TW201442258A - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201442258A
TW201442258A TW102114381A TW102114381A TW201442258A TW 201442258 A TW201442258 A TW 201442258A TW 102114381 A TW102114381 A TW 102114381A TW 102114381 A TW102114381 A TW 102114381A TW 201442258 A TW201442258 A TW 201442258A
Authority
TW
Taiwan
Prior art keywords
layer
electrode
seed
solar cell
transparent conductive
Prior art date
Application number
TW102114381A
Other languages
Chinese (zh)
Other versions
TWI508311B (en
Inventor
Wu-Chun Kao
Li-Wei Cheng
Tian-Fu Chiang
Original Assignee
Topcell Solar Internat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcell Solar Internat Co Ltd filed Critical Topcell Solar Internat Co Ltd
Priority to TW102114381A priority Critical patent/TWI508311B/en
Publication of TW201442258A publication Critical patent/TW201442258A/en
Application granted granted Critical
Publication of TWI508311B publication Critical patent/TWI508311B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A solar cell and a manufacturing method thereof are provided, wherein the manufacturing method includes following steps. A photoelectric conversion layer is provided. A transparent conductive layer is respectively formed on a first surface and an opposite second surface of the photoelectric conversion layer. A cover layer is formed on each of the transparent conductive layers. A seed layer is formed on each of the insulating layers. An electrode layer is formed on each of the seed layers, wherein a thickness of each of the insulating layers is within 50 to 850 angstrom, such that each of the electrode layers is capable of electrically connected to the corresponding transparent conductive layer through the seed layer diffusing into the insulating layer.

Description

太陽能電池及其製造方法 Solar cell and method of manufacturing same

本發明是有關於一種光電轉換元件及其製造方法,且特別是有關於一種太陽能電池及其製造方法。 The present invention relates to a photoelectric conversion element and a method of fabricating the same, and more particularly to a solar cell and a method of fabricating the same.

在石化能源短缺以及能源需求量與日俱增的情況下,再生能源(Renewable energy)的開發成為當今非常重要的課題之一。再生能源泛指永續且無污染的天然能源,例如太陽能、風能、水利能、潮汐能或是生質能等,其中,太陽能的利用更是近幾年來在能源開發的研究上相當重要且受歡迎的一環。 With the shortage of petrochemical energy and increasing energy demand, the development of renewable energy (Renewable energy) has become one of the most important issues today. Renewable energy refers to sustainable and non-polluting natural energy sources such as solar energy, wind energy, hydropower, tidal energy or biomass energy. Among them, the use of solar energy is very important in the research of energy development in recent years. A popular part.

太陽能電池是一種能量轉換的光電元件(photovoltaic device),其透過太陽光的照射,將光的能量轉換成電能。圖1是習知的一種太陽能電池的剖面示意圖。請參照圖1,太陽能電池100包括光電轉換層110、透明導電層120a、120b及電極層130a、130b。電極層130a、130b分別配置於光電轉換層110的第一表面S1與第二表面S2上,其中第一表面S1相對於第二表面S2,且透明導電層120a配置於光電轉換層110與電極層130a之間,而透 明導電層120b配置於光電轉換層110與電極層130b之間。 A solar cell is an energy-converting photovoltaic device that converts the energy of light into electrical energy through the illumination of sunlight. 1 is a schematic cross-sectional view of a conventional solar cell. Referring to FIG. 1, a solar cell 100 includes a photoelectric conversion layer 110, transparent conductive layers 120a and 120b, and electrode layers 130a and 130b. The electrode layers 130a and 130b are respectively disposed on the first surface S1 and the second surface S2 of the photoelectric conversion layer 110, wherein the first surface S1 is opposite to the second surface S2, and the transparent conductive layer 120a is disposed on the photoelectric conversion layer 110 and the electrode layer. Between 130a, and through The conductive layer 120b is disposed between the photoelectric conversion layer 110 and the electrode layer 130b.

一般而言,配置於光電轉換層110的受光面(指第一表面S1)上的電極層130a除了要能有效地收集載子,還要儘量減少電極層130a遮蔽入射光的比例。因此,位於受光面的電極層130a一般會設計成具有特殊圖案的結構,例如是從匯流電極(busbar)延伸出多條很細的指狀(finger)電極。習知欲形成所述電極圖案(指匯流電極與指狀電極),通常是藉由網版印刷將銀膠(未繪示)塗佈於透明導電層120a上。此外,需搭配共同燒結製程,以將銀膠固化成電極層130a。然而,共同燒結製程屬高溫製程(超過攝氏700度),其容易損害太陽能電池100內的膜層,特別是異質接面(Hetero-junction)矽基太陽能電池中的非晶矽半導體層。此外,電極層130a中指狀電極或匯流電極的寬度亦會受限於高溫製程,而無法進一步地減縮,進而侷限了太陽能電池的光電轉換效率。另一方面,倘若降低共同燒結製程的溫度,則會影響電極層130a的品質。是以,如何提升太陽能電池的信賴性(亦即如何降低電極層的製程對於太陽能電池內的膜層的損害),並進一步地提升太陽能電池的光電轉換效率,實為未來的趨勢。 In general, the electrode layer 130a disposed on the light-receiving surface (referred to as the first surface S1) of the photoelectric conversion layer 110 is required to effectively collect the carrier, and the ratio of the incident light to the electrode layer 130a is also minimized. Therefore, the electrode layer 130a on the light receiving surface is generally designed to have a special pattern structure, for example, a plurality of very fine finger electrodes extending from a bus bar. It is conventional to form the electrode pattern (refer to the bus electrode and the finger electrode), and silver paste (not shown) is usually applied to the transparent conductive layer 120a by screen printing. In addition, a co-sintering process is required to cure the silver paste into the electrode layer 130a. However, the co-sintering process is a high-temperature process (over 700 degrees Celsius), which easily damages the film layer in the solar cell 100, particularly the amorphous germanium semiconductor layer in a Hetero-junction-based solar cell. In addition, the width of the finger electrode or the bus electrode in the electrode layer 130a is also limited by the high temperature process, and cannot be further reduced, thereby limiting the photoelectric conversion efficiency of the solar cell. On the other hand, if the temperature of the co-sintering process is lowered, the quality of the electrode layer 130a is affected. Therefore, how to improve the reliability of the solar cell (that is, how to reduce the damage of the electrode layer process to the film layer in the solar cell), and further improve the photoelectric conversion efficiency of the solar cell, is a future trend.

本發明提供一種太陽能電池的製造方法,其可製作出信賴性高且光電轉換效率佳的太陽能電池。 The present invention provides a method for producing a solar cell, which can produce a solar cell having high reliability and excellent photoelectric conversion efficiency.

