肺勻漿原液。自血清及肺勻漿提取病毒RNA且用以測定第0代P129病毒之完整基因體共同序列。RNA首先用無規六聚體作為引子且用以合成cDNA。使用高保真(校讀)PCR在三個重疊片段中擴增基因體。T/A選殖三個獨立PCR反應(每個基因體片段)之PCR產物且用於DNA定序,得到全長基因體共同序列(參見SEQ ID NO:1)。
使用含有第0代P129之用於DNA定序的相同豬血清等分試樣感染初級豬肺泡巨噬細胞(PAM)。經由0.1微米針筒過濾器過濾PAM感染之子代病毒(第1代)且用以感染PK-9細胞。
PK-9細胞為藉由用編碼豬CD163基因之缺失版本及新黴素抗性基因之質體穩定轉染PK0809豬腎細胞株獲得的轉殖基因細胞株。先前已描述PK-9細胞株之建構及特徵化詳情。
PAM細胞之第1代病毒很難適應於PK-9細胞上生長,且需要用多個平行譜系嘗試若干次。藉由使用對病毒核衣殼蛋白具特異性之FITC結合之單株抗體SDOW17(Rural Technologies Inc,Brookings South Dakota)之一式兩份孔的免疫螢光來監測感染。早期繼代產生幾個小灶點,但不產生足以引發新鮮單細胞層感染之無細胞病毒顆粒。此等繼代係藉由用Accutase(胰蛋白酶替代物)處理受感染之單細胞層且將該等細胞再接種於具有新鮮培養基多個孔中,添加或不添加未受感染之PK-9細胞。在若干次該等繼代後,一些譜系展示螢光灶之出現頻率及尺寸明顯增加。其中一些已獲得使用無細胞病毒液繼代的能 力。藉由繼代17次(1次在PAM細胞上,16次在PK-9細胞上),一種譜系可使用先前繼代產生之無細胞液之稀釋物穩定供養且導致整個單細胞層在幾天內感染。該病毒在PK-9細胞上之任何代次均不引起細胞病變效應。自經第17代病毒感染之PK-9細胞提取RNA且用以建構感染性cDNA純系。
實例2
第17代P129-PK之感染性cDNA純系的建構
使用如先前所述之骨架質體建構第17代P129-PK病毒之感染性cDNA純系。藉由在三個重疊片段中逆轉錄及PCR擴增病毒基因體,天然存在之獨特限制性核酸內切酶位點在重疊區中。選殖三個獨立PCR反應之產物、定序且比對得到各基因體片段之共同序列。若指定片段之三個選殖產物均不匹配該片段共同序列之預測胺基酸序列,則藉由次選殖及/或定點突變誘發修飾三個純系中之一者直至其匹配該共同序列之預測胺基酸序列。使用標準選殖技術及限制核酸內切酶位點接合三個基因體片段及質體骨架。所得全長純系(命名為pCMV-S-P129-PK17-FL)當轉染於PK-9細胞中時具有感染性。此感染性cDNA純系之序列以SEQ ID NO:2給出。基因體與用來建構其之第17代病毒基本上一致,具有確認端,且相對於第17代之共同序列無任何插入或缺失。在此感染性cDNA純系之病毒基因體內不存在經工程改造之限制位點或其他目標改變。
第0代P129之完整基因體共同序列與感染性純系pCMV-S-P129-PK17-FL之基因體序列之間的核苷酸及胺基酸差異單獨列於表6中。表6包括用基因體位置展示之所有核苷酸差異及所導致的胺基酸差異。此等突變子集造成表型自IFN抑制性(第0代)變為IFN非抑制性(來源於第17代感染性cDNA純系之所有病毒)。表7彙總用PRRSV開放閱讀框架(ORF)或非結構蛋白(nsp)展示之核苷酸、胺基酸及非保守胺基 酸差異。對於表7,以下胺基酸組視為保守胺基酸:[K,R]、[D,E]、[L,I,V,A]及[S,T]。
實例3
第17代P129-PK中之缺失突變
基因體兩個區域之缺失工程改造至感染性cDNA純系pCMV-S-P129-PK17-FL中以產生五種經遺傳修飾之感染性純系。
基因體發生修飾之一個區域為位於核衣殼蛋白(由PRRSV ORF 7編碼)胺基酸位置41-47之核定位序列(NLS)。進行兩個類型之缺失。此等缺失先前已於另一PRRSV感染性純系之情形下描述。胺基酸殘基41-49之野生型序列為PG...KN。在突變體「d43/44」(亦稱為「PG--KS」)中,離胺酸殘基43及44缺失且天冬醯胺殘基49變為絲胺酸。在突變體「d43/44/46」(亦稱為「PG--S-KS」)中,離胺酸殘基43、44及46缺失且天冬醯胺殘基49變為絲胺酸。由pCMV-S-P129-PK17-FL獲得之併有此等缺失的感染性純系分別為pCMV-S-P129-PK17-d43/44及pCMV-S-P129-PK17-d43/44/46。參見美國專利第7,544,362號。
基因體發生修飾之第二區域為ORF1a內nsp2之高變區。131個胺基酸(393個核苷酸)之缺失先前已於另一PRRSV感染性純系之情形下描述。由pCMV-S-P129-PK17-FL獲得之併有此缺失之感染性純系為pCMV-S-P129-PK17-nsp2。
組合NLS及nsp2缺失之感染性純系亦於pCMV-S-P129-PK17-FL骨架內產生,且其命名為pCMV-S-P129-PK17-nsp2-d43/44及pCMV-S-P129-PK17-nsp2-d43/44/46。
實例4
病毒在PK-9細胞上之產生及生長
將實例3中所述之六種感染性純系轉染至PK-9細胞中以產生如表1中所示之六種病毒。藉由使用脂染胺(Lipofectamine)2000將環狀質體 直接轉染至PK-9細胞中而由此等感染性純系產生病毒。在轉染後,將所回收之病毒再在PK-9細胞上連續繼代以進一步增加效價及減弱毒性。製備原液以作為疫苗候選物用於體外測試及活體內評估。在由未經修飾之pCMV-S-P129-PK17-FL感染性純系獲得P129-PK17-FL病毒的情況下,培養病毒直至達到豬之總共52次繼代。在第24代(SEQ ID NO:3)及第52代(SEQ ID NO:6)定序此病毒之完整基因體。
實例5
由第17代P129-PK感染性cDNA純系獲得之病毒抑制IFN-α誘發的能力減小
病毒及細胞。使MARC-145及ST細胞在補充有5%胎牛血清(FBS)及抗生素(50μg/ml慶大黴素、100UI青黴素及100μg/ml鏈黴素)之經改良之伊格爾培養基(modified Eagle's medium,MEM)中生長。使豬肺泡巨噬細胞ZMAC-1在補充有10% FBS之RPMI-1640中生長。藉由在經改良之伊格爾培養基中以0.01之感染倍率感染匯合的單層ST細胞來製備TGE病毒株Purdue。在1小時後移除病毒接種物且在37℃下5% CO2氛圍中,在補充有2.5% FBS之MEM中培育細胞。在觀察到80%細胞病變效應後藉由凍融單層細胞釋放病毒。在4℃下,在3,500rpm下離心TGE病毒原液15分鐘且儲存在-80℃下直至使用。病毒原液(來自PK-9細胞)如下:P129-PK-FL及P129-PK-dnsp2-d43/44/46在第8/25代(8來自感染性純系,25來自豬)。其他四種病毒(P129-PK-d43/44、P129-PK-d43/44/46、P129-PK-dnsp2及P129-PK-dnsp2-d43/44)在第21/38代。藉由在ZMAC-1細胞上進行單次繼代來製備各種PRRS病毒之工作原液,例外為市售疫苗Ingelvac PRRS MLV及Ingelvac PRRS ATP係根據製造商說明書復原且直接用於感染。
豬PBMC之分離。用漢克氏液(Hank's)稀釋新鮮肝素化靜脈血且藉由經由Ficoll-Hypaque 1077(Sigma)梯度進行密度離心來分離 PBMC。在漢克氏液中洗滌兩次後,使細胞懸浮於補充有5%胎牛血清(Gibco)、100U/ml青黴素、0.1mg/ml鏈黴素、1mM丙酮酸鈉、1×非必需胺基酸(Mediatech)、100U/ml慶大黴素及250mM 2-巰基乙醇(Sigma)之具有L-麩醯胺酸的RPMI培養基(Mediatech)中。
