TW201513350A - MOSFET in three-dimensional structure and manufacturing method thereof - Google Patents

MOSFET in three-dimensional structure and manufacturing method thereof Download PDF

Info

Publication number
TW201513350A
TW201513350A TW102135317A TW102135317A TW201513350A TW 201513350 A TW201513350 A TW 201513350A TW 102135317 A TW102135317 A TW 102135317A TW 102135317 A TW102135317 A TW 102135317A TW 201513350 A TW201513350 A TW 201513350A
Authority
TW
Taiwan
Prior art keywords
region
layer
dimensional structure
gate electrode
channel area
Prior art date
Application number
TW102135317A
Other languages
Chinese (zh)
Inventor
Tomoyuki Suwa
Hiroaki Tanaka
Original Assignee
Univ Tohoku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tohoku filed Critical Univ Tohoku
Priority to TW102135317A priority Critical patent/TW201513350A/en
Publication of TW201513350A publication Critical patent/TW201513350A/en

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

One of the subjects to be solved by the present invention is to provide a fundamental electronic element which may substantially achieve the element performance based on the dimensional design even with extremely small dimensions and an integrated semiconductor device composed by integration of the fundamental electronic elements. The solution of the present invention relates to a MOSFET in three-dimensional structure, which comprises a channel area with a plurality of different crystalline surfaces, a gate electrode disposed facing the plurality of crystalline surfaces of the channel area, a gate insulation film disposed between the gate electrode and the channel area, and a first and a second silicide area disposed facing the current direction flowing through the channel area and separated from the channel area.

Description

3維構造之MOSFET及其製造方法 Three-dimensional structure MOSFET and manufacturing method thereof

本發明是有關3維構造之MOSFET及其製造方法。 The present invention relates to a three-dimensional structure MOSFET and a method of fabricating the same.

就像IC(集體電路)和LSI(大規模集體電路)的半導體裝置的開發歷史幾乎是因微細化和高集成化而進展。 The development history of semiconductor devices such as IC (collective circuit) and LSI (large-scale collective circuit) has progressed almost due to miniaturization and high integration.

半導體裝置的構成要素之一,例如:像是MOSFET(Metal Oxide Semiconductor Field Effect Transistor)的基本電子元件的尺寸(特別是閘極長)隨著縮小一途,基本電子元件的微細化則以按照所謂比例定律的形式演進。而且,也可達到因比例的高性能化的維持。 One of the constituent elements of the semiconductor device, for example, the size of a basic electronic component such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) (especially the gate length) is reduced as a whole, and the miniaturization of the basic electronic component is in accordance with the so-called ratio. The evolution of the law of the law. Moreover, the maintenance of the high performance due to the ratio can also be achieved.

但是,每當基本電子元件的微細化世代向前邁進就會產生各種的課題,此情況雖有解決措施,但一方面確保基本電子素子的原本特性、一方面達到微細化提高集成度,但在基本電子元件的2維構造(平面構造)、2維排列中,感受到它的極限。 However, every time the micro-generation of basic electronic components moves forward, various problems arise. Although there are solutions to this problem, on the one hand, the original characteristics of basic electrons are ensured, and on the other hand, micro-leveling is improved to improve integration. The two-dimensional structure (planar structure) of the basic electronic component and the two-dimensional array are perceived as limits.

最近利用藉由多層配線技術的多層化的3維排到構造進一步提高集成度,或者利用如代表FinFET的立體構造的基本電子元件,達到阻止因微細化的元件之特性下降,更進一步達到的微細化、高集成化、高性能化。 Recently, the multi-layered three-dimensional discharge structure by the multilayer wiring technique has been used to further improve the degree of integration, or the basic electronic components such as the three-dimensional structure of the FinFET have been used, thereby preventing the deterioration of the characteristics of the micro-reduced components and further achieving the fineness. Chemicalization, high integration, and high performance.