本發明提供一種太陽能電池,其具有高信賴性及良好的 光電轉換效率。 The invention provides a solar cell with high reliability and good performance Photoelectric conversion efficiency.

本發明的一種太陽能電池的製造方法,包括以下步驟。提供光電轉換層。於光電轉換層相對的第一表面與第二表面上分別形成透明導電層。於各透明導電層上形成覆蓋層。於各覆蓋層上形成種子層。於各種子層上形成電極層,其中各覆蓋層的厚度介於50至850埃之間,而使得各電極層得以分別透過擴散至覆蓋層中的種子層而與對應的透明導電層電性連接。 A method of manufacturing a solar cell of the present invention comprises the following steps. A photoelectric conversion layer is provided. A transparent conductive layer is formed on each of the first surface and the second surface opposite to the photoelectric conversion layer. A cover layer is formed on each of the transparent conductive layers. A seed layer is formed on each of the cover layers. Forming an electrode layer on each of the sub-layers, wherein each of the cover layers has a thickness of between 50 and 850 angstroms, such that the electrode layers are electrically connected to the corresponding transparent conductive layer through the seed layer diffused into the cover layer, respectively. .

在本發明的一實施例中,上述的光電轉換層是由P型半導體層及N型半導體層堆疊形成的PN接面結構,或由P型半導體層、本質層、N型半導體層堆疊形成的PIN接面結構。 In an embodiment of the invention, the photoelectric conversion layer is a PN junction structure formed by stacking a P-type semiconductor layer and an N-type semiconductor layer, or is formed by stacking a P-type semiconductor layer, an intrinsic layer, and an N-type semiconductor layer. PIN junction structure.

在本發明的一實施例中,上述的透明導電層的材料包括金屬氧化物。 In an embodiment of the invention, the material of the transparent conductive layer comprises a metal oxide.

在本發明的一實施例中,上述的覆蓋層的材料包括氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層。 In an embodiment of the invention, the material of the cover layer comprises yttrium oxide, tantalum nitride, yttrium oxynitride, lanthanum aluminum oxide or a stacked layer of at least two materials.

在本發明的一實施例中,上述的種子層的材料包括銀,且形成種子層的方法包括噴灑(spray)、塗佈(inject)或網版印刷(screen printing)。 In an embodiment of the invention, the material of the seed layer comprises silver, and the method of forming the seed layer comprises spraying, injecting or screen printing.

在本發明的一實施例中,上述的各種子層為疊層結構,且種子層的材料還包括鎳、銅、鋁、鈷、鈦、或上述至少兩者的混合物、金屬矽化物(如矽化鎳、矽化鈷、矽化鈦等)或上述至少兩種材料的堆疊層,而形成種子層的方法還包括無電鍍 (electroless)、電鍍(electroplating)、物理氣相沉積(Physical Vapor Deposition,PVD)或化學氣相沉積(Chemical Vapor Deposition,CVD)。 In an embodiment of the invention, the various sub-layers are laminated structures, and the material of the seed layer further comprises nickel, copper, aluminum, cobalt, titanium, or a mixture of at least two of the foregoing, a metal telluride (such as bismuth Nickel, cobalt telluride, titanium telluride, etc.) or a stacked layer of at least two of the above materials, and the method of forming the seed layer further comprises electroless plating (electroless), electroplating, physical vapor deposition (PVD) or chemical vapor deposition (CVD).

在本發明的一實施例中,上述的電極層包括第一電極層以及第二電極層。第一電極層覆蓋於種子層上,且第二電極層覆蓋於第一電極層上。第一電極層的材料包括導電金屬(如銀、鎳、銅、鋁、鈦、鈷或上述至少兩者的混合物)及金屬矽化物(如矽化鎳、矽化鈷或矽化鈦),而第二電極層的材料包括錫、銀或鎳。 In an embodiment of the invention, the electrode layer includes a first electrode layer and a second electrode layer. The first electrode layer covers the seed layer, and the second electrode layer covers the first electrode layer. The material of the first electrode layer comprises a conductive metal (such as silver, nickel, copper, aluminum, titanium, cobalt or a mixture of at least two of the above) and a metal halide (such as nickel telluride, cobalt telluride or titanium telluride), and the second electrode The material of the layer includes tin, silver or nickel.

本發明的一種太陽能電池,包括光電轉換層、透明導電層、覆蓋層、種子層、電極層、另一透明導電層、另一覆蓋層、另一種子層以及另一電極層。透明導電層配置於光電轉換層的第一表面上。覆蓋層配置於透明導電層上,其中覆蓋層的厚度介於50至850埃之間。種子層配置於透明導電層上,且種子層與透明導電層電性連接。電極層配置於種子層上。另一透明導電層配置於光電轉換層的第二表面上,其中第一表面與第二表面彼此相對。另一覆蓋層配置於另一透明導電層上,其中另一覆蓋層的厚度介於50至850埃之間。另一種子層配置於另一透明導電層上,且與另一透明導電層電性連接。另一電極層配置於另一種子層上。 A solar cell of the present invention comprises a photoelectric conversion layer, a transparent conductive layer, a cover layer, a seed layer, an electrode layer, another transparent conductive layer, another cover layer, another seed layer, and another electrode layer. The transparent conductive layer is disposed on the first surface of the photoelectric conversion layer. The cover layer is disposed on the transparent conductive layer, wherein the cover layer has a thickness of between 50 and 850 angstroms. The seed layer is disposed on the transparent conductive layer, and the seed layer is electrically connected to the transparent conductive layer. The electrode layer is disposed on the seed layer. Another transparent conductive layer is disposed on the second surface of the photoelectric conversion layer, wherein the first surface and the second surface are opposite to each other. Another cover layer is disposed on the other transparent conductive layer, wherein the other cover layer has a thickness of between 50 and 850 angstroms. Another seed layer is disposed on another transparent conductive layer and electrically connected to another transparent conductive layer. The other electrode layer is disposed on another seed layer.

在本發明的一實施例中,上述的光電轉換層是由P型半導體層及N型半導體層堆疊形成的PN接面結構,或由P型半導體層、本質層、N型半導體層堆疊形成的PIN接面結構。 In an embodiment of the invention, the photoelectric conversion layer is a PN junction structure formed by stacking a P-type semiconductor layer and an N-type semiconductor layer, or is formed by stacking a P-type semiconductor layer, an intrinsic layer, and an N-type semiconductor layer. PIN junction structure.

在本發明的一實施例中,上述的透明導電層以及另一透 明導電層的材料包括金屬氧化物。 In an embodiment of the invention, the transparent conductive layer and another transparent The material of the conductive layer includes a metal oxide.