豬漿細胞樣樹突狀細胞之純化。豬漿細胞樣樹突狀細胞之純化如先前所述(Calzada-Nova,提供)來進行,且基於此等細胞對CD4及CD172之特徵表現(Summerfield等人,2003)。簡言之,使新鮮豬PBMC懸浮於具有0.5% BSA之PBS中且用最佳量之辨識豬CD172之mAb(74-22-15,VMRD)標記。在一次洗滌後,接著用與PE結合之二次山羊抗小鼠抗體(Southern Biotech)培育細胞且在洗滌後,用FITC標記之抗CD4(74-12-4,VMRD)培育。在反射細胞分選器(iCyt)上分選PDC,分選閘(sort gate)設置在CD4+/CD172low群體上。分選後,藉由再分析確認細胞純度。在所有情況下,純度>95%。
量測細胞激素分泌之檢定。PBMC或PDC用不同刺激物刺激16小時(37℃,5% CO2)或模擬刺激。在培育後,使用以市售單株抗體(抗豬IFN-α mAb K9及F17)製備之夾心ELISA檢定覆蓋受刺激細胞之培養基中IFN-α的存在。簡言之,用抗豬IFN-α mAb F17(PBL Laboratories)塗佈Immulon II板,在4℃下培育隔夜,接著用補充有5%胎牛血清之RPMI培養基阻斷。在1小時後,棄去培養基且將50微升待測試之上清液一式兩份添加至檢定孔中。培育1小時後,洗滌檢定孔4次,隨後依次用生物素標記之抗豬IFN-α mAb K9(PBL Laboratories)、HRP結合之抗生蛋白鏈菌素(Zymed Laboratories)及TMB受質(KPL)培育。用ELISA平板讀取器測定光密度。
由第17代P129-PK感染性cDNA純系獲得之病毒缺乏抑制IFN-α誘發的能力。利用豬肺泡巨噬細胞細胞株ZMAC-1由一組四種不同PRRS野生型病毒分離株(P3412、P129、IND5、NADC20)製備病毒工作原 液。由已藉由在PK-9、FK.D4或MARC-145中重複繼代而適應於在細胞培養物中生長之前兩種野生型病毒之衍生物製備其他原液。四種野生型分離株中之三者(P129、IND5、NADC20)容易且高效地在ZMAC-1細胞中生長至約107 TCID50/ml之效價,而P3412野生型分離株僅達到105 TCID50/ml之效價。值得注意的是,在ZMAC-1細胞株中製備之P129病毒原液達到的效價為該等病毒所適應之PK-9或MARC-145細胞中獲得之效價的10倍。檢驗此等病毒刺激PBMC分泌IFN-α之能力揭示除了一種病毒(分離株P3412純系C)之外,此等細胞回應其暴露於任何測試PRRS病毒原液而分泌極少量(<50pg)IFN-α,其與相同細胞由於其暴露於豬冠狀病毒傳染性胃腸炎病毒(TGEv)所產生的IFN-α大量分泌(17,540pg)相比可以忽略。
PRRSV不僅不能刺激豬PBMC產生IFN-α,而且積極抑制其產生。藉由量測在PRRSV存在或不存在的情況下,PBMC回應暴露於TGEv所分泌之IFN-α的量來測定PRRSV原液之抑制作用。如表2中所示,測試的所有4種野生型PRRS病毒分離株以及所有適應細胞培養之衍生物均對PBMC對TGEv之IFN-α反應展現強抑制作用(>80%)。對由感染性cDNA純系(pCMV-S-P129-PK17-FL)獲得之一組病毒原液(包括全長P129-PK-FL病毒及若干種經遺傳改造的缺失突變體)進行分析。如表3中所示,當與親本野生型分離株P129(第1代)之強抑制作用(95%)相比時,P129-PK-FL病毒及所有缺失突變體展現抑制PBMC中TGEv誘發IFN-α的能力顯著降低。為進一步評估此等病毒之IFN-α表型,後續實驗集中於直接比較P129-PK-FL及P129-PK-d43/44病毒、親本P129野生型菌株及/或由Boehringer Ingelheim生產的兩種市售經修飾之活PRRSV疫苗(Ingelvac PRRS MLV及Ingelvac PRRS ATP)。亦測試另一低代次參考分離株NVSL-14。如表4中所示,在四個獨立實驗中,P129-PK-FL及P129-PK-d43/44展現之IFN-α抑制作用顯著小於親 本P129病毒、兩種Ingelvac減毒株或參考病毒株。在一種情況下,同時感染P129-PK-FL或P129-PK-d43/44導致針對TGEv之IFN-α反應明顯增強。
表2中展示之結果指示野生型PRRS病毒及適應於在細胞培養物中生長之衍生物的干擾素-α抑制作用。使指定PRRS病毒原液於ZMAC-1細胞中生長且使用ZMAC-1細胞測定此等新產生原液之效價。藉由ELISA測定在TGE病毒存在或不存在的情況下,暴露於指定PRRS病毒原液18小時之豬外周血液單核細胞培養上清液中所存在的IFN-α的量。*針對單獨TGEv之反應。
表3中展示之結果證明野生型PRRS病毒P129及其適應於在CD163表現PK-9細胞中生長之經遺傳改造之衍生物的干擾素-α抑制作用。藉由ELISA測定在TGE病毒存在或不存在的情況下,暴露於指定PRRS病毒原液18小時之豬外周血液單核細胞培養上清液中所存在的IFN-α的量。na=不適用;*針對單獨TGEv之反應。
表4展示P129-PK-FL及P129-PK-d43/44病毒之干擾素-α抑制作用與野生型P129病毒及PRRS Ingelvac疫苗相比減小。藉由ELISA測定在TGE病毒存在或不存在的情況下,暴露於指定PRRS病毒原液18小時之豬外周血液單核細胞(PBMC)培養上清液中所存在的IFN-α的量。na=不適用;*針對單獨TGEv之反應。
由PBMC回應其暴露於TGEV所分泌之大量IFN-α主要來源於在PBMC群體中所佔小於0.3%之細胞子集。此稀少但重要的細胞子集包含漿細胞樣樹突狀細胞(PDC),其由於特徵性漿細胞樣形態而得到此名稱。為進一步檢驗P129-PK-FL及P129-PK-d43/44病毒之IFN-α表型,類似於上述進行一系列實驗,除了利用自PBMC新分離之純度>95%的PDC。如圖1中所示,此系列實驗證實P129-PK-FL及P129-PK-d43/44病毒所引起的對TGEV誘發IFN-α之抑制作用可以忽略。此外, 在一項實驗中觀察到PDC回應於P129-PK-FL及P129-PK-d43/44 PRRS病毒對於TGEV所介導之IFN-α誘發明顯增強的作用。相比之下,如圖1中所示,Ingelvac PRRS MLV病毒對IFN-α反應展現強抑制作用。
實驗部分中所述之結果揭示P129-PK-FL及P129-PK-d43/44 PRRS病毒以及pCMV-S-P129-PK17-FL感染性cDNA純系之其他衍生物抑制受感染之PBMC或PDC細胞中TGEV誘發IFN-α的能力大大減小。此與在野生型(低代次)PRRS病毒及兩種市售經修飾之活病毒疫苗(Ingelvac PRRS MLV及Ingelvac PRRS ATP)情況下所觀察到之IFN抑制作用形成鮮明對比。鑒於PDC在介導針對病毒感染之先天性免疫中的重要作用,觀察到P129-PK-FL及P129-PK-d43/44病毒最低限度地抑制此等細胞之此重要功能可能有意義。
亦應注意,本發明提供適應於在重組表現CD163受體之允許細胞(permissive cell)上生長之臨床上有效的市售疫苗病毒,且該等病毒及疫苗並不依賴於歷史「猿猴細胞」培養技術,亦不在任一點使用該培養技術開發。特定參見美國專利7,754,464。
實例6
疫苗候選物之安全性及功效