另一方面,如電晶體的基本電子元件,例如若為MOS電晶體的情形下,與源極、汲極區域和對應的各電極之間的電性接觸理想上為歐姆接觸。因此,一般採用矽化物化的技術。 On the other hand, if the basic electronic component of the transistor, for example in the case of a MOS transistor, the electrical contact with the source, the drain region and the corresponding electrode is ideally an ohmic contact. Therefore, the technique of deuteration is generally employed.

如FinFET的基本電子元件的情形下,源極、汲極區域的構造為多結晶面構成,以複數個不同的結晶面構成。雖在該不同的結晶面的各個附設電極,但在與該電極和源極、汲極區域之間設有矽化物區域。在各個不同的結晶設置的矽化物區域,儘可能減小流經電極、矽化物區域、源極區域及電極、矽化物區域、汲極區域的電流的路徑的電阻,以提高所形成的電晶體之特性的目標。 In the case of a basic electronic component of a FinFET, the structure of the source and drain regions is composed of a polycrystalline face and is composed of a plurality of different crystal faces. Although electrodes are attached to each of the different crystal faces, a telluride region is provided between the electrodes and the source and drain regions. In each of the different crystallized telluride regions, the resistance of the path of the current flowing through the electrode, the germanide region, the source region, and the electrode, the germanide region, and the drain region is minimized to increase the formed transistor The goal of the characteristics.

基本電子元件的尺寸如目前般具有某種程度大小的情形下,前述電流路徑的電阻雖不必在意那程問題,但隨著提高微細化的集成度之提升,基本電子元件的尺寸縮小,前述電流路徑的電阻問題明顯化。 In the case where the size of the basic electronic component is as large as the current size, the resistance of the current path does not have to care about the problem of the process, but as the integration of the miniaturization increases, the size of the basic electronic component is reduced, and the current is The resistance problem of the path is obvious.

電流路徑的電阻,大致區分為:電極與矽化物區域之間、矽化物區域與源極區域、汲極區域之間的接觸電阻、和矽化物區域及源極區域、汲極區域的內部電阻。 The resistance of the current path is roughly divided into the contact resistance between the electrode and the germanide region, the germanide region and the source region, and the drain region, and the internal resistance of the germanide region and the source region and the drain region.

在半導體基板利用矽晶圓或SOI基板的情形 下,源極、汲極區域是例如:將硼(B)或磷(P)等的雜質,以高濃度滲雜形成在Si層的高濃度區域,矽化物區域是該高濃度區域和適當的金屬產生矽化物化反應所形成的區域。 In the case of using a germanium wafer or an SOI substrate on a semiconductor substrate In the source and drain regions, for example, impurities such as boron (B) or phosphorus (P) are formed at a high concentration to form a high concentration region of the Si layer, and the germanide region is the high concentration region and appropriate. The metal produces a region formed by the oximation reaction.

減低源極區域、汲極區域的內部電阻,係適當選擇所滲雜的雜質的材料,將滲雜量做最佳化所完成。減低接觸電阻,係藉由選擇適當的金屬和適當的矽化物化處理所實現。 Reducing the internal resistance of the source region and the drain region is accomplished by appropriately selecting the material of the impurity to be infiltrated and optimizing the amount of the dopant. Reducing the contact resistance is achieved by selecting the appropriate metal and appropriate deuteration treatment.

該元件設計協定,也適用於以利用像是FinFET的複數個不同的結晶面構成之具有源極區域、汲極區域的基本電子元件群構成的半導體裝置的情形。 This device design protocol is also applicable to a semiconductor device including a basic electronic component group having a source region and a drain region, which is composed of a plurality of different crystal faces of a FinFET.

而且,直至現今,即使在以像是FinFET的複數個不同的結晶面構成之具有源極區域、汲極區域的基本電子元件的情形,也與源極區域、汲極區域形成在一個結晶面的2維構造的基本電子元件的情形相同,不按照結晶面一樣地形成矽化物區域。 Moreover, up to now, even in the case of a basic electronic component having a source region or a drain region formed of a plurality of different crystal faces such as a FinFET, a source region and a drain region are formed on one crystal face. In the case of the basic electronic component of the two-dimensional structure, the telluride region is not formed in the same manner as the crystal face.

