TW201442260A - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201442260A
TW201442260A TW102114378A TW102114378A TW201442260A TW 201442260 A TW201442260 A TW 201442260A TW 102114378 A TW102114378 A TW 102114378A TW 102114378 A TW102114378 A TW 102114378A TW 201442260 A TW201442260 A TW 201442260A
Authority
TW
Taiwan
Prior art keywords
layer
electrode
light transmissive
solar cell
seed
Prior art date
Application number
TW102114378A
Other languages
Chinese (zh)
Inventor
Wu-Chun Kao
Li-Wei Cheng
Tian-Fu Chiang
Original Assignee
Topcell Solar Internat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcell Solar Internat Co Ltd filed Critical Topcell Solar Internat Co Ltd
Priority to TW102114378A priority Critical patent/TW201442260A/en
Publication of TW201442260A publication Critical patent/TW201442260A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A solar cell and a manufacturing method thereof are provided, wherein the manufacturing method includes following steps. A photoelectric conversion layer is provided. An transparent layer is formed on a first surface and a second surface of the photoelectric conversion layer, the second surface is opposite to the first surface, wherein the transparent layer located on the first surface has an electrode area and a non-electrode area connecting to the electrode area. A mask layer is formed on the transparent layer located on the first surface to shelter the non-electrode area and to expose the electrode area. A seed layer and an electrode layer are formed in succession within the electrode area, wherein the electrode layer is in direct contact with the transparent layer located on the first surface and located between the electrode layer and the transparent layer located on the first surface. The mask layer is removed. Another seed layer and another electrode layer are formed in succession on the second surface of the photoelectric conversion layer.

Description

太陽能電池及其製造方法 Solar cell and method of manufacturing same

本發明是有關於一種光電轉換元件及其製造方法,且特別是有關於一種太陽能電池及其製造方法。 The present invention relates to a photoelectric conversion element and a method of fabricating the same, and more particularly to a solar cell and a method of fabricating the same.

近年來環保意識高漲,為了因應石化能源的短缺與減低使用石化能源對環境帶來的衝擊,替代能源與再生能源的研發便成了熱門的議題,其中又以太陽能電池(solar cells)最受矚目。太陽能電池可將太陽能直接轉換成電能,且發電過程中不會產生二氧化碳或氮化物等有害物質,不會對環境造成污染。 In recent years, environmental awareness has risen. In response to the shortage of petrochemical energy and the impact of the use of petrochemical energy on the environment, the research and development of alternative energy and renewable energy has become a hot topic, among which solar cells are the most popular. . Solar cells convert solar energy directly into electrical energy, and do not generate harmful substances such as carbon dioxide or nitride during power generation, and do not pollute the environment.

太陽能電池通常包括光電轉換層以及位於光電轉換層兩側的電極層。一般而言,配置於受光面上的電極層除了要能有效地收集載子,還要儘量減少電極層遮蔽入射光的比例。因此,位於受光面的電極層一般會設計成具有特殊圖案的結構,例如是從匯流電極(busbar)延伸出多條很細的指狀(finger)電極。習知欲形成所述電極圖案(指匯流電極與指狀電極),通常是藉由網版印刷(screen printing)搭配共同燒結製程,以將圖案化的膠狀的電極層 材料固化成電極圖案。 Solar cells typically include a photoelectric conversion layer and electrode layers on either side of the photoelectric conversion layer. In general, in addition to the effective collection of the carrier, the electrode layer disposed on the light receiving surface should minimize the proportion of the electrode layer shielding the incident light. Therefore, the electrode layer on the light receiving surface is generally designed to have a special pattern structure, for example, a plurality of very fine finger electrodes extending from a bus bar. It is conventional to form the electrode pattern (referring to the bus electrode and the finger electrode), usually by screen printing with a co-sintering process to pattern the gel-like electrode layer The material solidifies into an electrode pattern.

然而,共同燒結製程屬高溫製程(超過攝氏700度),其容易損害太陽能電池內的膜層或將太陽能電池內的膜層改質,例如是使異質接面(Hetero-junction)矽基太陽能電池中的非晶矽半導體層結晶化(crystalline)。此外,電極層中指狀電極或匯流電極的寬度亦會受限於高溫製程,而無法進一步地減縮,進而侷限了太陽能電池的光電轉換效率。另一方面,倘若降低共同燒結製程的溫度,則會影響電極層的品質。是以,如何提升太陽能電池的信賴性(亦即如何降低電極層的製程對於太陽能電池內的膜層的損害或避免太陽能電池內的膜層改質),並進一步地提升太陽能電池的光電轉換效率,實為未來的趨勢。 However, the co-sintering process is a high-temperature process (over 700 degrees Celsius), which easily damages the film layer in the solar cell or modifies the film layer in the solar cell, for example, a Hetero-junction-based solar cell. The amorphous germanium semiconductor layer is crystallized. In addition, the width of the finger electrode or the bus electrode in the electrode layer is also limited by the high temperature process, and cannot be further reduced, thereby limiting the photoelectric conversion efficiency of the solar cell. On the other hand, if the temperature of the co-sintering process is lowered, the quality of the electrode layer is affected. Therefore, how to improve the reliability of the solar cell (that is, how to reduce the damage of the electrode layer to the film layer in the solar cell or to avoid the film layer modification in the solar cell), and further improve the photoelectric conversion efficiency of the solar cell. It is a trend in the future.

本發明提供一種太陽能電池的製造方法,其可製作出信賴性高且光電轉換效率佳的太陽能電池。 The present invention provides a method for producing a solar cell, which can produce a solar cell having high reliability and excellent photoelectric conversion efficiency.

本發明提供一種太陽能電池,其具有高信賴性及良好的光電轉換效率。 The present invention provides a solar cell which has high reliability and good photoelectric conversion efficiency.

本發明的一種太陽能電池的製造方法,包括以下步驟。提供光電轉換層。於光電轉換層相對的第一表面與第二表面上分別形成透光層,其中第一表面上的透光層具有電極區以及鄰接電極區的至少一非電極區。於第一表面上的透光層上形成罩幕層,以遮蔽非電極區,並曝露出電極區。於電極區內相繼形成種子層 以及電極層,其中種子層與第一表面上的透光層直接接觸並位於透光層與電極層之間。移除罩幕層。於光電轉換層的第二表面上的透光層上相繼形成另一種子層以及另一電極層。 A method of manufacturing a solar cell of the present invention comprises the following steps. A photoelectric conversion layer is provided. A light transmissive layer is respectively formed on the first surface and the second surface opposite to the photoelectric conversion layer, wherein the light transmissive layer on the first surface has an electrode region and at least one non-electrode region adjacent to the electrode region. A mask layer is formed on the light transmissive layer on the first surface to shield the non-electrode region and expose the electrode region. Seed layers are successively formed in the electrode region And an electrode layer, wherein the seed layer is in direct contact with the light transmissive layer on the first surface and is located between the light transmissive layer and the electrode layer. Remove the mask layer. Another seed layer and another electrode layer are successively formed on the light transmissive layer on the second surface of the photoelectric conversion layer.

在本發明的一實施例中,上述的光電轉換層是由P型半導體層及N型半導體層堆疊形成的PN接面結構,或由P型半導體層、本質層、N型半導體層堆疊形成的PIN接面結構。 In an embodiment of the invention, the photoelectric conversion layer is a PN junction structure formed by stacking a P-type semiconductor layer and an N-type semiconductor layer, or is formed by stacking a P-type semiconductor layer, an intrinsic layer, and an N-type semiconductor layer. PIN junction structure.

在本發明的一實施例中,上述的罩幕層與第一表面上的透光層直接接觸,且罩幕層的材料包括聚合物(polymer)。 In an embodiment of the invention, the mask layer is in direct contact with the light transmissive layer on the first surface, and the material of the mask layer comprises a polymer.

在本發明的一實施例中,上述的透光層為透明導電層,且透光層的材料包括金屬氧化物。 In an embodiment of the invention, the light transmissive layer is a transparent conductive layer, and the material of the light transmissive layer comprises a metal oxide.