為評估三種由pCMV-S-P129-PK17-FL感染性cDNA純系獲得之病毒P129-PK-FL(第7/24代)、P129-PK-d43/44(第17/34代)及P129-PK-d43/44/46(第17/34代)作為針對PRRS之疫苗的安全性及功效,在小豬呼吸疾病模型中對其進行評估。此等病毒之來源展示於圖8中且實驗設計(處理組)列於表5中。在7週齡時(疫苗接種後4週),使用低代次毒性PRRSV分離株NADC20進行異源攻毒。對照處理組包括模擬疫苗及市售PRRS疫苗Ingelvac MLV。
未處理(NT)組如下:給NT1豬安裝發訊器以監測源豬之健康狀態。將其單獨圈養且在PRRSV攻毒之前進行屍檢。NT2豬為單獨圈養 在接種疫苗豬兩個圍欄之間的一個圍欄中的接觸對照,對於T02至T05各者每個處理組總共兩隻。NT3豬為與接種疫苗豬一起圈養之接觸對照,每個圍欄一隻,每個處理組(T01至T05)總共兩隻。僅NT3豬分配為T01組。
在疫苗接種後量測接種疫苗動物之直腸溫度且與T01(模擬疫苗)處理組相比。結果展示於圖1中。該等疫苗均不誘發發燒。所有組在疫苗接種後的整個觀察期間平均低於104℃。
在攻毒後量測豬之直腸溫度。結果展示於圖2中。未接種疫苗之T01豬展示高於104℃之持續發燒。相比之下,三種疫苗顯著減少攻毒後發燒。P129-PK-FL在減少發燒方面最有效。
在疫苗接種前及疫苗接種後記錄動物體重。結果展示於圖3中。在研究第-1天(疫苗接種之前)、第10天、第24天、第27天(攻毒之前)及第37天記錄體重。在未接種疫苗之豬中,在10天觀察期內,用毒性NADC20病毒攻毒幾乎完全消除體重增加。該等疫苗對此作用之消除程度不同。
在攻毒後屍檢時檢驗受攻毒動物之肺。各肺涉及病變之百分比展示於圖4中。T01模擬疫苗組的平均肺病變涉及率為25.1%。該等疫苗使肺病變減少之程度不同。P129-PK-FL最有效,使肺病變涉及率減小至1.1%。
如圖5中所示,使用肺評估得分(LAS)評估肺病變之嚴重程度。三種疫苗減少LAS。P129-PK-FL使模擬疫苗接種組中之平均LAS自1.63減少至0.14。
藉由疫苗接種及攻毒兩者誘發針對PRRSV之血清抗體。在研究第27天及第37天量測IDEXX ELISA S/P比率。結果展示於圖6中。接種P129-PK-FL誘發最高含量的抗PRRS抗體。
在PAM細胞上測定受攻毒豬血清中病毒血症之效價。在圖7中給 出結果(TCID50/mL)。P129-PK-FL在減小攻毒後病毒血症方面最有效。
雖然本發明已參照上述實例及附件(其每一者之全部內容以全文引用的方式併入)描述,但應瞭解修飾及變化涵蓋於本發明之精神及範疇內。因此,本發明僅受以下申請專利範圍限制。
實例7
由感染性cDNA純系PCMV-S-P129獲得感染性cDNA純系PCMV-S-P129-PK17-FL
本發明之PRRSV感染性cDNA純系pCMV-S-P129-PK17-FL可易於由一般熟習此項技術者由先前描述之PRRSV感染性cDNA純系pCMV-S-P129使用定點突變誘發技術獲得。PRRSV感染性cDNA純系pCMV-S-P129描述於美國專利第6,500,662號中且以寄存編號203489寄存於ATCC。此純系中PRRSV基因體之DNA序列亦可以寄存編號AF494042在Genbank(NCBI)資料庫中獲得。定點突變誘發套組可購自許多供應商,且能夠在大質體之多個位點同時進行諸多核苷酸改變。該等套組包括(但不限於)Change-ITTM多突變定點突變誘發套組(Affymetrix/USB)、QuikChange Lightning多定點突變誘發套組(Agilent Technologies-Stratagene Products)及AMAP多定點突變誘發套組(MBL International)。
PRRSV感染性cDNA純系pCMV-S-P129(可自ATCC獲得)與本發明之PRRSV感染性cDNA純系pCMV-S-P129-PK17-FL之間核苷酸改變的清單呈現於表8中。所有改變皆在基因體之蛋白質編碼區中。存在總共74個核苷酸改變,其可使用74個誘變引子及與市售定點突變誘發套組多個連續反應引入pCMV-S-P129感染性純系中,產生序列與本文所述之pCMV-S-P129-PK17-FL一致的質體分子。實際上,吾人可使用不到74個誘變引子獲得同一結果,因為約50-60個核苷酸內之突變叢集 可使用單個誘變引子改變。舉例而言,核苷酸735、750及756可使用單個誘變引子改變,核苷酸965、992及1009亦可使用單個誘變引子改變。因此,引子的數目減少至約60。
74個核苷酸改變中,大多數(42)改變為同義或「沉默」的,意指其編碼相同胺基酸。此等核苷酸改變不可能對該病毒之干擾素誘發或抑制表型具有任何可量測之影響。其餘32個核苷酸改變為非同義或「非沉默」的,且在病毒蛋白中產生胺基酸改變。此32個核苷酸改變預計直接造成該病毒之干擾素誘發/抑制表型,且應改變以將由感染性純系pCMV-S-P129編碼之病毒轉化為與由感染性純系pCMV-S-P129-PK17-FL編碼之病毒所示相同的干擾素表型。該種改變將需要至多32個誘變引子,若考慮到一些相關核苷酸之叢集則更少。
實例8
感染性cDNA純系PCMV-S-P129-PK17-FL之重新合成
作為定點突變誘發之替代,本發明之PRRS病毒基因體可使用合適5'及3'接附序列重新化學合成,且選殖至用於PRRS感染性cDNA純系pCMV-S-P129(可以寄存編號203489自ATCC獲得)之質體骨架或類似質體骨架中。長度大於50kb之基因的定製合成可作為商業服務自諸多出售商獲得,包括(但不限於):GenScript、DNA 2.0及Bio Basic Inc。藉由使用側接於基因體之5' PacI及3' SpeI限制酶位點置換感染性純系pCMV-S-P129中之病毒基因體來將合成病毒基因體直接選殖至pCMV-S載體中。為了切割合成基因體,將含24個核苷酸之延伸段(5'-GCAGAGCTCGTTAATTAAACCGTC-基因體-3',包括加下劃線之PacI位點)嵌入該合成基因體5'端,且將含83個核苷酸之延伸段(5'-基因體-AAAAAAAAAAAAAAAAAAAAATGCATATTTAAATCCCAAGCCGAATTCCAGCACACTGGCGGCCGTTACTAGTGAGCGGCCGC-3',包括加下劃線之SpeI位點)嵌入該合成基因體3'端。在用PacISpeI切割質體 及合成基因體後,純化合適片段,使用DNA連接酶連接且使用一般熟習此項技術者所熟知之標準選殖技術轉型至大腸桿菌中進行篩選及增殖。
生物材料之寄存
以下生物材料(參見美國專利第6,500,662號)於1998年11月19日寄存於美國菌種保存中心(ATCC),10801 University Blvd.,Manassas,Virginia,20110-2209,USA且賦予以下寄存編號。
質體pT7P129A,寄存編號203488
質體pCMV-S-P129,寄存編號203489
以下美國專利之全文及揭示內容以引用的方式併入本文中,如同完全闡述一般:U.S.6,500,662及U.S.7,618,797。
表格簡單說明
表1展示感染性cDNA純系及藉由轉染至PK-9細胞中獲得之對應病毒。
表2展示野生型PRRS病毒及適應於在細胞培養物中生長之衍生物的干擾素-α抑制作用。
表3描述野生型PRRS病毒P129及其適應於在CD163表現PK-9細胞中生長之經遺傳改造之衍生物的干擾素-α抑制作用。
表4展示P129-PK-FL及P129-PK-d43/44病毒與野生型P129病毒及PRRS Ingelvac疫苗相比減小之干擾素-α抑制作用。