但是,經本發明者等專心一意研究的結果,若基本電子元件的尺寸為某種程度以下,在矽化物區域結晶面依存性明顯化,且連帶提高基本電子元件的微細化,其結晶面依存性也跟著提高,微細化更為提高,得知在如上述的習知法或其延長的方法中,基本電子元件的性能提 升,欲獲得如集成多數個基本電子元件構成的高集成化半導體裝置的高性能化是困難的。 However, as a result of intensive research by the inventors of the present invention, if the size of the basic electronic component is a certain level or less, the crystal surface dependency in the telluride region is conspicuous, and the basic electronic component is increased in refinement, and the crystal plane dependency is obtained. With the improvement, the miniaturization is further improved, and it is known that the performance of basic electronic components is improved in the conventional method as described above or its extended method. In order to obtain high performance of a highly integrated semiconductor device including a plurality of basic electronic components, it is difficult to obtain high performance.

本發明欲解決的課題之一是在於提供一種即使尺寸更小仍可根據該尺寸設計,本質上具有元件性能的基本電子元件及集成該基本電子元件構成的集成化半導體裝置。 One of the problems to be solved by the present invention is to provide a basic electronic component which is designed according to the size even if the size is smaller, and which has essentially the component performance and an integrated semiconductor device which is integrated with the basic electronic component.

本發明另一課題是在於提供一種即使尺寸更小仍可根據該尺寸設計,本質上具有元件性能的基本電子元件及集成該基本電子元件構成的集成化半導體裝置之製造方法。 Another object of the present invention is to provide a basic electronic component which can be designed according to the size even if the size is smaller, and a method of manufacturing the integrated semiconductor device including the basic electronic component.

本發明又另一課題是在於提供一種具有以複數個不同的結晶面構成的源極區域、汲極區域的構造的基本電子元件及集成該基本電子元件所構成的集成化半導體裝置。 Still another object of the present invention is to provide a basic electronic component having a structure of a source region and a drain region composed of a plurality of different crystal faces, and an integrated semiconductor device including the basic electronic component.

該些課題是藉由在最適當的元件配置形成矽化物區域而達成。 These problems are achieved by forming a telluride region in the most appropriate component arrangement.

本發明之3維構造之MOS-FET之一方面,其特徵為:具備:具有不同的複數個結晶面的通道區域、面對該通道區域的複數個結晶面而設的閘極電極、設置在該閘極電極與前述通道區域之間的閘極絕緣膜、和設置成面對流經前述通道區域之電流的方向且隔著該通道區域的第一、第二矽化物區域(本發明之「第一3維構造之MOS- FET」)。 One aspect of the three-dimensional structure MOS-FET of the present invention is characterized in that: a channel region having a plurality of different crystal faces, a gate electrode provided to face a plurality of crystal faces of the channel region, and a gate electrode are provided a gate insulating film between the gate electrode and the channel region, and first and second germanium regions disposed in a direction facing a current flowing through the channel region and interposed between the channel regions ("the present invention" The first 3-dimensional structure of MOS- FET").

本發明之3維構造之MOS-FET的另一方面,是有關前述第一3維構造之MOS-FET,在前述矽化物區域和前述通道區域之間具有半導體雜質的高濃度區域為其特徵(本發明之「第二3維構造之MOS-FET」)。 Another aspect of the three-dimensional structure MOS-FET of the present invention is characterized in that the MOS-FET of the first three-dimensional structure is characterized by a high concentration region having semiconductor impurities between the germanide region and the channel region ( The "second three-dimensional structure MOS-FET" of the present invention).

以後,在本案中,若為特別限定,否則「半導體裝置」一詞,就是指上述基本電子元件及集成該基本電子元件構成的集成化半導體裝置之兩者或任一者的意思。 Hereinafter, in the present invention, the term "semiconductor device" means both or both of the basic electronic component and the integrated semiconductor device including the basic electronic component.