在本發明的一實施例中,上述的覆蓋層以及另一覆蓋層的材料包括氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層。 In an embodiment of the invention, the material of the cover layer and the other cover layer comprises iridium oxide, tantalum nitride, yttrium oxynitride, lanthanum aluminum oxide or a stacked layer of at least two materials.

在本發明的一實施例中,上述的種子層以及另一種子層的材料包括銀。 In an embodiment of the invention, the seed layer and the material of the other seed layer comprise silver.

在本發明的一實施例中,上述的種子層以及另一種子層分別為疊層結構,且種子層以及另一種子層的材料還包括銀以外的導電金屬(如鎳、銅、鋁、鈷、鈦或上述至少兩者的混合物)及金屬矽化物(如矽化鎳、矽化鈷、矽化鈦)或上述至少兩種材料的堆疊層。 In an embodiment of the invention, the seed layer and the other seed layer are respectively laminated structure, and the material of the seed layer and the other seed layer further comprises a conductive metal other than silver (such as nickel, copper, aluminum, cobalt). , titanium or a mixture of at least two of the foregoing) and a metal halide (such as nickel telluride, cobalt telluride, titanium telluride) or a stacked layer of at least two of the foregoing.

在本發明的一實施例中,上述的電極層包括第一電極層以及第二電極層。第一電極層覆蓋於種子層上,且第二電極層覆蓋於第一電極層上。第一電極層的材料包括銀、鎳、銅、鋁、鈷、鈦或上述至少兩者的混合物、金屬矽化物(如矽化鎳、矽化鈷或矽化鈦),而第二電極層的材料包括錫、銀或鎳。 In an embodiment of the invention, the electrode layer includes a first electrode layer and a second electrode layer. The first electrode layer covers the seed layer, and the second electrode layer covers the first electrode layer. The material of the first electrode layer comprises silver, nickel, copper, aluminum, cobalt, titanium or a mixture of at least two of the above, a metal halide (such as nickel telluride, cobalt telluride or titanium telluride), and the material of the second electrode layer comprises tin , silver or nickel.

基於上述,本發明在透明導電層上形成覆蓋層及種子層,藉以使電極層的材料選擇性地成長於種子層上。如此,本發明可透過種子層的圖案設計去調變電極圖案(指電極層的匯流電極與指狀電極),而可以不用藉由網版印刷及共同燒結製程去形成電極圖案。因此,可避免因共同燒結製程而對太陽能電池造成損害,進而使太陽能電池具有高信賴性。此外,本發明可藉由種子 層的設置,增加電極層與透明導電層的附著力(adhesion),並降低電極層與透明導電層的接觸阻值,進而使太陽能電池具有良好的光電轉換效率。 Based on the above, the present invention forms a cover layer and a seed layer on the transparent conductive layer, whereby the material of the electrode layer is selectively grown on the seed layer. Thus, the present invention can modulate the electrode pattern (the junction electrode of the electrode layer and the finger electrode) through the pattern design of the seed layer, and the electrode pattern can be formed without the screen printing and the co-sintering process. Therefore, damage to the solar cell due to the co-sintering process can be avoided, and the solar cell can be highly reliable. Furthermore, the invention can be made by seed The layer is arranged to increase the adhesion of the electrode layer and the transparent conductive layer, and reduce the contact resistance between the electrode layer and the transparent conductive layer, thereby enabling the solar cell to have good photoelectric conversion efficiency.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、200‧‧‧太陽能電池 100, 200‧‧‧ solar cells

110、210‧‧‧光電轉換層 110, 210‧‧‧ photoelectric conversion layer

120a、120b、220A、220B‧‧‧透明導電層 120a, 120b, 220A, 220B‧‧‧ transparent conductive layer

130a、130b、250A、250B‧‧‧電極層 130a, 130b, 250A, 250B‧‧‧ electrode layers

212‧‧‧矽基材 212‧‧‧矽 substrate

214A、214B‧‧‧鈍化層 214A, 214B‧‧‧ Passivation layer

216A‧‧‧第一型半導體層 216A‧‧‧first type semiconductor layer

216B‧‧‧第二型半導體層 216B‧‧‧Second type semiconductor layer

230A、230B‧‧‧覆蓋層 230A, 230B‧‧ ‧ overlay

240A、240B‧‧‧種子層 240A, 240B‧‧‧ seed layer

242、246‧‧‧第一子種子層 242, 246‧‧‧ first seed layer

244、248‧‧‧第二子種子層 244, 248‧‧‧ second seed layer

252、256‧‧‧第一電極層 252, 256‧‧‧ first electrode layer

254、258‧‧‧第二電極層 254, 258‧‧‧ second electrode layer

A1、A2‧‧‧區域 A1, A2‧‧‧ area

S1‧‧‧第一表面 S1‧‧‧ first surface

S2‧‧‧第二表面 S2‧‧‧ second surface

T‧‧‧厚度 T‧‧‧ thickness

圖1是習知的一種太陽能電池的剖面示意圖。 1 is a schematic cross-sectional view of a conventional solar cell.

圖2A至圖2F是依照本發明一實施例的一種太陽能電池的製作流程的剖面示意圖。 2A-2F are schematic cross-sectional views showing a manufacturing process of a solar cell according to an embodiment of the invention.

圖2A至圖2F是依照本發明一實施例的一種太陽能電池的製作流程的剖面示意圖。請參照圖2A,提供光電轉換層210,其中光電轉換層210具有相對的第一表面S1與第二表面S2。第一表面S1例如是受光面,亦即是,面向外界光線(未繪示,例如太陽光)以吸收光子的表面,而第二表面S2例如是非受光面,亦即是背對外界光線的表面。 2A-2F are schematic cross-sectional views showing a manufacturing process of a solar cell according to an embodiment of the invention. Referring to FIG. 2A, a photoelectric conversion layer 210 is provided, wherein the photoelectric conversion layer 210 has opposite first and second surfaces S1 and S2. The first surface S1 is, for example, a light receiving surface, that is, a surface facing external light (not shown, for example, sunlight) to absorb photons, and the second surface S2 is, for example, a non-light receiving surface, that is, a surface facing away from external light. .

光電轉換層210可以是由P型半導體層及N型半導體層堆疊形成的PN接面結構,或是由P型半導體層、本質層、N型半導體層堆疊形成的PIN接面結構。 The photoelectric conversion layer 210 may be a PN junction structure formed by stacking a P-type semiconductor layer and an N-type semiconductor layer, or a PIN junction structure formed by stacking a P-type semiconductor layer, an intrinsic layer, and an N-type semiconductor layer.