表5描述為評估疫苗病毒安全性及功效而進行之研究設計。
表6用基因體位置展示第0代P129與第17代P129-PK-FL之間所有核苷酸差異及所導致的胺基酸差異。
表7用病毒蛋白展示第0代P129與第17代P129-PK-FL之間核苷酸及胺基酸差異之彙總。
表8用基因體位置展示感染性cDNA純系pCMV-S-P129及pCMV-S-P129-PK17-FL中所發現之PRRSV基因體之間所有核苷酸差異及所導致的胺基酸差異。
表9及10展示造成第52代病毒(SEQ ID NO:6)表型之胺基酸變化。
序列簡單說明
SEQ ID NO:1提供第17代P129-PK-FL完整基因體。
SEQ ID NO:2提供第17代P129-PK-d43/44完整基因體。
SEQ ID NO:3提供第24代P129-PK-FL完整基因體。
SEQ ID NO:4提供第34代P129-PK-d43/44完整基因體。
SEQ ID NO:5提供第0代P129完整基因體。
SEQ ID NO:6提供第52代P129完整基因體。
<110> 美商輝瑞大藥廠
<120> 北美豬生殖與呼吸綜合症候群(PRRS)病毒及其用途
<130> PC33979A
<140> 100140986
<141> 2011-11-09
<150> 61/412,006
<151> 2010-11-10
<160> 57
<170> PatentIn version 3.5
<210> 1
<211> 15450
<212> DNA
<213> 人工序列
<220>
<223> 第17代P129-PK-FL完整基因體(15,450nt)全長感染性純系
<400> 1
<210> 2
<211> 15444
<212> DNA
<213> 人工序列
<220>
<223> 第17代P129-PK-d43/44完整基因體(15,444nt)缺失2個胺基酸之感染性純系
<400> 2
<210> 3
<211> 15450
<212> DNA
<213> 人工序列
<220>
<223> 第24代P129-PK-FL完整基因體(15,450nt)全長疫苗
<400> 3
<210> 4
<211> 15444
<212> DNA
<213> 人工序列
<220>
<223> 第34代P129-PK-d43/44完整基因體(15,444nt)缺失2個胺基酸之疫苗
<400> 4
<210> 5
<211> 15450
<212> DNA
<213> 人工序列
<220>
<223> 第0代P129完整基因體(15,450nt)全長親本病毒
<400> 5
<210> 6
<211> 15450
<212> DNA
<213> 人工序列
<220>
<223> 第52代P129-PKC12-FL完整基因體(15,450nt)全長疫苗病毒
<400> 6
<210> 7
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置735,ORF1a:182,Nsp1b:2,第0代胺基酸
<400> 7
<210> 8
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置735,ORF1a:182,Nsp1b:2,第17代胺基酸
<400> 8
<210> 9
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置735,ORF1a:182,Nsp1b:2,第52代胺基酸
<400> 9
<210> 10
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置756,ORF1a:189,Nsp1b:9,第0代胺基酸
<400> 10
<210> 11
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置756,ORF1a:189,Nsp1b:9,第17代胺基酸
<400> 11
<210> 12
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置756,ORF1a:189,Nsp1b:9,第52代胺基酸
<400> 12
<210> 13
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置992,ORF1a:267,Nsp1b:87,第0代胺基酸
<400> 13
<210> 14
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置992,ORF1a:267,Nsp1b:87,第17代胺基酸
<400> 14
<210> 15
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置992,ORF1a:267,Nsp1b:87,第52代胺基酸
<400> 15
<210> 16
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置1009,ORF1a:273,Nsp1b:93,第0代胺基酸
<400> 16
<210> 17
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置1009,ORF1a:273,Nsp1b:93,第17代胺基酸
<400> 17
<210> 18
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置1009,ORF1a:273,Nsp1b:93,第52代胺基酸
<400> 18
<210> 19
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置1096,ORF1a:302,Nsp1b:122,第0代胺基酸
<400> 19
<210> 20
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置1096,ORF1a:302,Nsp1b:122,第17代胺基酸
<400> 20
<210> 21
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置1096,ORF1a:302,Nsp1b:122,第52代胺基酸
<400> 21
<210> 22
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置2106,ORF1a:639,Nsp2:256,第0代胺基酸
<400> 22
<210> 23
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置2106,ORF1a:639,Nsp2:256,第17代胺基酸
<400> 23
<210> 24
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置2106,ORF1a:639,Nsp2:256,第52代胺基酸
<400> 24
<210> 25
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置2185,ORF1a:665,Nsp2:282,第0代胺基酸
<400> 25
<210> 26
