TWI527096B - Growth epi as interconnection layer on mos structure - Google Patents

Growth epi as interconnection layer on mos structure Download PDF

Info

Publication number
TWI527096B
TWI527096B TW102113286A TW102113286A TWI527096B TW I527096 B TWI527096 B TW I527096B TW 102113286 A TW102113286 A TW 102113286A TW 102113286 A TW102113286 A TW 102113286A TW I527096 B TWI527096 B TW I527096B
Authority
TW
Taiwan
Prior art keywords
gate structure
dummy gate
layer
region
mos transistor
Prior art date
Application number
TW102113286A
Other languages
Chinese (zh)
Other versions
TW201413797A (en
Inventor
曹國豪
蒲賢勇
洪中山
Original Assignee
中芯國際集成電路製造(上海)有限公司
中芯國際集成電路製造(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中芯國際集成電路製造(上海)有限公司, 中芯國際集成電路製造(北京)有限公司 filed Critical 中芯國際集成電路製造(上海)有限公司
Publication of TW201413797A publication Critical patent/TW201413797A/en
Application granted granted Critical
Publication of TWI527096B publication Critical patent/TWI527096B/en

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Ceramic Engineering (AREA)

Description

MOS電晶體及其形成方法 MOS transistor and method of forming same

本發明涉及半導體技術,特別涉及一種占晶片面積較小的MOS電晶體及其形成方法。 The present invention relates to semiconductor technology, and more particularly to a MOS transistor having a small wafer area and a method of forming the same.

隨著積體電路製造技術的不斷發展,MOS電晶體的特徵尺寸也越來越小,根據按比例縮小法則,在縮小MOS電晶體的整體尺寸時,也同時縮小了源極、漏極、柵極、導電插塞等結構的尺寸。請參考圖1,為現有技術的MOS電晶體的結構示意圖,具體包括:半導體襯底10,位於所述半導體襯底10內的有源區11,位於所述半導體襯底10內的包圍所述有源區11的淺溝槽隔離結構12,位於所述有源區11表面的柵極結構20,位於所述柵極結構20兩側的有源區11內的源區13和漏區14,位於所述源區13表面的第一金屬矽化物30,位於所述漏區14表面的第二金屬矽化物40,位於所述第一金屬矽化物30表面的第一導電插塞35,位於所述第二金屬矽化物40表面的第二導電插塞45。由於所述第一導電插塞35位於源區13上,所述第二導電插塞45位於漏區14上,所述源 區13、漏區14的寬度S1至少要大於所述第一導電插塞35、第二導電插塞45的直徑。但由於半導體製造工藝的限制,目前工藝形成導電插塞的尺寸較大,使得現有的源區、漏區的寬度也較大,不利於降低MOS電晶體的整體尺寸。 With the continuous development of integrated circuit manufacturing technology, the feature size of MOS transistors is getting smaller and smaller. According to the scaling down rule, when the overall size of the MOS transistor is reduced, the source, drain, and gate are also reduced. Dimensions of structures such as poles and conductive plugs. Please refer to FIG. 1 , which is a schematic structural diagram of a prior art MOS transistor, specifically including: a semiconductor substrate 10 , an active region 11 located in the semiconductor substrate 10 , and the semiconductor substrate 10 surrounding the semiconductor substrate 10 a shallow trench isolation structure 12 of the active region 11, a gate structure 20 on the surface of the active region 11, a source region 13 and a drain region 14 in the active region 11 on both sides of the gate structure 20, a first metal halide 30 located on the surface of the source region 13, a second metal halide 40 on the surface of the drain region 14, and a first conductive plug 35 on the surface of the first metal halide 30. A second conductive plug 45 on the surface of the second metal telluride 40 is described. Since the first conductive plug 35 is located on the source region 13, the second conductive plug 45 is located on the drain region 14, the source The width S1 of the region 13 and the drain region 14 is at least larger than the diameters of the first conductive plug 35 and the second conductive plug 45. However, due to the limitation of the semiconductor manufacturing process, the size of the conductive plug formed by the current process is large, so that the width of the existing source and drain regions is also large, which is disadvantageous for reducing the overall size of the MOS transistor.

更多關於MOS電晶體及其形成方法,請參考公開號為US2009/0079013A1的美國專利文獻。 For more information on MOS transistors and their formation, please refer to US Patent Publication No. US 2009/0079013 A1.

本發明解決的問題是提供一種MOS電晶體及其形成方法,在淺溝槽隔離結構上的偽柵結構和柵極/源極之間形成互連層,形成占晶片面積較小的MOS電晶體。 The problem to be solved by the present invention is to provide a MOS transistor and a method for forming the same, in which an interconnection layer is formed between a dummy gate structure and a gate/source on a shallow trench isolation structure to form a MOS transistor having a small wafer area. .

為解決上述問題,本發明技術方案提供了一種MOS電晶體的形成方法,包括:提供半導體襯底,在所述半導體襯底內形成有源區和包圍所述有源區的淺溝槽隔離結構;在所述有源區表面形成柵極結構,在所述淺溝槽隔離結構表面形成偽柵結構;在所述柵極結構兩側的有源區內形成源區和漏區;在所述源區表面、漏區表面、偽柵結構的至少部分頂部表面形成互連層,其中,所述源區表面的互連層和與源區相鄰的偽柵結構頂部表面的互連層相連接,形成第一互連層;所述漏區表面的互連層和與漏區相鄰的偽柵結構頂部表面的互連層相連接,形成第二互連層。 In order to solve the above problems, the technical solution of the present invention provides a method for forming a MOS transistor, comprising: providing a semiconductor substrate, forming an active region and a shallow trench isolation structure surrounding the active region in the semiconductor substrate Forming a gate structure on a surface of the active region, forming a dummy gate structure on a surface of the shallow trench isolation structure; forming a source region and a drain region in an active region on both sides of the gate structure; The source region surface, the drain region, and at least a portion of the top surface of the dummy gate structure form an interconnect layer, wherein the interconnect layer of the source region surface is connected to the interconnect layer of the dummy gate top surface adjacent to the source region Forming a first interconnect layer; the interconnect layer of the drain region surface and the interconnect layer of the dummy gate top surface adjacent to the drain region are connected to form a second interconnect layer.

可選的,所述互連層為金屬層、摻雜有雜質離子的單晶矽層、摻雜有雜質離子的鍺矽層或摻雜有雜質離子的碳 化矽層。 Optionally, the interconnect layer is a metal layer, a single crystal germanium layer doped with impurity ions, a germanium layer doped with impurity ions, or a carbon doped with impurity ions. 矽 layer.

可選的,還包括:在所述柵極結構側壁形成第一側牆,在所述偽柵結構側壁形成第二側牆。 Optionally, the method further includes: forming a first sidewall spacer on a sidewall of the gate structure, and forming a second sidewall spacer on a sidewall of the dummy gate structure.

可選的,在形成互連層前,去除所述偽柵結構兩側的第二側牆。 Optionally, the second sidewall spacers on both sides of the dummy gate structure are removed before the interconnection layer is formed.

可選的,在形成互連層前,去除所述偽柵結構靠近源區或漏區一側的第二側牆。 Optionally, before the forming the interconnect layer, the second sidewall spacer of the dummy gate structure close to a side of the source region or the drain region is removed.

可選的,當所述互連層為摻雜有雜質離子的單晶矽層、摻雜有雜質離子的鍺矽層或摻雜有雜質離子的碳化矽層時,利用外延工藝在所述源區表面、漏區表面、偽柵結構靠近源區或漏區一側的側壁表面和至少部分頂部表面形成互連層。 Optionally, when the interconnect layer is a single crystal germanium layer doped with impurity ions, a germanium layer doped with impurity ions, or a tantalum carbide layer doped with impurity ions, the source is used in the source The surface of the region, the surface of the drain region, the sidewall surface of the dummy gate structure adjacent to one side of the source region or the drain region, and at least a portion of the top surface form an interconnect layer.

可選的,所述互連層為摻雜有雜質離子的單晶矽層、摻雜有雜質離子的鍺矽層或摻雜有雜質離子的碳化矽層時,利用外延工藝在所述源區表面、漏區表面、偽柵結構的側壁表面和頂部表面形成互連層。 Optionally, when the interconnect layer is a single crystal germanium layer doped with impurity ions, a germanium layer doped with impurity ions, or a tantalum carbide layer doped with impurity ions, an epitaxial process is used in the source region. The surface, the drain surface, the sidewall surface of the dummy gate structure, and the top surface form an interconnect layer.

可選的,所述偽柵結構完全位於淺溝槽隔離結構表面。 Optionally, the dummy gate structure is completely located on the surface of the shallow trench isolation structure.

可選的,當所述偽柵結構靠近源區或漏區一側的側壁與對應的淺溝槽隔離結構邊緣具有一定的間距時,所述外延工藝形成的互連層的厚度大於偽柵結構靠近源區或漏區一側的側壁與對應的淺溝槽隔離結構邊緣兩者之間的間距。 Optionally, when the sidewall of the dummy gate structure near the source region or the drain region has a certain spacing from the edge of the corresponding shallow trench isolation structure, the thickness of the interconnect layer formed by the epitaxial process is greater than the dummy gate structure. The spacing between the sidewalls on one side of the source or drain region and the edge of the corresponding shallow trench isolation structure.

可選的,所述位於淺溝槽隔離結構表面的偽柵結構作 為互連結構與其他MOS電晶體相連接。 Optionally, the dummy gate structure on the surface of the shallow trench isolation structure is Connect the interconnect structure to other MOS transistors.

可選的,在所述偽柵結構上形成導電插塞,使得源區和漏區通過互連層、導電插塞與外電路相連接。 Optionally, a conductive plug is formed on the dummy gate structure, so that the source region and the drain region are connected to the external circuit through the interconnect layer and the conductive plug.

可選的,所述偽柵結構部分位於淺溝槽隔離結構表面、部分位於對應的有源區表面。 Optionally, the dummy gate structure portion is located on a surface of the shallow trench isolation structure and partially on a surface of the corresponding active region.

可選的,所述柵極結構和偽柵結構在同一形成工藝中同步形成。 Optionally, the gate structure and the dummy gate structure are formed synchronously in the same forming process.

可選的,所述第一側牆和第二側牆在同一形成工藝中同步形成。 Optionally, the first sidewall spacer and the second sidewall spacer are synchronously formed in the same forming process.

本發明技術方案還提供了一種MOS電晶體,包括:半導體襯底,位於所述半導體襯底內的有源區,位於所述半導體襯底內的包圍所述有源區的淺溝槽隔離結構;位於所述有源區表面的柵極結構,位於所述淺溝槽隔離結構表面的偽柵結構;位於所述柵極結構兩側的有源區內的源區和漏區;位於所述源區表面和與源區相鄰的偽柵結構頂部表面的第一互連層,位於所述漏區表面和與漏區相鄰的偽柵結構頂部表面的第二互連層。 The technical solution of the present invention further provides a MOS transistor, comprising: a semiconductor substrate, an active region located in the semiconductor substrate, and a shallow trench isolation structure surrounding the active region in the semiconductor substrate a gate structure on a surface of the active region, a dummy gate structure on a surface of the shallow trench isolation structure; source and drain regions in an active region on both sides of the gate structure; A first interconnect layer of the source region surface and a top surface of the dummy gate structure adjacent to the source region, a second interconnect layer on the drain region surface and a top surface of the dummy gate structure adjacent to the drain region.

可選的,所述互連層為金屬層、摻雜有雜質離子的單晶矽層、摻雜有雜質離子的鍺矽層或摻雜有雜質離子的碳化矽層。 Optionally, the interconnect layer is a metal layer, a single crystal germanium layer doped with impurity ions, a germanium layer doped with impurity ions, or a tantalum carbide layer doped with impurity ions.

可選的,還包括,位於所述偽柵結構遠離源區或漏區一側的第二側牆,在所述源區表面、與源區相鄰的偽柵結構的頂部表面和偽柵結構靠近源區的側壁表面形成有第一互連層。 Optionally, the method further includes: a second sidewall spacer located on a side of the dummy gate structure away from the source region or the drain region, a surface of the source region, a top surface of the dummy gate structure adjacent to the source region, and a dummy gate structure A first interconnect layer is formed on a sidewall surface adjacent to the source region.

可選的,在所述源區表面、與源區相鄰的偽柵結構的頂部和側壁表面形成有第一互連層。 Optionally, a first interconnect layer is formed on a surface of the source region, a top surface of the dummy gate structure adjacent to the source region, and a sidewall surface.

可選的,所述偽柵結構完全位於淺溝槽隔離結構表面。 Optionally, the dummy gate structure is completely located on the surface of the shallow trench isolation structure.

可選的,當所述偽柵結構靠近源區或漏區一側的側壁與對應的淺溝槽隔離結構邊緣具有一定的間距時,利用外延工藝形成的互連層的厚度大於偽柵結構靠近源區或漏區一側的側壁與對應的淺溝槽隔離結構邊緣兩者之間的間距。 Optionally, when the sidewall of the dummy gate structure near the source region or the drain region has a certain spacing from the edge of the corresponding shallow trench isolation structure, the thickness of the interconnect layer formed by the epitaxial process is greater than the dummy gate structure is closer. The spacing between the sidewalls on one side of the source or drain region and the edge of the corresponding shallow trench isolation structure.

可選的,所述位於淺溝槽隔離結構表面的偽柵結構作為互連結構與其他MOS電晶體相連接。 Optionally, the dummy gate structure on the surface of the shallow trench isolation structure is connected as an interconnect structure to other MOS transistors.

可選的,位於所述偽柵結構上的導電插塞,使得源區和漏區通過互連層、導電插塞與外電路相連接。 Optionally, the conductive plug on the dummy gate structure is such that the source and drain regions are connected to the external circuit through the interconnect layer and the conductive plug.

可選的,所述偽柵結構部分位於淺溝槽隔離結構表面、部分位於對應的有源區表面。 Optionally, the dummy gate structure portion is located on a surface of the shallow trench isolation structure and partially on a surface of the corresponding active region.

與現有技術相比,本發明具有以下優點:本發明實施例在淺溝槽隔離結構表面形成偽柵結構,在源區表面、漏區表面、偽柵結構的至少部分頂部表面形成互連層,使得所述源區、漏區與偽柵結構電學連接。由於導電插塞不直接形成在所述源區、漏區的表面,使得源區、漏區暴露出的寬度可以較窄,而所述偽柵結構位於淺溝槽隔離結構表面,不佔據額外的晶片面積,使得最終形成MOS電晶體所占的晶片面積較小,有利於提高晶片集成度。 Compared with the prior art, the present invention has the following advantages: the embodiment of the present invention forms a dummy gate structure on the surface of the shallow trench isolation structure, and forms an interconnection layer on the surface of the source region, the surface of the drain region, and at least a portion of the top surface of the dummy gate structure. The source region and the drain region are electrically connected to the dummy gate structure. Since the conductive plug is not directly formed on the surface of the source region and the drain region, the width of the source region and the drain region may be narrow, and the dummy gate structure is located on the surface of the shallow trench isolation structure, and does not occupy additional The area of the wafer is such that the area of the wafer which is finally formed by the MOS transistor is small, which is advantageous for improving the degree of wafer integration.

進一步的,當所述偽柵結構完全位於淺溝槽隔離結構表面時,所述位於淺溝槽隔離結構表面的偽柵結構作為互連結構與其他MOS電晶體相連接,相當於增加了一層互連層,有利於提高佈線密度和佈線選擇性。 Further, when the dummy gate structure is completely located on the surface of the shallow trench isolation structure, the dummy gate structure on the surface of the shallow trench isolation structure is connected as an interconnect structure to other MOS transistors, which is equivalent to adding a layer of mutual Layering helps to improve wiring density and wiring selectivity.

10‧‧‧半導體襯底 10‧‧‧Semiconductor substrate

11‧‧‧有源區 11‧‧‧Active area

12‧‧‧淺溝槽隔離結構 12‧‧‧Shallow trench isolation structure

13‧‧‧源區 13‧‧‧ source area

14‧‧‧漏區 14‧‧‧Drained area

20‧‧‧柵極結構 20‧‧‧Gate structure

30‧‧‧第一金屬矽化物 30‧‧‧First metal telluride

35‧‧‧第一導電插塞 35‧‧‧First conductive plug

40‧‧‧第二金屬矽化物 40‧‧‧Second metal telluride

45‧‧‧第二導電插塞 45‧‧‧Second conductive plug

100‧‧‧半導體襯底 100‧‧‧Semiconductor substrate

101‧‧‧有源區 101‧‧‧Active area

102‧‧‧淺溝槽隔離結構 102‧‧‧Shallow trench isolation structure

110‧‧‧柵極結構 110‧‧‧Gate structure

111‧‧‧第一柵介質層 111‧‧‧First gate dielectric layer

112‧‧‧第一柵電極 112‧‧‧First gate electrode

113‧‧‧第一硬掩膜層 113‧‧‧First hard mask layer

115‧‧‧第一側牆 115‧‧‧First side wall

120‧‧‧偽柵結構 120‧‧‧pseudo gate structure

121‧‧‧第二柵介質層 121‧‧‧Second gate dielectric layer

122‧‧‧第二柵電極 122‧‧‧second gate electrode

123‧‧‧第二硬掩膜層 123‧‧‧Second hard mask layer

125‧‧‧第二側牆 125‧‧‧Second side wall

130‧‧‧源區 130‧‧‧ source area

140‧‧‧漏區 140‧‧‧Drained area

150‧‧‧掩膜層 150‧‧‧ mask layer

160‧‧‧第一互連層 160‧‧‧First interconnect layer

170‧‧‧第二互連層 170‧‧‧Second interconnect layer

180‧‧‧金屬矽化物層 180‧‧‧metal telluride layer

190‧‧‧層間介質層 190‧‧‧Interlayer dielectric layer

195‧‧‧導電插塞 195‧‧‧conductive plug

S1‧‧‧漏區14的寬度 S1‧‧‧ Width of the drain zone 14

圖1是現有技術的MOS電晶體的結構示意圖;圖2~圖10為本發明實施例的MOS電晶體的形成過程的剖面結構示意圖。 1 is a schematic structural view of a prior art MOS transistor; and FIGS. 2 to 10 are schematic cross-sectional structural views showing a process of forming a MOS transistor according to an embodiment of the present invention.

在現有技術中,通常在源區和漏區表面形成導電插塞,利用所述導電插塞將源區和漏區與外電路相連接。但由於當前半導體製造工藝的限制,目前工藝形成導電插塞的尺寸較大,使得現有的源區、漏區的寬度也較大,不利於降低MOS電晶體的整體尺寸。 In the prior art, a conductive plug is usually formed on the surface of the source and drain regions, and the source and drain regions are connected to the external circuit by the conductive plug. However, due to the limitation of the current semiconductor manufacturing process, the current size of the conductive plug formed by the process is large, so that the width of the existing source and drain regions is also large, which is disadvantageous for reducing the overall size of the MOS transistor.

因此,本發明提出了一種MOS電晶體及其形成方法,在所述靠近源區或漏區的淺溝槽隔離結構表面形成偽柵結構,在所述源區表面和與源區相鄰的偽柵結構頂部表面形成第一互連層,在所述漏區表面和與漏區相鄰的偽柵結構頂部表面形成第二互連層,後續在所述偽柵結構上形成導電插塞,或者所述偽柵結構作為連接不同MOS電晶體的互連結構。由於現有工藝中淺溝槽隔離結構表面不形成半導體結構,會浪費晶片的面積,本發明實施例在所述淺 溝槽隔離結構表面形成偽柵結構,利用第一互連層和第二互連層使源區、漏區與偽柵結構電學連接,並利用偽柵結構將MOS電晶體的源區和漏區與外電路相連接。由於不需要直接在所述源區或漏區表面形成導電插塞,所述源區和漏區的寬度可以變小,有利於降低MOS電晶體所占的晶片面積。 Accordingly, the present invention provides a MOS transistor and a method of forming the same, in which a dummy gate structure is formed on a surface of a shallow trench isolation structure close to a source region or a drain region, and a surface adjacent to the source region and a dummy adjacent to the source region are formed. Forming a first interconnect layer on a top surface of the gate structure, forming a second interconnect layer on the surface of the drain region and a top surface of the dummy gate structure adjacent to the drain region, and subsequently forming a conductive plug on the dummy gate structure, or The dummy gate structure acts as an interconnect structure connecting different MOS transistors. Since the surface of the shallow trench isolation structure in the prior art does not form a semiconductor structure, the area of the wafer is wasted, and the embodiment of the present invention is shallow. The surface of the trench isolation structure forms a dummy gate structure, and the source region and the drain region are electrically connected to the dummy gate structure by using the first interconnect layer and the second interconnect layer, and the source region and the drain region of the MOS transistor are electrically connected by using the dummy gate structure. Connected to an external circuit. Since it is not necessary to form a conductive plug directly on the surface of the source or drain region, the width of the source region and the drain region can be reduced, which is advantageous for reducing the wafer area occupied by the MOS transistor.

為使本發明的上述目的、特徵和優點能夠更為明顯易懂,下面結合附圖對本發明的具體實施方式做詳細的說明。 The above described objects, features and advantages of the present invention will become more apparent from the aspects of the invention.

在以下描述中闡述了具體細節以便於充分理解本發明。但是本發明能夠以多種不同於在此描述的其他方式來實施,本領域技術人員可以在不違背本發明內涵的情況下做類似推廣。因此本發明不受下面公開的具體實施的限制。 Specific details are set forth in the following description in order to provide a thorough understanding of the invention. However, the present invention can be implemented in various other ways than those described herein, and those skilled in the art can make similar promotion without departing from the scope of the present invention. The invention is therefore not limited by the specific embodiments disclosed below.

本發明實施例首先提供了一種MOS電晶體的形成方法,請參考圖2至圖10,為本發明實施例的MOS電晶體的形成過程的剖面結構示意圖。 The embodiment of the present invention firstly provides a method for forming a MOS transistor. Referring to FIG. 2 to FIG. 10, FIG. 2 is a schematic cross-sectional structural view showing a process of forming a MOS transistor according to an embodiment of the present invention.

具體的,請參考圖2,提供半導體襯底100,在所述半導體襯底100內形成有源區101和包圍所述有源區101的淺溝槽隔離結構102。 Specifically, referring to FIG. 2, a semiconductor substrate 100 is provided in which an active region 101 and a shallow trench isolation structure 102 surrounding the active region 101 are formed.

所述半導體襯底100包括矽襯底、鍺襯底、鍺矽襯底、碳化矽襯底、絕緣體上矽襯底、絕緣體上鍺襯底其中的一種。在本實施例中,所述半導體襯底100為矽襯底。 The semiconductor substrate 100 includes one of a germanium substrate, a germanium substrate, a germanium substrate, a tantalum carbide substrate, an insulator upper germanium substrate, and an insulator upper germanium substrate. In the present embodiment, the semiconductor substrate 100 is a germanium substrate.

在本實施例中,先利用離子注入工藝在有源區101內形成阱區,再對阱區週邊的半導體襯底100進行刻蝕,形 成包圍所述有源區101的淺溝槽,在所述淺溝槽中填充滿氧化矽,形成淺溝槽隔離結構102。在其他實施例中,也可以直接利用非本征的半導體襯底作為有源區。由於形成有源區、淺溝槽隔離結構為本領域技術人員的公知技術,在此不作詳述。 In this embodiment, a well region is first formed in the active region 101 by an ion implantation process, and the semiconductor substrate 100 around the well region is etched. A shallow trench surrounding the active region 101 is filled, and the shallow trench is filled with full yttrium oxide to form a shallow trench isolation structure 102. In other embodiments, an extrinsic semiconductor substrate can also be utilized directly as the active region. Since the active region and the shallow trench isolation structure are well known to those skilled in the art, they will not be described in detail herein.

請參考圖3,在所述有源區101表面形成柵極結構110,在所述淺溝槽隔離結構102表面形成偽柵結構120,所述偽柵結構120完全位於所述淺溝槽隔離結構102表面。 Referring to FIG. 3, a gate structure 110 is formed on the surface of the active region 101, and a dummy gate structure 120 is formed on the surface of the shallow trench isolation structure 102. The dummy gate structure 120 is completely located in the shallow trench isolation structure. 102 surface.

形成所述柵極結構110和偽柵結構120的具體工藝包括:在所述半導體襯底100表面形成柵介質材料層(未圖示),在所述柵介質材料層表面形成多晶矽材料層(未圖示),在所述多晶矽材料層表面形成硬掩膜材料層(未圖示),在所述硬掩膜材料層表面形成光刻膠層(未圖示),對所述光刻膠層進行曝光顯影,形成光刻膠圖形,以所述光刻膠圖形為掩膜,對所述硬掩膜材料層、多晶矽材料層、柵介質材料層進行刻蝕,形成位於所述有源區101表面的柵極結構110和位於所述淺溝槽隔離結構102表面的偽柵結構120。所述柵極結構110包括第一柵介質層111和位於第一柵介質層111表面的第一柵電極112,所述柵極結構110頂部表面還具有第一硬掩膜層113。所述偽柵結構120包括第二柵介質層121和位於第二柵介質層121表面的第二柵電極122,所述偽柵結構120頂部表面還具有第二硬掩膜層123。 A specific process of forming the gate structure 110 and the dummy gate structure 120 includes: forming a gate dielectric material layer (not shown) on the surface of the semiconductor substrate 100, and forming a polysilicon material layer on the surface of the gate dielectric material layer (not a hard mask material layer (not shown) is formed on the surface of the polysilicon material layer, and a photoresist layer (not shown) is formed on the surface of the hard mask material layer for the photoresist layer And performing exposure development to form a photoresist pattern, and etching the hard mask material layer, the polysilicon material layer, and the gate dielectric material layer to form the active region 101 by using the photoresist pattern as a mask. A gate structure 110 of the surface and a dummy gate structure 120 on the surface of the shallow trench isolation structure 102. The gate structure 110 includes a first gate dielectric layer 111 and a first gate electrode 112 on a surface of the first gate dielectric layer 111. The top surface of the gate structure 110 further has a first hard mask layer 113. The dummy gate structure 120 includes a second gate dielectric layer 121 and a second gate electrode 122 on a surface of the second gate dielectric layer 121. The top surface of the dummy gate structure 120 further has a second hard mask layer 123.

在本實施例中,所述柵極結構110和偽柵結構120採用同一沉積、刻蝕工藝形成,所述柵極結構110和偽柵結構120的材料相同,節省工藝步驟,降低了工藝成本。在其他實施例中,所述柵極結構和偽柵結構也可分開形成。 In the present embodiment, the gate structure 110 and the dummy gate structure 120 are formed by the same deposition and etching process. The gate structure 110 and the dummy gate structure 120 have the same material, which saves process steps and reduces process cost. In other embodiments, the gate structure and the dummy gate structure may also be formed separately.

在其他實施例中,也可以不形成第一硬掩膜層和第二硬掩膜層,利用圖形化的光刻膠層對多晶矽材料層、柵介質材料層進行刻蝕,形成柵極結構和偽柵結構。 In other embodiments, the first hard mask layer and the second hard mask layer may not be formed, and the polysilicon material layer and the gate dielectric material layer are etched by using a patterned photoresist layer to form a gate structure and Pseudo gate structure.

在本實施例中,所述偽柵結構120完全位於所述淺溝槽隔離結構102表面,且所述偽柵結構120的側壁與淺溝槽隔離結構102的邊緣之間有一定的間距,使得所述偽柵結構120與有源區不直接接觸。當後續利用所述淺溝槽隔離結構102表面的偽柵結構120作為互連結構,所述偽柵結構120與有源區不直接接觸,避免偽柵結構120的第二柵電極122與有源區101之間可能由於第二柵介質層121發生擊穿而造成短路。 In this embodiment, the dummy gate structure 120 is completely located on the surface of the shallow trench isolation structure 102, and a certain distance between the sidewall of the dummy gate structure 120 and the edge of the shallow trench isolation structure 102 is The dummy gate structure 120 is not in direct contact with the active region. When the dummy gate structure 120 of the surface of the shallow trench isolation structure 102 is subsequently utilized as an interconnect structure, the dummy gate structure 120 is not in direct contact with the active region, and the second gate electrode 122 of the dummy gate structure 120 is prevented from being active. A short circuit may occur between the regions 101 due to breakdown of the second gate dielectric layer 121.

在其他實施例中,所述偽柵結構也可以位於所述淺溝槽隔離結構表面,且靠近柵極結構一側的偽柵結構側壁與淺溝槽隔離結構的邊緣對齊。 In other embodiments, the dummy gate structure may also be located on the surface of the shallow trench isolation structure, and the dummy gate structure sidewalls on one side of the gate structure are aligned with the edges of the shallow trench isolation structure.

在其他實施例中,所述偽柵結構也可以部分位於所述淺溝槽隔離結構表面,部分位於靠近淺溝槽隔離結構的源區或漏區表面。由於目前工藝形成導電插塞的尺寸較大,當後續在所述偽柵結構上形成導電插塞時,所需的偽柵結構的寬度也較大,所需的淺溝槽隔離結構的寬度也較大。為了降低淺溝槽隔離結構的寬度,進而降低MOS電晶體 的整體尺寸,將所述偽柵結構橫跨在所述淺溝槽隔離結構和相鄰的源區或漏區表面,可以使得偽柵結構覆蓋的淺溝槽隔離結構的寬度變小,使得所需的淺溝槽隔離結構的整體寬度也較小,從而降低MOS電晶體的整體尺寸。 In other embodiments, the dummy gate structure may also be partially located on the surface of the shallow trench isolation structure, and partially located near the source or drain surface of the shallow trench isolation structure. Since the size of the conductive plug formed by the current process is large, when the conductive plug is subsequently formed on the dummy gate structure, the width of the dummy gate structure required is also large, and the width of the shallow trench isolation structure required is also Larger. In order to reduce the width of the shallow trench isolation structure, thereby reducing the MOS transistor The overall size of the dummy gate structure spanning the shallow trench isolation structure and the adjacent source or drain surface surface, so that the width of the shallow trench isolation structure covered by the dummy gate structure is reduced, so that The overall width of the shallow trench isolation structure required is also small, thereby reducing the overall size of the MOS transistor.

在本實施例中,所述偽柵結構120只位於平行於柵極結構110的淺溝槽隔離結構102表面。當所述偽柵結構作為互連結構用於將不同的MOS電晶體相連接時,所述偽柵結構還可以形成在垂直於柵極結構的淺溝槽隔離結構表面,且所述偽柵結構與柵極結構不相連。 In the present embodiment, the dummy gate structure 120 is only located on the surface of the shallow trench isolation structure 102 parallel to the gate structure 110. When the dummy gate structure is used as an interconnect structure for connecting different MOS transistors, the dummy gate structure may also be formed on a surface of a shallow trench isolation structure perpendicular to the gate structure, and the dummy gate structure Not connected to the gate structure.

請參考圖4,在所述柵極結構110側壁形成第一側牆115,在所述偽柵結構120側壁形成第二側牆125,所述第一側牆115和第二側牆125之間暴露出部分有源區101。 Referring to FIG. 4, a first sidewall spacer 115 is formed on a sidewall of the gate structure 110, and a second sidewall spacer 125 is formed on a sidewall of the dummy gate structure 120. The first sidewall spacer 115 and the second sidewall spacer 125 are formed. A portion of the active region 101 is exposed.

形成所述第一側牆115和第二側牆125的具體工藝為:在所述半導體襯底100、淺溝槽隔離結構102、柵極結構110、偽柵結構120表面形成介質層(未圖示),對所述介質層進行回刻蝕,直到暴露出所述半導體襯底100表面、淺溝槽隔離結構102表面、柵極結構110頂部的第一硬掩膜層113表面和偽柵結構120頂部的第二硬掩膜層123表面,在所述柵極結構110側壁形成第一側牆115,在所述偽柵結構120側壁形成第二側牆125。所述介質層為氧化矽層、氮化矽層、氮氧化矽層其中的一種或多層的堆疊結構。所述介質層的材料與所述第一硬掩膜層、第二硬掩膜層的材料不同,使得刻蝕所述介質層時利用所述第 一硬掩膜層、第二硬掩膜層作為刻蝕停止層,避免對柵極結構造成損傷。由於後續只需要將源區、漏區通過互連層與偽柵結構相連接,所述第一側牆115和第二側牆125之間暴露出部分有源區101的寬度、或者所述第一側牆115和最靠近的淺溝槽隔離結構102邊緣之間的有源區101的寬度不需要太大,可以遠遠小於所述導電插塞的直徑,即遠遠小於現有的源區或漏區的寬度,從而有利於降低MOS電晶體的整體尺寸。 The specific process of forming the first sidewall spacer 115 and the second sidewall spacer 125 is: forming a dielectric layer on the surface of the semiconductor substrate 100, the shallow trench isolation structure 102, the gate structure 110, and the dummy gate structure 120 (not shown) The dielectric layer is etched back until the surface of the semiconductor substrate 100, the surface of the shallow trench isolation structure 102, the surface of the first hard mask layer 113 at the top of the gate structure 110, and the dummy gate structure are exposed. A surface of the second hard mask layer 123 at the top of the 120, a first sidewall spacer 115 is formed on the sidewall of the gate structure 110, and a second sidewall spacer 125 is formed on the sidewall of the dummy gate structure 120. The dielectric layer is a stacked structure of one or more layers of a ruthenium oxide layer, a tantalum nitride layer, and a ruthenium oxynitride layer. The material of the dielectric layer is different from the material of the first hard mask layer and the second hard mask layer, so that the first layer is used when etching the dielectric layer A hard mask layer and a second hard mask layer serve as an etch stop layer to avoid damage to the gate structure. Since the source region and the drain region need to be connected to the dummy gate structure through the interconnect layer, the width of the portion of the active region 101 is exposed between the first sidewall spacer 115 and the second sidewall spacer 125, or the first The width of the active region 101 between the side wall 115 and the edge of the closest shallow trench isolation structure 102 need not be too large, and may be much smaller than the diameter of the conductive plug, ie, much smaller than the existing source region or The width of the drain region is beneficial to reduce the overall size of the MOS transistor.

請參考圖5,在所述柵極結構110兩側暴露出的有源區101內形成源區130和漏區140。 Referring to FIG. 5, a source region 130 and a drain region 140 are formed in the active region 101 exposed on both sides of the gate structure 110.

在本實施例中,以所述柵極結構110、偽柵結構120、第一側牆115、第二側牆125為掩膜,對所述第一側牆115、第二側牆125之間暴露出的有源區101進行P型或N型離子注入,並進行退火處理,形成源區130和漏區140。 In the embodiment, the gate structure 110, the dummy gate structure 120, the first sidewall spacer 115, and the second sidewall spacer 125 are used as a mask, and between the first sidewall spacer 115 and the second sidewall spacer 125 The exposed active region 101 is subjected to P-type or N-type ion implantation, and is annealed to form a source region 130 and a drain region 140.

在其他實施例中,也可以在形成所述第一側牆、第二側牆之前,在所述柵極結構兩側的有源區內進行輕摻雜離子注入,在形成所述第一側牆、第二側牆後,再在所述第一側牆、第二側牆兩側暴露出的有源區內進行重摻雜離子注入,形成源區和漏區,所述輕摻雜離子注入工藝可以降低MOS電晶體的熱載流子注入效應和短溝道效應。 In other embodiments, lightly doping ion implantation may be performed in an active region on both sides of the gate structure before forming the first sidewall spacer and the second spacer sidewall, in forming the first side. After the wall and the second sidewall, the heavily doped ion implantation is performed in the active regions exposed on both sides of the first sidewall and the second sidewall to form a source region and a drain region, and the lightly doped ions The implantation process can reduce the hot carrier injection effect and short channel effect of the MOS transistor.

在其他實施例中,還可以以所述柵極結構、偽柵結構、第一側牆、第二側牆為掩膜,對所述第一側牆、第二側牆之間暴露出的有源區進行刻蝕形成溝槽,並在溝槽內利 用外延工藝填充滿鍺矽材料或碳化矽材料,形成源區和漏區。所述鍺矽材料或碳化矽材料在外延工藝中原位摻雜有P型或N型雜質離子。在其他實施例中,也可以形成所述鍺矽材料或碳化矽材料後,利用離子注入工藝在所述鍺矽材料或碳化矽材料中摻雜雜質離子。利用所述鍺矽材料或碳化矽材料形成源區和漏區會對MOS電晶體溝道區的晶格產生應力作用,有利於提高溝道區載流子的遷移速率,提高MOS電晶體的電學性能。 In other embodiments, the gate structure, the dummy gate structure, the first sidewall spacer, and the second sidewall spacer may be used as a mask, and the exposed between the first sidewall spacer and the second sidewall spacer may be The source region is etched to form a trench and is in the trench The filled material or the tantalum carbide material is filled by an epitaxial process to form source and drain regions. The tantalum material or tantalum carbide material is doped in situ with P-type or N-type impurity ions in an epitaxial process. In other embodiments, after the tantalum material or the tantalum carbide material may be formed, the germanium material or the tantalum carbide material is doped with impurity ions by an ion implantation process. Forming the source region and the drain region by using the germanium material or the tantalum carbide material may stress the lattice of the MOS transistor channel region, thereby improving the mobility of carriers in the channel region and improving the electrical conductivity of the MOS transistor. performance.

請參考圖6,在所述半導體襯底100、柵極結構110、偽柵結構120、第一側牆115表面形成掩膜層150,所述掩膜層150暴露出源區130表面、漏區140表面、偽柵結構120的部分頂部表面和偽柵結構120靠近柵極結構110一側的第二側牆125(請參考圖5),以所述掩膜層150為掩膜,去除所述偽柵結構120靠近柵極結構110一側的第二側牆125和部分暴露出的位於偽柵結構120頂部表面的第二硬掩膜層123。 Referring to FIG. 6, a mask layer 150 is formed on the surface of the semiconductor substrate 100, the gate structure 110, the dummy gate structure 120, and the first sidewall 115. The mask layer 150 exposes the surface and drain regions of the source region 130. a 140 surface, a portion of the top surface of the dummy gate structure 120 and the dummy gate structure 120 are adjacent to the second sidewall spacer 125 on the side of the gate structure 110 (please refer to FIG. 5 ), and the mask layer 150 is used as a mask to remove the The dummy gate structure 120 is adjacent to the second spacer 125 on the side of the gate structure 110 and the partially exposed second hard mask layer 123 on the top surface of the dummy gate structure 120.

去除所述第二側牆125和第二硬掩膜層123的工藝為濕法刻蝕工藝。 The process of removing the second spacer 125 and the second hard mask layer 123 is a wet etching process.

在本實施例中,由於後續形成的互連層採用選擇性外延工藝形成,選擇性外延工藝只能在例如多晶矽、單晶矽、鍺矽、碳化矽等半導體材料表面形成,不能在氧化矽、氮化矽等介質層表面形成。為了使得偽柵結構上形成的互連層與源區或漏區表面形成的互連層相連接,需要將所述偽柵結構120靠近柵極結構110一側的第二側牆125去除 ,使得在所述偽柵結構120頂部表面、偽柵結構120側壁表面、源區130或漏區140表面的互連層電學連接,使得源區130或漏區140與相鄰的偽柵結構120電學連接。 In this embodiment, since the subsequently formed interconnect layer is formed by a selective epitaxial process, the selective epitaxial process can only be formed on the surface of a semiconductor material such as polycrystalline germanium, single crystal germanium, germanium, tantalum carbide, etc., and cannot be in the form of germanium oxide. The surface of the dielectric layer such as tantalum nitride is formed. In order to connect the interconnect layer formed on the dummy gate structure to the interconnect layer formed on the source or drain surface, the dummy gate structure 120 needs to be removed from the second spacer 125 on the side of the gate structure 110. The interconnect layer on the top surface of the dummy gate structure 120, the sidewall surface of the dummy gate structure 120, the surface of the source region 130 or the drain region 140 is electrically connected such that the source region 130 or the drain region 140 and the adjacent dummy gate structure 120 Electrical connection.

在其他實施例中,所述掩膜層也可以暴露出偽柵結構全部的頂部表面,去除所述第二硬掩膜層後,在所述偽柵結構全部的頂部表面形成互連層,使得後續在所述偽柵結構上形成導電插塞時表面平整。 In other embodiments, the mask layer may also expose all of the top surface of the dummy gate structure. After the second hard mask layer is removed, an interconnect layer is formed on all top surfaces of the dummy gate structure. The surface is subsequently flattened when the conductive plug is formed on the dummy gate structure.

在其他實施例中,所述掩膜層也可以暴露出偽柵結構全部的頂部表面和兩側的第二側牆,去除所述第二硬掩膜層和兩側的第二側牆後,在所述偽柵結構頂部表面和兩側的側壁表面形成互連層,使得後續在所述偽柵結構上形成導電插塞時表面平整。 In other embodiments, the mask layer may also expose all of the top surface of the dummy gate structure and the second sidewall spacers on both sides, after removing the second hard mask layer and the second sidewall spacers on both sides, An interconnect layer is formed on a top surface of the dummy gate structure and sidewall surfaces on both sides such that a surface is flattened when a conductive plug is subsequently formed on the dummy gate structure.

請參考圖7,利用外延工藝在所述掩膜層150暴露出源區130表面、漏區140表面、偽柵結構120的部分頂部表面、偽柵結構120靠近源區130或漏區140的側壁表面形成互連層。 Referring to FIG. 7, the surface of the source region 130, the surface of the drain region 140, a portion of the top surface of the dummy gate structure 120, and the sidewall of the dummy gate structure 120 near the source region 130 or the drain region 140 are exposed in the mask layer 150 by an epitaxial process. The surface forms an interconnect layer.

在本實施例中,所述利用外延工藝形成的互連層的材料為摻雜有N型或P型雜質離子的矽、鍺矽或碳化矽等半導體材料,所述摻雜有N型或P型雜質離子的矽、鍺矽或碳化矽等半導體材料具有良好的導電性,導通電阻較低,使得所述源區130或漏區140與相鄰的偽柵結構120電學連接。其中,所述源區130表面的互連層、源區130相鄰的偽柵結構120靠近源區130一側的側壁表面的互連層和源區130相鄰的偽柵結構120頂部表面的互連層構成 第一互連層160,所述漏區140表面的互連層、漏區140相鄰的偽柵結構120靠近漏區140一側的側壁表面的互連層和漏區140相鄰的偽柵結構120頂部表面的互連層構成第二互連層170。 In this embodiment, the material of the interconnect layer formed by the epitaxial process is a semiconductor material such as germanium, antimony or tantalum carbide doped with N-type or P-type impurity ions, and the doping is N-type or P-type. The semiconductor material such as tantalum, niobium or niobium carbide of the type impurity ions has good conductivity and low on-resistance, so that the source region 130 or the drain region 140 is electrically connected to the adjacent dummy gate structure 120. The interconnect layer on the surface of the source region 130, the dummy gate structure 120 adjacent to the source region 130, and the interconnect layer on the sidewall surface of the source region 130 and the top surface of the dummy gate structure 120 adjacent to the source region 130 Interconnect layer The first interconnect layer 160, the interconnect layer on the surface of the drain region 140, the dummy gate structure 120 adjacent to the drain region 140, and the interconnect layer adjacent to the sidewall surface of the drain region 140 and the dummy gate adjacent to the drain region 140 The interconnect layer of the top surface of structure 120 constitutes second interconnect layer 170.

在本實施例中,所述雜質離子通過外延工藝原位摻雜在所述互連層內。在其他實施例中,形成所述互連層後,利用離子注入工藝在所述互連層內摻雜有雜質離子。 In this embodiment, the impurity ions are doped in-situ in the interconnect layer by an epitaxial process. In other embodiments, after the interconnect layer is formed, impurity ions are doped in the interconnect layer using an ion implantation process.

當所述互連層的材料為鍺矽或碳化矽時,所述源區和漏區表面形成的互連層會對半導體襯底產生應力作用,可以提高MOS電晶體溝道區的載流子遷移速率,從而有利於提高MOS電晶體的電學性能。 When the material of the interconnect layer is tantalum or tantalum carbide, the interconnect layer formed on the surface of the source and drain regions may stress the semiconductor substrate, and the carriers of the channel region of the MOS transistor may be improved. The migration rate is beneficial to improve the electrical performance of the MOS transistor.

在本實施例中,以所述掩膜層150為掩膜,在暴露出的源區130、漏區140和偽柵結構120表面形成互連層,形成所述互連層後,在去除所述掩膜層150。在其他實施例中,也可以先去除所述掩膜層,在暴露出的源區、漏區、偽柵結構的頂部表面和側壁表面形成互連層。由於所述柵極結構頂部表面被掩膜層遮蓋的區域具有第一硬掩膜層,偽柵結構頂部表面被掩膜層遮蓋的區域具有第二硬掩膜層,外延工藝形成的互連層也只能形成在所述源區、漏區和偽柵結構頂部和側壁表面。 In this embodiment, the mask layer 150 is used as a mask, and an interconnect layer is formed on the exposed source region 130, the drain region 140, and the surface of the dummy gate structure 120. After the interconnect layer is formed, the removal layer is removed. The mask layer 150 is described. In other embodiments, the mask layer may also be removed first, and an interconnect layer is formed on the exposed source region, drain region, top surface of the dummy gate structure, and sidewall surface. Since the top surface of the gate structure is covered by the mask layer has a first hard mask layer, the area of the top surface of the dummy gate structure covered by the mask layer has a second hard mask layer, and the interconnect layer formed by the epitaxial process It can also be formed only on the source and drain regions and the top and sidewall surfaces of the dummy gate structure.

在其他實施例中,還可以採用濺射工藝、物理氣相沉積工藝或化學氣相沉積工藝在所述源區、漏區和偽柵結構頂部和側壁表面形成金屬互連層,使得所述源區、漏區和與之相鄰的偽柵結構電學連接。當所述互連層的材料為金 屬時,也可以不去除所述第二側牆,在所述偽柵結構的頂部表面、靠近柵極結構的第二側牆表面和源區、漏區表面形成金屬互連層,使得所述源區、漏區和與之相鄰的偽柵結構電學連接。 In other embodiments, a metal interconnect layer may be formed on the source region, the drain region, and the dummy gate top and sidewall surfaces by a sputtering process, a physical vapor deposition process, or a chemical vapor deposition process, such that the source The region, the drain region and the dummy gate structure adjacent thereto are electrically connected. When the material of the interconnect layer is gold In time, the second sidewall spacer may not be removed, and a metal interconnection layer may be formed on a top surface of the dummy gate structure, a second sidewall spacer surface adjacent to the gate structure, and a surface of the source region and the drain region. The source region, the drain region, and the dummy gate structure adjacent thereto are electrically connected.

請參考圖8,去除所述掩膜層150(請參考圖7)、第一硬掩膜層113(請參考圖7)和第二硬掩膜層123(請參考圖7)。 Referring to FIG. 8, the mask layer 150 (please refer to FIG. 7), the first hard mask layer 113 (please refer to FIG. 7), and the second hard mask layer 123 (refer to FIG. 7) are removed.

去除所述掩膜層150、第一硬掩膜層113和第二硬掩膜層123的具體工藝為濕法刻蝕工藝或幹法刻蝕工藝。本領域技術人員可以根據掩膜層150、第一硬掩膜層113和第二硬掩膜層123的材料合理的選擇不同的刻蝕工藝,使得在去除所述掩膜層、第一硬掩膜層和第二硬掩膜層的同時,不會對所述互連層和第一側牆、第二側牆造成損傷。由於不同的掩膜層、第一硬掩膜層和第二硬掩膜層的材料對應於不同的刻蝕工藝,在此不作詳述。 A specific process for removing the mask layer 150, the first hard mask layer 113, and the second hard mask layer 123 is a wet etching process or a dry etching process. A person skilled in the art can reasonably select different etching processes according to the materials of the mask layer 150, the first hard mask layer 113 and the second hard mask layer 123, so that the mask layer and the first hard mask are removed. Simultaneously with the film layer and the second hard mask layer, the interconnect layer and the first spacer and the second spacer are not damaged. Since the materials of the different mask layers, the first hard mask layer and the second hard mask layer correspond to different etching processes, they will not be described in detail herein.

請參考圖9,在所述柵極結構110、偽柵結構120、第一互連層160、第二互連層170表面形成金屬矽化物層180。 Referring to FIG. 9, a metal telluride layer 180 is formed on the surface of the gate structure 110, the dummy gate structure 120, the first interconnect layer 160, and the second interconnect layer 170.

所述金屬矽化物層180的材料為鎳矽化物、鈦矽化物或鎢矽化物等,在本實施例中,所述金屬矽化物層180的材料為鎳矽化物。形成所述金屬矽化物層180的方法包括:在所述半導體襯底100、柵極結構110、偽柵結構120,第一互連層160、第二互連層170表面形成鎳金屬層(未圖示),利用退火工藝將鎳金屬層與柵極結構110、偽 柵結構120,第一互連層160、第二互連層170相接觸的半導體材料發生反應形成鎳矽化物,所述鎳矽化物為金屬矽化物層180,利用濕法刻蝕工藝去除未反應的鎳金屬層。 The material of the metal telluride layer 180 is nickel telluride, titanium germanide or tungsten germanide. In the embodiment, the material of the metal telluride layer 180 is nickel germanide. The method of forming the metal telluride layer 180 includes: forming a nickel metal layer on the surface of the semiconductor substrate 100, the gate structure 110, the dummy gate structure 120, the first interconnect layer 160, and the second interconnect layer 170 (not As shown in the figure, the nickel metal layer and the gate structure 110, pseudo by an annealing process The gate structure 120, the first interconnect layer 160, the second interconnect layer 170 contact semiconductor material reacts to form a nickel germanide, the nickel germanide is a metal telluride layer 180, and the wet etching process is used to remove unreacted Nickel metal layer.

在本實施例中,由於後續會在所述柵極結構110上和偽柵結構120上形成導電插塞,利用所述導電插塞將層間互連層與MOS電晶體的源區或漏區相連接,通過在所述柵極結構110上和偽柵結構120上形成金屬矽化物層180可以降低接觸電阻,提高MOS電晶體的電學性能。 In this embodiment, since a conductive plug is formed on the gate structure 110 and the dummy gate structure 120, the interlayer interconnection layer and the source or drain region of the MOS transistor are used by the conductive plug. Connection, by forming a metal telluride layer 180 on the gate structure 110 and the dummy gate structure 120, the contact resistance can be lowered, and the electrical performance of the MOS transistor can be improved.

請參考圖10,在所述半導體襯底100表面形成層間介質層190,在所述層間介質層190內形成貫穿層間介質層190的導電插塞195,所述導電插塞195位於所述柵極結構110上的金屬矽化物層180表面和位於偽柵結構120上的金屬矽化物層180表面。 Referring to FIG. 10, an interlayer dielectric layer 190 is formed on the surface of the semiconductor substrate 100, and a conductive plug 195 penetrating the interlayer dielectric layer 190 is formed in the interlayer dielectric layer 190, and the conductive plug 195 is located at the gate. The surface of the metal telluride layer 180 on the structure 110 and the surface of the metal telluride layer 180 on the dummy gate structure 120.

由於與源區130相連接的導電插塞195位於與源區130相鄰的偽柵結構120上,與漏區140相連接的導電插塞195位於與漏區140相鄰的偽柵結構120上,導電插塞不直接形成在所述源區130、漏區140的表面,使得源區130、漏區140暴露出的寬度可以較窄,而所述偽柵結構120位於淺溝槽隔離結構102表面,不佔據額外的晶片面積,使得最終形成MOS電晶體所占的晶片面積較小。 Since the conductive plug 195 connected to the source region 130 is located on the dummy gate structure 120 adjacent to the source region 130, the conductive plug 195 connected to the drain region 140 is located on the dummy gate structure 120 adjacent to the drain region 140. The conductive plug is not directly formed on the surface of the source region 130 and the drain region 140, so that the width of the source region 130 and the drain region 140 may be narrow, and the dummy gate structure 120 is located in the shallow trench isolation structure 102. The surface does not occupy an extra wafer area, so that the wafer area occupied by the final MOS transistor is small.

在其他實施例中,也可以不在所述偽柵結構上形成導電插塞,利用所述偽柵結構作為互連層將不同MOS電晶體的源區或漏區相連接,相當於增加了一層互連層,有利 於提高佈線密度和佈線選擇性。 In other embodiments, the conductive plug may not be formed on the dummy gate structure, and the dummy gate structure is used as the interconnect layer to connect the source or drain regions of different MOS transistors, which is equivalent to adding a layer of mutual Layered, favorable Improve wiring density and wiring selectivity.

根據上述形成方法,本發明實施例還提供了一種MOS電晶體,請參考圖10,所述MOS電晶體包括:半導體襯底100,位於所述半導體襯底100內的有源區101,位於所述半導體襯底100內的包圍所述有源區101的淺溝槽隔離結構102;位於所述有源區101表面的柵極結構110,位於所述淺溝槽隔離結構102表面的偽柵結構120;位於所述柵極結構110兩側的第一側牆115;位於所述柵極結構110兩側的有源區101內的源區130和漏區140;位於所述偽柵結構120遠離源區130或漏區140一側的第二側牆125;位於所述源區130表面、與源區130相鄰的偽柵結構120頂部表面和靠近源區130一側的側壁表面的第一互連層160,位於所述漏區140表面、與漏區140相鄰的偽柵結構120頂部表面和靠近漏區140一側的側壁表面的第二互連層170。 According to the above formation method, an embodiment of the present invention further provides a MOS transistor. Referring to FIG. 10, the MOS transistor includes: a semiconductor substrate 100, and an active region 101 located in the semiconductor substrate 100. a shallow trench isolation structure 102 surrounding the active region 101 in the semiconductor substrate 100; a gate structure 110 on the surface of the active region 101, and a dummy gate structure on the surface of the shallow trench isolation structure 102 a first sidewall spacer 115 on both sides of the gate structure 110; a source region 130 and a drain region 140 in the active region 101 on both sides of the gate structure 110; and located in the dummy gate structure 120 away from a second spacer 125 on one side of the source region 130 or the drain region 140; a first surface on the surface of the source region 130, a top surface of the dummy gate structure 120 adjacent to the source region 130, and a sidewall surface near the source region 130 side The interconnect layer 160 is located on the surface of the drain region 140, the top surface of the dummy gate structure 120 adjacent to the drain region 140, and the second interconnect layer 170 near the sidewall surface of the drain region 140 side.

由於與源區130相連接的導電插塞195位於與源區130相鄰的偽柵結構120上,與漏區140相連接的導電插塞195位於與漏區140相鄰的偽柵結構120上,導電插塞不直接形成在所述源區130、漏區140的表面,使得源區130、漏區140暴露出的寬度可以較窄,而所述偽柵結構120位於淺溝槽隔離結構102表面,不佔據額外的晶片面積,使得最終形成MOS電晶體所占的晶片面積較小,有利於提高晶片集成度。 Since the conductive plug 195 connected to the source region 130 is located on the dummy gate structure 120 adjacent to the source region 130, the conductive plug 195 connected to the drain region 140 is located on the dummy gate structure 120 adjacent to the drain region 140. The conductive plug is not directly formed on the surface of the source region 130 and the drain region 140, so that the width of the source region 130 and the drain region 140 may be narrow, and the dummy gate structure 120 is located in the shallow trench isolation structure 102. The surface does not occupy an extra wafer area, so that the final MOS transistor occupies a small area of the wafer, which is advantageous for improving the wafer integration.

本發明雖然已以較佳實施例公開如上,但其並不是用 來限定本發明,任何本領域技術人員在不脫離本發明的精神和範圍內,都可以利用上述揭示的方法和技術內容對本發明技術方案做出可能的變動和修改,因此,凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所作的任何簡單修改、等同變化及修飾,均屬於本發明技術方案的保護範圍。 Although the present invention has been disclosed as a preferred embodiment, it is not In order to limit the present invention, any person skilled in the art can make possible changes and modifications to the technical solutions of the present invention by using the methods and technical contents disclosed above without departing from the spirit and scope of the present invention. The contents of the technical solutions, any simple modifications, equivalent changes and modifications made to the above embodiments in accordance with the technical spirit of the present invention are all within the scope of protection of the technical solutions of the present invention.

100‧‧‧半導體襯底 100‧‧‧Semiconductor substrate

101‧‧‧有源區 101‧‧‧Active area

102‧‧‧淺溝槽隔離結構 102‧‧‧Shallow trench isolation structure

110‧‧‧柵極結構 110‧‧‧Gate structure

115‧‧‧第一側牆 115‧‧‧First side wall

120‧‧‧偽柵結構 120‧‧‧pseudo gate structure

125‧‧‧第二側牆 125‧‧‧Second side wall

130‧‧‧源區 130‧‧‧ source area

140‧‧‧漏區 140‧‧‧Drained area

160‧‧‧第一互連層 160‧‧‧First interconnect layer

170‧‧‧第二互連層 170‧‧‧Second interconnect layer

180‧‧‧金屬矽化物層 180‧‧‧metal telluride layer

190‧‧‧層間介質層 190‧‧‧Interlayer dielectric layer

195‧‧‧導電插塞 195‧‧‧conductive plug

Claims (20)

一種MOS電晶體的形成方法,其特徵在於,包括:提供半導體襯底,在所述半導體襯底內形成有源區和包圍所述有源區的淺溝槽隔離結構;在所述有源區表面形成柵極結構,在所述淺溝槽隔離結構表面形成偽柵結構;在所述柵極結構兩側的有源區內形成源區和漏區;在所述源區表面、漏區表面、偽柵結構的至少部分頂部表面形成互連層,其中,所述源區表面的互連層和與源區相鄰的偽柵結構頂部表面的互連層相連接,形成第一互連層;所述漏區表面的互連層和與漏區相鄰的偽柵結構頂部表面的互連層相連接,形成第二互連層;其中在所述柵極結構側壁形成第一側牆,在所述偽柵結構側壁形成第二側牆;其中在形成互連層前,去除所述偽柵結構兩側的第二側牆。 A method of forming a MOS transistor, comprising: providing a semiconductor substrate, forming an active region and a shallow trench isolation structure surrounding the active region in the semiconductor substrate; Forming a gate structure on the surface, forming a dummy gate structure on the surface of the shallow trench isolation structure; forming a source region and a drain region in an active region on both sides of the gate structure; on the surface of the source region and the surface of the drain region At least a portion of the top surface of the dummy gate structure forms an interconnect layer, wherein the interconnect layer of the source region surface and the interconnect layer of the dummy gate top surface adjacent to the source region are connected to form a first interconnect layer The interconnect layer of the drain surface and the interconnect layer of the dummy gate top surface adjacent to the drain region are connected to form a second interconnect layer; wherein the first sidewall is formed on the sidewall of the gate structure, Forming a second sidewall in the sidewall of the dummy gate structure; wherein the second sidewalls on both sides of the dummy gate structure are removed prior to forming the interconnect layer. 如請求項1所述的MOS電晶體的形成方法,其特徵在於,所述互連層為金屬層、摻雜有雜質離子的單晶矽層、摻雜有雜質離子的鍺矽層或摻雜有雜質離子的碳化矽層。 The method of forming a MOS transistor according to claim 1, wherein the interconnect layer is a metal layer, a single crystal germanium layer doped with impurity ions, a germanium layer doped with impurity ions, or doped A layer of tantalum carbide with impurity ions. 如請求項1所述的MOS電晶體的形成方法,其特徵在於,在形成互連層前,去除所述偽柵結構靠近源區或漏區一側的第二側牆。 A method of forming a MOS transistor according to claim 1, characterized in that the second spacer wall of the dummy gate structure close to the source region or the drain region is removed before the interconnection layer is formed. 如請求項1或3所述的MOS電晶體的形成方法, 其特徵在於,當所述互連層為摻雜有雜質離子的單晶矽層、摻雜有雜質離子的鍺矽層或摻雜有雜質離子的碳化矽層時,利用外延工藝在所述源區表面、漏區表面、偽柵結構靠近源區或漏區一側的側壁表面和至少部分頂部表面形成互連層。 A method of forming a MOS transistor according to claim 1 or 3, Characterized in that when the interconnect layer is a single crystal germanium layer doped with impurity ions, a germanium layer doped with impurity ions, or a tantalum carbide layer doped with impurity ions, the source is used in the source The surface of the region, the surface of the drain region, the sidewall surface of the dummy gate structure adjacent to one side of the source region or the drain region, and at least a portion of the top surface form an interconnect layer. 如請求項1所述的MOS電晶體的形成方法,其特徵在於,所述互連層為摻雜有雜質離子的單晶矽層、摻雜有雜質離子的鍺矽層或摻雜有雜質離子的碳化矽層時,利用外延工藝在所述源區表面、漏區表面、偽柵結構的側壁表面和頂部表面形成互連層。 The method of forming a MOS transistor according to claim 1, wherein the interconnect layer is a single crystal germanium layer doped with impurity ions, a germanium layer doped with impurity ions, or doped with impurity ions. When the tantalum carbide layer is formed, an interconnection layer is formed on the surface of the source region, the surface of the drain region, the sidewall surface of the dummy gate structure, and the top surface by an epitaxial process. 如請求項1所述的MOS電晶體的形成方法,其特徵在於,所述偽柵結構完全位於淺溝槽隔離結構表面。 A method of forming a MOS transistor according to claim 1, wherein the dummy gate structure is completely located on a surface of the shallow trench isolation structure. 如請求項6所述的MOS電晶體的形成方法,其特徵在於,當所述偽柵結構靠近源區或漏區一側的側壁與對應的淺溝槽隔離結構邊緣具有一定的間距時,所述外延工藝形成的互連層的厚度大於偽柵結構靠近源區或漏區一側的側壁與對應的淺溝槽隔離結構邊緣兩者之間的間距。 The method for forming a MOS transistor according to claim 6, wherein when the side wall of the dummy gate structure near the source region or the drain region has a certain distance from the edge of the corresponding shallow trench isolation structure, The thickness of the interconnect layer formed by the epitaxial process is greater than the pitch between the sidewall of the dummy gate structure near the source or drain side and the edge of the corresponding shallow trench isolation structure. 如請求項6所述的MOS電晶體的形成方法,其特徵在於,所述位於淺溝槽隔離結構表面的偽柵結構作為互連結構與其他MOS電晶體相連接。 The method of forming a MOS transistor according to claim 6, wherein the dummy gate structure on the surface of the shallow trench isolation structure is connected as an interconnection structure to other MOS transistors. 如請求項1所述的MOS電晶體的形成方法,其特徵在於,在所述偽柵結構上形成導電插塞,使得源區和漏區通過互連層、導電插塞與外電路相連接。 The method of forming a MOS transistor according to claim 1, wherein a conductive plug is formed on the dummy gate structure such that the source region and the drain region are connected to the external circuit through the interconnect layer and the conductive plug. 如請求項1所述的MOS電晶體的形成方法,其特 徵在於,所述偽柵結構部分位於淺溝槽隔離結構表面、部分位於對應的有源區表面。 A method of forming a MOS transistor according to claim 1, The dummy gate structure portion is located on the surface of the shallow trench isolation structure and partially on the surface of the corresponding active region. 如請求項1所述的MOS電晶體的形成方法,其特徵在於,所述柵極結構和偽柵結構在同一形成工藝中同步形成。 A method of forming a MOS transistor according to claim 1, wherein the gate structure and the dummy gate structure are simultaneously formed in the same formation process. 如請求項1所述的MOS電晶體的形成方法,其特徵在於,所述第一側牆和第二側牆在同一形成工藝中同步形成。 A method of forming a MOS transistor according to claim 1, wherein the first spacer and the second spacer are simultaneously formed in the same forming process. 一種MOS電晶體,其特徵在於,包括:半導體襯底,位於所述半導體襯底內的有源區,位於所述半導體襯底內的包圍所述有源區的淺溝槽隔離結構;位於所述有源區表面的柵極結構,位於所述淺溝槽隔離結構表面的偽柵結構;位於所述柵極結構兩側的有源區內的源區和漏區;位於所述源區表面和與源區相鄰的偽柵結構頂部表面的第一互連層,位於所述漏區表面和與漏區相鄰的偽柵結構頂部表面的第二互連層;其中所述偽柵結構完全位於淺溝槽隔離結構表面。 A MOS transistor, comprising: a semiconductor substrate, an active region in the semiconductor substrate, a shallow trench isolation structure surrounding the active region in the semiconductor substrate; a gate structure on a surface of the active region, a dummy gate structure on a surface of the shallow trench isolation structure; source and drain regions in an active region on both sides of the gate structure; on a surface of the source region a first interconnect layer on a top surface of the dummy gate structure adjacent to the source region, a second interconnect layer on a surface of the drain region and a top surface of the dummy gate structure adjacent to the drain region; wherein the dummy gate structure It is completely on the surface of the shallow trench isolation structure. 如請求項13所述的MOS電晶體,其特徵在於,所述互連層為金屬層、摻雜有雜質離子的單晶矽層、摻雜有雜質離子的鍺矽層或摻雜有雜質離子的碳化矽層。 The MOS transistor according to claim 13, wherein the interconnect layer is a metal layer, a single crystal germanium layer doped with impurity ions, a germanium layer doped with impurity ions, or doped with impurity ions. The layer of tantalum carbide. 如請求項13所述的MOS電晶體,其特徵在於,還包括,位於所述偽柵結構遠離源區或漏區一側的第二側牆,在所述源區表面、與源區相鄰的偽柵結構的頂部表面和偽柵結構靠近源區的側壁表面形成有第一互連層。 The MOS transistor according to claim 13, further comprising: a second spacer wall located on a side of the dummy gate structure away from the source region or the drain region, adjacent to the source region on the surface of the source region A top surface of the dummy gate structure and a sidewall surface of the dummy gate structure adjacent to the source region are formed with a first interconnect layer. 如請求項13所述的MOS電晶體,其特徵在於,在所述源區表面、與源區相鄰的偽柵結構的頂部和側壁表面形成有第一互連層。 The MOS transistor according to claim 13, wherein a first interconnect layer is formed on a surface of the source region, a top portion of the dummy gate structure adjacent to the source region, and a sidewall surface. 如請求項13所述的MOS電晶體,其特徵在於,當所述偽柵結構靠近源區或漏區一側的側壁與對應的淺溝槽隔離結構邊緣具有一定的間距時,利用外延工藝形成的互連層的厚度大於偽柵結構靠近源區或漏區一側的側壁與對應的淺溝槽隔離結構邊緣兩者之間的間距。 The MOS transistor according to claim 13, wherein when the sidewall of the dummy gate structure close to the source region or the drain region has a certain distance from the edge of the corresponding shallow trench isolation structure, the epitaxial process is used. The thickness of the interconnect layer is greater than the spacing between the sidewalls of the dummy gate structure near the source or drain side and the corresponding shallow trench isolation structure edges. 如請求項13所述的MOS電晶體,其特徵在於,所述位於淺溝槽隔離結構表面的偽柵結構作為互連結構與其他MOS電晶體相連接。 The MOS transistor according to claim 13, wherein the dummy gate structure on the surface of the shallow trench isolation structure is connected as an interconnection structure to other MOS transistors. 如請求項13所述的MOS電晶體,其特徵在於,位於所述偽柵結構上的導電插塞,使得源區和漏區通過互連層、導電插塞與外電路相連接。 The MOS transistor according to claim 13, characterized in that the conductive plug on the dummy gate structure is such that the source region and the drain region are connected to the external circuit through the interconnect layer and the conductive plug. 如請求項13所述的MOS電晶體,其特徵在於,所述偽柵結構部分位於淺溝槽隔離結構表面、部分位於對應的有源區表面。 The MOS transistor according to claim 13, wherein the dummy gate structure portion is located on a surface of the shallow trench isolation structure and partially on a surface of the corresponding active region.
TW102113286A 2012-09-29 2013-04-15 Growth epi as interconnection layer on mos structure TWI527096B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210378742.9A CN103715133B (en) 2012-09-29 2012-09-29 Mos transistor and forming method thereof

Publications (2)

Publication Number Publication Date
TW201413797A TW201413797A (en) 2014-04-01
TWI527096B true TWI527096B (en) 2016-03-21

Family

ID=50407998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102113286A TWI527096B (en) 2012-09-29 2013-04-15 Growth epi as interconnection layer on mos structure

Country Status (3)

Country Link
KR (1) KR101466846B1 (en)
CN (1) CN103715133B (en)
TW (1) TWI527096B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9721956B2 (en) 2014-05-15 2017-08-01 Taiwan Semiconductor Manufacturing Company Limited Methods, structures and devices for intra-connection structures
US9978755B2 (en) * 2014-05-15 2018-05-22 Taiwan Semiconductor Manufacturing Company Limited Methods and devices for intra-connection structures
US20160276156A1 (en) * 2015-03-16 2016-09-22 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing process thereof
CN106952866B (en) * 2016-01-06 2020-03-24 中芯国际集成电路制造(上海)有限公司 Method for manufacturing local interconnection structure
US10211205B2 (en) 2016-04-27 2019-02-19 International Business Machines Corporation Field effect transistor structure for reducing contact resistance
US10163880B2 (en) 2016-05-03 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit and method of fabricating the same
CN111584638B (en) * 2020-06-01 2022-05-06 福建省晋华集成电路有限公司 Semiconductor structure
CN113903665A (en) * 2020-07-06 2022-01-07 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN112331579B (en) * 2020-11-12 2023-11-24 上海华虹宏力半导体制造有限公司 Test structure and test method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0129984B1 (en) * 1993-12-29 1998-04-07 김광호 Semiconductor device and its manufacturing method
US5698902A (en) * 1994-12-19 1997-12-16 Matsushita Electric Industrial Co., Ltd. Semiconductor device having finely configured gate electrodes
JP3246442B2 (en) 1998-05-27 2002-01-15 日本電気株式会社 Method for manufacturing semiconductor device
US6312997B1 (en) * 1998-08-12 2001-11-06 Micron Technology, Inc. Low voltage high performance semiconductor devices and methods
KR100882930B1 (en) * 2004-12-17 2009-02-10 삼성전자주식회사 CMOS semiconductor devices having source and drain regions and methods of fabricating the same
JP5109403B2 (en) 2007-02-22 2012-12-26 富士通セミコンダクター株式会社 Semiconductor memory device and manufacturing method thereof
CN102468174B (en) * 2010-11-18 2014-01-01 中国科学院微电子研究所 Semiconductor device and forming method thereof

Also Published As

Publication number Publication date
KR101466846B1 (en) 2014-11-28
CN103715133A (en) 2014-04-09
CN103715133B (en) 2016-01-06
TW201413797A (en) 2014-04-01
KR20140043019A (en) 2014-04-08

Similar Documents

Publication Publication Date Title
TWI527096B (en) Growth epi as interconnection layer on mos structure
TWI538063B (en) Dual oxide trench gate power mosfet using oxide filled trench
CN111883592B (en) Shielding gate trench power device and manufacturing method thereof
US8507349B2 (en) Semiconductor device employing fin-type gate and method for manufacturing the same
CN106057674A (en) Shield grid groove MSOFET manufacturing method
CN109979880B (en) Semiconductor structure and forming method thereof
CN103515437A (en) Structure and method for a field effect transistor
US10249721B2 (en) Semiconductor device including a gate trench and a source trench
US20190067286A1 (en) Semiconductor structure and fabrication method thereof
TW201135885A (en) Semiconductor device and method for forming the same
TW201611269A (en) Series-connected transistor structure and method of manufacturing the same
TWI759878B (en) Semiconductor device and manufacturing method thereof
TWI414023B (en) Method for making a semiconductor device
CN105428241A (en) Manufacturing method of trench gate power device with shield grid
TWI722790B (en) Memory device
JP2018152522A (en) Semiconductor device and method of manufacturing the same
JP2008085205A (en) Semiconductor device and its manufacturing method
TW201423849A (en) Method of forming semiconductor device and semiconductor device
TW201409578A (en) Method for fabricating semiconductor device with reduced miller capacitance
CN102779850B (en) Trench MOS structure and method for forming the same
JP2013045953A (en) Semiconductor device and method of manufacturing the same
CN112951765A (en) Semiconductor structure and forming method thereof
TWI802451B (en) Semiconductor structure and method for manufacturing semiconductor structure
CN113903806B (en) Semiconductor structure and forming method thereof
CN111092113B (en) Terminal area structure of metal oxide semiconductor field effect transistor and manufacturing method thereof