舉例而言,光電轉換層210例如是包括矽基材212、鈍化層214A、214B、第一型半導體層216A及第二型半導體層216B,其中第一型半導體層216A及第二型半導體層216B分別位於矽基材212的相對兩表面,且鈍化層214A位於第一型半導體層216A與矽基材212之間,而鈍化層214B位於第二型半導體層216B與矽基材212之間。在本實施例中,第一型半導體層216A與鈍化層214A具有一接觸面,且第一型半導體層216A相對於接觸面的表面為光電轉換層210的第一表面S1。另一方面,第二型半導體層216B與鈍化層214B也具有一接觸面,且第二型半導體層216B相對於接觸面的表面為光電轉換層210的第二表面S2。 For example, the photoelectric conversion layer 210 includes, for example, a germanium substrate 212, a passivation layer 214A, 214B, a first type semiconductor layer 216A, and a second type semiconductor layer 216B, wherein the first type semiconductor layer 216A and the second type semiconductor layer 216B The insulating layer 214A is located between the first type semiconductor layer 216A and the germanium substrate 212, and the passivation layer 214B is located between the second type semiconductor layer 216B and the germanium substrate 212. In the present embodiment, the first type semiconductor layer 216A has a contact surface with the passivation layer 214A, and the surface of the first type semiconductor layer 216A with respect to the contact surface is the first surface S1 of the photoelectric conversion layer 210. On the other hand, the second type semiconductor layer 216B and the passivation layer 214B also have a contact surface, and the surface of the second type semiconductor layer 216B with respect to the contact surface is the second surface S2 of the photoelectric conversion layer 210.

在本實施例中,矽基材212例如是P型矽基材或N型矽基材。鈍化層214A、214B、第一型半導體層216A及第二型半導體層216B例如是非晶矽半導體層,且例如是以電漿增益化學氣相沈積的方法製成。第一型半導體層216A及第二型半導體層216B其中一者為N型半導體層,且第一型半導體層216A及第二型半導體層216B其中另一者為P型半導體層。 In the present embodiment, the crucible substrate 212 is, for example, a P-type tantalum substrate or an N-type tantalum substrate. The passivation layers 214A, 214B, the first type semiconductor layer 216A, and the second type semiconductor layer 216B are, for example, amorphous germanium semiconductor layers, and are formed, for example, by plasma gain chemical vapor deposition. One of the first type semiconductor layer 216A and the second type semiconductor layer 216B is an N type semiconductor layer, and the other of the first type semiconductor layer 216A and the second type semiconductor layer 216B is a P type semiconductor layer.

需說明的是,本實施例雖以矽基太陽能電池(Si based solar cell)的光電轉換層作為舉例說明,但光電轉換層的類型端視太陽能電池的種類而定,因此本發明並不限定光電轉換層的類型。 It should be noted that although the photoelectric conversion layer of a silicon-based solar cell is exemplified in the present embodiment, the type of the photoelectric conversion layer depends on the type of the solar cell, and thus the present invention does not limit the photoelectricity. The type of conversion layer.

另外,為了提高吸收光子的能力,並降低外界光線的反射,本實施例還可選擇性地對矽基材212的受光面(例如是矽基材212與鈍化層214A接觸的表面)進行表面織化製程,而形成織化表 面。所述表面織化製程例如是,但不限於,使用氫氧化鉀(KOH)溶液來進行之。 In addition, in order to improve the ability to absorb photons and reduce the reflection of external light, the embodiment may also selectively surface-weave the light-receiving surface of the ruthenium substrate 212 (for example, the surface of the ruthenium substrate 212 and the passivation layer 214A). Forming a weaving table surface. The surface weaving process is, for example, but not limited to, carried out using a potassium hydroxide (KOH) solution.

請參照圖2B,於光電轉換層210的第一表面S1上形成透明導電層220A,且於光電轉換層210的第二表面S2上形成另一透明導電層220B。此處透明導電層220A、220B可作為窗戶層,其可用以調變光電轉換效率、光穿透率(light transmittance)、載子收集效率等。在本實施例中,透明透明導電層220A、220B的材料例如是金屬氧化物,如銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鍺鋅氧化物、或其它合適的氧化物、或者是上述至少二者之堆疊層。此外,形成透明透明導電層220A、220B的方法例如是蒸鍍(evaporation)法、濺鍍(sputtering)法或其他適於沉積金屬氧化物的方法。 Referring to FIG. 2B, a transparent conductive layer 220A is formed on the first surface S1 of the photoelectric conversion layer 210, and another transparent conductive layer 220B is formed on the second surface S2 of the photoelectric conversion layer 210. Here, the transparent conductive layers 220A, 220B can serve as a window layer, which can be used to modulate photoelectric conversion efficiency, light transmittance, carrier collection efficiency, and the like. In this embodiment, the material of the transparent transparent conductive layers 220A, 220B is, for example, a metal oxide such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium antimony zinc oxide, or the like. A suitable oxide, or a stacked layer of at least two of the foregoing. Further, a method of forming the transparent transparent conductive layers 220A, 220B is, for example, an evaporation method, a sputtering method, or other methods suitable for depositing a metal oxide.

請參照圖2C,於透明導電層220A上形成覆蓋層230A。在本實施例中,覆蓋層230A的材料例如是氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層,且覆蓋層230A例如是以物理氣相沈積(Physical Vapor Deposition,PVD)、化學氣相沈積(Chemical Vapor Deposition,CVD)或電鍍的方法在低溫(溫度範圍介於攝氏150度至250度之間)下製成,藉以避免對太陽能電池中已成型的其他膜層造成損害。 Referring to FIG. 2C, a cap layer 230A is formed on the transparent conductive layer 220A. In the present embodiment, the material of the cap layer 230A is, for example, tantalum oxide, tantalum nitride, hafnium oxynitride, hafnium aluminum oxide or a stacked layer of at least two of the above materials, and the cap layer 230A is deposited, for example, by physical vapor deposition ( Physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD) or electroplating is performed at low temperatures (temperature range between 150 and 250 degrees Celsius) to avoid forming in solar cells. The other layers cause damage.

詳言之,本實施例的覆蓋層230A的厚度T介於50至850埃之間,且折射率例如介於1.7至3.5之間(上述“介於”皆包含端點值),因此,覆蓋層230A除了具有低導電率(即高阻值)外,還具有 高穿透率,並可降低外界光線的反射。此外,覆蓋層230A的製程與現有的太陽能電池的製程相容,且形成後即毋需移除。因此,本實施例的覆蓋層230A除了可保護太陽能電池(例如避免太陽能電池刮傷或受潮等)以及降低外界光線反射之外,還具有製程簡易的優點。 In detail, the thickness T of the cover layer 230A of the present embodiment is between 50 and 850 angstroms, and the refractive index is, for example, between 1.7 and 3.5 (the above-mentioned "between" includes the endpoint value), and therefore, covering In addition to having low conductivity (ie, high resistance), layer 230A has High penetration and reduced reflection of external light. In addition, the process of the cap layer 230A is compatible with the process of the existing solar cell, and is not required to be removed after formation. Therefore, the cover layer 230A of the present embodiment has the advantages of simple process, in addition to protecting the solar cell (for example, avoiding scratching or dampening of the solar cell, etc.) and reducing reflection of external light.