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置2185,ORF1a:665,Nsp2:282,第17代胺基酸
<400> 26
<210> 27
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置2185,ORF1a:665,Nsp2:282,第52代胺基酸
<400> 27
<210> 28
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置2403,ORF1a:738,Nsp2:355,第0代胺基酸
<400> 28
<210> 29
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置2403,ORF1a:738,Nsp2:355,第17代胺基酸
<400> 29
<210> 30
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置2403,ORF1a:738,Nsp2:355,第52代胺基酸
<400> 30
<210> 31
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置3019,ORF1a:943,Nsp2:560,第0代胺基酸
<400> 31
<210> 32
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置3019,ORF1a:943,Nsp2:560,第17代胺基酸
<400> 32
<210> 33
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置3019,ORF1a:943,Nsp2:560,第52代胺基酸
<400> 33
<210> 34
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置4477,ORF1a:1429,Nsp3:72,第0代胺基酸
<400> 34
<210> 35
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置4477,ORF1a:1429,Nsp3:72,第17代胺基酸
<400> 35
<210> 36
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置4477,ORF1a:1429,Nsp3:72,第52代胺基酸
<400> 36
<210> 37
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置4705,ORF1a:1505,Nsp3:148,第0代胺基酸
<400> 37
<210> 38
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置4705,ORF1a:1505,Nsp3:148,第17代胺基酸
<400> 38
<210> 39
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置4705,ORF1a:1505,Nsp3:148,第52代胺基酸
<400> 39
<210> 40
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置5985,ORF1a:1932,Nsp4:129,第0代胺基酸
<400> 40
<210> 41
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置5985,ORF1a:1932,Nsp4:129,第17代胺基酸
<400> 41
<210> 42
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置5985,ORF1a:1932,Nsp4:129,第52代胺基酸
<400> 42
<210> 43
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置7419,ORF1a:2410,Nsp7:217,第0代胺基酸
<400> 43
<210> 44
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置7419,ORF1a:2410,Nsp7:217,第17代胺基酸
<400> 44
<210> 45
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置7419,ORF1a:2410,Nsp7:217,第52代胺基酸
<400> 45
<210> 46
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置8831,ORF1a/1b:2881,Nsp9:429,第0代胺基酸
<400> 46
<210> 47
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置8831,ORF1a/1b:2881,Nsp9:429,第17代胺基酸
<400> 47
<210> 48
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置8831,ORF1a/1b:2881,Nsp9:429,第52代胺基酸
<400> 48
<210> 49
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置13,857,ORF5:29,第0代胺基酸
<400> 49
<210> 50
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置13,857,ORF5:29,第17代胺基酸
<400> 50
<210> 51
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置13,857,ORF5:29,第52代胺基酸
<400> 51
<210> 52
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置14,578,ORF6:74,第0代胺基酸
<400> 52
<210> 53
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置14,578,ORF6:74,第17代胺基酸
<400> 53
<210> 54
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置14,578,ORF6:74,第52代胺基酸
<400> 54
<210> 55
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置14,780,ORF6:141,第0代胺基酸
<400> 55
<210> 56
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置14,780,ORF6:141,第17代胺基酸
<400> 56
<210> 57
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 基因體位置14,780,ORF6:141,第52代胺基酸
<400> 57

Claims (1)