在本發明的一實施例中,上述的透光層為絕緣層,且透光層的材料包括氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層。位於透光層上的種子層會擴散至電極區中並與光電轉換層電性連接。 In an embodiment of the invention, the light transmissive layer is an insulating layer, and the material of the light transmissive layer comprises tantalum oxide, tantalum nitride, hafnium oxynitride, hafnium aluminum oxide or a stacked layer of at least two materials. The seed layer on the light transmissive layer diffuses into the electrode region and is electrically connected to the photoelectric conversion layer.

在本發明的一實施例中,上述的種子層以及另一種子層的材料包括銀、鎳、鋁、鈦、鈷或上述至少兩種材料的混合物、矽化鎳、矽化鈷、矽化鈦或上述至少兩種材料的堆疊層,且形成種子層、另一種子層、電極層以及另一電極層的方法包括無電鍍(electroless)、電鍍(electroplating)、物理氣相沉積(Physical Vapor Deposition,PVD)或化學氣相沉積(Chemical Vapor Deposition,CVD)。 In an embodiment of the invention, the seed layer and the material of the other seed layer comprise silver, nickel, aluminum, titanium, cobalt or a mixture of at least two materials, nickel telluride, cobalt telluride, titanium telluride or at least the above A method of stacking two materials, and forming a seed layer, another seed layer, an electrode layer, and another electrode layer includes electroless, electroplating, physical Vapor Deposition (PVD), or Chemical Vapor Deposition (CVD).

在本發明的一實施例中,上述的電極層以及另一電極層 分別包括第一電極層以及第二電極層。第一電極層覆蓋於種子層上,且第二電極層覆蓋於第一電極層上。第一電極層的材料包括銀、鎳、銅、鋁、鈦、鈷或上述至少兩種材料的混合物、矽化鎳、矽化鈷或矽化鈦,而第二電極層的材料包括錫、銀或鎳。 In an embodiment of the invention, the electrode layer and the other electrode layer are A first electrode layer and a second electrode layer are respectively included. The first electrode layer covers the seed layer, and the second electrode layer covers the first electrode layer. The material of the first electrode layer includes silver, nickel, copper, aluminum, titanium, cobalt or a mixture of at least two materials, nickel antimonide, cobalt telluride or titanium telluride, and the material of the second electrode layer includes tin, silver or nickel.

在本發明的一實施例中,上述形成另一種子層以及另一電極層的方法分別與形成種子層以及電極層的方法相同。 In an embodiment of the invention, the method of forming another seed layer and the other electrode layer is the same as the method of forming the seed layer and the electrode layer, respectively.

在本發明的一實施例中,上述的另一透光層具有電極區以及鄰接該電極區的至少非電極區,且在形成另一種子層以及另一電極層之前,更包括於第二表面上的透光層上形成另一罩幕層,且另一罩幕層遮蔽非電極區,且曝露出電極區。 In an embodiment of the invention, the other light transmissive layer has an electrode region and at least a non-electrode region adjacent to the electrode region, and is further included on the second surface before forming another seed layer and another electrode layer. Another mask layer is formed on the upper light transmissive layer, and the other mask layer shields the non-electrode region and exposes the electrode region.

本發明的一種太陽能電池包括光電轉換層、透光層、種子層、電極層、另一透光層、另一種子層以及另一電極層。透光層配置於光電轉換層的第一表面上,其中透光層具有電極區以及鄰接電極區的至少一非電極區。種子層配置於電極區內,並曝露出透光層的非電極區。電極層配置於種子層上。另一透光層配置於光電轉換層相對於第一表面的第二表面上。另一種子層配置於另一透光層上。另一電極層配置於另一種子層上。 A solar cell of the present invention includes a photoelectric conversion layer, a light transmissive layer, a seed layer, an electrode layer, another light transmissive layer, another seed layer, and another electrode layer. The light transmissive layer is disposed on the first surface of the photoelectric conversion layer, wherein the light transmissive layer has an electrode region and at least one non-electrode region adjacent to the electrode region. The seed layer is disposed in the electrode region and exposes the non-electrode region of the light transmissive layer. The electrode layer is disposed on the seed layer. Another light transmissive layer is disposed on the second surface of the photoelectric conversion layer relative to the first surface. Another seed layer is disposed on the other light transmissive layer. The other electrode layer is disposed on another seed layer.

在本發明的一實施例中,上述的光電轉換層是由P型半導體層及N型半導體層堆疊形成的PN接面結構,或由P型半導體層、本質層、N型半導體層堆疊形成的PIN接面結構。 In an embodiment of the invention, the photoelectric conversion layer is a PN junction structure formed by stacking a P-type semiconductor layer and an N-type semiconductor layer, or is formed by stacking a P-type semiconductor layer, an intrinsic layer, and an N-type semiconductor layer. PIN junction structure.

在本發明的一實施例中,上述的透光層為透明導電層,且透光層的材料包括金屬氧化物。 In an embodiment of the invention, the light transmissive layer is a transparent conductive layer, and the material of the light transmissive layer comprises a metal oxide.

在本發明的一實施例中,上述的透光層為絕緣層,且透 光層的材料包括氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層。位於透光層上的種子層會擴散至電極區中並與光電轉換層電性連接。 In an embodiment of the invention, the light transmissive layer is an insulating layer and is transparent. The material of the light layer includes ruthenium oxide, tantalum nitride, ruthenium oxynitride, ruthenium aluminum oxide or a stacked layer of at least two of the above materials. The seed layer on the light transmissive layer diffuses into the electrode region and is electrically connected to the photoelectric conversion layer.

在本發明的一實施例中,上述的種子層以及另一種子層 的材料包括銀、鎳、鋁、鈦、鈷或上述至少兩種材料的混合物、矽化鎳、矽化鈷、矽化鈦或上述至少兩種材料的堆疊層。 In an embodiment of the invention, the seed layer and another seed layer are The material includes silver, nickel, aluminum, titanium, cobalt or a mixture of at least two of the above materials, nickel telluride, cobalt telluride, titanium telluride or a stacked layer of at least two of the above materials.

在本發明的一實施例中,上述的電極層以及另一電極層 分別包括第一電極層以及第二電極層。第一電極層覆蓋於種子層上,且第二電極層覆蓋於第一電極層上。第一電極層的材料包括銀、鎳、銅、鋁、鈦、鈷或上述至少兩種材料的混合物、矽化鎳、矽化鈷或矽化鈦,而第二電極層的材料包括錫、銀或鎳。 In an embodiment of the invention, the electrode layer and the other electrode layer are A first electrode layer and a second electrode layer are respectively included. The first electrode layer covers the seed layer, and the second electrode layer covers the first electrode layer. The material of the first electrode layer includes silver, nickel, copper, aluminum, titanium, cobalt or a mixture of at least two materials, nickel antimonide, cobalt telluride or titanium telluride, and the material of the second electrode layer includes tin, silver or nickel.

在本發明的一實施例中,上述的另一透光層具有電極區 以及鄰接電極區的至少一非電極區,且另一種子層配置於電極區內,與另一透光層直接接觸,並曝露出另一透光層的非電極區。 In an embodiment of the invention, the other light transmissive layer has an electrode region And at least one non-electrode region adjacent to the electrode region, and another seed layer disposed in the electrode region, in direct contact with the other light transmissive layer, and exposing the non-electrode region of the other light transmissive layer.