請參照圖2D,於覆蓋層230A上形成種子層240A。在本實施例中,種子層240A除了適於將欲形成的電極層(繪示於後)與透明導電層220A電性連接外,還可作為電極層之晶種用。換言之,本實施例可透過種子層240A的圖案設計去調變電極層的電極圖案(指電極層的匯流電極與指狀電極)。由於種子層240A與欲形成的電極層是位於太陽能電池的受光面,因此,考量到欲形成的電極層遮蔽入射光的比例,種子層240A的圖案(即欲形成的電極層)不會完全覆蓋於透明導電層220A上。亦即是,種子層240A覆蓋覆蓋層230A部份的區域A1,且曝露出覆蓋層230A其餘的區域A2。 Referring to FIG. 2D, a seed layer 240A is formed on the cover layer 230A. In this embodiment, the seed layer 240A is suitable for electrically connecting the electrode layer to be formed (shown later) to the transparent conductive layer 220A, and can also be used as a seed crystal for the electrode layer. In other words, in this embodiment, the electrode pattern of the electrode layer (the bus electrode of the electrode layer and the finger electrode) can be modulated by the pattern design of the seed layer 240A. Since the seed layer 240A and the electrode layer to be formed are located on the light receiving surface of the solar cell, the pattern of the seed layer 240A (ie, the electrode layer to be formed) is not completely covered, considering the ratio of the electrode layer to be formed to shield the incident light. On the transparent conductive layer 220A. That is, the seed layer 240A covers the area A1 of the portion of the cover layer 230A and exposes the remaining area A2 of the cover layer 230A.

在本實施例中,種子層240A以疊層結構作為舉例說明。具體而言,本實施例的種子層240A包括第一子種子層242以及第二子種子層244,其中第一子種子層242介於透明導電層220A與第二子種子層244之間。 In the present embodiment, the seed layer 240A is exemplified by a laminated structure. Specifically, the seed layer 240A of the present embodiment includes a first sub-seed layer 242 and a second sub-seed layer 244 , wherein the first sub-seed layer 242 is interposed between the transparent conductive layer 220A and the second sub-seed layer 244 .

在形成第一子種子層242時,第一子種子層242的材料適於擴散至覆蓋層230A中,亦即是,第一子種子層242的材料需具備適當的擴散性,如此一來,透過第一子種子層242的材料的 選擇及覆蓋層230A的厚度T(繪示於圖2C)的設計,在未移除欲形成第一子種子層242處的覆蓋層230A下(亦即是在未移除區域A1的覆蓋層230A下),第一子種子層242亦可與透明導電層220A電性連接。在本實施例中,第一子種子層242的材料例如是銀,而形成第一子種子層242的方法可以是噴灑或網版印刷。 When the first sub-seed layer 242 is formed, the material of the first sub-seed layer 242 is adapted to diffuse into the cap layer 230A, that is, the material of the first sub-seed layer 242 needs to have appropriate diffusibility, and thus, Through the material of the first sub-seed layer 242 The design of the thickness T of the cap layer 230A (shown in FIG. 2C) is selected and the cap layer 230A at which the first sub-seed layer 242 is to be formed is not removed (ie, the cap layer 230A of the region A1 is not removed). The first sub-seed layer 242 can also be electrically connected to the transparent conductive layer 220A. In the present embodiment, the material of the first sub-seed layer 242 is, for example, silver, and the method of forming the first sub-seed layer 242 may be spray or screen printing.

第二子種子層244適於作為欲成長之電極層的晶種,因此,第二子種子層244的材料端視電極層的材料而定。舉例而言,當選擇銅為電極層的材料時,則第二子種子層244的材料可選擇與銅匹配的材料。在其他實施例中,第二子種子層244的材料也可以是鎳、銅、鋁、鈷、鈦或上述至少兩者的混合物、金屬矽化物(如矽化鎳、矽化鈷、矽化鈦)或上述至少兩種材料的堆疊層,而形成種子層的方法可以是無電鍍、電鍍、物理氣相沉積或化學氣相沉積等方法。在本實施例中,若使用鎳、銅、鋁、鈷、鈦或上述至少兩者的混合物、金屬矽化物(如矽化鎳、矽化鈷、矽化鈦)或上述至少兩種材料的堆疊層等材料取代銀的使用或降低銀的使用量,可進一步地減少製程成本。 The second sub-seed layer 244 is suitable as a seed for the electrode layer to be grown, and therefore, the material end of the second sub-seed layer 244 depends on the material of the electrode layer. For example, when copper is selected as the material of the electrode layer, the material of the second sub-seed layer 244 may be selected from materials matching copper. In other embodiments, the material of the second sub-seed layer 244 may also be nickel, copper, aluminum, cobalt, titanium or a mixture of at least two of the above, a metal telluride (such as nickel antimonide, cobalt telluride, titanium antimonide) or the above The stacked layers of at least two materials, and the method of forming the seed layer may be a method such as electroless plating, electroplating, physical vapor deposition, or chemical vapor deposition. In this embodiment, if nickel, copper, aluminum, cobalt, titanium or a mixture of at least two, a metal halide (such as nickel telluride, cobalt telluride, titanium telluride) or a stacked layer of at least two materials is used, Replacing the use of silver or reducing the amount of silver used can further reduce process costs.

需說明的是,本實施例雖以疊層結構作為舉例說明,但在其他未繪示的實施例中,種子層也可以是單層的結構。舉例而言,當選擇銀為電極層的材料時,種子層的材料可選擇以銀同時作為擴散層及晶種的材料。因此,於覆蓋層230A上形成單層的種子層後,可直接製作電極層。 It should be noted that, although the laminated structure is exemplified in the embodiment, in other embodiments not shown, the seed layer may have a single layer structure. For example, when silver is selected as the material of the electrode layer, the material of the seed layer may be selected from silver as a material of the diffusion layer and the seed crystal. Therefore, after forming a single layer seed layer on the cover layer 230A, the electrode layer can be directly fabricated.

請參照圖2E,於種子層240A上形成電極層250A。電極 層250A位於太陽能電池的受光面,且適於匯集由光電轉換層210射出的載子。此外,電極層250A可以是單層或疊層結構。在本實施例中,電極層250A以疊層結構作為舉例說明。 Referring to FIG. 2E, an electrode layer 250A is formed on the seed layer 240A. electrode The layer 250A is located on the light receiving surface of the solar cell and is adapted to collect the carriers emitted from the photoelectric conversion layer 210. Further, the electrode layer 250A may be a single layer or a laminated structure. In the present embodiment, the electrode layer 250A is exemplified by a laminated structure.