  1. 一種經分離之豬生殖與呼吸綜合症候群病毒(PRRS),其中由ORF1a編碼之蛋白質係選自由含有以下任一者之胺基酸序列組成之群:胺基酸序列AMANVYD(SEQ ID NO:9)內之胺基酸N;胺基酸序列IGHNAVM(SEQ ID NO:12)內之胺基酸N;胺基酸序列TVPDGNC(SEQ ID NO:15)內之胺基酸D;胺基酸序列CWWYLFD(SEQ ID NO:18)內之胺基酸Y;胺基酸序列HGVHGKY(SEQ ID NO:21)內之胺基酸H;胺基酸序列AAKVDQY(SEQ ID NO:24)內之胺基酸V;胺基酸序列PSATDTS(SEQ ID NO:27)內之胺基酸T;胺基酸序列LNSLLSK(SEQ ID NO:30)內之胺基酸L;胺基酸序列APMCQDE(SEQ ID NO:33)內之胺基酸C;胺基酸序列CAPTGMD(SEQ ID NO:36)內之胺基酸T;胺基酸序列PKVAKVS(SEQ ID NO:39)內之胺基酸A;胺基酸序列AGEIVGV(SEQ ID NO:42)內之胺基酸I;胺基酸序列ADFNPEK(SEQ ID NO:45)內之胺基酸N;及胺基酸序列QTPILGR(SEQ ID NO:48)內之胺基酸I
TW103126455A 2010-11-10 2011-11-09 北美豬生殖與呼吸綜合症候群(prrs)病毒及其用途 TW201518317A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US41200610P 2010-11-10 2010-11-10

Publications (1)

Publication Number Publication Date
TW201518317A true TW201518317A (zh) 2015-05-16

Family

ID=45401109

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100140986A TWI458735B (zh) 2010-11-10 2011-11-09 北美豬生殖與呼吸綜合症候群(prrs)病毒及其用途
TW103126455A TW201518317A (zh) 2010-11-10 2011-11-09 北美豬生殖與呼吸綜合症候群(prrs)病毒及其用途

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100140986A TWI458735B (zh) 2010-11-10 2011-11-09 北美豬生殖與呼吸綜合症候群(prrs)病毒及其用途

Country Status (20)

Country Link
US (4) US9566324B2 (zh)
EP (1) EP2637688B1 (zh)
JP (3) JP5793197B2 (zh)
KR (1) KR101728202B1 (zh)
CN (3) CN103517715A (zh)
AR (1) AR083839A1 (zh)
AU (1) AU2011327760B2 (zh)
BR (1) BR112013011606A2 (zh)
CA (1) CA2817486C (zh)
DK (1) DK2637688T3 (zh)
HK (1) HK1254832A1 (zh)
HU (1) HUE031891T2 (zh)
MX (1) MX350695B (zh)
MY (1) MY173789A (zh)
NZ (1) NZ610376A (zh)
RU (1) RU2592667C2 (zh)
TW (2) TWI458735B (zh)
UA (1) UA108902C2 (zh)
WO (1) WO2012063212A1 (zh)
ZA (1) ZA201304204B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618797B2 (en) * 1998-12-22 2009-11-17 Pfizer Inc Infectious cDNA clone of North American porcine reproductive and respiratory syndrome (PRRS) virus and uses thereof
UA108902C2 (uk) * 2010-11-10 2015-06-25 Вірус північноамериканського репродуктивного та респіраторного синдрому свиней (prrs) та його застосування
UA114504C2 (uk) 2012-04-04 2017-06-26 Зоетіс Сервісіз Ллс Комбінована вакцина pcv, mycoplasma hyopneumoniae та prrs
US9120859B2 (en) 2012-04-04 2015-09-01 Zoetis Services Llc Mycoplasma hyopneumoniae vaccine
UA114503C2 (uk) 2012-04-04 2017-06-26 Зоетіс Сервісіз Ллс Комбінована вакцина pcv та mycoplasma hyopneumoniae
JP6386999B2 (ja) 2012-05-17 2018-09-05 ゾエティス・エルエルシー ブタ生殖および呼吸症候群(prrs)ウイルスに対する離乳前の効果的なワクチン接種
JP2015533474A (ja) * 2012-07-18 2015-11-26 サウス ダコタ ボード オブ リージェンツ 新規なアルテリウイルスタンパク質および発現機構
US9457073B2 (en) 2012-09-26 2016-10-04 University Of Manitoba Live attenuated replication-competent arteriviruses having decreased dub/deisgylating activity
CA2943478A1 (en) 2014-03-21 2015-09-24 Nutech Ventures A non-naturally occuring porcine reproductive and respiratory syndrome virus (prrsv) and methods of using
BR112019012158A2 (pt) 2016-12-14 2019-11-12 Zoetis Services Llc vacinação eficaz contra cepas europeias de vírus da síndrome reprodutiva e respiratória suína (prrs) antes do desmame
JP7050446B2 (ja) 2017-09-25 2022-04-08 日本電産サンキョー株式会社 回転伝達機構およびダンパ装置
CN109468413B (zh) * 2018-12-14 2021-09-10 湖南中净生物科技有限公司 一种母猪繁殖障碍病原检测引物、试剂盒、病原检测方法和应用