基於上述,本發明在形成電極層之前,先於透光層上形 成罩幕層,以遮蔽非電極區並曝露出電極區(即欲形成電極層的區域),並在形成電極層之後移除罩幕層。如此一來,本發明可透過罩幕層的圖案設計去調變電極圖案(指電極層的匯流電極與指狀電極),而可以不用藉由網版印刷及共同燒結製程去形成電極圖案。因此,本發明可避免因共同燒結製程而對太陽能電池造成損害或改質,而使太陽能電池具有高信賴性。另一方面,本發明亦 無須受限於高溫製程,而使電極圖案的寬度得以進一步地減縮,進而使太陽能電池具有良好的光電轉換效率。 Based on the above, the present invention precedes the formation of the light transmissive layer before forming the electrode layer The mask layer is masked to shield the non-electrode regions and expose the electrode regions (i.e., the regions where the electrode layers are to be formed), and the mask layer is removed after the electrode layers are formed. In this way, the present invention can modulate the electrode pattern (the junction electrode of the electrode layer and the finger electrode) through the pattern design of the mask layer, and the electrode pattern can be formed without the screen printing and the co-sintering process. Therefore, the present invention can avoid damage or modification of the solar cell due to the co-sintering process, and the solar cell has high reliability. On the other hand, the invention also The width of the electrode pattern can be further reduced without being limited by the high temperature process, thereby making the solar cell have good photoelectric conversion efficiency.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、200、300、400‧‧‧太陽能電池 100, 200, 300, 400‧‧‧ solar cells

110、410‧‧‧光電轉換層 110,410‧‧‧ photoelectric conversion layer

112‧‧‧矽基材 112‧‧‧矽 substrate

114A、114B‧‧‧鈍化層 114A, 114B‧‧‧ Passivation layer

116A‧‧‧第一型半導體層 116A‧‧‧First type semiconductor layer

116B‧‧‧第二型半導體層 116B‧‧‧Second type semiconductor layer

120A、120B、420A、420B‧‧‧透光層 120A, 120B, 420A, 420B‧‧‧ light transmission layer

130、430‧‧‧罩幕層 130, 430‧‧ ‧ cover layer

140A、140B、140C、440A、440B、440C‧‧‧種子層 140A, 140B, 140C, 440A, 440B, 440C‧‧‧ seed layers

150A、150B、150C、450A、450B、450C‧‧‧電極層 150A, 150B, 150C, 450A, 450B, 450C‧‧‧ electrode layers

152、156、452、456‧‧‧第一電極層 152, 156, 452, 456‧‧‧ first electrode layer

154、158、454、458‧‧‧第二電極層 154, 158, 454, 458‧‧‧ second electrode layer

A1‧‧‧電極區 A1‧‧‧electrode zone

A2‧‧‧非電極區 A2‧‧‧ non-electrode area

S1‧‧‧第一表面 S1‧‧‧ first surface

S2‧‧‧第二表面 S2‧‧‧ second surface

圖1A至圖1G是依照本發明一實施例的太陽能電池的製作流程的剖面示意圖。 1A to 1G are schematic cross-sectional views showing a manufacturing process of a solar cell according to an embodiment of the present invention.

圖2A至圖2F是圖1A至圖1F的上視示意圖。 2A to 2F are top schematic views of Figs. 1A to 1F.

圖3是本發明另一實施例的太陽能電池的剖面示意圖。 3 is a schematic cross-sectional view showing a solar cell according to another embodiment of the present invention.

圖4A至圖4F是依照本發明又一實施例的太陽能電池的製作流程的剖面示意圖。 4A to 4F are schematic cross-sectional views showing a manufacturing process of a solar cell according to still another embodiment of the present invention.

圖5是本發明再一實施例的太陽能電池的剖面示意圖。 Fig. 5 is a cross-sectional view showing a solar cell according to still another embodiment of the present invention.

圖1A至圖1G是依照本發明一實施例的太陽能電池的製作流程的剖面示意圖。圖2A至圖2F是圖1A至圖1F實施例的太陽能電池的上視示意圖。在圖2A至圖2F中,若膜層之邊界實質上與其他膜層重疊時,上視示意圖中僅標示位於最上層的膜層。因此,圖2A至圖2F省略了部分膜層之標示,故請同時參照相對應之剖面示意圖(即圖1A至圖1F)。 1A to 1G are schematic cross-sectional views showing a manufacturing process of a solar cell according to an embodiment of the present invention. 2A to 2F are top plan views of the solar cell of the embodiment of Figs. 1A to 1F. In FIGS. 2A to 2F, if the boundary of the film layer substantially overlaps with other film layers, only the film layer located at the uppermost layer is indicated in the top view. Therefore, FIG. 2A to FIG. 2F omits the indication of a part of the film layer, so please refer to the corresponding cross-sectional schematic view (ie, FIG. 1A to FIG. 1F).

請參照圖1A及圖2A,提供光電轉換層110,其中光電 轉換層110具有相對的第一表面S1與第二表面S2。第一表面S1例如是受光面,亦即是,面向外界光線(未繪示,例如太陽光)以吸收光子的表面,而第二表面S2例如是非受光面,亦即是背對外界光線的表面。 Referring to FIG. 1A and FIG. 2A, a photoelectric conversion layer 110 is provided, wherein the photoelectric The conversion layer 110 has opposing first and second surfaces S1 and S2. The first surface S1 is, for example, a light receiving surface, that is, a surface facing external light (not shown, for example, sunlight) to absorb photons, and the second surface S2 is, for example, a non-light receiving surface, that is, a surface facing away from external light. .

光電轉換層110可以是由P型半導體層及N型半導體層 堆疊形成的PN接面結構,或是由P型半導體層、本質層、N型半導體層堆疊形成的PIN接面結構。 The photoelectric conversion layer 110 may be a P-type semiconductor layer and an N-type semiconductor layer A PN junction structure formed by stacking, or a PIN junction structure formed by stacking a P-type semiconductor layer, an intrinsic layer, and an N-type semiconductor layer.

舉例而言,光電轉換層110例如是包括矽基材112、鈍化 層114A、114B、第一型半導體層116A及第二型半導體層116B,其中第一型半導體層116A及第二型半導體層116B分別位於矽基材112的相對兩表面,且鈍化層114A位於第一型半導體層116A與矽基材112之間,而鈍化層114B位於第二型半導體層116B與矽基材112之間。在本實施例中,第一型半導體層116A與鈍化層114A具有一接觸面,且第一型半導體層116A相對於接觸面的表面為光電轉換層110的第一表面S1。另一方面,第二型半導體層116B與鈍化層114B也具有一接觸面,且第二型半導體層116B相對於接觸面的表面為光電轉換層110的第二表面S2。 For example, the photoelectric conversion layer 110 includes, for example, a germanium substrate 112, passivated. The layers 114A and 114B, the first type semiconductor layer 116A and the second type semiconductor layer 116B, wherein the first type semiconductor layer 116A and the second type semiconductor layer 116B are respectively located on opposite surfaces of the germanium substrate 112, and the passivation layer 114A is located at the first The first semiconductor layer 116A is between the germanium substrate 112 and the passivation layer 114B is between the second semiconductor layer 116B and the germanium substrate 112. In the present embodiment, the first type semiconductor layer 116A has a contact surface with the passivation layer 114A, and the surface of the first type semiconductor layer 116A with respect to the contact surface is the first surface S1 of the photoelectric conversion layer 110. On the other hand, the second type semiconductor layer 116B and the passivation layer 114B also have a contact surface, and the surface of the second type semiconductor layer 116B with respect to the contact surface is the second surface S2 of the photoelectric conversion layer 110.

在本實施例中,矽基材112例如是P型矽基材或N型矽 基材。鈍化層114A、114B、第一型半導體層116A及第二型半導體層116B例如是非晶矽半導體層,且例如是以電漿增益化學氣相沈積的方法製成。第一型半導體層116A及第二型半導體層116B 其中一者為N型半導體層,且第一型半導體層116A及第二型半導體層116B其中另一者為P型半導體層。 In the present embodiment, the crucible substrate 112 is, for example, a P-type crucible substrate or an N-type crucible. Substrate. The passivation layers 114A, 114B, the first type semiconductor layer 116A, and the second type semiconductor layer 116B are, for example, amorphous germanium semiconductor layers, and are formed, for example, by plasma gain chemical vapor deposition. First type semiconductor layer 116A and second type semiconductor layer 116B One of them is an N-type semiconductor layer, and the other of the first type semiconductor layer 116A and the second type semiconductor layer 116B is a P-type semiconductor layer.

需說明的是,本實施例雖以矽基太陽能電池(Si based solar cell)的光電轉換層作為舉例說明,但光電轉換層的類型端視太陽能電池的種類而定,因此本發明並不限定光電轉換層的類型。 It should be noted that although the photoelectric conversion layer of a silicon-based solar cell is exemplified in the present embodiment, the type of the photoelectric conversion layer depends on the type of the solar cell, and thus the present invention does not limit the photoelectricity. The type of conversion layer.

另外,為了提高吸收光子的能力,並降低外界光線的反射,本實施例還可選擇性地對矽基材112的受光面(例如是矽基材112與鈍化層114A接觸的表面)進行表面織化製程,而形成織化表面。所述表面織化製程例如是,但不限於,使用氫氧化鉀(KOH)溶液來進行之。 In addition, in order to improve the ability to absorb photons and reduce the reflection of external light, the present embodiment can also selectively surface-weld the light-receiving surface of the base material 112 (for example, the surface of the base material 112 and the passivation layer 114A). The process is formed to form a textured surface. The surface weaving process is, for example, but not limited to, carried out using a potassium hydroxide (KOH) solution.