詳細而言,本實施例的電極層250A包括第一電極層252以及第二電極層254,其中第一電極層252覆蓋於種子層240A上,而第二電極層254覆蓋於第一電極層252上。第二電極層254的設置除了可避免第一電極層252氧化之外,還可作為後續太陽能電池模組組裝時的中介層(inter-layer),藉以提升附著力。 In detail, the electrode layer 250A of the present embodiment includes a first electrode layer 252 and a second electrode layer 254, wherein the first electrode layer 252 covers the seed layer 240A, and the second electrode layer 254 covers the first electrode layer 252. on. In addition to avoiding oxidation of the first electrode layer 252, the second electrode layer 254 can also serve as an inter-layer for assembly of subsequent solar cell modules, thereby improving adhesion.

在本實施例中,第一電極層252的材料可以是銀、鎳、銅、鋁、鈷、鈦或上述至少兩者的混合物、金屬矽化物(如矽化鎳、矽化鈷或矽化鈦)等具有良好導電率的材料,而第二電極層254的材料可以是錫、銀或鎳等較不易氧化的材料。此外,形成第一電極層252與第二電極層254的方法可以是無電鍍或電鍍等方法。由於銅的導電性高於銀的導電性,因此,若以銅作為第一電極層252的材料,除了可減少製程成本之外,還可進一步地提升太陽能電池的光電轉換效率及填充因子(fill factor)。 In this embodiment, the material of the first electrode layer 252 may be silver, nickel, copper, aluminum, cobalt, titanium or a mixture of at least two of the above, a metal halide (such as nickel telluride, cobalt telluride or titanium telluride). The material of the second conductivity layer 254 may be a material that is less susceptible to oxidation, such as tin, silver or nickel. Further, the method of forming the first electrode layer 252 and the second electrode layer 254 may be a method such as electroless plating or electroplating. Since the conductivity of copper is higher than the conductivity of silver, if copper is used as the material of the first electrode layer 252, in addition to reducing the process cost, the photoelectric conversion efficiency and the filling factor of the solar cell can be further improved. Factor).

在本實施例中,利用覆蓋層230A及種子層240A具有不同的無電鍍率或電鍍率,而於形成電極層250A之前,先形成覆蓋層230A及種子層240A於透明導電層220A上。因此,在形成電極層250A的過程中,電極層250A的材料會選擇性地成長於種子層240A上。如此一來,本實施例可透過種子層240A的圖案設計去調變電極層250A的電極圖案(指電極層的匯流電極與指狀電 極),而可以不用藉由網版印刷及共同燒結製程去形成電極圖案。因此,本實施例可避免因共同燒結製程(高溫製程)而對太陽能電池造成損害,進而使太陽能電池具有高信賴性。此外,本實施例還可藉由種子層240A的設置,增加電極層250A與透明導電層220A的附著力,並降低電極層250A與透明導電層220A的接觸阻值,進而使太陽能電池具有良好的光電轉換效率。 In the present embodiment, the cap layer 230A and the seed layer 240A have different electroless plating rates or plating rates, and before the electrode layer 250A is formed, the cap layer 230A and the seed layer 240A are formed on the transparent conductive layer 220A. Therefore, in the process of forming the electrode layer 250A, the material of the electrode layer 250A is selectively grown on the seed layer 240A. In this way, the embodiment can modulate the electrode pattern of the electrode layer 250A through the pattern design of the seed layer 240A (the junction electrode and the finger electrode of the electrode layer) The electrode pattern can be formed without using a screen printing and co-sintering process. Therefore, the present embodiment can avoid damage to the solar cell due to the co-sintering process (high-temperature process), thereby making the solar cell highly reliable. In addition, in this embodiment, the adhesion of the electrode layer 250A and the transparent conductive layer 220A can be increased by the setting of the seed layer 240A, and the contact resistance between the electrode layer 250A and the transparent conductive layer 220A can be reduced, thereby making the solar cell have good performance. Photoelectric conversion efficiency.

請參照圖2F,於光電轉換層210的第二表面S2上形成另一覆蓋層230B、另一種子層240B(包括第一子種子層246及第二子種子層248)以及另一電極層250B(包括第一電極層256及第二電極層258),其中形成此些膜層的方法可參照圖2C至圖2E及其對應的敘述,於此便不再贅述。於此,太陽能電池200即初步完成。 Referring to FIG. 2F, another cap layer 230B, another seed layer 240B (including the first sub-seed layer 246 and the second sub-seed layer 248), and another electrode layer 250B are formed on the second surface S2 of the photoelectric conversion layer 210. (including the first electrode layer 256 and the second electrode layer 258), wherein the method of forming the film layers can be referred to FIG. 2C to FIG. 2E and its corresponding description, and details are not described herein again. Here, the solar cell 200 is initially completed.

需說明的是,由於電極層250B位於太陽能電池200的非受光面,因此,電極層250B不會遮蔽到入射光。換言之,電極層250B的圖案設計可以具有更大的設計彈性,而種子層240B的圖案設計也可具有更大的設計彈性。在其他未繪示的實施例中,位於非受光面的種子層240B以及電極層250B的圖案設計與位於受光面的種子層240A以及電極層250A的圖案設計可以不相同,又或者,種子層240B以及電極層250B可以是全面地覆蓋於透明導電層220B上,亦即是,種子層240B直接接觸於透明導電層220B上不需要另外生成覆蓋層230B。 It should be noted that since the electrode layer 250B is located on the non-light-receiving surface of the solar cell 200, the electrode layer 250B is not shielded from incident light. In other words, the pattern design of the electrode layer 250B can have greater design flexibility, and the pattern design of the seed layer 240B can also have greater design flexibility. In other embodiments not shown, the pattern design of the seed layer 240B and the electrode layer 250B on the non-light-receiving surface may be different from the pattern design of the seed layer 240A and the electrode layer 250A on the light-receiving surface, or alternatively, the seed layer 240B And the electrode layer 250B may be completely covered on the transparent conductive layer 220B, that is, the seed layer 240B directly contacts the transparent conductive layer 220B without additionally generating the cover layer 230B.