若藉由本發明,欲解決的課題之一是在於提供一種即使尺寸更小仍可根據該尺寸設計,本質上具有元件性能的基本電子元件及集成該基本電子元件構成的集成化半導體裝置。 According to the present invention, one of the problems to be solved is to provide a basic electronic component which is designed according to the size even if the size is smaller, and which has essentially the component performance and an integrated semiconductor device which is integrated with the basic electronic component.

本發明之其他特徵及優點,參照所附圖面根據以下的說明即可明白。再者,有關所附圖面中,在相同或同樣的構成,附上相同的參考符號。 Other features and advantages of the present invention will be apparent from the description and appended claims. In the drawings, the same or similar components are denoted by the same reference numerals.

100‧‧‧FET 100‧‧‧FET

101‧‧‧矽基板 101‧‧‧矽 substrate

102‧‧‧BOX層 102‧‧‧BOX layer

201‧‧‧SOI層區域 201‧‧‧SOI layer area

202‧‧‧源極區域 202‧‧‧ source area

203‧‧‧汲極區域 203‧‧‧Bungee area

204‧‧‧矽化物區域 204‧‧‧ Telluride area

205‧‧‧源極電極 205‧‧‧ source electrode

206‧‧‧汲極電極 206‧‧‧汲electrode

207‧‧‧閘極絕緣膜區域 207‧‧‧ gate insulating film area

208‧‧‧閘極電極層區域 208‧‧‧ gate electrode layer area

209‧‧‧側壁 209‧‧‧ side wall

400‧‧‧基體 400‧‧‧ base

401‧‧‧SOI層 401‧‧‧SOI layer

402‧‧‧SOI層區域a 402‧‧‧SOI layer area a

403‧‧‧閘極絕緣膜區域a 403‧‧‧ gate insulating film area a

404‧‧‧閘極電極層 404‧‧‧gate electrode layer

405‧‧‧源極區域層 405‧‧‧Source area layer

406‧‧‧汲極區域層 406‧‧ ‧ bungee zone

407‧‧‧上面壁 407‧‧‧Top wall

501‧‧‧源極區域層a 501‧‧‧Source area layer a

502‧‧‧汲極區域層a 502‧‧ ‧ bungee zone a

503‧‧‧矽化物形成用的金屬層 503‧‧‧Metal layer for telluride formation

504‧‧‧連接形成用的金屬層 504‧‧‧Metal layer for connection formation

所附圖面包含在說明書中,構成其一部分,表示本發明之實施形態,應用於與其記述一同來說明本發明的原理。 The accompanying drawings, which are incorporated in the claims

第1圖是表示本發明之3維構造之MOSFET100之典型例之一的模式立體圖。 Fig. 1 is a schematic perspective view showing one of typical examples of the three-dimensional structure MOSFET 100 of the present invention.

第2圖是以第1圖所示的線AA之模式剖面圖。 Fig. 2 is a schematic cross-sectional view taken along line AA shown in Fig. 1.

第3圖是以第2圖所示的線BB之模式剖面圖。 Fig. 3 is a schematic cross-sectional view taken along line BB shown in Fig. 2.

第4圖是表示本發明之3維構造之MOS-FET之一例的具體製法的工程例之前工程的第一模式工程概略說明圖。 Fig. 4 is a schematic view showing the first mode of the project before the construction example of the specific example of the MOS-FET of the three-dimensional structure of the present invention.

第5圖是表示本發明之3維構造之MOS-FET之一例的具體製法的工程例之後工程的第二模式工程概略說明圖。 Fig. 5 is a schematic view showing the second mode of the project after the engineering example of the specific example of the MOS-FET of the three-dimensional structure of the present invention.

以下,雖是具體說明本發明,但本發明並不限於該些例示。 Hereinafter, the present invention will be specifically described, but the present invention is not limited to the examples.

於第1、2、3圖表示本發明之3維構造之MOSFET100之典型例之一的。第1圖是其模式立體圖,第2圖是以第1圖所示的線AA之模式剖面圖,第3圖是以第2圖所以之線BB的模式剖面圖。 One of the typical examples of the three-dimensional structure MOSFET 100 of the present invention is shown in Figs. 1, 2, and 3. Fig. 1 is a perspective view of a mode, Fig. 2 is a schematic cross-sectional view taken along line AA shown in Fig. 1, and Fig. 3 is a schematic cross-sectional view taken along line BB of Fig. 2.