請參照圖1B及圖2B,於光電轉換層110的第一表面S1上形成透光層120A,且於光電轉換層110的第二表面S2上形成另一透光層120B,其中透光層120A具有電極區A1以及鄰接電極區A1的多個非電極區A2。此處,電極區A1即之後欲配置電極層(未繪示,容後說明)的區域,而非電極區A2即在形成電極層之後未被電極層所覆蓋的區域,亦即是,在形成電極層之後,電極層會曝露出非透光層120A的非電極區A2。 Referring to FIG. 1B and FIG. 2B, a light transmissive layer 120A is formed on the first surface S1 of the photoelectric conversion layer 110, and another light transmissive layer 120B is formed on the second surface S2 of the photoelectric conversion layer 110, wherein the light transmissive layer 120A A plurality of non-electrode regions A2 having an electrode region A1 and an adjacent electrode region A1. Here, the electrode region A1 is a region where an electrode layer (not shown, which will be described later) is to be disposed, and the non-electrode region A2 is a region which is not covered by the electrode layer after forming the electrode layer, that is, in formation. After the electrode layer, the electrode layer exposes the non-electrode region A2 of the non-transmissive layer 120A.

透光層120A、120B可以是透明導電層或絕緣層。在本實施例中,透光層120A、120B以透明導電層舉例說明。透光層120A、120B的材料可以是金屬氧化物,如銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鍺鋅氧化物、或其它合適的氧化物、或者是上述至少二者之堆疊層。此外,形成透光層120A、 120B的方法例如是蒸鍍(evaporation)法、濺鍍(sputtering)法或其他適於沉積金屬氧化物的方法。 The light transmissive layers 120A, 120B may be transparent conductive layers or insulating layers. In the present embodiment, the light transmissive layers 120A, 120B are exemplified by a transparent conductive layer. The material of the light transmissive layers 120A, 120B may be a metal oxide such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium antimony zinc oxide, or other suitable oxide, or a stacked layer of at least two of the above. Further, a light transmissive layer 120A is formed, The method of 120B is, for example, an evaporation method, a sputtering method, or other method suitable for depositing a metal oxide.

請參照圖1C及圖2C,於透光層120A上形成罩幕層130, 其中罩幕層130與透光層120A直接接觸,且罩幕層130遮蔽非電極區A2,並曝露出電極區A1。進一步而言,罩幕層130例如為多個島狀結構。此外,罩幕層130的材料包括聚合物。舉例而言,罩幕層130的材料例如為光阻(photoresist),而形成島狀結構的罩幕層130的方法例如是藉由噴灑(spray)、網板印刷、旋轉塗佈(spin coating)等方法將罩幕層光阻全面地塗佈於透光層120A上,再依罩幕層材料的不同,可藉由軟烤、曝光、顯影、硬烤以及去光阻等方式或直接轉印步驟來圖案化位於透光層120A上的光阻。 Referring to FIG. 1C and FIG. 2C, a mask layer 130 is formed on the light transmissive layer 120A. The mask layer 130 is in direct contact with the light transmissive layer 120A, and the mask layer 130 shields the non-electrode region A2 and exposes the electrode region A1. Further, the mask layer 130 is, for example, a plurality of island structures. Further, the material of the mask layer 130 includes a polymer. For example, the material of the mask layer 130 is, for example, photoresist, and the method of forming the mask layer 130 of the island structure is, for example, by spray, screen printing, spin coating. The method further applies the mask layer photoresist to the light transmissive layer 120A, and can be softly baked, exposed, developed, hard baked, and photoresisted or directly transferred according to the material of the mask layer. The steps are to pattern the photoresist on the light transmissive layer 120A.

請參照圖1D及圖2D,於電極區A1內形成種子層140A, 其中種子層140A與透光層120A直接接觸。在本實施例中,種子層140A可用以提升透光層120A與後續欲形成的電極層的附著力(adhesion),並降低電極層與透光層120A的接觸阻值,進而使太陽能電池具有良好的光電轉換效率。此外,種子層140A還可作為電極層的晶種。因此,種子層140A的材料端視電極層的材料而定。 Referring to FIG. 1D and FIG. 2D, a seed layer 140A is formed in the electrode region A1. The seed layer 140A is in direct contact with the light transmissive layer 120A. In this embodiment, the seed layer 140A can be used to enhance the adhesion of the light-transmitting layer 120A to the electrode layer to be formed later, and reduce the contact resistance between the electrode layer and the light-transmitting layer 120A, thereby making the solar cell have good. Photoelectric conversion efficiency. Further, the seed layer 140A can also serve as a seed for the electrode layer. Therefore, the material end of the seed layer 140A depends on the material of the electrode layer.

舉例而言,當選擇銅為電極層的材料時,則種子層140A 的材料可選擇與銅匹配的導電材料,例如是銀、鎳、鋁、鈦、鈷或上述至少兩種材料的混合物、金屬矽化物(如矽化鎳、矽化鈷、矽化鈦)或上述至少兩種材料的堆疊層,而形成種子層140A的方法可以是藉由無電鍍、電鍍、物理氣相沉積或化學氣相沉積等方 法使種子層140A的材料選擇性地形成於電極區A1內。在本實施例中,種子層140A若使用鎳、銅、鋁、鈦、鈷、矽化鎳、或金屬矽化物(如矽化鈷或矽化鈦)等材料取代銀的使用或降低銀的使用量,可進一步地減少製程成本。 For example, when copper is selected as the material of the electrode layer, the seed layer 140A The material may be selected from a conductive material matching copper, such as silver, nickel, aluminum, titanium, cobalt or a mixture of at least two of the above materials, a metal halide (such as nickel telluride, cobalt telluride, titanium telluride) or at least two of the foregoing. The stacked layers of materials, and the method of forming the seed layer 140A may be by electroless plating, electroplating, physical vapor deposition or chemical vapor deposition. The material of the seed layer 140A is selectively formed in the electrode region A1. In this embodiment, if the seed layer 140A uses nickel, copper, aluminum, titanium, cobalt, nickel telluride, or metal halide (such as cobalt telluride or titanium telluride) to replace the use of silver or reduce the amount of silver used, Further reduce process costs.

請參照圖1E及圖2E,接續於電極區A1內形成電極層150A,其中電極層150A位於種子層140A上,亦即是,種子層140A位於透光層120A與電極層150A之間。 Referring to FIG. 1E and FIG. 2E, an electrode layer 150A is formed in the electrode region A1, wherein the electrode layer 150A is located on the seed layer 140A, that is, the seed layer 140A is located between the light transmissive layer 120A and the electrode layer 150A.

電極層150A位於太陽能電池的受光面,且適於匯集由光電轉換層110射出的載子。此外,電極層150A可以是單層或疊層結構。在本實施例中,電極層150A以疊層結構作為舉例說明。 The electrode layer 150A is located on the light receiving surface of the solar cell, and is adapted to collect the carriers emitted from the photoelectric conversion layer 110. Further, the electrode layer 150A may be a single layer or a laminated structure. In the present embodiment, the electrode layer 150A is exemplified by a laminated structure.

詳細而言,本實施例的電極層150A包括第一電極層152以及第二電極層154,其中第一電極層152覆蓋於種子層140A上,而第二電極層154覆蓋於第一電極層152上。第二電極層154的設置除了可避免第一電極層152氧化之外,還可提升後續太陽能電池模組組裝時的附著力。 In detail, the electrode layer 150A of the present embodiment includes a first electrode layer 152 and a second electrode layer 154, wherein the first electrode layer 152 covers the seed layer 140A, and the second electrode layer 154 covers the first electrode layer 152. on. In addition to avoiding oxidation of the first electrode layer 152, the second electrode layer 154 can also improve the adhesion of the subsequent solar cell module during assembly.