CN111996213A (zh) * 2020-02-06 2020-11-27 广西大学 猪繁殖与呼吸综合征病毒双荧光标记基因重组毒株的构建方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3137631A (en) 1959-12-01 1964-06-16 Faberge Inc Encapsulation in natural products
US3959457A (en) 1970-06-05 1976-05-25 Temple University Microparticulate material and method of making such material
JPS5186117A (en) 1975-01-27 1976-07-28 Tanabe Seiyaku Co Johoseibiryushiseizainoseiho
US4205060A (en) 1978-12-20 1980-05-27 Pennwalt Corporation Microcapsules containing medicament-polymer salt having a water-insoluble polymer sheath, their production and their use
US4452747A (en) 1982-03-22 1984-06-05 Klaus Gersonde Method of and arrangement for producing lipid vesicles
US4744933A (en) 1984-02-15 1988-05-17 Massachusetts Institute Of Technology Process for encapsulation and encapsulated active material system
US5008050A (en) 1984-06-20 1991-04-16 The Liposome Company, Inc. Extrusion technique for producing unilamellar vesicles
US4921706A (en) 1984-11-20 1990-05-01 Massachusetts Institute Of Technology Unilamellar lipid vesicles and method for their formation
US4606940A (en) 1984-12-21 1986-08-19 The Ohio State University Research Foundation Small particle formation and encapsulation
US5009956A (en) 1987-02-24 1991-04-23 Univ Minnesota Phospholipase A2-resistant liposomes
US4927637A (en) 1989-01-17 1990-05-22 Liposome Technology, Inc. Liposome extrusion method
US4944948A (en) 1989-02-24 1990-07-31 Liposome Technology, Inc. EGF/Liposome gel composition and method
US5132117A (en) 1990-01-11 1992-07-21 Temple University Aqueous core microcapsules and method for their preparation
UA27788C2 (uk) 1991-06-06 2000-10-16 Стіхтінг Сентрал Діргенескюндіг Інстітют Композиція, що містить виділений фактор лелістада, вакцинна композиція для вакцинації тварин (варіанти), діагностичний набір для виявлення антитіла
JPH0513188A (ja) 1991-06-28 1993-01-22 Toshiba Lighting & Technol Corp 放電灯点灯用電源回路
ES2065303T5 (es) 1991-08-26 2001-05-01 Univ Minnesota Procedimiento de diagnosis y vacuna especifica.
US6042830A (en) 1992-08-05 2000-03-28 Boehringer Ingelheim Vetmedica, Inc. Viral agent associated with mystery swine disease
US6251397B1 (en) 1992-10-30 2001-06-26 Iowa State University Research Foundation, Inc. Proteins encoded by polynucleic acids isolated from a porcine reproductive and respiratory syndrome virus and immunogenic compositions containing the same
US6592873B1 (en) 1992-10-30 2003-07-15 Iowa State University Research Foundation, Inc. Polynucleic acids isolated from a porcine reproductive and respiratory syndrome virus (PRRSV) and proteins encoded by the polynucleic acids
US20040087521A1 (en) 1993-03-18 2004-05-06 Merck & Co., Inc. Nucleic acid pharmaceuticals-influenza matrix
US6015686A (en) 1993-09-15 2000-01-18 Chiron Viagene, Inc. Eukaryotic layered vector initiation systems
US5789543A (en) 1993-12-30 1998-08-04 President And Fellows Of Harvard College Vertebrate embryonic pattern-inducing proteins and uses related thereto
DE69530227T2 (de) 1994-04-15 2004-04-01 Temple University Methode zum einkapseln mittels eines wässrigen lösungsmittels und mikrokapseln
ES2210273T5 (es) 1994-07-18 2010-03-29 Conzelmann, Karl-Klaus, Prof. Dr. Virus con arn de cadena negativa no segmentado recombinante infeccioso.