MOSFET100是在形成有通道區域(未圖表示)的SOI層區域201、該SOI層區域201的外側矽化物,分別設有源極區域(n+區域)202、汲極區域(n+區域)203。 The MOSFET 100 is an SOI layer region 201 in which a channel region (not shown) is formed, and an outer germanide of the SOI layer region 201, and a source region (n + region) 202 and a drain region (n + region) 203 are respectively provided. .

在前述SOI層區域201的上面分別設有閘極絕緣膜區域207、閘極電極層區域208。 A gate insulating film region 207 and a gate electrode layer region 208 are provided on the upper surface of the SOI layer region 201, respectively.

在前述源極區域202、前述汲極區域203的各個外側,分別設有矽化物區域204a、204b。 Telluride regions 204a and 204b are provided on the respective outer sides of the source region 202 and the drain region 203, respectively.

分別以電性直接接觸的狀態在前述矽化物區域204a設有源極電極205,在前述汲極區域204b設有汲極電極206。 A source electrode 205 is provided in the telluride region 204a in a state of direct electrical contact, and a drain electrode 206 is provided in the drain region 204b.

各個前述閘極絕緣膜區域207、前述閘極電極層區域208,不光是前述SOI層區域201的上面,也延長設置在沿著流經形成在前述SOI層區域201的通道區域內的電流流動方向的前述SOI層區域201的側面。亦即,各個前述閘極絕緣膜區域207、前述閘極電極層區域208,是設置成將前述SOI層區域201圍繞在沿著流經前述SOI層區域201內的電流流動方向的前述SOI層區域201的外面之中的三面。 Each of the gate insulating film region 207 and the gate electrode layer region 208 is not only the upper surface of the SOI layer region 201 but also extends in a flow direction of current flowing in a channel region formed in the SOI layer region 201. The side of the aforementioned SOI layer region 201. That is, each of the foregoing gate insulating film regions 207 and the gate electrode layer region 208 is disposed to surround the SOI layer region 201 in the SOI layer region along a current flowing direction flowing through the SOI layer region 201. Three of the outside of 201.

前述矽化物區域204a、204b,是分別在前述SOI層區域201的側面,以電性直接接觸的狀態設置在對流經前述SOI層區域201內的電流流動方向呈垂直或略垂直的兩個側面之中所對應的側面的全區或實質上的全區。 The telluride regions 204a and 204b are respectively disposed on the side faces of the SOI layer region 201 in a state of being electrically in direct contact with two sides perpendicular or slightly perpendicular to a flow direction of a current flowing through the SOI layer region 201. The entire area of the side corresponding to the middle or the entire area.

像這樣,就能藉由設置前述矽化物區域204a、204b,將形成在前述SOI層區域201的通道區域形成在前述SOI層區域201的約略或實質上的全區。 Thus, the channel region formed in the SOI layer region 201 can be formed in the approximate or substantially entire region of the SOI layer region 201 by providing the germanide regions 204a and 204b.

[實施例1] [Example 1]

第4圖是表示本發明之3維構造之MOS-FET之一例的具體製法的工程例之前段工程的第一模式工程概 略說明圖,第5圖是表示其後段工程的第二模式工程概略說明圖。於第4圖是說明直至形成矽化物區域204之前的工程,第5圖主要是說明形成矽化物區域204的工程。 Fig. 4 is a view showing the first mode of the previous stage of the engineering example of the specific example of the MOS-FET of the three-dimensional structure of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 5 is a schematic explanatory view showing a second mode of engineering of the latter stage. Fig. 4 is a view for explaining the process until the formation of the telluride region 204, and Fig. 5 is mainly for explaining the process of forming the germanide region 204.