在本實施例中,第一電極層152的材料與種子層140A的材料相搭配,亦即是,第一電極層152的材料可以是銀、鎳、銅、鋁、鈦、鈷或上述至少兩種材料的混合物、金屬矽化物(如矽化鎳、矽化鈷或矽化鈦)等具有良好導電率的材料,而第二電極層154的材料可以是錫、銀或鎳等較不易氧化的材料。此外,形成第一電極層152與第二電極層154的方法可以是無電鍍、電鍍、物理氣相沉積或化學氣相沉積等方法。由於銅的導電性高於銀的導電 性,因此,若以銅作為第一電極層152的材料,除了可減少製程成本之外,還可進一步地提升太陽能電池的光電轉換效率及填充因子(fill factor)。 In this embodiment, the material of the first electrode layer 152 is matched with the material of the seed layer 140A, that is, the material of the first electrode layer 152 may be silver, nickel, copper, aluminum, titanium, cobalt or at least two of the above. A mixture of materials, a material such as a metal halide (such as nickel telluride, cobalt telluride or titanium telluride) having a good electrical conductivity, and the material of the second electrode layer 154 may be a material which is less susceptible to oxidation such as tin, silver or nickel. Further, the method of forming the first electrode layer 152 and the second electrode layer 154 may be a method such as electroless plating, electroplating, physical vapor deposition, or chemical vapor deposition. Because copper is more conductive than silver Therefore, if copper is used as the material of the first electrode layer 152, in addition to reducing the process cost, the photoelectric conversion efficiency and the fill factor of the solar cell can be further improved.

請參照圖1F及圖2F,移除罩幕層130,並曝露出透光層 120A的非電極區A2。在本實施例中,移除罩幕層130的方法可以是,但不限於,藉由濕式蝕刻將位於非電極區A2上的罩幕層130移除。 Referring to FIG. 1F and FIG. 2F, the mask layer 130 is removed and the light transmissive layer is exposed. Non-electrode area A2 of 120A. In the present embodiment, the method of removing the mask layer 130 may be, but not limited to, removing the mask layer 130 on the non-electrode region A2 by wet etching.

需說明的是,本實施例雖以網格狀的電極圖案(請參照圖 2F)舉例說明,然而電極圖案可視實際應用而定,本實施例並不用以限定電極圖案的型態,而是說明在形成電極層150A之前,先於透光層120A上形成罩幕層130,以遮蔽非電極區A2並曝露出電極區A1(即欲形成電極層150A的區域),並在形成電極層150A之後移除罩幕層130。如此一來,本實施例可透過罩幕層130的圖案設計去調變電極層150A的電極圖案(指電極層的匯流電極與指狀電極),而可以不用藉由傳統已知之網版印刷及高溫共同燒結製程去形成電極圖案。因此,本實施例可避免因共同高溫燒結製程而對太陽能電池造成損害或改質,而使太陽能電池具有高信賴性。另一方面,本實施例亦無須受限於高溫製程,而使電極圖案的寬度得以進一步地減縮,進而使太陽能電池具有良好的光電轉換效率。 It should be noted that in this embodiment, a grid-shaped electrode pattern is used (please refer to the figure). 2F) Illustratively, however, the electrode pattern may be determined depending on the actual application. This embodiment is not intended to define the shape of the electrode pattern, but rather to form the mask layer 130 on the light transmissive layer 120A before the electrode layer 150A is formed. The non-electrode region A2 is shielded and the electrode region A1 (i.e., the region where the electrode layer 150A is to be formed) is exposed, and the mask layer 130 is removed after the electrode layer 150A is formed. In this way, the embodiment can modulate the electrode pattern of the electrode layer 150A (the junction electrode and the finger electrode of the electrode layer) through the pattern design of the mask layer 130, without the conventionally known screen printing and A high temperature co-sintering process is performed to form an electrode pattern. Therefore, the present embodiment can avoid damage or modification of the solar cell due to the common high-temperature sintering process, and the solar cell has high reliability. On the other hand, the embodiment does not need to be limited to a high temperature process, and the width of the electrode pattern is further reduced, thereby enabling the solar cell to have good photoelectric conversion efficiency.

請參照圖1G,於光電轉換層110的第二表面S2上相繼 形成另一種子層140B以及另一電極層150B(包括第一電極層156 以及第二電極層158)。於此,便初步完成本實施例的太陽能電池100。 Referring to FIG. 1G, successively on the second surface S2 of the photoelectric conversion layer 110 Another seed layer 140B and another electrode layer 150B are formed (including the first electrode layer 156) And a second electrode layer 158). Here, the solar cell 100 of the present embodiment is initially completed.

在本實施例中,形成種子層140B以及電極層150B(包括第一電極層156以及第二電極層158)的方法分別與形成上述種子層140A以及電極層150A(包括第一電極層152以及第二電極層154)的方法相同,其中在形成種子層140B以及電極層150B之前,更包括於透光層120B上形成另一罩幕層(未繪示),且此罩幕層遮蔽透光層120B的非電極區(未繪示),且曝露出透光層120B的電極區(未繪示)。亦即是,本實施例形成種子層140B以及電極層150B(包括第一電極層156以及第二電極層158)的方法可參照圖1C至圖1F及其對應的描述,於此便不再贅述。 In the present embodiment, the method of forming the seed layer 140B and the electrode layer 150B (including the first electrode layer 156 and the second electrode layer 158) and forming the seed layer 140A and the electrode layer 150A (including the first electrode layer 152 and the The method of the two-electrode layer 154) is the same. Before the seed layer 140B and the electrode layer 150B are formed, another mask layer (not shown) is further formed on the light-transmitting layer 120B, and the mask layer shields the light-transmitting layer. A non-electrode region (not shown) of 120B, and exposing an electrode region (not shown) of the light transmissive layer 120B. That is, the method for forming the seed layer 140B and the electrode layer 150B (including the first electrode layer 156 and the second electrode layer 158) in this embodiment may refer to FIG. 1C to FIG. 1F and corresponding descriptions thereof, and thus no further description is provided herein. .

需說明的是,電極層150B位於太陽能電池100的非受光面,因此,電極層150B不會遮蔽到入射光。換言之,電極層150B的圖案設計可以具有更大的設計彈性,而種子層140B的圖案設計也可具有更大的設計彈性。在其他未繪示的實施例中,位於非受光面的種子層以及電極層的圖案設計與位於受光面的種子層以及電極層的圖案設計可以不相同,又或者,如圖3所示,種子層140C可以是全面地覆蓋在透光層120B上,且電極層150C也全面地覆蓋在種子層140C上。換言之,在圖3的實施例中,太陽能電池200的種子層140C及電極層150C未曝露出透光層120B。亦即是,在形成透光層120B後,可以相繼以種子層140C及電極層150C全面地覆蓋於透光層120B上,而可以不用形成罩幕層去定義出透 光層120B的電極區與非電極區。 It should be noted that the electrode layer 150B is located on the non-light-receiving surface of the solar cell 100, and therefore, the electrode layer 150B is not shielded from incident light. In other words, the pattern design of the electrode layer 150B can have greater design flexibility, and the pattern design of the seed layer 140B can also have greater design flexibility. In other embodiments not shown, the pattern design of the seed layer and the electrode layer on the non-light-receiving surface may be different from the pattern design of the seed layer and the electrode layer on the light-receiving surface, or, as shown in FIG. 3, the seed The layer 140C may be entirely overlying the light transmissive layer 120B, and the electrode layer 150C is also entirely overlying the seed layer 140C. In other words, in the embodiment of FIG. 3, the seed layer 140C and the electrode layer 150C of the solar cell 200 are not exposed to the light transmissive layer 120B. That is, after the light-transmissive layer 120B is formed, the seed layer 140C and the electrode layer 150C may be entirely covered on the light-transmitting layer 120B in succession, and the mask layer may be formed without defining the mask layer. The electrode region and the non-electrode region of the light layer 120B.

上述實施例是以透光層的材料為透明導電層作為舉例說 明。以下將以圖4A至圖4F說明太陽能電池在透光層的材料為絕緣層時的實施型態。 The above embodiment is an example in which the material of the light transmissive layer is a transparent conductive layer. Bright. The embodiment of the solar cell when the material of the light transmissive layer is an insulating layer will be described below with reference to FIGS. 4A to 4F.