MX9700817A (es) 1994-08-05 1997-05-31 Univ Minnesota Secuencia viral de nucleotidos de "vr-2332" y metodos de uso.
US6694021B1 (en) 1995-12-14 2004-02-17 Joseph G Julian Telephone handset sanitary guard
EP0839912A1 (en) 1996-10-30 1998-05-06 Instituut Voor Dierhouderij En Diergezondheid (Id-Dlo) Infectious clones of RNA viruses and vaccines and diagnostic assays derived thereof
WO1998055626A2 (en) 1997-06-05 1998-12-10 Origen, Inc. Recombinant porcine reproductive and respiratory syndrome virus (prrsv) for use as a vaccine
US7132106B2 (en) 1998-12-22 2006-11-07 Pfizer Inc. Infectious cDNA clone of North American porcine reproductive and respiratory syndrome (PRRS) virus and uses thereof
US7691389B2 (en) * 1998-12-22 2010-04-06 Pfizer Inc Infectious cDNA clone of north american porcine reproductive and respiratory syndrome (PRRS) virus and uses thereof
US7618797B2 (en) * 1998-12-22 2009-11-17 Pfizer Inc Infectious cDNA clone of North American porcine reproductive and respiratory syndrome (PRRS) virus and uses thereof
NZ501264A (en) 1998-12-22 2001-09-28 Pfizer Prod Inc Polynucleotide DNA sequence encoding an infectious RNA molecule encoding a North American PRRS
EP1254213A2 (en) * 2000-01-26 2002-11-06 Boehringer Ingelheim Vetmedica Gmbh Recombinant attenuation of prrsv
WO2005107796A2 (en) * 2004-04-23 2005-11-17 Pharmacia & Upjohn Company, Llc Cellular permissivity factor for viruses, and uses thereof
PL1833508T3 (pl) * 2004-11-19 2011-02-28 Intervet Int Bv Szczepy świńskiego wirusa zespołu rozrodczo-oddechowego i ich kompozycje
WO2006129139A1 (en) * 2005-02-25 2006-12-07 Pfizer Products Inc. N protein mutants of porcine reproductive and respiratory syndrome virus
CA2894069C (en) * 2005-06-24 2019-02-26 Regents Of The University Of Minnesota Prrs viruses, infectious clones, mutants thereof, and methods of use
DE602006013003D1 (de) * 2005-08-30 2010-04-29 Univ Nebraska Verfahren und zusammensetzungen zur impfung von tieren mit prrsv-antigenen mit verbesserter immunogenität
CA2691755A1 (en) * 2007-06-25 2008-12-31 South Dakota State University Recombinant north american type 1 porcine reproductive and respiratory syndrome virus and methods of use
CN101633909B (zh) * 2009-08-13 2012-05-09 华威特(北京)生物科技有限公司 预防猪感染猪繁殖与呼吸综合征的减毒活疫苗
UA108902C2 (uk) * 2010-11-10 2015-06-25 Вірус північноамериканського репродуктивного та респіраторного синдрому свиней (prrs) та його застосування
JP6386999B2 (ja) * 2012-05-17 2018-09-05 ゾエティス・エルエルシー ブタ生殖および呼吸症候群(prrs)ウイルスに対する離乳前の効果的なワクチン接種

Also Published As

Publication number Publication date
RU2013120979A (ru) 2014-12-20
CN107974452B (zh) 2021-08-13
US20200197507A1 (en) 2020-06-25
EP2637688B1 (en) 2017-01-11
TW201249864A (en) 2012-12-16
US20170136116A1 (en) 2017-05-18
CN107964546A (zh) 2018-04-27
ZA201304204B (en) 2014-02-26
MX350695B (es) 2017-09-13
AU2011327760B2 (en) 2017-07-13
JP2017104121A (ja) 2017-06-15
CN103517715A (zh) 2014-01-15
US9566324B2 (en) 2017-02-14
AU2011327760A1 (en) 2013-05-23
US20140072589A1 (en) 2014-03-13
CA2817486C (en) 2019-07-23
NZ610376A (en) 2015-05-29
WO2012063212A1 (en) 2012-05-18
US11904011B2 (en) 2024-02-20
RU2592667C2 (ru) 2016-07-27
TWI458735B (zh) 2014-11-01
AR083839A1 (es) 2013-03-27
KR101728202B1 (ko) 2017-05-02
BR112013011606A2 (pt) 2021-05-25
JP2014500721A (ja) 2014-01-16
CN107974452A (zh) 2018-05-01
KR20130084692A (ko) 2013-07-25
HUE031891T2 (en) 2017-08-28
DK2637688T3 (en) 2017-03-13
MY173789A (en) 2020-02-21
CN107964546B (zh) 2021-08-17
EP2637688A1 (en) 2013-09-18
US11351243B2 (en) 2022-06-07
JP2016019533A (ja) 2016-02-04
JP5793197B2 (ja) 2015-10-14
HK1254832A1 (zh) 2019-07-26
CA2817486A1 (en) 2012-05-18
UA108902C2 (uk) 2015-06-25
US20220305110A1 (en) 2022-09-29
MX2013005205A (es) 2013-11-04

Similar Documents

Publication Publication Date Title
US11911454B2 (en) Effective vaccination against porcine reproductive and respiratory syndrome (PRRS) virus prior to weaning
US11904011B2 (en) North American porcine reproductive and respiratory syndrome (PRRS) virus and uses thereof