先準備用來形成本發明的3維構造之MOS-FET的基體400,在其上形成SOI層401(第4圖之「工程(4a)」)。基體400是以矽基板101和設置在其上的BOX層102構成。 First, a base 400 for forming a three-dimensional structure MOS-FET of the present invention is prepared, and an SOI layer 401 is formed thereon ("Project (4a)" in Fig. 4). The base 400 is constituted by a ruthenium substrate 101 and a BOX layer 102 provided thereon.

其次,利用乾式蝕刻等來蝕刻SOI層401的去除部分,以形成SOI層區域a402(第4圖之「工程(4b)」)。 Next, the removed portion of the SOI layer 401 is etched by dry etching or the like to form an SOI layer region a402 ("Project (4b)" in Fig. 4).

然後,藉由利用濺鍍法的成膜、一般的圖案化,在前述SOI層區域a402上利用SiO2等的絕緣材料來形成閘極絕緣膜區域a403。在其上利用Poly-Si等來形成閘極電極層404(第4圖之「工程(4c)」)。 Then, the gate insulating film region a403 is formed on the SOI layer region a402 by an insulating material such as SiO 2 by film formation by sputtering or general patterning. The gate electrode layer 404 is formed thereon by using Poly-Si or the like ("Project (4c)" in Fig. 4).

然後,施行光阻劑塗佈、圖案曝光、蝕刻、洗淨等以進行圖案化,形成閘極絕緣膜區域207、閘極電極層區域208(第4圖之「工程(4d)」)。 Then, photoresist coating, pattern exposure, etching, cleaning, or the like is performed to perform patterning, thereby forming a gate insulating film region 207 and a gate electrode layer region 208 ("Project (4d)" in Fig. 4).

在SOI層區域a402的源極、汲極的形成區域,以高濃度離子注入硼(B)等的雜質,形成高濃度的n+區域的源極區域層405、汲極區域層406(第4圖之「工程(4e)」)。 In the source and drain formation regions of the SOI layer region a402, impurities such as boron (B) are ion-implanted at a high concentration to form a source region layer 405 and a drain region layer 406 of a high concentration n + region (fourth) Figure "Project (4e)").

其次,利用濺鍍法等堆積SiO2等之絕緣材料之後,利用乾式蝕刻法進行非等向性蝕刻,分別如圖所示的形成側壁209a、209b、上面壁407(第4圖之「工程 (4f)」)。 Next, an insulating material such as SiO 2 is deposited by a sputtering method or the like, and then anisotropic etching is performed by a dry etching method to form side walls 209a and 209b and an upper surface 407 as shown in the figure (Fig. 4 "Engineering ( 4f)").

然後,留下側壁209a、209b的寬度份,藉由蝕刻除去源極區域層405、汲極區域層406的不要部分,分別形成源極區域層a501、汲極區域層a502(第5圖之「工程(5g)」)。 Then, leaving the width portions of the sidewalls 209a and 209b, removing the unnecessary portions of the source region layer 405 and the drain region layer 406 by etching, respectively forming the source region layer a501 and the drain region layer a502 (Fig. 5) Engineering (5g)").

在第5圖的工程(5h)中,藉由蒸鍍法如圖所示的設置矽化物形成用的金屬層503。 In the work (5h) of Fig. 5, the metal layer 503 for forming a telluride is provided by a vapor deposition method as shown in the figure.

然後進行熱處理,在金屬層503和源極區域層a501以及汲極區域層a502的各界面區域,分別形成矽化物區域204a、204b(第5圖之「工程(5i)」)。同時分別形成源極區域202、汲極區域203。在第5圖之工程(5i)中,也可將源極區域層a501以及汲極區域層a502的全區域進行矽化物化。 Then, heat treatment is performed to form the telluride regions 204a and 204b in the respective interface regions of the metal layer 503 and the source region layer a501 and the drain region layer a502 ("engineering (5i)" in Fig. 5). At the same time, a source region 202 and a drain region 203 are formed, respectively. In the work (5i) of Fig. 5, the entire region of the source region layer a501 and the drain region layer a502 may be mashed.