圖4A至圖4F是依照本發明又一實施例的太陽能電池的 製作流程的剖面示意圖。請參照圖4A,於光電轉換層410的第一表面S1上形成透光層420A,且於光電轉換層410的第二表面S2上形成另一透光層420B,其中光電轉換層410的形成方法以及各膜層的配置關係可參照圖1A及其對應的描述,於此便不再贅述。透光層420A具有電極區A1以及鄰接電極區A1的多個非電極區A2。 4A to 4F are solar battery according to still another embodiment of the present invention. A schematic cross-section of the production process. Referring to FIG. 4A, a light transmissive layer 420A is formed on the first surface S1 of the photoelectric conversion layer 410, and another light transmissive layer 420B is formed on the second surface S2 of the photoelectric conversion layer 410, wherein the photoelectric conversion layer 410 is formed. For the configuration relationship of each film layer, reference may be made to FIG. 1A and its corresponding description, and details are not described herein again. The light transmissive layer 420A has an electrode area A1 and a plurality of non-electrode areas A2 adjacent to the electrode area A1.

在本實施例中,透光層420A可以是絕緣層,且透光層420A的材料包括氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層,且透光層420A例如是以物理氣相沈積、化學氣相沈積或電鍍的方法在低溫下製成,藉以避免對太陽能電池中已成型的其他膜層造成損害或變質。 In this embodiment, the light transmissive layer 420A may be an insulating layer, and the material of the light transmissive layer 420A includes yttrium oxide, tantalum nitride, hafnium oxynitride, hafnium aluminum oxide or a stacked layer of at least two materials, and is transparent. The light layer 420A is formed, for example, by physical vapor deposition, chemical vapor deposition, or electroplating at a low temperature to avoid damage or deterioration of other film layers that have been formed in the solar cell.

請參照圖4B,於透光層420A上形成罩幕層430,其中罩幕層430與圖1C中的罩幕層130具有相似的的材料、形成方法及膜層配置關係,於此便不再贅述。 Referring to FIG. 4B, a mask layer 430 is formed on the light transmissive layer 420A. The mask layer 430 has a similar material, a forming method, and a film layer configuration relationship with the mask layer 130 in FIG. 1C. Narration.

請參照圖4C及圖4D,於電極區A1內形成種子層440A。在本實施例中,種子層440A除了適於將欲形成的電極層450A(參見圖4D)與光電轉換層410電性連接外,還可作為電極層之晶種 用。詳言之,本實施例在形成種子層440A時,位於透光層420A上的種子層440A會擴散至電極區A1中,因此,藉由適當地調變透光層420A的厚度及種子層440A的材料,即可在未移除透光層420A下,使種子層440A與光電轉換層410電性連接。如此,在形成電極層450A後,電極層450A亦可匯集由光電轉換層410出射之載子。換言之,本實施的種子層440A的材料需具備適當的擴散性。舉例而言,種子層440A的材料可以是銀或者是銀與鎳、鋁、鈷、鈦或上述至少兩者的混合物、金屬矽化物(如矽化鎳、矽化鈷、矽化鈦)等上述至少兩種材料的堆疊層。當種子層440A的材料為單層的銀時,電極層450A亦可搭配使用銀作為其材料,而當種子層440A的材料為銀與鎳、鋁、鈷、鈦或上述至少兩者的混合物、金屬矽化物(如矽化鎳、矽化鈷或矽化鈦)等上述至少兩種材料的堆疊層時,電極層450A可搭配使用鎳、鋁、鈷、鈦、銅、金屬矽化物(如矽化鎳、矽化鈷或矽化鈦)作為其材料。另外,本實施例形成種子層440A與電極層450A的方法可參照圖1D、圖1E及其對應的描述,於此便不再贅述。 Referring to FIGS. 4C and 4D, a seed layer 440A is formed in the electrode region A1. In this embodiment, the seed layer 440A is suitable for electrically connecting the electrode layer 450A (see FIG. 4D) to be formed and the photoelectric conversion layer 410, and can also serve as a seed crystal for the electrode layer. use. In detail, in the present embodiment, when the seed layer 440A is formed, the seed layer 440A on the light transmissive layer 420A is diffused into the electrode region A1. Therefore, by appropriately modulating the thickness of the light transmissive layer 420A and the seed layer 440A The material, that is, the seed layer 440A is electrically connected to the photoelectric conversion layer 410, without removing the light transmissive layer 420A. As such, after the electrode layer 450A is formed, the electrode layer 450A can also collect the carriers emitted from the photoelectric conversion layer 410. In other words, the material of the seed layer 440A of the present embodiment needs to have appropriate diffusibility. For example, the material of the seed layer 440A may be silver or silver and nickel, aluminum, cobalt, titanium or a mixture of at least two of the above, a metal halide (such as nickel telluride, cobalt telluride, titanium telluride), and the like. A stack of layers of material. When the material of the seed layer 440A is a single layer of silver, the electrode layer 450A may also be used with silver as its material, and when the material of the seed layer 440A is silver and nickel, aluminum, cobalt, titanium or a mixture of at least two of the above, When a metal germanide (such as nickel telluride, cobalt telluride or titanium telluride) is stacked on at least two of the above materials, the electrode layer 450A can be used in combination with nickel, aluminum, cobalt, titanium, copper, metal telluride (such as nickel telluride, germanium) Cobalt or titanium telluride) is used as its material. In addition, the method for forming the seed layer 440A and the electrode layer 450A in this embodiment can refer to FIG. 1D, FIG. 1E and its corresponding description, and details are not described herein again.

請參照圖4E,移除罩幕層430,並曝露出透光層420A的非電極區A2,其中移除罩幕層430的方法可參照圖1F及其對應的描述,於此便不再贅述。 Referring to FIG. 4E, the mask layer 430 is removed, and the non-electrode region A2 of the light-transmitting layer 420A is exposed. The method for removing the mask layer 430 can be referred to FIG. 1F and its corresponding description, and details are not described herein. .

請參照圖4F,於光電轉換層410的第二表面S2上相繼形成另一種子層440B以及另一電極層450B(包括第一電極層456以及第二電極層458)。於此,便初步完成本實施例的太陽能電池 300。在本實施例中,形成種子層440B以及電極層450B(包括第一電極層456以及第二電極層458)的方法分別與形成上述種子層440A以及電極層450A(包括第一電極層452以及第二電極層454)的方法相同,因此請參照圖4B至圖4E及其對應的描述,於此便不再贅述。 Referring to FIG. 4F, another seed layer 440B and another electrode layer 450B (including the first electrode layer 456 and the second electrode layer 458) are successively formed on the second surface S2 of the photoelectric conversion layer 410. Here, the solar cell of the embodiment is initially completed. 300. In the present embodiment, the method of forming the seed layer 440B and the electrode layer 450B (including the first electrode layer 456 and the second electrode layer 458) and forming the seed layer 440A and the electrode layer 450A (including the first electrode layer 452 and the The method of the two-electrode layer 454) is the same, so please refer to FIG. 4B to FIG. 4E and their corresponding descriptions, and details are not described herein again.

與電極層150B同樣地,電極層450B位於太陽能電池300 的非受光面,因此,電極層450B不會遮蔽到入射光。換言之,電極層450B的圖案設計可以具有更大的設計彈性,而種子層440B的圖案設計也可具有更大的設計彈性。在其他未繪示的實施例中,位於非受光面的種子層以及電極層的圖案設計與位於受光面的種子層以及電極層的圖案設計可以不相同,又或者,如圖5所示,太陽能電池400的種子層440C可以是全面地擴散至透光層420B中,且電極層450C全面地覆蓋在種子層440C上。亦即是,在形成透光層420B後,可以相繼以種子層440C及電極層450C全面地覆蓋於透光層420B上,而可以不用形成罩幕層去定義出透光層420B的電極區與非電極區。 The electrode layer 450B is located in the solar cell 300 as in the electrode layer 150B. The non-light-receiving surface, therefore, the electrode layer 450B is not shielded from incident light. In other words, the pattern design of the electrode layer 450B can have greater design flexibility, and the pattern design of the seed layer 440B can also have greater design flexibility. In other embodiments not shown, the pattern design of the seed layer and the electrode layer on the non-light-receiving surface may be different from the pattern design of the seed layer and the electrode layer on the light-receiving surface, or, as shown in FIG. 5, solar energy The seed layer 440C of the battery 400 may be fully diffused into the light transmissive layer 420B, and the electrode layer 450C is entirely overlying the seed layer 440C. That is, after the light-transmitting layer 420B is formed, the seed layer 440C and the electrode layer 450C may be entirely covered on the light-transmitting layer 420B in succession, and the electrode region of the light-transmitting layer 420B may be defined without forming a mask layer. Non-electrode area.