綜上所述,本發明在透明導電層上形成覆蓋層及種子 層,藉以使電極層的材料選擇性地成長於種子層上。如此,本發明可透過種子層的圖案設計去調變電極層的電極圖案(指電極層的匯流電極與指狀電極),而可以不用藉由網版印刷及共同燒結製程去形成電極圖案。因此,可避免因共同燒結製程而對太陽能電池造成損害,進而使太陽能電池具有高信賴性。此外,本發明可藉由種子層的設置,增加電極層與透明導電層的附著力(adhesion),並降低電極層與透明導電層的接觸阻值,進而使太陽能電池具有良好的光電轉換效率。 In summary, the present invention forms a cover layer and a seed on a transparent conductive layer. a layer whereby the material of the electrode layer is selectively grown on the seed layer. Thus, the present invention can modulate the electrode pattern of the electrode layer (the junction electrode of the electrode layer and the finger electrode) through the pattern design of the seed layer, and the electrode pattern can be formed without the screen printing and the co-sintering process. Therefore, damage to the solar cell due to the co-sintering process can be avoided, and the solar cell can be highly reliable. In addition, the present invention can increase the adhesion of the electrode layer and the transparent conductive layer by the arrangement of the seed layer, and reduce the contact resistance between the electrode layer and the transparent conductive layer, thereby enabling the solar cell to have good photoelectric conversion efficiency.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,例如是將上述電極圖案的形成方法(包括覆蓋層及種子層的製作)應用於薄膜太陽能電池或III-V族太陽能電池中,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some modifications and refinements, for example, without departing from the spirit and scope of the invention. The method for forming the above electrode pattern (including the fabrication of the cover layer and the seed layer) is applied to a thin film solar cell or a III-V solar cell, and the scope of protection of the present invention is defined by the scope of the appended patent application. quasi.

200‧‧‧太陽能電池 200‧‧‧ solar cells

210‧‧‧光電轉換層 210‧‧‧ photoelectric conversion layer

212‧‧‧矽基材 212‧‧‧矽 substrate

214A、214B‧‧‧鈍化層 214A, 214B‧‧‧ Passivation layer

216A‧‧‧第一型半導體層 216A‧‧‧first type semiconductor layer

216B‧‧‧第二型半導體層 216B‧‧‧Second type semiconductor layer

220A、220B‧‧‧透明導電層 220A, 220B‧‧‧ transparent conductive layer

230A、230B‧‧‧覆蓋層 230A, 230B‧‧ ‧ overlay

240A、240B‧‧‧種子層 240A, 240B‧‧‧ seed layer

242、246‧‧‧第一子種子層 242, 246‧‧‧ first seed layer

244、248‧‧‧第二子種子層 244, 248‧‧‧ second seed layer

250A、250B‧‧‧電極層 250A, 250B‧‧‧ electrode layer

252、256‧‧‧第一電極層 252, 256‧‧‧ first electrode layer

254、258‧‧‧第二電極層 254, 258‧‧‧ second electrode layer

S1‧‧‧第一表面 S1‧‧‧ first surface

S2‧‧‧第二表面 S2‧‧‧ second surface

Claims (14)