其次,去除矽化物形成用的金屬層503之不要的部分(第5圖之「工程(5j)」)。 Next, the unnecessary portion of the metal layer 503 for forming a telluride is removed ("engineering (5j)" in Fig. 5).

然後,蒸鍍電性連接形成用的金屬,形成連接形成用的金屬層504,接著藉由藉由圖案化除去金屬層504之不要的部分,形成源極電極205、汲極電極206(第5圖之「工程(5k)、(5l)」)。同時也可以配合需要去除上面壁407。 Then, a metal for forming an electrical connection is formed by vapor deposition, a metal layer 504 for forming a connection is formed, and then a portion of the metal layer 504 is removed by patterning to form a source electrode 205 and a drain electrode 206 (5th) Figure "Project (5k), (5l)"). At the same time, the upper wall 407 can also be removed as needed.

於以下記載利用上述製法的主要工程的製法條件的概略。 The outline of the production conditions of the main projects using the above-described production method will be described below.

(1)側壁209的形成 (1) Formation of side wall 209

‧膜種:矽氮化膜 ‧ Film type: 矽 nitride film

‧成膜方法:濺鍍CVD ‧ film formation method: sputtering CVD

‧成膜條件 ‧ Film formation conditions

微波功率:2000W Microwave power: 2000W

壓力:13mTorr Pressure: 13mTorr

工作台(基體設置用)溫度:400℃ Workbench (for base setting) Temperature: 400 °C

氣體流量 Gas flow

Ar氣體:20sccm Ar gas: 20sccm

N2氣體:75sccm N 2 gas: 75sccm

H2氣體:15sccm H 2 gas: 15sccm

SiH4氣體:0.5sccm SiH 4 gas: 0.5sccm

(2)以側壁209作為掩膜,以乾式蝕刻去除n+區域層405、406的不要部分 (2) removing the unnecessary portions of the n + region layers 405, 406 by dry etching using the sidewall 209 as a mask

蝕刻後的側壁面為(100)面。 The side wall surface after etching is a (100) plane.

乾式蝕刻條件/Ar:160sccm、HBr:270sccm、0.67Pa(5mTorr)、RF功率:30W Dry etching conditions / Ar: 160 sccm, HBr: 270 sccm, 0.67 Pa (5 mTorr), RF power: 30 W

(3)矽化物形成用的金屬(Er)層503的成膜 (3) Film formation of metal (Er) layer 503 for telluride formation

Er濺鍍成膜條件/Ar:20sccm、0.67Pa(5mTorr)、側壁(100)面為5nm Er sputtering film formation conditions / Ar: 20sccm, 0.67Pa (5mTorr), side wall (100) surface is 5nm

(4)矽化物化 (4) Deuteration

燈退火條件/600℃、2min Lamp annealing conditions / 600 ° C, 2 min

(5)未反應金屬層屬域之去除 (5) Removal of unreacted metal layer domain

SPM(H2SO4:H2O2=4:1)30sec SPM (H 2 SO 4 : H 2 O 2 = 4:1) 30 sec

(6)連接形成用的金屬(鎢:W)層504的形成 (6) Formation of a metal (tungsten: W) layer 504 for connection formation

W濺鍍成膜條件/Ar:20sccm、1.33Pa(10mTorr)、膜厚:100nm W sputtering film formation conditions / Ar: 20sccm, 1.33Pa (10mTorr), film thickness: 100nm

(7)乾式蝕刻去除連接形成用的金屬(鎢:W)層504的不要部分 (7) Dry etching removes unnecessary portions of the metal (tungsten: W) layer 504 for connection formation

W的乾式蝕刻條件/Ar:100sccm、SF6:20sccm、1.33Pa(10mTorr)、RF功率:30W Dry etching conditions of W/Ar: 100 sccm, SF 6 : 20 sccm, 1.33 Pa (10 mTorr), RF power: 30 W

本發明並不限於上述實施形態,不脫離本發明之精神及範圍可做各種變更及變形。 The present invention is not limited to the embodiments described above, and various changes and modifications may be made without departing from the spirit and scope of the invention.

101‧‧‧矽基板 101‧‧‧矽 substrate

102‧‧‧BOX層 102‧‧‧BOX layer

201‧‧‧SOI層區域 201‧‧‧SOI layer area

202‧‧‧源極區域 202‧‧‧ source area

203‧‧‧汲極區域 203‧‧‧Bungee area

204a、204b‧‧‧矽化物區域 204a, 204b‧‧‧ Telluride area

205‧‧‧源極電極 205‧‧‧ source electrode

206‧‧‧汲極電極 206‧‧‧汲electrode

207‧‧‧閘極絕緣膜區域 207‧‧‧ gate insulating film area

208‧‧‧閘極電極層區域 208‧‧‧ gate electrode layer area

209a、209b‧‧‧側壁 209a, 209b‧‧‧ side wall

Claims (2)

一種3維構造之MOS-FET,其特徵為具備:具有不同之複數個結晶面的通道區域、面對該通道區域之複數個結晶面而設的閘極電極、設置在該閘極電極與前述通道區域之間的閘極絕緣膜、和設置成面對流經前述通道區域之電流的方向且隔著該通道區域的第一、第二矽化物區域。 A MOS-FET having a three-dimensional structure, comprising: a channel region having a plurality of different crystal faces; a gate electrode provided to face a plurality of crystal faces of the channel region; and the gate electrode and the foregoing a gate insulating film between the channel regions, and first and second germanide regions disposed to face the direction of current flowing through the channel region and interposed between the channel regions. 如申請專利範圍第1項所記載的3維構造之MOS-FET,其中,在前述矽化物區域與前述通道區域之間具有半導體雜質的高濃度區域。 A three-dimensional structure MOS-FET according to claim 1, wherein a high concentration region of semiconductor impurities is provided between the germanide region and the channel region.
TW102135317A 2013-09-30 2013-09-30 MOSFET in three-dimensional structure and manufacturing method thereof TW201513350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102135317A TW201513350A (en) 2013-09-30 2013-09-30 MOSFET in three-dimensional structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102135317A TW201513350A (en) 2013-09-30 2013-09-30 MOSFET in three-dimensional structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201513350A true TW201513350A (en) 2015-04-01

Family

ID=53437250

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102135317A TW201513350A (en) 2013-09-30 2013-09-30 MOSFET in three-dimensional structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201513350A (en)

Similar Documents

Publication Publication Date Title
TWI542007B (en) Device and method for manufacturing the same
TWI655776B (en) Semiconductor component and method of forming same
US8338889B2 (en) Semiconductor device and method of manufacturing semiconductor device
TWI485848B (en) Semiconductor device and method for fabricating the same
CN103177950B (en) Manufacture structure and the method for fin device
TWI518755B (en) An integrated circuit structure (ic) and method of making the same
JP5404671B2 (en) Semiconductor device
US8912056B2 (en) Dual epitaxial integration for FinFETS
JP5002891B2 (en) Manufacturing method of semiconductor device
JP2006294995A (en) Field-effect transistor and its manufacturing method
JP2010267814A (en) Semiconductor device, and method of manufacturing the same
TWI527096B (en) Growth epi as interconnection layer on mos structure
TWI771878B (en) Method for transistor manufacturing
TW201916122A (en) Method of forming semiconductor device
CN106611711A (en) Formation method of semiconductor device
CN107481933B (en) Semiconductor structure and manufacturing method thereof
CN113555285A (en) Method for forming semiconductor structure
TW201913751A (en) Semiconductor device and method of forming the same
CN106158638B (en) Fin formula field effect transistor and forming method thereof
US11757045B2 (en) Semiconductor device and method of manufacturing the same
JP5553256B2 (en) MOSFET having three-dimensional structure and manufacturing method thereof
TW201513350A (en) MOSFET in three-dimensional structure and manufacturing method thereof
WO2014009990A1 (en) Mosfet having 3d-structure and manufacturing method for same
CN109148299B (en) Semiconductor device and method for manufacturing the same
TWI838669B (en) Semiconductor device and method of forming thereof