綜上所述,本發明在形成電極層之前,先於透光層上形成罩幕層,以遮蔽非電極區並曝露出電極區(即欲形成電極層的區域),並在形成電極層之後移除罩幕層。如此一來,本發明可透過罩幕層的圖案設計去調變電極圖案(指電極層的匯流電極與指狀電極),而可以不用藉由網版印刷及共同燒結製程去形成電極圖案。因此,本發明可避免因共同燒結製程而對太陽能電池造成損 害或改質,而使太陽能電池具有高信賴性。另一方面,本發明亦無須受限於高溫製程,而使電極圖案的寬度得以進一步地減縮,進而使太陽能電池具有良好的光電轉換效率。 In summary, the present invention forms a mask layer on the light transmissive layer before the electrode layer is formed to shield the non-electrode region and expose the electrode region (ie, the region where the electrode layer is to be formed), and after forming the electrode layer Remove the mask layer. In this way, the present invention can modulate the electrode pattern (the junction electrode of the electrode layer and the finger electrode) through the pattern design of the mask layer, and the electrode pattern can be formed without the screen printing and the co-sintering process. Therefore, the present invention can avoid damage to the solar cell due to the co-sintering process Harm or upgrade, so that solar cells have high reliability. On the other hand, the present invention does not need to be limited to a high temperature process, and the width of the electrode pattern is further reduced, thereby enabling the solar cell to have good photoelectric conversion efficiency.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,例如是將上述電極圖案的形成方法(包括罩幕層的製作)應用於薄膜太陽能電池或III-V族太陽能電池中,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some modifications and refinements, for example, without departing from the spirit and scope of the invention. The method of forming the electrode pattern described above (including the fabrication of the mask layer) is applied to a thin film solar cell or a III-V solar cell, and the scope of the present invention is defined by the scope of the appended claims.

100‧‧‧太陽能電池 100‧‧‧ solar cells

110‧‧‧光電轉換層 110‧‧‧ photoelectric conversion layer

112‧‧‧矽基材 112‧‧‧矽 substrate

114A、114B‧‧‧鈍化層 114A, 114B‧‧‧ Passivation layer

116A‧‧‧第一型半導體層 116A‧‧‧First type semiconductor layer

116B‧‧‧第二型半導體層 116B‧‧‧Second type semiconductor layer

120A、120B‧‧‧透光層 120A, 120B‧‧‧Transparent layer

140A、140B‧‧‧種子層 140A, 140B‧‧‧ seed layer

150A、150B‧‧‧電極層 150A, 150B‧‧‧electrode layer

152、156‧‧‧第一電極層 152, 156‧‧‧ first electrode layer

154、158‧‧‧第二電極層 154, 158‧‧‧ second electrode layer

S1‧‧‧第一表面 S1‧‧‧ first surface

S2‧‧‧第二表面 S2‧‧‧ second surface

Claims (16)

一種太陽能電池的製造方法,包括:提供一光電轉換層;於該光電轉換層相對的一第一表面與一第二表面上分別形成一透光層,其中該第一表面上的該透光層具有一電極區以及鄰接該電極區的至少一非電極區;於該第一表面上的該透光層上形成一罩幕層,該罩幕層遮蔽該非電極區,且曝露出該電極區;於該電極區內相繼形成一種子層以及一電極層,其中該種子層與該第一表面上的該透光層直接接觸並位於該第一表面上的該透光層與該電極層之間;移除該罩幕層;以及於該光電轉換層的該第二表面上的該透光層上相繼形成另一種子層以及另一電極層。 A method for manufacturing a solar cell, comprising: providing a photoelectric conversion layer; forming a light transmissive layer on a first surface and a second surface opposite to the photoelectric conversion layer, wherein the light transmissive layer on the first surface Having an electrode region and at least one non-electrode region adjacent to the electrode region; forming a mask layer on the light transmissive layer on the first surface, the mask layer shielding the non-electrode region and exposing the electrode region; Forming a sub-layer and an electrode layer successively in the electrode region, wherein the seed layer is in direct contact with the light transmissive layer on the first surface and is located between the light transmissive layer on the first surface and the electrode layer Removing the mask layer; and forming another seed layer and another electrode layer successively on the light transmissive layer on the second surface of the photoelectric conversion layer. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中該光電轉換層是由P型半導體層及N型半導體層堆疊形成的PN接面結構,或由P型半導體層、本質層、N型半導體層堆疊形成的PIN接面結構。 The method for manufacturing a solar cell according to claim 1, wherein the photoelectric conversion layer is a PN junction structure formed by stacking a P-type semiconductor layer and an N-type semiconductor layer, or a P-type semiconductor layer, an intrinsic layer, A PIN junction structure formed by stacking N-type semiconductor layers. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中該罩幕層與該第一表面上的該透光層直接接觸,且該罩幕層的材料包括聚合物。 The method of manufacturing a solar cell according to claim 1, wherein the mask layer is in direct contact with the light transmissive layer on the first surface, and the material of the mask layer comprises a polymer. 如申請專利範圍第1項所述的太陽能電池的製造方法,其 中該透光層為透明導電層,且該透光層的材料包括金屬氧化物。 A method of manufacturing a solar cell according to claim 1, wherein The light transmissive layer is a transparent conductive layer, and the material of the light transmissive layer comprises a metal oxide. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中該透光層為絕緣層,且該透光層的材料包括氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層,位於該透光層上的該種子層會擴散至該電極區中並與該光電轉換層電性連接。 The method for manufacturing a solar cell according to claim 1, wherein the light transmissive layer is an insulating layer, and the material of the light transmissive layer comprises hafnium oxide, tantalum nitride, hafnium oxynitride, hafnium aluminum oxide or the above A stacked layer of at least two materials, the seed layer on the light transmissive layer diffuses into the electrode region and is electrically connected to the photoelectric conversion layer. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中該種子層以及該另一種子層的材料包括銀、鎳、鋁、鈷、鈦或上述至少兩種材料的混合物、矽化鎳、矽化鈷、矽化鈦或上述至少兩種材料的堆疊層,且形成該種子層、該另一種子層、該電極層以及該另一電極層的方法包括無電鍍、電鍍、物理氣相沉積或化學氣相沉積。 The method for manufacturing a solar cell according to claim 1, wherein the seed layer and the material of the other seed layer comprise silver, nickel, aluminum, cobalt, titanium or a mixture of at least two materials, nickel telluride, Cobalt telluride, titanium telluride or a stacked layer of at least two of the above materials, and the method of forming the seed layer, the other seed layer, the electrode layer and the further electrode layer comprises electroless plating, electroplating, physical vapor deposition or chemistry Vapor deposition. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中該電極層以及該另一電極層分別包括一第一電極層以及一第二電極層,該第一電極層覆蓋於該種子層上,且該第二電極層覆蓋於該第一電極層上,該第一電極層的材料包括銀、鎳、鋁、銅、鈷、鈦或上述至少兩種材料的混合物、矽化鎳、矽化鈷或矽化鈦,而該第二電極層的材料包括錫、銀或鎳。 The method for manufacturing a solar cell according to claim 1, wherein the electrode layer and the other electrode layer respectively comprise a first electrode layer and a second electrode layer, the first electrode layer covering the seed layer And the second electrode layer covers the first electrode layer, and the material of the first electrode layer comprises silver, nickel, aluminum, copper, cobalt, titanium or a mixture of at least two materials, nickel telluride, cobalt telluride Or titanium telluride, and the material of the second electrode layer includes tin, silver or nickel. 如申請專利範圍第1項所述的太陽能電池的製造方法,其中形成該另一種子層以及該另一電極層的方法分別與形成該種子層以及該電極層的方法相同。 The method of manufacturing a solar cell according to claim 1, wherein the method of forming the other seed layer and the other electrode layer is the same as the method of forming the seed layer and the electrode layer, respectively. 如申請專利範圍第8項所述的太陽能電池的製造方法,其 中該另一透光層具有一電極區以及鄰接該電極區的至少一非電極區,且在形成該另一種子層以及該另一電極層之前,更包括於該第二表面上的該透光層上形成另一罩幕層,且該另一罩幕層遮蔽該非電極區,且曝露出該電極區。 A method of manufacturing a solar cell according to claim 8, wherein The other light transmissive layer has an electrode region and at least one non-electrode region adjacent to the electrode region, and is further included on the second surface before forming the other seed layer and the other electrode layer Another mask layer is formed on the light layer, and the other mask layer shields the non-electrode region and exposes the electrode region. 一種太陽能電池,包括:一光電轉換層;一透光層,配置於該光電轉換層的一第一表面上,其中該透光層具有一電極區以及鄰接該電極區的至少一非電極區;一種子層,配置於該電極區內,並曝露出該透光層的該非電極區;一電極層,配置於該種子層上;另一透光層,配置於該光電轉換層相對於該第一表面的一第二表面上;另一種子層,配置於該另一透光層上;以及另一電極層,配置於該另一種子層上。 A solar cell comprising: a photoelectric conversion layer; a light transmissive layer disposed on a first surface of the photoelectric conversion layer, wherein the light transmissive layer has an electrode region and at least one non-electrode region adjacent to the electrode region; a sub-layer disposed in the electrode region and exposing the non-electrode region of the light transmissive layer; an electrode layer disposed on the seed layer; and another light transmissive layer disposed on the photoelectric conversion layer relative to the first layer a second surface of a surface; another seed layer disposed on the other light transmissive layer; and another electrode layer disposed on the other seed layer. 如申請專利範圍第10項所述的太陽能電池,其中該光電轉換層是由P型半導體層及N型半導體層堆疊形成的PN接面結構,或由P型半導體層、本質層、N型半導體層堆疊形成的PIN接面結構。 The solar cell according to claim 10, wherein the photoelectric conversion layer is a PN junction structure formed by stacking a P-type semiconductor layer and an N-type semiconductor layer, or a P-type semiconductor layer, an intrinsic layer, an N-type semiconductor The PIN junction structure formed by layer stacking. 如申請專利範圍第10項所述的太陽能電池,其中該透光層為透明導電層,且該透光層的材料包括金屬氧化物。 The solar cell of claim 10, wherein the light transmissive layer is a transparent conductive layer, and the material of the light transmissive layer comprises a metal oxide. 如申請專利範圍第10項所述的太陽能電池,其中該透光 層為絕緣層,且該透光層的材料包括氧化矽、氮化矽、氮氧化矽、矽鋁氧化物或上述至少二種材料的堆疊層,位於該透光層上的該種子層會擴散至該電極區中並與該光電轉換層電性連接。 The solar cell of claim 10, wherein the light source The layer is an insulating layer, and the material of the light transmissive layer comprises tantalum oxide, tantalum nitride, hafnium oxynitride, niobium aluminum oxide or a stacked layer of at least two materials, and the seed layer on the light transmissive layer is diffused And electrically connected to the electrode region. 如申請專利範圍第10項所述的太陽能電池,其中該種子層以及該另一種子層的材料包括銀、鎳、鋁、鈷、鈦或上述至少兩種材料的混合物、矽化鎳、矽化鈷、矽化鈦或上述至少兩種材料的堆疊層。 The solar cell of claim 10, wherein the seed layer and the material of the other seed layer comprise silver, nickel, aluminum, cobalt, titanium or a mixture of at least two materials, nickel telluride, cobalt telluride, Titanium telluride or a stacked layer of at least two of the above materials. 如申請專利範圍第10項所述的太陽能電池,其中該電極層以及該另一電極層分別包括一第一電極層以及一第二電極層,該第一電極層覆蓋於該種子層上,且該第二電極層覆蓋於該第一電極層上,該第一電極層的材料包括銀、鎳、鋁、銅、鈷、鈦或上述至少兩種材料的混合物、矽化鎳、矽化鈷或矽化鈦,而該第二電極層的材料包括錫、銀或鎳。 The solar cell of claim 10, wherein the electrode layer and the other electrode layer respectively comprise a first electrode layer and a second electrode layer, the first electrode layer covering the seed layer, and The second electrode layer covers the first electrode layer, and the material of the first electrode layer comprises silver, nickel, aluminum, copper, cobalt, titanium or a mixture of at least two materials, nickel telluride, cobalt telluride or titanium telluride And the material of the second electrode layer comprises tin, silver or nickel. 如申請專利範圍第10項所述的太陽能電池,其中該另一透光層具有一電極區以及鄰接該電極區的至少一非電極區,且該另一種子層配置於該電極區內,與該另一透光層直接接觸,並曝露出該另一透光層的該非電極區。 The solar cell of claim 10, wherein the other light transmissive layer has an electrode region and at least one non-electrode region adjacent to the electrode region, and the other seed layer is disposed in the electrode region, and The other light transmissive layer is in direct contact and exposes the non-electrode region of the other light transmissive layer.
TW102114378A 2013-04-23 2013-04-23 Solar cell and manufacturing method thereof TW201442260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102114378A TW201442260A (en) 2013-04-23 2013-04-23 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102114378A TW201442260A (en) 2013-04-23 2013-04-23 Solar cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201442260A true TW201442260A (en) 2014-11-01

Family

ID=52423022

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102114378A TW201442260A (en) 2013-04-23 2013-04-23 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201442260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335197A (en) * 2022-03-11 2022-04-12 浙江爱旭太阳能科技有限公司 Conductive contact structure and assembly of solar cell and power generation system
CN114335257A (en) * 2022-03-11 2022-04-12 浙江爱旭太阳能科技有限公司 Preparation method of solar cell, solar cell module and power generation system
WO2023169585A1 (en) * 2022-03-11 2023-09-14 浙江爱旭太阳能科技有限公司 Solar cell, electrode structure, battery assembly, power generation system, and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335197A (en) * 2022-03-11 2022-04-12 浙江爱旭太阳能科技有限公司 Conductive contact structure and assembly of solar cell and power generation system
CN114335257A (en) * 2022-03-11 2022-04-12 浙江爱旭太阳能科技有限公司 Preparation method of solar cell, solar cell module and power generation system
CN114335257B (en) * 2022-03-11 2022-08-19 浙江爱旭太阳能科技有限公司 Preparation method of solar cell, solar cell module and power generation system
CN114335197B (en) * 2022-03-11 2022-08-19 浙江爱旭太阳能科技有限公司 Conductive contact structure and assembly of solar cell and power generation system
WO2023169585A1 (en) * 2022-03-11 2023-09-14 浙江爱旭太阳能科技有限公司 Solar cell, electrode structure, battery assembly, power generation system, and manufacturing method
US11929441B2 (en) 2022-03-11 2024-03-12 Solarlab Aiko Europe Gmbh Conductive contact structure of solar cell, solar module, and power generation system

Similar Documents

Publication Publication Date Title
US10573770B2 (en) Solar cell and method of manufacturing the same
JP5848421B2 (en) Solar cell and manufacturing method thereof
US9082920B2 (en) Back contact solar cell and manufacturing method thereof
US11251319B2 (en) Solar cell
EP2930755B1 (en) Solar cell and method for manufacturing the same
JP6106403B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
US20130125964A1 (en) Solar cell and manufacturing method thereof
JP6677801B2 (en) Crystalline silicon-based solar cell, method of manufacturing the same, and solar cell module
EP2538454A1 (en) Device for generating solar power and method for manufacturing same
JP2012532457A (en) Photovoltaic power generation apparatus and manufacturing method thereof
US8536447B2 (en) Electrode of solar cell and fabricating method thereof
CN104157742A (en) Solar cell and manufacturing method thereof
KR101168810B1 (en) Solar cell apparatus and method of fabricating the same
TW201442260A (en) Solar cell and manufacturing method thereof
JP2013532911A (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP2013532907A (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP5602234B2 (en) Photovoltaic power generation apparatus and manufacturing method thereof
US20140083486A1 (en) Solar cell and method for manufacturing same
US20160087134A1 (en) Solar cell apparatus and method of fabricating the same
JP2014072209A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
TWI508311B (en) Solar cell and manufacturing method thereof
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
TWI518928B (en) Solar cell and manufacturing method thereof
TWI482288B (en) Solar cell, method of manufacturing the same and module comprising the same
KR101306527B1 (en) Photovoltaic apparatus