一種太陽能電池的製造方法,包括:提供一光電轉換層;於該光電轉換層相對的一第一表面與一第二表面上分別形成一透明導電層;於各該透明導電層上形成一覆蓋層;於各該覆蓋層上形成一種子層;以及於各該種子層上形成一電極層,其中各該覆蓋層的厚度介於50至850埃之間,而使得各該電極層得以分別透過擴散至該覆蓋層中的該種子層而與對應的該透明導電層電性連接。 A method for manufacturing a solar cell, comprising: providing a photoelectric conversion layer; forming a transparent conductive layer on a first surface and a second surface opposite to the photoelectric conversion layer; forming a coating layer on each of the transparent conductive layers Forming a sub-layer on each of the cover layers; and forming an electrode layer on each of the seed layers, wherein each of the cover layers has a thickness of between 50 and 850 angstroms, so that the electrode layers are respectively diffused and diffused The seed layer in the cover layer is electrically connected to the corresponding transparent conductive layer. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中該光電轉換層是由P型半導體層及N型半導體層堆疊形成的PN接面結構,或由P型半導體層、本質層、N型半導體層堆疊形成的PIN接面結構。 The method for manufacturing a solar cell according to claim 1, wherein the photoelectric conversion layer is a PN junction structure formed by stacking a P-type semiconductor layer and an N-type semiconductor layer, or a P-type semiconductor layer, an intrinsic layer, A PIN junction structure formed by stacking N-type semiconductor layers. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中該透明導電層的材料包括金屬氧化物。 The method of manufacturing a solar cell according to claim 1, wherein the material of the transparent conductive layer comprises a metal oxide. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中該覆蓋層的材料包括氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層。 The method for manufacturing a solar cell according to claim 1, wherein the material of the cover layer comprises ruthenium oxide, tantalum nitride, ruthenium oxynitride, ruthenium aluminum oxide or a stacked layer of at least two materials. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中該種子層的材料包括銀,且形成該種子層的方法包括噴灑、噴射或網版印刷。 The method of manufacturing a solar cell according to claim 1, wherein the material of the seed layer comprises silver, and the method of forming the seed layer comprises spraying, spraying or screen printing. 如申請專利範圍第5項所述的太陽能電池的製造方法,其中各該種子層為一疊層結構,且該種子層的材料還包括鎳、鋁、鈷、鈦、或上述至少兩者的混合物、矽化鎳、矽化鈷、矽化鈦或上述至少兩種材料的堆疊層,且形成該種子層的方法還包括無電鍍、電鍍、物理氣相沉積或化學氣相沉積。 The method for manufacturing a solar cell according to claim 5, wherein each of the seed layers is a laminated structure, and the material of the seed layer further comprises nickel, aluminum, cobalt, titanium, or a mixture of at least two of the foregoing. a nickel-deposited nickel, cobalt telluride, titanium telluride or a stacked layer of at least two of the above materials, and the method of forming the seed layer further comprises electroless plating, electroplating, physical vapor deposition or chemical vapor deposition. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中該電極層包括一第一電極層以及一第二電極層,該第一電極層覆蓋於該種子層上,且該第二電極層覆蓋於該第一電極層上,該第一電極層的材料包括銀、鎳、銅、鋁、鈦、鈷或上述至少兩者的混合物、矽化鎳、、矽化鈷或矽化鈦,而該第二電極層的材料包括錫、銀或鎳。 The method for manufacturing a solar cell according to claim 1, wherein the electrode layer comprises a first electrode layer and a second electrode layer, the first electrode layer covers the seed layer, and the second electrode a layer covering the first electrode layer, the material of the first electrode layer comprises silver, nickel, copper, aluminum, titanium, cobalt or a mixture of at least two of the above, nickel telluride, cobalt telluride or titanium telluride, and the first The material of the two electrode layers includes tin, silver or nickel. 一種太陽能電池,包括:一光電轉換層;一透明導電層,配置於該光電轉換層的一第一表面上;一覆蓋層,配置於該透明導電層上,其中該覆蓋層的厚度介於50至850埃之間;一種子層,配置於該透明導電層上,且與該透明導電層電性連接;一電極層,配置於該種子層上;另一透明導電層,配置於該光電轉換層的一第二表面上,其中該第一表面與該第二表面彼此相對;另一覆蓋層,配置於該另一透明導電層上,其中該另一覆蓋 層的厚度介於50至850埃之間;另一種子層,配置於該另一透明導電層上,且與該另一透明導電層電性連接;以及另一電極層,配置於該另一種子層上。 A solar cell comprising: a photoelectric conversion layer; a transparent conductive layer disposed on a first surface of the photoelectric conversion layer; a cover layer disposed on the transparent conductive layer, wherein the cover layer has a thickness of 50 Between 850 angstroms; a sub-layer disposed on the transparent conductive layer and electrically connected to the transparent conductive layer; an electrode layer disposed on the seed layer; and another transparent conductive layer disposed on the photoelectric conversion a second surface of the layer, wherein the first surface and the second surface are opposite to each other; another cover layer disposed on the other transparent conductive layer, wherein the another cover The thickness of the layer is between 50 and 850 angstroms; another seed layer is disposed on the other transparent conductive layer and electrically connected to the other transparent conductive layer; and another electrode layer is disposed on the other On the seed layer. 如申請專利範圍第8項所述的太陽能電池,其中該光電轉換層是由P型半導體層及N型半導體層堆疊形成的PN接面結構,或由P型半導體層、本質層、N型半導體層堆疊形成的PIN接面結構。 The solar cell according to claim 8, wherein the photoelectric conversion layer is a PN junction structure formed by stacking a P-type semiconductor layer and an N-type semiconductor layer, or a P-type semiconductor layer, an intrinsic layer, an N-type semiconductor The PIN junction structure formed by layer stacking. 如申請專利範圍第8項所述的太陽能電池,其中該透明導電層以及該另一透明導電層的材料包括金屬氧化物。 The solar cell of claim 8, wherein the transparent conductive layer and the material of the other transparent conductive layer comprise a metal oxide. 如申請專利範圍第8項所述的太陽能電池,其中該覆蓋層以及該另一覆蓋層的材料包括氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層。 The solar cell of claim 8, wherein the cover layer and the material of the other cover layer comprise ruthenium oxide, tantalum nitride, bismuth oxynitride, lanthanum aluminum oxide or a stacked layer of at least two of the above materials. . 如申請專利範圍第8項所述的太陽能電池,其中該種子層以及該另一種子層的材料包括銀。 The solar cell of claim 8, wherein the seed layer and the material of the other seed layer comprise silver. 如申請專利範圍第12項所述的太陽能電池,其中該種子層以及該另一種子層分別為一疊層結構,且該種子層以及該另一種子層的材料還包括鎳、銅、鋁、鈷、鈦或上述至少兩者的混合物、矽化鎳、矽化鈷、矽化鈦或上述至少兩種材料的堆疊層。 The solar cell of claim 12, wherein the seed layer and the other seed layer are each a laminated structure, and the seed layer and the material of the other seed layer further comprise nickel, copper, aluminum, Cobalt, titanium or a mixture of at least two of the foregoing, nickel telluride, cobalt telluride, titanium telluride or a stacked layer of at least two of the above materials. 如申請專利範圍第8項所述的太陽能電池,其中該電極層包括第一電極層以及第二電極層,該第一電極層覆蓋於該種子層上,且該第二電極層覆蓋於該第一電極層上,該第一電極層的 材料包括銀、鎳、銅、鋁、鈷、鈦或上述至少兩者的混合物、矽化鎳、矽化鈷或矽化鈦,而該第二電極層的材料包括錫、銀或鎳。 The solar cell of claim 8, wherein the electrode layer comprises a first electrode layer and a second electrode layer, the first electrode layer covers the seed layer, and the second electrode layer covers the On an electrode layer, the first electrode layer The material includes silver, nickel, copper, aluminum, cobalt, titanium or a mixture of at least two of the foregoing, nickel telluride, cobalt telluride or titanium telluride, and the material of the second electrode layer comprises tin, silver or nickel.
TW102114381A 2013-04-23 2013-04-23 Solar cell and manufacturing method thereof TWI508311B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102114381A TWI508311B (en) 2013-04-23 2013-04-23 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102114381A TWI508311B (en) 2013-04-23 2013-04-23 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201442258A true TW201442258A (en) 2014-11-01
TWI508311B TWI508311B (en) 2015-11-11

Family

ID=52423021

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102114381A TWI508311B (en) 2013-04-23 2013-04-23 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI508311B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633284B2 (en) * 2010-01-25 2014-12-03 日立化成株式会社 Electrode paste composition and solar cell
TWI495121B (en) * 2010-07-09 2015-08-01 Sakamoto Jun A panel, a panel manufacturing method, a solar cell module, a printing apparatus, and a printing method
JP5011428B2 (en) * 2010-10-07 2012-08-29 昭栄化学工業株式会社 Solar cell element and method for manufacturing the same
TW201310671A (en) * 2011-08-31 2013-03-01 Tsec Corp Structure of photovoltaic cell

Also Published As

Publication number Publication date
TWI508311B (en) 2015-11-11

Similar Documents

Publication Publication Date Title
US10573770B2 (en) Solar cell and method of manufacturing the same
US11462655B2 (en) Tandem solar cell and method of manufacturing the same
US9082920B2 (en) Back contact solar cell and manufacturing method thereof
EP2219222B1 (en) Solar cell and method for manufacturing the same
US8779280B2 (en) Solar cell and method of manufacturing the same
US11251319B2 (en) Solar cell
KR100974226B1 (en) Backside surface passivation and reflection layer for Si solar cell by high-k dielectrics
US20090223560A1 (en) Solar cell and method for manufacturing the same
US20160126401A1 (en) Tandem photovoltaic device
CN104157726B (en) Solar energy battery and manufacture method thereof
KR101867969B1 (en) Hetero junction solar cell
US20120097236A1 (en) Solar cell
US20170162725A1 (en) Solar cell
CN104157742A (en) Solar cell and manufacturing method thereof
US20130125980A1 (en) Device for generating photovoltaic power and manufacturing method for same
US20160087134A1 (en) Solar cell apparatus and method of fabricating the same
TW201442260A (en) Solar cell and manufacturing method thereof
JP2012231142A (en) Solar cell
CN103907199B (en) Solaode and preparation method thereof
TWI508311B (en) Solar cell and manufacturing method thereof
KR101251870B1 (en) Solar cell apparatus and method of fabricating the same
KR20180079986A (en) Solar cell
KR101349596B1 (en) Solar cell and method of fabricating the same
CN104054182A (en) Solar cell apparatus and method of fabricating the same
JP2013522926A (en) Photovoltaic power generation apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees