JP5633284B2 - Electrode paste composition and solar cell - Google Patents

Electrode paste composition and solar cell Download PDF

Info

Publication number
JP5633284B2
JP5633284B2 JP2010222202A JP2010222202A JP5633284B2 JP 5633284 B2 JP5633284 B2 JP 5633284B2 JP 2010222202 A JP2010222202 A JP 2010222202A JP 2010222202 A JP2010222202 A JP 2010222202A JP 5633284 B2 JP5633284 B2 JP 5633284B2
Authority
JP
Japan
Prior art keywords
particles
electrode
copper
mass
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010222202A
Other languages
Japanese (ja)
Other versions
JP2011171271A (en
Inventor
修一郎 足立
修一郎 足立
吉田 誠人
誠人 吉田
野尻 剛
剛 野尻
岩室 光則
光則 岩室
木沢 桂子
桂子 木沢
拓也 青柳
拓也 青柳
山本 浩貴
浩貴 山本
内藤 孝
内藤  孝
隆彦 加藤
隆彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010222202A priority Critical patent/JP5633284B2/en
Priority to PCT/JP2011/051362 priority patent/WO2011090212A1/en
Priority to TW100102724A priority patent/TW201135754A/en
Publication of JP2011171271A publication Critical patent/JP2011171271A/en
Application granted granted Critical
Publication of JP5633284B2 publication Critical patent/JP5633284B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、電極用ペースト組成物および太陽電池に関する。   The present invention relates to an electrode paste composition and a solar cell.

一般に太陽電池には表面電極が設けられており、この表面電極の配線抵抗や接触抵抗は変換効率に関連する電圧損失に関連し、また配線幅や形状は太陽光の入射量に影響を与える(例えば、非特許文献1参照)。   Generally, a solar cell is provided with a surface electrode, and the wiring resistance and contact resistance of this surface electrode are related to voltage loss related to conversion efficiency, and the wiring width and shape affect the amount of incident sunlight ( For example, refer nonpatent literature 1).

太陽電池の表面電極は通常以下のようにして形成される。すなわち、p型シリコン基板の受光面側にリン等を高温で熱的に拡散させることにより形成されたn型半導体層上に、導電性組成物をスクリーン印刷等により塗布し、これを800〜900℃で焼成することで表面電極が形成される。この表面電極を形成する導電性組成物には、導電性金属粉末、ガラス粒子、および種々の添加剤等が含まれる。   The surface electrode of a solar cell is usually formed as follows. That is, a conductive composition is applied by screen printing or the like onto an n-type semiconductor layer formed by thermally diffusing phosphorus or the like at a high temperature on the light-receiving surface side of a p-type silicon substrate, and this is applied to 800 to 900. A surface electrode is formed by baking at ° C. The conductive composition forming the surface electrode includes conductive metal powder, glass particles, various additives, and the like.

前記導電性金属粉末としては、銀粉末が一般的に用いられているが、種々の理由から銀粉末以外の金属粉末を用いることが検討されている。例えば、銀とアルミニウムを含む太陽電池用電極を形成可能な導電性組成物が開示されている(例えば、特許文献1参照)。また銀を含む金属ナノ粒子と銀以外の金属粒子を含む電極形成用組成物が開示されている(例えば、特許文献2参照)。   As the conductive metal powder, silver powder is generally used. However, use of metal powders other than silver powder has been studied for various reasons. For example, a conductive composition capable of forming a solar cell electrode containing silver and aluminum is disclosed (for example, see Patent Document 1). Moreover, the composition for electrode formation containing the metal nanoparticle containing silver and metal particles other than silver is disclosed (for example, refer patent document 2).

特開2006−313744号公報JP 2006-313744 A 特開2008−226816号公報JP 2008-226816 A

濱川圭弘著、「太陽光発電 最新の技術とシステム」、CMC出版社、2001年、p26−27Akihiro Tsujikawa, “Latest Photovoltaic Power Generation Technology and System”, CMC Publishing Company, 2001, p26-27

一般に電極形成に用いられる銀は貴金属であり、資源の問題からも、また地金自体が高価であることから銀含有導電性組成物(銀含有ペースト)に代わるペースト材料の提案が望まれている。銀に代わる有望な材料としては、半導体配線材料に適用されている銅が挙げられる。銅は資源的にも豊富で、地金コストも銀の約100分の1と安価である。しかしながら、銅は200℃以上の高温で酸化されやすい材料であり、例えば、特許文献2に記載の電極形成用組成物では、導電性金属として銅を含む場合、これを焼成して電極を形成するために、窒素等の雰囲気下で焼成するという特殊な工程が必要であった。   In general, silver used for electrode formation is a noble metal, and due to the problem of resources, and the metal itself is expensive, a proposal of a paste material to replace the silver-containing conductive composition (silver-containing paste) is desired. . A promising material that can replace silver is copper that is applied to semiconductor wiring materials. Copper is abundant in terms of resources, and the cost of bullion is as low as about 1/100 of silver. However, copper is a material that is easily oxidized at a high temperature of 200 ° C. or higher. For example, in the composition for forming an electrode described in Patent Document 2, when copper is contained as a conductive metal, this is baked to form an electrode. Therefore, a special process of baking in an atmosphere of nitrogen or the like is necessary.

本発明は、焼成時における銅の酸化が抑制され、抵抗率の低い電極を形成可能な電極用ペースト組成物、および、該電極用ペースト組成物を用いて形成された電極を有する太陽電池を提供することを課題とする。   The present invention provides a paste composition for an electrode capable of forming an electrode having low resistivity with suppressed oxidation of copper during firing, and a solar cell having an electrode formed using the paste composition for electrode. The task is to do.

本発明の第1の態様は、リン含有銅合金粒子と、五酸化二リンおよび五酸化二バナジウムを含むとともに前記五酸化二バナジウムの含有率が1質量%以上であるガラス粒子と、溶剤と、樹脂と、を含む電極用ペースト組成物である。前記ガラス粒子は、ガラス軟化点が600℃以下であって、結晶化開始温度が600℃を超えることが好ましい。
また前記電極用ペースト組成物は銀粒子をさらに含むことが好ましい。
The first aspect of the present invention includes phosphorus-containing copper alloy particles, glass particles containing diphosphorus pentoxide and divanadium pentoxide, and having a content of the vanadium pentoxide of 1% by mass or more, a solvent, And an electrode paste composition containing a resin. The glass particles preferably have a glass softening point of 600 ° C. or lower and a crystallization start temperature exceeding 600 ° C.
The electrode paste composition preferably further contains silver particles.

本発明の第2の態様は、シリコン基板上に付与された前記電極用ペースト組成物を焼成して形成された電極を有する太陽電池である。   The 2nd aspect of this invention is a solar cell which has an electrode formed by baking the said paste composition for electrodes provided on the silicon substrate.

本発明によれば、焼成時における銅の酸化が抑制され、抵抗率の低い電極を形成可能な電極用ペースト組成物、および、該電極用ペースト組成物を用いて形成された電極を有する太陽電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the oxidation of copper at the time of baking is suppressed, the paste composition for electrodes which can form an electrode with low resistivity, and the solar cell which has an electrode formed using this paste composition for electrodes Can be provided.

本発明にかかる太陽電池の断面図である。It is sectional drawing of the solar cell concerning this invention. 本発明にかかる太陽電池の受光面側を示す平面図である。It is a top view which shows the light-receiving surface side of the solar cell concerning this invention. 本発明にかかる太陽電池の裏面側を示す平面図である。It is a top view which shows the back surface side of the solar cell concerning this invention. (a)本発明にかかるセルバックコンタクト型太陽電池のAA断面構成を示す斜視図である。(b)本発明にかかるセルバックコンタクト型太陽電池の裏面側電極構造を示す平面図である。(A) It is a perspective view which shows the AA cross-section structure of the cell back contact type solar cell concerning this invention. (B) It is a top view which shows the back surface side electrode structure of the cell back contact type solar cell concerning this invention.

本明細書において「〜」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。   In the present specification, “to” indicates a range including numerical values described before and after that as a minimum value and a maximum value, respectively.

<電極用ペースト組成物>
本発明の電極用ペースト組成物は、銅を主成分とする金属粒子の少なくとも1種と、五酸化二リンおよび五酸化二バナジウムを含むとともに前記五酸化二バナジウムの含有率が1質量%以上であるガラス粒子の少なくとも1種と、溶剤の少なくとも1種と、樹脂の少なくとも1種と、を含む。
かかる構成であることにより、焼成時における銅の酸化が抑制され、抵抗率の低い電極が形成可能である。
<Paste composition for electrodes>
The electrode paste composition of the present invention contains at least one kind of metal particles mainly composed of copper, diphosphorus pentoxide and divanadium pentoxide, and the content of the divanadium pentoxide is 1% by mass or more. It contains at least one kind of certain glass particles, at least one kind of solvent, and at least one kind of resin.
With such a configuration, oxidation of copper during firing is suppressed, and an electrode with low resistivity can be formed.

(金属粒子)
本発明における銅を主成分とする金属粒子(以下、「銅含有粒子」ということがある)は、1金属粒子中における銅成分の含有量が50質量%以上である金属粒子を意味する。
前記銅を主成分とする金属粒子は、本発明の効果を損なわない範囲で他の原子を含んでもよい実質的に銅からなる金属粒子であっても、銅および銅に耐酸化性を付与する成分を含む金属粒子であってもよい。
(Metal particles)
The metal particles containing copper as a main component in the present invention (hereinafter sometimes referred to as “copper-containing particles”) mean metal particles in which the content of the copper component in one metal particle is 50% by mass or more.
The metal particles containing copper as a main component impart oxidation resistance to copper and copper even when the metal particles are substantially made of copper and may contain other atoms within a range not impairing the effects of the present invention. The metal particle containing a component may be sufficient.

前記実質的に銅からなる金属粒子における他の原子としては、例えば、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、Ti、Co、Ni、およびAu等を挙げることができる。中でも、耐酸化性、融点等の特性調整の観点から、Alを含むことが好ましい。
また前記銅含有粒子に含まれる他の原子の含有率は、例えば、前記銅含有粒子中に3質量%以下とすることができ、耐酸化性と低抵抗率の観点から、1質量%以下であることが好ましい。
Examples of other atoms in the metal particles substantially composed of copper include, for example, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Sn, Al, Zr, W, Mo, Ti, Co, Ni, Au, etc. can be mentioned. Among these, Al is preferably contained from the viewpoint of adjusting characteristics such as oxidation resistance and melting point.
Moreover, the content rate of the other atom contained in the said copper containing particle | grain can be 3 mass% or less in the said copper containing particle | grain, for example, and it is 1 mass% or less from a viewpoint of oxidation resistance and a low resistivity. Preferably there is.

前記銅と銅に耐酸化性を付与する成分を含む金属粒子は、示差熱−熱重量同時測定(TG−DTA)において最大面積を示す発熱ピークのピーク温度が280℃以上であることが好ましく、280〜800℃であることがより好ましく350〜750℃であることがさらに好ましい。
かかる耐酸化性が付与された銅を主成分とする金属粒子を用いることで焼成時における金属銅の酸化が抑制され、低抵抗率の電極を形成することができる。なお、示差熱−熱重量同時測定は通常の大気中で、示差熱−熱重量分析装置(エスアイアイ・ナノテクノロジー社製、TG/DTA−6200型)を用いて、例えば、測定温度範囲:室温〜1000℃、昇温速度:40℃/分、大気流量:200ml/分の条件で行われる。
Preferably, the metal particles containing copper and a component that imparts oxidation resistance to copper have a peak temperature of an exothermic peak showing a maximum area of 280 ° C. or higher in simultaneous differential thermal-thermogravimetric measurement (TG-DTA), The temperature is more preferably 280 to 800 ° C, further preferably 350 to 750 ° C.
By using metal particles mainly composed of copper to which such oxidation resistance is imparted, oxidation of metallic copper during firing is suppressed and a low resistivity electrode can be formed. In addition, simultaneous measurement of differential heat-thermogravimetry is performed in a normal atmosphere using a differential heat-thermogravimetric analyzer (manufactured by SII Nanotechnology, TG / DTA-6200 type), for example, measurement temperature range: room temperature ˜1000 ° C., heating rate: 40 ° C./min, atmospheric flow rate: 200 ml / min.

前記示差熱−熱重量同時測定(TG−DTA)において最大面積を示す発熱ピークのピーク温度が280℃以上である銅を主成分とする金属粒子として、具体的には例えば、リン含有銅合金粒子、銀被覆された銅粒子、並びに、トリアゾール化合物、飽和脂肪酸、不飽和脂肪酸、無機金属化合物塩、有機金属化合物塩、ポリアニリン系樹脂、および金属アルコキシドからなる群から選ばれる少なくとも1種で表面処理された銅粒子を挙げることができ、これらから選ばれる少なくとも1種を用いることが好ましい。また前記銅含有粒子は1種単独でも、2種以上を組み合わせて用いてもよい。   Specific examples of metal particles mainly composed of copper having a peak temperature of an exothermic peak showing a maximum area in the differential thermal-thermogravimetric simultaneous measurement (TG-DTA) of 280 ° C. or higher include, for example, phosphorus-containing copper alloy particles , Silver-coated copper particles, and surface treatment with at least one selected from the group consisting of triazole compounds, saturated fatty acids, unsaturated fatty acids, inorganic metal compound salts, organometallic compound salts, polyaniline resins, and metal alkoxides. Copper particles can be mentioned, and at least one selected from these is preferably used. The copper-containing particles may be used alone or in combination of two or more.

前記銅含有粒子の粒子径としては特に制限はないが、積算した重量が50%の場合における粒子径(以下、「D50%」と略記することがある)として、0.4〜10μmであることが好ましく、1μm〜7μmであることがより好ましい。0.4μm以上とすることで耐酸化性がより効果的に向上する。また10μm以下であることで電極中における銅含有粒子どうしの接触面積が大きくなり、抵抗率がより効果的に低下する。尚、銅含有粒子の粒子径はマイクロトラック粒度分布測定装置(日機装社製、MT3300型)によって測定される。
また前記銅含有粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよいが、耐酸化性と低抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
Although there is no restriction | limiting in particular as a particle diameter of the said copper containing particle | grains, It is 0.4-10 micrometers as a particle diameter (Hereinafter, it may abbreviate as "D50%.") When the integrated weight is 50%. Is preferable, and it is more preferable that it is 1 micrometer-7 micrometers. When the thickness is 0.4 μm or more, the oxidation resistance is more effectively improved. Moreover, the contact area of the copper containing particles in an electrode becomes large because it is 10 micrometers or less, and a resistivity falls more effectively. The particle size of the copper-containing particles is measured with a microtrack particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., MT3300 type).
Further, the shape of the copper-containing particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like, from the viewpoint of oxidation resistance and low resistivity. A spherical shape, a flat shape, or a plate shape is preferable.

本発明の電極用ペースト組成物に含まれる前記銅含有粒子の含有率、また後述する銀粒子を含む場合の表面処理された銅粒子と銀粒子の総含有率としては、例えば、70〜94質量%とすることができ、耐酸化性と低抵抗率の観点から、72〜90質量%であることが好ましく、74〜88質量%であることがより好ましい。
また本発明においては、前記銅含有粒子以外の導電性の粒子を組み合わせて用いてもよい。
As content rate of the said copper containing particle | grains contained in the paste composition for electrodes of this invention, and the total content rate of the surface-treated copper particle and silver particle in the case of containing the silver particle mentioned later, for example, 70-94 mass From the viewpoint of oxidation resistance and low resistivity, the content is preferably 72 to 90% by mass, and more preferably 74 to 88% by mass.
In the present invention, conductive particles other than the copper-containing particles may be used in combination.

−リン含有銅合金粒子−
リン含有銅合金としては、リン銅ろう(リン濃度:7質量%程度以下)と呼ばれるろう付け材料が知られている。リン銅ろうは、銅と銅との接合剤としても用いられるものであるが、本発明の電極用ペースト組成物に含まれる銅含有粒子としてリン含有銅合金粒子を用いることで、耐酸化性に優れ、抵抗率の低い電極を形成することができる。さらに電極の低温焼成が可能となり、プロセスコストを削減できるという効果を得ることができる。
-Phosphorus-containing copper alloy particles-
As a phosphorus-containing copper alloy, a brazing material called phosphorus copper brazing (phosphorus concentration: about 7% by mass or less) is known. Phosphorus copper brazing is also used as a bonding agent between copper and copper, but by using phosphorous-containing copper alloy particles as copper-containing particles contained in the electrode paste composition of the present invention, oxidation resistance is improved. An electrode having excellent and low resistivity can be formed. Further, the electrode can be fired at a low temperature, and the effect that the process cost can be reduced can be obtained.

本発明におけるリン含有銅合金に含まれるリン含有率としては、示差熱−熱重量同時測定において最大面積を示す発熱ピークのピーク温度が280℃以上となるような含有率であることが好ましい。具体的には0.01質量%以上であることが好ましい。本発明においては、耐酸化性と低抵抗率の観点から、0.01質量%以上8質量%以下であることがより好ましく、0.5質量%以上7.8質量%以下であることがより好ましく、1質量%以上7.5質量%以下であることがさらに好ましい。
リン含有銅合金に含まれるリン含有率が8質量%以下であることで、より低い抵抗率を達成可能であり、また、リン含有銅合金の生産性に優れる。また0.01質量%以上であることで、より優れた耐酸化性を達成できる。
The phosphorus content contained in the phosphorus-containing copper alloy in the present invention is preferably such a content that the peak temperature of the exothermic peak showing the maximum area in the differential thermal-thermogravimetric simultaneous measurement is 280 ° C. or higher. Specifically, it is preferably 0.01% by mass or more. In the present invention, from the viewpoint of oxidation resistance and low resistivity, it is more preferably 0.01% by mass or more and 8% by mass or less, and more preferably 0.5% by mass or more and 7.8% by mass or less. Preferably, it is 1 mass% or more and 7.5 mass% or less.
When the phosphorus content contained in the phosphorus-containing copper alloy is 8% by mass or less, a lower resistivity can be achieved, and the productivity of the phosphorus-containing copper alloy is excellent. Moreover, the more outstanding oxidation resistance can be achieved because it is 0.01 mass% or more.

前記リン含有銅合金粒子は、銅とリンを含む合金であるが、他の原子をさらに含んでいてもよい。他の原子としては、例えば、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、Ti、Co、Ni、およびAu等を挙げることができる。中でも、耐酸化性、融点等の特性調整の観点から、Alを含むことが好ましい。
また前記リン含有銅合金粒子に含まれる他の原子の含有率は、例えば、前記リン含有銅合金粒子中に3質量%以下とすることができ、耐酸化性と低抵抗率の観点から、1質量%以下であることが好ましい
The phosphorus-containing copper alloy particles are an alloy containing copper and phosphorus, but may further contain other atoms. Examples of other atoms include Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Sn, Al, Zr, W, Mo, Ti, Co, Ni, Au, etc. can be mentioned. Among these, Al is preferably contained from the viewpoint of adjusting characteristics such as oxidation resistance and melting point.
Moreover, the content rate of the other atom contained in the said phosphorus containing copper alloy particle can be 3 mass% or less in the said phosphorus containing copper alloy particle, for example, from a viewpoint of oxidation resistance and a low resistivity, it is 1 It is preferable that it is below mass%

前記リン含有銅合金粒子の粒子径としては特に制限はないが、積算した重量が50%の場合における粒子径(以下、「D50%」と略記することがある)として、0.4〜10μmであることが好ましく、1μm〜7μmであることがより好ましい。0.4μm以上とすることでより効果的に耐酸化性が向上する。また10μm以下であることで電極中におけるリン含有銅合金粒子どうしの接触面積が大きくなり、抵抗率がより効果的に低下する。
また前記リン含有銅合金粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよいが、耐酸化性と低抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
The particle diameter of the phosphorus-containing copper alloy particles is not particularly limited, but the particle diameter when the accumulated weight is 50% (hereinafter sometimes abbreviated as “D50%”) is 0.4 to 10 μm. It is preferable that the thickness is 1 μm to 7 μm. When the thickness is 0.4 μm or more, the oxidation resistance is more effectively improved. Moreover, the contact area of the phosphorus containing copper alloy particles in an electrode becomes large because it is 10 micrometers or less, and a resistivity falls more effectively.
The shape of the phosphorus-containing copper alloy particles is not particularly limited and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like, from the viewpoint of oxidation resistance and low resistivity. It is preferably substantially spherical, flat or plate-like.

リン含有銅合金は、通常用いられる方法で製造することができる。また、リン含有銅合金粒子は、所望のリン含有率となるように調製したリン含有銅合金を用いて、金属粉末を調製する通常の方法を用いて調製することができ、例えば、水アトマイズ法を用いて定法により製造することができる。水アトマイズ法は金属便覧(丸善(株)出版事業部)等に記載されている。
具体的には例えば、リン含有銅合金を溶解し、これをノズル噴霧によって粉末化した後、得られた粉末を乾燥、分級することで、所望のリン含有銅合金粒子を製造することができる。また、分級条件を適宜選択することで所望の粒子径を有するリン含有銅合金粒子を製造することができる。
The phosphorus-containing copper alloy can be produced by a commonly used method. Also, the phosphorus-containing copper alloy particles can be prepared using a normal method of preparing metal powder using a phosphorus-containing copper alloy prepared so as to have a desired phosphorus content, for example, a water atomization method Can be produced by a conventional method. The water atomization method is described in Metal Handbook (Maruzen Publishing Division).
Specifically, for example, after phosphorus-containing copper alloy is dissolved and powdered by nozzle spray, the obtained powder is dried and classified, whereby desired phosphorus-containing copper alloy particles can be produced. Moreover, the phosphorus containing copper alloy particle | grains which have a desired particle diameter can be manufactured by selecting classification conditions suitably.

本発明の電極用ペースト組成物に含まれる前記リン含有銅合金粒子の含有量としては、例えば、70〜94質量%とすることができ、耐酸化性と低抵抗率の観点から、72〜90質量%であることが好ましく、74〜88質量%であることがより好ましい。
また本発明において前記リン含有銅合金粒子は1種単独でも、2種以上を組み合わせて用いてもよい。またリン含有銅合金粒子以外であって、最大面積を示す発熱ピークにおけるピーク温度が280℃以上である銅含有粒子と組み合わせて用いてもよい。
As content of the said phosphorus containing copper alloy particle contained in the paste composition for electrodes of this invention, it can be referred to as 70-94 mass%, for example, and 72-90 from a viewpoint of oxidation resistance and a low resistivity. It is preferable that it is mass%, and it is more preferable that it is 74-88 mass%.
In the present invention, the phosphorus-containing copper alloy particles may be used singly or in combination of two or more. Moreover, you may use in combination with the copper containing particle | grains other than phosphorus containing copper alloy particle | grains, Comprising: The peak temperature in the exothermic peak which shows the maximum area is 280 degreeC or more.

さらに本発明においては、耐酸化性と電極の低抵抗率の観点から、リン含有率が0.01〜8質量%であるリン含有銅合金粒子を、電極用ペースト組成物中に70〜94質量%含むことが好ましく、リン含有率が1〜7.5質量%であるリン含有銅合金粒子を、電極用ペースト組成物中に74〜88質量%含むことがより好ましい。
また本発明においては、前記リン含有銅合金粒子以外の導電性の粒子を組み合わせて用いてもよい。
Furthermore, in this invention, from a viewpoint of oxidation resistance and the low resistivity of an electrode, the phosphorus content copper alloy particle | grains whose phosphorus content rate is 0.01-8 mass% are 70-94 mass in the paste composition for electrodes. The phosphorus-containing copper alloy particles having a phosphorus content of 1 to 7.5% by mass are preferably included in the electrode paste composition in an amount of 74 to 88% by mass.
In the present invention, conductive particles other than the phosphorus-containing copper alloy particles may be used in combination.

−銀被覆銅粒子−
本発明における銀被覆銅粒子としては、銅粒子の表面の少なくとも一部が銀で被覆されているものであればよい。本発明の電極用ペースト組成物に含まれる銅含有粒子として、銀被覆銅粒子を用いることで、耐酸化性に優れ、抵抗率の低い電極を形成することができる。さらに銅粒子が銀で被覆されていることで、銀被覆銅粒子と銀粒子との界面抵抗が低下し、抵抗率がより低下した電極を形成することができる。またさらに、電極用ペースト組成物に水分が混入した場合に、銀被覆銅粒子を用いることで、室温における銅の酸化を抑制でき、ポットライフを向上できるという効果を得ることができる。
-Silver-coated copper particles-
As the silver-coated copper particles in the present invention, it is sufficient that at least a part of the surface of the copper particles is coated with silver. By using silver-coated copper particles as the copper-containing particles contained in the electrode paste composition of the present invention, an electrode having excellent oxidation resistance and low resistivity can be formed. Furthermore, since the copper particles are coated with silver, the interface resistance between the silver-coated copper particles and the silver particles is reduced, and an electrode with a lower resistivity can be formed. Furthermore, when water is mixed in the electrode paste composition, the use of silver-coated copper particles can suppress the oxidation of copper at room temperature and can improve the pot life.

前記銀被覆銅粒子における銀の被覆量(銀含有率)としては、示差熱−熱重量同時測定において最大面積を示す発熱ピークのピーク温度が280℃以上となるような被覆量(銀含有率)であることが好ましい。具体的には銀被覆銅粒子の全質量中に1質量%以上であるが、耐酸化性と電極の低抵抗率の観点から、銀被覆銅粒子の全質量中に1質量%〜88質量%であることが好ましく、3〜80質量%であることがより好ましく、5〜75質量%であることがさらに好ましい。   As the silver coating amount (silver content) in the silver-coated copper particles, the coating amount (silver content) such that the peak temperature of the exothermic peak showing the maximum area in differential thermal-thermogravimetric simultaneous measurement is 280 ° C. or more. It is preferable that Specifically, it is 1% by mass or more in the total mass of the silver-coated copper particles, but from the viewpoint of oxidation resistance and low resistivity of the electrode, 1% by mass to 88% by mass in the total mass of the silver-coated copper particles. It is preferable that it is 3-80 mass%, and it is further more preferable that it is 5-75 mass%.

また銀被覆銅粒子の粒子径としては特に制限はないが、積算した重量が50%の場合における粒子径(以下、「D50%」と略記することがある)として、0.4〜10μmであることが好ましく、1μm〜7μmであることがより好ましい。0.4μm以上とすることでより効果的に耐酸化性が向上する。また10μm以下であることで電極中における銀被覆銅粒子どうしの接触面積が大きくなり、抵抗率がより効果的に低下する。
また前記銀被覆銅粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよいが、耐酸化性と低抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
The particle diameter of the silver-coated copper particles is not particularly limited, but the particle diameter when the accumulated weight is 50% (hereinafter sometimes abbreviated as “D50%”) is 0.4 to 10 μm. The thickness is preferably 1 μm to 7 μm. When the thickness is 0.4 μm or more, the oxidation resistance is more effectively improved. Moreover, the contact area of the silver covering copper particle in an electrode becomes large because it is 10 micrometers or less, and a resistivity falls more effectively.
The shape of the silver-coated copper particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like, from the viewpoint of oxidation resistance and low resistivity. It is preferably substantially spherical, flat, or plate-shaped.

前記銀被覆銅粒子を構成する銅は、本発明の効果を損なわない範囲で他の原子を含んでいてもよい。他の原子としては、例えば、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、Ti、Co、Ni、およびAu等を挙げることができる。中でも、耐酸化性、金属粒子の融点等の特性調整の観点から、Alを含むことが好ましい。
また前記銀被覆銅粒子に含まれる他の原子の含有率は、例えば、前記銀被覆銅粒子中に3質量%以下とすることができ、耐酸化性と低抵抗率の観点から、1質量%以下であることが好ましい
The copper constituting the silver-coated copper particles may contain other atoms as long as the effects of the present invention are not impaired. Examples of other atoms include Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Sn, Al, Zr, W, Mo, Ti, Co, Ni, Au, etc. can be mentioned. Among these, Al is preferably contained from the viewpoint of adjusting properties such as oxidation resistance and melting point of the metal particles.
Moreover, the content rate of the other atom contained in the said silver covering copper particle can be 3 mass% or less in the said silver covering copper particle, for example, and 1 mass% from a viewpoint of oxidation resistance and a low resistivity. Is preferably

また前記銀被覆銅粒子は、既述のリン含有銅合金を銀被覆したものであることもまた好ましい。これにより耐酸化性がより向上し、形成される電極の抵抗率がより低下する。
銀被覆銅粒子におけるリン含有銅合金の詳細については、既述のリン含有銅合金と同義であり、好ましい態様も同様である。
Moreover, it is also preferable that the silver-coated copper particles are those in which the above-described phosphorus-containing copper alloy is silver-coated. Thereby, the oxidation resistance is further improved, and the resistivity of the formed electrode is further reduced.
About the detail of the phosphorus containing copper alloy in a silver covering copper particle, it is synonymous with the above-mentioned phosphorus containing copper alloy, and its preferable aspect is also the same.

前記銀被覆銅粒子の調製方法としては、銅粒子(好ましくは、リン含有銅合金粒子)の表面の少なくとも一部を銀で被覆することができる調製方法であれば特に制限はない。例えば以下のようにして調製することができる。すなわち、硫酸、塩酸、リン酸等の酸性溶液中に銅粉(または、リン含有銅合金粉)を分散し、該銅粉分散液にキレート化剤を加えて銅粉スラリーを作製する。得られた銅粉スラリーに銀イオン溶液を添加することで、置換反応により銅粉表面へ銀層を形成することができる。
前記キレート化剤としては特に制限はないが、例えば、エチレンジアミン四酢酸塩、トリエチレンジアミン、ジエチレントリアミン五酢酸、イミノ二酢酸等を用いることができる。また銀イオン溶液としては、例えば、硝酸銀溶液等を用いることができる。
The method for preparing the silver-coated copper particles is not particularly limited as long as at least a part of the surface of the copper particles (preferably phosphorus-containing copper alloy particles) can be coated with silver. For example, it can be prepared as follows. That is, copper powder (or phosphorus-containing copper alloy powder) is dispersed in an acidic solution such as sulfuric acid, hydrochloric acid, and phosphoric acid, and a chelating agent is added to the copper powder dispersion to prepare a copper powder slurry. By adding a silver ion solution to the obtained copper powder slurry, a silver layer can be formed on the surface of the copper powder by a substitution reaction.
Although there is no restriction | limiting in particular as said chelating agent, For example, ethylenediaminetetraacetic acid salt, triethylenediamine, diethylenetriaminepentaacetic acid, iminodiacetic acid, etc. can be used. Moreover, as a silver ion solution, a silver nitrate solution etc. can be used, for example.

本発明の電極用ペースト組成物に含まれる前記銀被覆銅粒子の含有率、また後述する銀粒子を含む場合の銀被覆銅粒子と銀粒子の総含有率としては、例えば、70〜94質量%とすることができ、耐酸化性と低抵抗率の観点から、72〜90質量%であることが好ましく、74〜88質量%であることがより好ましい。
また本発明において前記銀被覆銅粒子は1種単独でも、2種以上を組み合わせて用いてもよい。また、銀被覆銅粒子以外の最大面積を示す発熱ピークにおけるピーク温度が280℃以上である銅含有粒子と組み合わせて用いてもよい。
The content of the silver-coated copper particles contained in the paste composition for an electrode of the present invention, and the total content of silver-coated copper particles and silver particles in the case of containing silver particles described later, for example, 70 to 94% by mass From the viewpoint of oxidation resistance and low resistivity, the content is preferably 72 to 90% by mass, and more preferably 74 to 88% by mass.
In the present invention, the silver-coated copper particles may be used singly or in combination of two or more. Moreover, you may use in combination with the copper containing particle | grains whose peak temperature in the exothermic peak which shows the largest areas other than silver covering copper particle is 280 degreeC or more.

本発明においては、耐酸化性と電極の低抵抗率の観点から、銀被覆銅粒子の全質量中の銀含有率が1〜88質量%である銀被覆銅粒子を、電極用ペースト組成物中に70〜94質量%(後述する銀粒子を含む場合は、銀被覆銅粒子と銀粒子の総含有率)含むことが好ましく、銀含有率が5〜75質量%である銀被覆銅粒子を、電極用ペースト組成物中に74〜88質量%(後述する銀粒子を含む場合は、銀被覆銅粒子と銀粒子の総含有率)含むことがより好ましい。
さらに銀含有率が1〜88質量%であって、リン含有率が0.01〜8質量%である銀被覆リン含有銅合金粒子を、電極用ペースト組成物中に70〜94質量%(後述する銀粒子を含む場合の銀被覆リン含有銅合金粒子と銀粒子の総含有率)含むことが好ましく、銀含有率が5〜75質量%であって、リン含有率が1〜7.5質量%である銀被覆リン含有銅合金粒子を、電極用ペースト組成物中に74〜88質量%(後述する銀粒子を含む場合の銀被覆リン含有銅合金粒子と銀粒子の総含有率)含むことがより好ましい。
また本発明においては、前記銀被覆銅粒子以外の導電性の粒子を組み合わせて用いてもよい。
In the present invention, from the viewpoint of oxidation resistance and low resistivity of the electrode, the silver-coated copper particles having a silver content of 1 to 88% by mass in the total mass of the silver-coated copper particles are contained in the electrode paste composition. 70 to 94% by mass (when silver particles described later are included, the total content of silver-coated copper particles and silver particles) is preferably included, and silver-coated copper particles having a silver content of 5 to 75% by mass, More preferably, the electrode paste composition contains 74 to 88% by mass (when silver particles described later are included, the total content of silver-coated copper particles and silver particles).
Further, the silver-coated phosphorus-containing copper alloy particles having a silver content of 1 to 88% by mass and a phosphorus content of 0.01 to 8% by mass in the electrode paste composition are 70 to 94% by mass (described later). The total content of silver-coated phosphorus-containing copper alloy particles and silver particles in the case of containing silver particles), the silver content is 5 to 75 mass%, and the phosphorus content is 1 to 7.5 mass % Of silver-coated phosphorus-containing copper alloy particles in the electrode paste composition in an amount of 74 to 88% by mass (total content of silver-coated phosphorus-containing copper alloy particles and silver particles when silver particles described later are included). Is more preferable.
In the present invention, conductive particles other than the silver-coated copper particles may be used in combination.

−表面処理された銅粒子−
本発明における銅含有粒子は、トリアゾール化合物、飽和脂肪酸、不飽和脂肪酸、無機金属化合物塩、有機金属化合物塩、ポリアニリン系樹脂、および金属アルコキシドからなる群(以下、「表面処理剤」ということがある)から選ばれる少なくとも1種で表面処理された銅粒子であることもまた好ましい。本発明の電極用ペースト組成物に含まれる銅含有粒子として、表面処理剤の少なくとも1種で表面処理された銅粒子を用いることで、耐酸化性に優れ、抵抗率の低い電極を形成することができる。さらに電極用ペースト組成物に水分が混入した場合に、表面処理された銅粒子を用いることで、室温における銅の酸化を抑制でき、ポットライフを向上できるという効果を得ることができる。
また本発明において前記表面処理剤は1種単独でも、2種以上を組み合わせて用いてもよい
-Surface treated copper particles-
The copper-containing particles in the present invention are a group consisting of a triazole compound, a saturated fatty acid, an unsaturated fatty acid, an inorganic metal compound salt, an organic metal compound salt, a polyaniline resin, and a metal alkoxide (hereinafter sometimes referred to as “surface treatment agent”). It is also preferable that the copper particles are surface-treated with at least one selected from Forming an electrode with excellent oxidation resistance and low resistivity by using copper particles surface-treated with at least one surface treatment agent as the copper-containing particles contained in the electrode paste composition of the present invention Can do. Further, when moisture is mixed in the electrode paste composition, the use of the surface-treated copper particles can suppress the oxidation of copper at room temperature and can improve the pot life.
In the present invention, the surface treatment agent may be used alone or in combination of two or more.

本発明において、表面処理された銅粒子は、トリアゾール化合物、飽和脂肪酸、不飽和脂肪酸、無機金属化合物塩、有機金属化合物塩、ポリアニリン系樹脂、および金属アルコキシドからなる群から選ばれる少なくとも1種で表面処理されているが、必要に応じてその他の表面処理剤を併用してもよい。   In the present invention, the surface-treated copper particles are at least one selected from the group consisting of triazole compounds, saturated fatty acids, unsaturated fatty acids, inorganic metal compound salts, organometallic compound salts, polyaniline resins, and metal alkoxides. Although it has been treated, other surface treatment agents may be used in combination as required.

前記表面処理剤におけるトリアゾール化合物としては、例えば、ベンゾトリアゾール、トリアゾール等が挙げられる。また、前記表面処理剤における飽和脂肪酸としては、例えば、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸等が挙げられる。また、前記表面処理剤における不飽和脂肪酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、ウンデシレン酸、オレイン酸、エライジン酸、セトレイン酸、ブラシジン酸、エルカ酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等が挙げられる。
また、前記表面処理剤における無機金属化合物塩としては、例えば、ケイ酸ナトリウム、スズ酸ナトリウム、硫酸スズ、硫酸亜鉛、亜鉛酸ナトリウム、硝酸ジルコニウム、ジルコニウム酸ナトリウム、塩化酸化ジルコニウム、硫酸チタン、塩化チタン、シュウ酸チタン酸カリウム等が挙げられる。また、前記表面処理剤における有機金属化合物塩としては、例えば、ステアリン酸鉛、酢酸鉛、テトラアルコキシジルコニウムのp−クミルフェニル誘導体、テトラアルコキシチタニウムのp−クミルフェニル誘導体等が挙げられる。また、前記表面処理剤における金属アルコキシドとしては、例えば、チタニウムアルコキシド、ジルコニウムアルコキシド、鉛アルコキシド、シリコンアルコキシド、スズアルコキシド、インジウムアルコキシド等が挙げられる。
Examples of the triazole compound in the surface treatment agent include benzotriazole and triazole. Examples of the saturated fatty acid in the surface treatment agent include enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, stearic acid, nonadecanoic acid, arachic acid, Examples include behenic acid. Examples of the unsaturated fatty acid in the surface treatment agent include acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, undecylenic acid, oleic acid, elaidic acid, cetreic acid, brassic acid, erucic acid, sorbic acid, and linoleic acid. Linolenic acid, arachidonic acid and the like.
Examples of the inorganic metal compound salt in the surface treatment agent include sodium silicate, sodium stannate, tin sulfate, zinc sulfate, sodium zincate, zirconium nitrate, sodium zirconate, zirconium chloride, titanium sulfate, and titanium chloride. And potassium oxalate titanate. Examples of the organometallic compound salt in the surface treatment agent include lead stearate, lead acetate, p-cumylphenyl derivative of tetraalkoxyzirconium, p-cumylphenyl derivative of tetraalkoxytitanium, and the like. Examples of the metal alkoxide in the surface treatment agent include titanium alkoxide, zirconium alkoxide, lead alkoxide, silicon alkoxide, tin alkoxide, and indium alkoxide.

その他の表面処理剤としては、例えば、ドデシルベンゼンスルホン酸等が挙げることができる。
また、表面処理剤としてステアリン酸またはステアリン酸鉛を用いる場合、表面処理剤としてステアリン酸およびステアリン酸鉛の少なくとも1種と酢酸鉛とを併用することで、耐酸化性がより向上し、抵抗率のより低い電極を形成することができる。
Examples of other surface treatment agents include dodecylbenzene sulfonic acid.
When stearic acid or lead stearate is used as the surface treatment agent, the oxidation resistance is further improved and the resistivity is improved by using at least one of stearic acid and lead stearate and lead acetate as the surface treatment agent. Lower electrodes can be formed.

本発明における表面処理された銅粒子は、銅粒子の表面の少なくとも一部が、前記表面処理剤の少なくとも1種で被覆されていればよい。表面処理された銅粒子に含まれる表面処理剤の含有量としては、示差熱−熱重量同時測定において最大面積を示す発熱ピークのピーク温度が280℃以上となるような含有量であることが好ましい。具体的には表面処理された銅粒子の質量中に0.01質量%以上であることが好ましく、耐酸化性と電極の低抵抗率の観点から、表面処理された銅粒子の質量中に0.01〜10質量%であることがより好ましく、表面処理された銅粒子の質量中に0.1〜8質量%であることがさらに好ましい。   In the surface-treated copper particles in the present invention, it is sufficient that at least a part of the surface of the copper particles is coated with at least one kind of the surface treatment agent. The content of the surface treating agent contained in the surface-treated copper particles is preferably such that the peak temperature of the exothermic peak showing the maximum area in the differential thermal-thermogravimetric simultaneous measurement is 280 ° C. or higher. . Specifically, the content is preferably 0.01% by mass or more in the mass of the surface-treated copper particles, and 0% in the mass of the surface-treated copper particles from the viewpoint of oxidation resistance and low resistivity of the electrode. The amount is more preferably 0.01 to 10% by mass, and further preferably 0.1 to 8% by mass in the mass of the surface-treated copper particles.

前記表面処理された銅粒子を構成する銅は、本発明の効果を損なわない範囲で他の原子を含んでいてもよい。他の原子としては、例えば、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、Ti、Co、Ni、およびAu等を挙げることができる。中でも、耐酸化性、融点等の特性調整の観点から、Alを含むことが好ましい。
また前記表面処理された銅粒子に含まれる他の原子の含有率は、例えば、前記表面処理された銅粒子中に3質量%以下とすることができ、耐酸化性と低抵抗率の観点から、1質量%以下であることが好ましい
The copper constituting the surface-treated copper particles may contain other atoms as long as the effects of the present invention are not impaired. Examples of other atoms include Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Sn, Al, Zr, W, Mo, Ti, Co, Ni, Au, etc. can be mentioned. Among these, Al is preferably contained from the viewpoint of adjusting characteristics such as oxidation resistance and melting point.
Moreover, the content rate of the other atom contained in the said surface-treated copper particle can be 3 mass% or less in the said surface-treated copper particle, for example from a viewpoint of oxidation resistance and a low resistivity. 1% by mass or less is preferable

また前記表面処理された銅粒子は、既述のリン含有銅合金を表面処理したものであることもまた好ましい。これにより耐酸化性がより向上し、形成される電極の抵抗率がより低下する。
表面処理された銅粒子におけるリン含有銅合金の詳細については、既述のリン含有銅合金と同義であり、好ましい態様も同様である。
The surface-treated copper particles are also preferably those obtained by surface-treating the above-described phosphorus-containing copper alloy. Thereby, the oxidation resistance is further improved, and the resistivity of the formed electrode is further reduced.
About the detail of the phosphorus containing copper alloy in the surface-treated copper particle, it is synonymous with the above-mentioned phosphorus containing copper alloy, and a preferable aspect is also the same.

また前記表面処理された銅粒子の粒子径としては特に制限はないが、積算した重量が50%の場合における粒子径(以下、「D50%」と略記することがある)として、0.4〜10μmであることが好ましく、1μm〜7μmであることがより好ましい。0.4μm以上とすることでより効果的に耐酸化性が向上する。また10μm以下であることで電極中における前記表面処理された銅粒子どうしの接触面積が大きくなり、抵抗率がより効果的に低下する。
また前記表面処理された銅粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、および鱗片状等のいずれであってもよいが、耐酸化性と低抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
The particle diameter of the surface-treated copper particles is not particularly limited, but the particle diameter when the accumulated weight is 50% (hereinafter sometimes abbreviated as “D50%”) is 0.4 to The thickness is preferably 10 μm, more preferably 1 μm to 7 μm. When the thickness is 0.4 μm or more, the oxidation resistance is more effectively improved. Moreover, the contact area of the said surface-treated copper particle in an electrode becomes large because it is 10 micrometers or less, and a resistivity falls more effectively.
Further, the shape of the surface-treated copper particles is not particularly limited and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, etc., but has an oxidation resistance and a low resistivity. From the viewpoint, it is preferably substantially spherical, flat, or plate-shaped.

表面処理剤を用いた銅粒子の表面処理方法としては、用いる表面処理剤に応じて適宜選択することができる。例えば、表面処理剤を溶解可能な溶媒に表面処理剤を溶解した表面処理溶液を調製し、これに銅粒子を浸漬・乾燥することで、銅粒子の表面の少なくとも一部を該表面処理剤で被覆することができる。   The surface treatment method of the copper particles using the surface treatment agent can be appropriately selected according to the surface treatment agent to be used. For example, by preparing a surface treatment solution in which the surface treatment agent is dissolved in a solvent capable of dissolving the surface treatment agent, and immersing and drying the copper particles in this, at least a part of the surface of the copper particles is coated with the surface treatment agent. Can be coated.

前記表面処理剤を溶解可能な溶媒は、表面処理剤に応じて適宜選択することができる。例えば、水、メタノール、エタノール、イソプロパノール等のアルコール系溶剤、エチレングリコールモノエチルエーテル等のグリコール系溶剤、ジエチレングリコールモノブチルエーテル等のカルビトール系溶剤、ジエチレングリコールモノエチルエーテルアセテート等のカルビトールアセテート系溶剤等を挙げることができる。
具体的には、例えば、表面処理剤としてベンゾトリアゾール、トリアゾール、ドデシルベンゼンスルホン酸を用いる場合、アルコール系溶剤を用いて表面処理溶液を調製し、銅粒子を表面処理することができる
また表面処理剤としてステアリン酸またはステアリン酸鉛を用いる場合、アルコール系溶剤を用いて表面処理溶液を調製することができる。
The solvent capable of dissolving the surface treatment agent can be appropriately selected according to the surface treatment agent. For example, water, alcohol solvents such as methanol, ethanol, isopropanol, glycol solvents such as ethylene glycol monoethyl ether, carbitol solvents such as diethylene glycol monobutyl ether, carbitol acetate solvents such as diethylene glycol monoethyl ether acetate, etc. Can be mentioned.
Specifically, for example, when benzotriazole, triazole, or dodecylbenzenesulfonic acid is used as the surface treatment agent, a surface treatment solution can be prepared using an alcohol solvent, and the copper particles can be surface treated. When stearic acid or lead stearate is used as the surface treatment solution, a surface treatment solution can be prepared using an alcohol solvent.

表面処理溶液における表面処理剤の濃度は、用いる表面処理剤の種類や所望の表面処理量に応じて適宜選択することができる。例えば、1〜90質量%とすることができ、2〜85質量%であることが好ましい。   The concentration of the surface treatment agent in the surface treatment solution can be appropriately selected according to the type of surface treatment agent used and the desired surface treatment amount. For example, it can be 1-90 mass%, and it is preferable that it is 2-85 mass%.

本発明の電極用ペースト組成物に含まれる前記表面処理された銅粒子の含有率、また後述する銀粒子を含む場合の表面処理された銅粒子と銀粒子の総含有率としては、例えば、70〜94質量%とすることができ、耐酸化性と低抵抗率の観点から、72〜90質量%であることが好ましく、74〜88質量%であることがより好ましい。
また本発明において前記表面処理された銅粒子は1種単独でも、2種以上を組み合わせて用いてもよい。また、表面処理された銅粒子以外の最大面積を示す発熱ピークにおけるピーク温度が280℃以上である銅含有粒子と組み合わせて用いてもよい。
The content of the surface-treated copper particles contained in the electrode paste composition of the present invention, and the total content of the surface-treated copper particles and silver particles in the case of containing silver particles described later are, for example, 70 It can be -94 mass%, and it is preferable that it is 72-90 mass% from a viewpoint of oxidation resistance and a low resistivity, and it is more preferable that it is 74-88 mass%.
In the present invention, the surface-treated copper particles may be used singly or in combination of two or more. Moreover, you may use in combination with the copper containing particle | grains whose peak temperature in the exothermic peak which shows the largest areas other than the surface-treated copper particle is 280 degreeC or more.

本発明においては、耐酸化性と電極の低抵抗率の観点から、トリアゾール化合物、飽和脂肪酸、不飽和脂肪酸、無機金属化合物塩、有機金属化合物塩、ポリアニリン系樹脂、および金属アルコキシドからなる群から選ばれる少なくとも1種が0.01〜10質量%含まれるように表面処理された銅粒子を、電極用ペースト組成物中に70〜94質量%(後述する銀粒子を含む場合は、表面処理された銅粒子と銀粒子の総含有率)含むことが好ましく、トリアゾール化合物、飽和脂肪酸、不飽和脂肪酸、および無機金属化合物塩からなる群から選ばれる少なくとも1種が0.1〜8質量%含まれるように表面処理された銅粒子を、電極用ペースト組成物中に74〜88質量%(後述する銀粒子を含む場合は、表面処理された銅粒子と銀粒子の総含有率)含むことがより好ましい。
さらにトリアゾール化合物、飽和脂肪酸、不飽和脂肪酸、無機金属化合物塩、有機金属化合物塩、ポリアニリン系樹脂、および金属アルコキシドからなる群から選ばれる少なくとも1種が0.01〜10質量%含まれるように表面処理され、リン含有率が8質量%以下である表面処理されたリン含有銅合金粒子を、電極用ペースト組成物中に70〜94質量%(後述する銀粒子を含む場合は、表面処理されたリン含有銅合金粒子と銀粒子の総含有率)含むことが好ましく、トリアゾール化合物、飽和脂肪酸、不飽和脂肪酸、および無機金属化合物塩からなる群から選ばれる少なくとも1種が0.1〜8質量%含まれるように表面処理され、リン含有率が1〜7.5質量%である表面処理されたリン含有銅合金粒子を、電極用ペースト組成物中に74〜88質量%(後述する銀粒子を含む場合は、表面処理されたリン含有銅合金粒子と銀粒子の総含有率)含むことがより好ましい。
また本発明においては、前記表面処理された銅粒子以外の導電性の粒子を組み合わせて用いてもよい。
In the present invention, from the viewpoint of oxidation resistance and low resistivity of the electrode, it is selected from the group consisting of triazole compounds, saturated fatty acids, unsaturated fatty acids, inorganic metal compound salts, organometallic compound salts, polyaniline resins, and metal alkoxides. In the electrode paste composition, 70 to 94% by mass of copper particles surface-treated so that at least one kind contained is contained in an amount of 0.01 to 10% by mass. (Total content of copper particles and silver particles) is preferably included, and 0.1 to 8% by mass of at least one selected from the group consisting of triazole compounds, saturated fatty acids, unsaturated fatty acids, and inorganic metal compound salts is included. In the electrode paste composition, 74 to 88% by mass of the surface-treated copper particles (in the case of containing silver particles described later, the total of the surface-treated copper particles and silver particles) Yuritsu) it is more preferable to include.
Further, the surface includes 0.01 to 10% by mass of at least one selected from the group consisting of triazole compounds, saturated fatty acids, unsaturated fatty acids, inorganic metal compound salts, organometallic compound salts, polyaniline resins, and metal alkoxides. The surface-treated phosphorus-containing copper alloy particles having a phosphorus content of not more than 8% by mass were treated with 70 to 94% by mass in the electrode paste composition (in the case of containing silver particles described later, the surface treatment was performed). The total content of phosphorus-containing copper alloy particles and silver particles) is preferably included, and at least one selected from the group consisting of triazole compounds, saturated fatty acids, unsaturated fatty acids, and inorganic metal compound salts is 0.1 to 8% by mass. In the paste composition for electrodes, the surface-treated phosphorus-containing copper alloy particles that are surface-treated so as to be contained and have a phosphorus content of 1 to 7.5% by mass 74-88 wt% (when containing silver particles to be described later, the total content of the surface-treated phosphorous-containing copper alloy particles and the silver particles) more preferably contains.
In the present invention, conductive particles other than the surface-treated copper particles may be used in combination.

(ガラス粒子)
本発明の電極用ペースト組成物は、五酸化二リンおよび五酸化二バナジウムを含むとともに前記五酸化二バナジウムの含有率が1質量%以上であるガラス粒子の少なくとも1種を含む。電極用ペースト組成物が、かかる特定組成を有するガラス粒子を含むことにより、ファイアースルー性が向上し、電極とシリコン基板とのオーミックコンタクトが、より低抵抗率で形成される。
ここでいうファイアースルー性とは、電極形成温度において、前記ガラス粒子と反射防止膜である窒化ケイ素膜とが反応して、窒化ケイ素膜が取り除かれ、電極とシリコン基板とのオーミックコンタクトが形成されることをいう。
(Glass particles)
The paste composition for an electrode of the present invention contains at least one kind of glass particles containing diphosphorus pentoxide and divanadium pentoxide, and having a content of the divanadium pentoxide of 1% by mass or more. When the electrode paste composition contains glass particles having such a specific composition, the fire-through property is improved, and an ohmic contact between the electrode and the silicon substrate is formed with a lower resistivity.
Here, the fire-through property means that the glass particles react with the silicon nitride film as the antireflection film at the electrode forming temperature, and the silicon nitride film is removed to form an ohmic contact between the electrode and the silicon substrate. That means.

前記ガラス粒子は、五酸化二リンおよび五酸化二バナジウムを含むガラス(P−V系ガラス)からなる。五酸化二リンおよび五酸化二バナジウムを含むことで、耐酸化性がより向上し、形成される電極の抵抗率がより低下し、さらにはファイアースルー性が向上する。これは、例えば、五酸化二バナジウムを更に含むことでガラスの軟化点が低下することに起因すると考えることができる。 The glass particles are made of glass (P 2 O 5 -V 2 O 5 -based glass) containing diphosphorus pentoxide and vanadium pentoxide. By containing diphosphorus pentoxide and divanadium pentoxide, the oxidation resistance is further improved, the resistivity of the formed electrode is further reduced, and the fire-through property is further improved. This can be attributed to, for example, that the softening point of the glass is lowered by further containing divanadium pentoxide.

前記ガラス粒子における五酸化二バナジウムの含有率は、ガラスの全質量中に1質量%以上であるが、耐酸化性と電極の低抵抗率の観点から、1〜70質量%であることが好ましい。
また五酸化二リンの含有率については特に制限はないが、耐酸化性と電極の低抵抗率の観点から、1質量%以上であることが好ましく、4〜50質量%であることがより好ましい。
The content of divanadium pentoxide in the glass particles is 1% by mass or more in the total mass of the glass, but is preferably 1 to 70% by mass from the viewpoint of oxidation resistance and low resistivity of the electrode. .
Moreover, there is no restriction | limiting in particular about the content rate of diphosphorus pentoxide, but it is preferable that it is 1 mass% or more from a viewpoint of oxidation resistance and the low resistivity of an electrode, and it is more preferable that it is 4-50 mass%. .

また前記五酸化二リン−五酸化二バナジウム系ガラス(P−V系ガラス)は、必要に応じてその他の成分を更に含むことができる。その他の成分としては酸化バリウム(BaO)、二酸化マンガン(MnO)、酸化ナトリウム(NaO)、酸化カリウム(KO)、二酸化ジルコニウム(ZrO)、三酸化タングステン(WO)、酸化テルル(TeO)、三酸化モリブデン(MoO)、三酸化二アンチモン(Sb)等を挙げることができる。その他の成分を更に含むことで、窒化ケイ素に由来する二酸化ケイ素を、より効率よく取り込むことができる。また軟化・溶解温度をより低下させることができる。さらに銅含有粒子や必要に応じて含まれる銀粒子との反応を抑制することができる。 The diphosphorus pentoxide-bivanadium pentoxide glass (P 2 O 5 —V 2 O 5 glass) may further contain other components as required. As other components, barium oxide (BaO), manganese dioxide (MnO 2 ), sodium oxide (Na 2 O), potassium oxide (K 2 O), zirconium dioxide (ZrO 2 ), tungsten trioxide (WO 3 ), oxidation Examples include tellurium (TeO), molybdenum trioxide (MoO 3 ), and diantimony trioxide (Sb 2 O 3 ). By further including other components, silicon dioxide derived from silicon nitride can be incorporated more efficiently. Further, the softening / dissolution temperature can be further reduced. Furthermore, reaction with copper containing particle | grains and the silver particle contained as needed can be suppressed.

前記ガラス粒子は、耐酸化性と電極の低抵抗率の観点から、ガラス軟化点が600℃以下であって、結晶化開始温度が600℃を超えるガラスを含むガラス粒子であることが好ましい。尚、前記ガラス軟化点は、熱機械分析装置(TMA)を用いて通常の方法によって測定され、また前記結晶化開始温度は、示差熱−熱重量分析装置(TG−DTA)を用いて通常の方法によって測定される。   The glass particles are preferably glass particles containing glass having a glass softening point of 600 ° C. or lower and a crystallization start temperature exceeding 600 ° C. from the viewpoint of oxidation resistance and low resistivity of the electrode. The glass softening point is measured by a normal method using a thermomechanical analyzer (TMA), and the crystallization start temperature is measured using a differential thermal-thermogravimetric analyzer (TG-DTA). Measured by method.

本発明の電極用ペースト組成物は、前記P−V系ガラスに加えて、五酸化二リンまたは五酸化二バナジウムを含まないその他のガラス粒子の少なくとも1種を更に含んでいてもよい。
前記その他のガラス粒子としては、二酸化ケイ素を効率よく取り込み可能であることから、鉛を含むガラスから構成されるガラス粒子を好ましく挙げることができる。このような鉛を含むガラスとしては、例えば、特許第03050064号公報等に記載のものを挙げることができ、本発明においてもこれらを好適に使用することができる。
また本発明においては、環境に対する影響を考慮すると、鉛を実質的に含まない鉛フリーガラスを用いることもまた好ましい。鉛フリーガラスとしては、例えば、特開2006−313744号公報の段落番号0024〜0025に記載の鉛フリーガラスや、特開2009−188281号公報等に記載の鉛フリーガラスを挙げることができ、これらの鉛フリーガラスから適宜選択して本発明に適用することもまた好ましい。
The electrode paste composition of the present invention further includes at least one kind of other glass particles not containing diphosphorus pentoxide or divanadium pentoxide in addition to the P 2 O 5 —V 2 O 5 glass. May be.
As said other glass particle, since silicon dioxide can be taken in efficiently, the glass particle comprised from the glass containing lead can be mentioned preferably. Examples of such glass containing lead include those described in Japanese Patent No. 03050064, and these can also be suitably used in the present invention.
In the present invention, it is also preferable to use lead-free glass substantially free of lead in consideration of the influence on the environment. Examples of the lead-free glass include lead-free glass described in paragraph numbers 0024 to 0025 of JP-A-2006-313744 and lead-free glass described in JP-A 2009-188281. It is also preferable that the lead-free glass is appropriately selected and applied to the present invention.

前記ガラス粒子の含有率としては、電極用ペースト組成物の全質量中に0.1質量%〜10質量%であることが好ましく、0.5〜8質量%であることがより好ましく、1〜7質量%であることがさらに好ましい。かかる範囲の含有率でガラス粒子を含むことにより、より効果的に耐酸化性、電極の低抵抗率および低接触抵抗が達成される。   As a content rate of the said glass particle, it is preferable that it is 0.1 mass%-10 mass% in the total mass of the paste composition for electrodes, and it is more preferable that it is 0.5-8 mass%, More preferably, it is 7 mass%. By including glass particles with a content in such a range, oxidation resistance, low resistivity of the electrode, and low contact resistance can be achieved more effectively.

本発明においては、Vの含有率が1質量%以上であるP−V系ガラスからなるガラス粒子を0.1質量%〜10質量%含むことが好ましく、Vの含有率が1〜70質量%であるP−V系ガラスからなるガラス粒子を0.5〜8質量%含むことがより好ましく、Vの含有率が1〜70質量%であるP−V系ガラスからなるガラス粒子を1〜7質量%含むことがさらに好ましい。 In the present invention, it is preferable that the content of V 2 O 5 contains 0.1% to 10% by weight of glass particles consisting of P 2 O 5 -V 2 O 5 -based glass is at least 1 mass%, V It is more preferable to contain 0.5 to 8% by mass of glass particles made of P 2 O 5 —V 2 O 5 based glass having a content of 2 O 5 of 1 to 70% by mass, and the content of V 2 O 5 It is more preferable that 1 to 7% by mass of glass particles made of P 2 O 5 —V 2 O 5 -based glass having a content of 1 to 70% by mass is contained.

(溶剤および樹脂)
本発明の電極用ペースト組成物は、溶剤の少なくとも1種と樹脂の少なくとも1種とを含む。これにより本発明の電極用ペースト組成物の液物性(例えば、粘度、表面張力等)を、シリコン基板に付与する際の付与方法に応じて必要とされる液物性に調整することができる。
(Solvent and resin)
The electrode paste composition of the present invention contains at least one solvent and at least one resin. Thereby, the liquid physical property (for example, a viscosity, surface tension, etc.) of the paste composition for electrodes of this invention can be adjusted to the required liquid physical property according to the provision method at the time of providing to a silicon substrate.

前記溶剤としては特に制限はない。例えば、ヘキサン、シクロヘキサン、トルエンなどの炭化水素系溶剤;ジクロロエチレン、ジクロロエタン、ジクロロベンゼンなどの塩素化炭化水素系剤;テトラヒドロフラン、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3−ジオキソラン、トリオキサンなどの環状エーテル系溶剤;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド系溶剤;ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶剤;アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノンなどのケトン系溶剤;エタノール、2−プロパノール、1−ブタノール、ジアセトンアルコールなどのアルコール系化合物;2,2,4−トリメチル−1,3−ペンタンジオールモノアセテート、2,2,4−トリメチル−1,3−ペンタンジオールモノプロピオレート、2,2,4−トリメチル−1,3−ペンタンジオールモノブチレート、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート、2,2,4−トリエチル−1,3−ペンタンジオールモノアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどの多価アルコールのエステル系溶剤;ブチルセロソルブ、ジエチレングリコールジエチルエーテルなとの多価アルコールのエーテル系溶剤;α−テルピネン、α−テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α−ピネン、β−ピネン、ターピネオール、カルボン、オシメン、フェランドレンなどのテルペン系溶剤、およびこれらの混合物が挙げられる。   There is no restriction | limiting in particular as said solvent. For example, hydrocarbon solvents such as hexane, cyclohexane and toluene; chlorinated hydrocarbon agents such as dichloroethylene, dichloroethane and dichlorobenzene; cyclics such as tetrahydrofuran, furan, tetrahydropyran, pyran, dioxane, 1,3-dioxolane and trioxane Ether solvents; amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide; ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone and cyclohexanone; ethanol; Alcohol compounds such as 2-propanol, 1-butanol and diacetone alcohol; 2,2,4-trimethyl-1,3-pentanediol monoacetate, 2,2,4-toluene Methyl-1,3-pentanediol monopropiolate, 2,2,4-trimethyl-1,3-pentanediol monobutyrate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, Ester solvents of polyhydric alcohols such as 2,2,4-triethyl-1,3-pentanediol monoacetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate; ethers of polyhydric alcohols such as butyl cellosolve and diethylene glycol diethyl ether Terpene solvents such as α-terpinene, α-terpineol, myrcene, alloocimene, limonene, dipentene, α-pinene, β-pinene, terpineol, carvone, oximene, ferrandrene, and mixtures thereof Compound may be mentioned.

本発明における前記溶剤としては、電極用ペースト組成物をシリコン基板に形成する際の塗布性、印刷性の観点から、多価アルコールのエステル系溶剤、テルペン系溶剤、多価アルコールのエーテル系溶剤から選ばれる少なくとも1種であることが好ましく、多価アルコールのエステル系溶剤およびテルペン系溶剤から選ばれる少なくとも1種であることがより好ましい。
本発明において前記溶剤は1種単独でも、2種以上を組み合わせて用いてもよい。
As the solvent in the present invention, from the viewpoints of coatability and printability when the electrode paste composition is formed on a silicon substrate, a polyhydric alcohol ester solvent, a terpene solvent, a polyhydric alcohol ether solvent. It is preferably at least one selected, and more preferably at least one selected from an ester solvent of a polyhydric alcohol and a terpene solvent.
In this invention, the said solvent may be used individually by 1 type or in combination of 2 or more types.

また前記樹脂としては焼成によって熱分解されうる樹脂であれば、当該技術分野において通常用いられる樹脂を特に制限なく用いることができる。具体的には例えば、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ニトロセルロースなどのセルロース系樹脂;ポリビニルアルコール類;ポリビニルピロリドン類;アクリル樹脂;酢酸ビニル−アクリル酸エステル共重合体;ポリビニルブチラール等のブチラール樹脂;フェノール変性アルキド樹脂、ひまし油脂肪酸変性アルキド樹脂のようなアルキド樹脂;エポキシ樹脂;フェノール樹脂;ロジンエステル樹脂等を挙げることができる。   As the resin, any resin that is usually used in the technical field can be used without particular limitation as long as it can be thermally decomposed by firing. Specifically, for example, cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and nitrocellulose; polyvinyl alcohols; polyvinyl pyrrolidones; acrylic resins; vinyl acetate-acrylic acid ester copolymers; butyral resins such as polyvinyl butyral; phenol Examples thereof include alkyd resins such as modified alkyd resins and castor oil fatty acid modified alkyd resins; epoxy resins; phenol resins; rosin ester resins.

本発明における前記樹脂としては、焼成時における消失性の観点から、セルロース系樹脂、アクリル樹脂から選ばれる少なくとも1種であることが好ましく、セルロース系樹脂から選ばれる少なくとも1種であることがより好ましい。
本発明において前記樹脂は1種単独でも、2種以上を組み合わせて用いてもよい。
The resin in the present invention is preferably at least one selected from a cellulose resin and an acrylic resin, and more preferably at least one selected from a cellulose resin, from the viewpoint of disappearance during firing. .
In this invention, the said resin may be used individually by 1 type or in combination of 2 or more types.

本発明の電極用ペースト組成物において、前記溶剤と前記樹脂の含有量は、所望の液物性と使用する溶剤および樹脂の種類に応じて適宜選択することができる。例えば、溶剤と樹脂の総含有量が、電極用ペースト組成物の全質量中に3質量%以上29.9質量%以下であることが好ましく、5質量%以上25質量%以下であることがより好ましく、7質量%以上20質量%以下であることがさらに好ましい。
溶剤と樹脂の総含有量が前記範囲内であることにより、電極用ペースト組成物をシリコン基板に付与する際の付与適性が良好になり、所望の幅および高さを有する電極をより容易に形成することができる。
In the electrode paste composition of the present invention, the content of the solvent and the resin can be appropriately selected according to the desired liquid properties and the type of solvent and resin used. For example, the total content of the solvent and the resin is preferably 3% by mass or more and 29.9% by mass or less, and more preferably 5% by mass or more and 25% by mass or less based on the total mass of the electrode paste composition. Preferably, it is 7 mass% or more and 20 mass% or less.
When the total content of the solvent and the resin is within the above range, the application suitability when applying the electrode paste composition to the silicon substrate is improved, and an electrode having a desired width and height is more easily formed. can do.

(銀粒子)
本発明の電極用ペースト組成物は、銀粒子の少なくとも1種を更に含むことが好ましい。銀粒子を含むことで耐酸化性がより向上し、電極としての抵抗率がより低下する。さらに太陽電池モジュールとした場合のはんだ接続性が向上するという効果も得られる。このことは例えば、以下のように考えることができる。
(Silver particles)
The electrode paste composition of the present invention preferably further contains at least one silver particle. By containing silver particles, the oxidation resistance is further improved, and the resistivity as an electrode is further reduced. Furthermore, the effect that the solder connection property at the time of setting it as a solar cell module improves is also acquired. This can be considered as follows, for example.

一般に電極形成温度領域である600℃から900℃の温度領域では、銅中への銀の少量の固溶、および銀中への銅の少量の固溶が生じ、銅と銀との界面に銅−銀固溶体の層(固溶領域)が形成される。銅含有粒子と銀粒子の混合物を高温に加熱後、室温へゆっくりと冷却した場合、固溶領域は生じないと考えられるが、電極形成時には高温域から常温に数秒で冷却されることから、高温での固溶体の層は、非平衡な固溶体相または銅と銀の共晶組織として銀粒子および銅含有粒子の表面を覆うと考えられる。このような銅−銀固溶体層は、電極形成温度における銅含有粒子の耐酸化性に寄与すると考えることができる。   In general, in a temperature range of 600 ° C. to 900 ° C., which is an electrode formation temperature range, a small amount of silver is dissolved in copper and a small amount of copper is dissolved in silver, and copper is formed at the interface between copper and silver. -A silver solid solution layer (solid solution region) is formed. When a mixture of copper-containing particles and silver particles is heated to a high temperature and then slowly cooled to room temperature, it is considered that a solid solution region does not occur, but at the time of electrode formation, it is cooled from the high temperature region to room temperature in a few seconds. It is thought that the solid solution layer in FIG. 4 covers the surface of the silver particles and the copper-containing particles as a non-equilibrium solid solution phase or a eutectic structure of copper and silver. Such a copper-silver solid solution layer can be considered to contribute to the oxidation resistance of the copper-containing particles at the electrode formation temperature.

また銅−銀固溶体層は、300℃から500℃以上の温度で形成され始める。従って、示差熱−熱重量同時測定において最大面積を示す発熱ピークのピーク温度が280℃以上である銅含有粒子に、銀粒子を併用することで、より効果的に銅含有粒子の耐酸化性を向上することができ、形成される電極の抵抗率がより低下すると考えることができる。   The copper-silver solid solution layer starts to be formed at a temperature of 300 ° C. to 500 ° C. or higher. Therefore, by using silver particles together with copper-containing particles having a peak temperature of an exothermic peak showing a maximum area in differential thermal-thermogravimetric simultaneous measurement of 280 ° C. or more, the oxidation resistance of the copper-containing particles can be more effectively improved. It can be considered that the resistivity of the formed electrode is further reduced.

前記銀粒子を構成する銀は、不可避的に混入する他の原子を含んでいてもよい。不可避的に混入する他の原子としては、例えば、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、Ti、Co、Ni、およびAu等を挙げることができる。   The silver which comprises the said silver particle may contain the other atom mixed unavoidable. As other atoms inevitably mixed, for example, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Sn, Al, Zr, W , Mo, Ti, Co, Ni, Au, and the like.

本発明における銀粒子の粒子径としては特に制限はないが、積算した重量が50%である場合における粒子径(D50%)が、0.4μm以上10μm以下であることが好ましく、1μm以上5μm以下であることがより好ましい。0.4μm以上とすることでより効果的に耐酸化性が向上する。また10μm以下であることで電極中における銀粒子および銅含有粒子等の金属粒子どうしの接触面積が大きくなり、抵抗率がより効果的に低下する。   The particle diameter of the silver particles in the present invention is not particularly limited, but the particle diameter (D50%) when the accumulated weight is 50% is preferably 0.4 μm or more and 10 μm or less, and 1 μm or more and 5 μm or less. It is more preferable that When the thickness is 0.4 μm or more, the oxidation resistance is more effectively improved. Moreover, the contact area of metal particles, such as a silver particle and copper containing particle | grains in an electrode, becomes large because it is 10 micrometers or less, and resistivity falls more effectively.

本発明の電極用ペースト組成物において、前記銅含有粒子の粒子径(D50%)と前記銀粒子の粒子径(D50%)の関係としては特に制限はないが、いずれか一方の粒子径(D50%)が他方の粒子径(D50%)よりも小さいことが好ましく、いずれか一方の粒子径に対する他方の粒子径の比が1〜10であることがより好ましい。これにより、電極の抵抗率がより効果的に低下する。これは例えば、電極内における銅含有粒子および銀粒子等の金属粒子どうしの接触面積が大きくなることに起因すると考えることができる。   In the electrode paste composition of the present invention, the relationship between the particle diameter of the copper-containing particles (D50%) and the particle diameter of the silver particles (D50%) is not particularly limited, but either one of the particle diameters (D50 %) Is preferably smaller than the other particle diameter (D50%), and the ratio of the other particle diameter to any one particle diameter is more preferably 1 to 10. Thereby, the resistivity of an electrode falls more effectively. This can be attributed to, for example, an increase in contact area between metal particles such as copper-containing particles and silver particles in the electrode.

また本発明の電極用ペースト組成物における銀粒子の含有率としては、耐酸化性と電極の低抵抗率の観点から、電極用ペースト組成物中に8.4〜85.5質量%であることが好ましく、8.9〜80.1質量%であることがより好ましい。
さらに本発明においては、耐酸化性と電極の低抵抗率の観点から、前記銅含有粒子と前記銀粒子の総量を100質量%としたときの前記銅含有粒子の含有率が9質量%以上88質量%であることが好ましく、17質量%以上77質量%であることがより好ましい。前記銅含有粒子の含有率が9質量%以上であることで、例えば、前記ガラス粒子が含む五酸化二バナジウムと銀との反応が抑制され、電極の体積抵抗がより低下する。また前記銅含有粒子の含有率が88質量%以下であることで、銅含有粒子に含まれる銅がシリコン基板と接触することがより抑制され、電極の接触抵抗がより低下する。
Moreover, as content rate of the silver particle in the paste composition for electrodes of this invention, it is 8.4-85.5 mass% in an electrode paste composition from a viewpoint of oxidation resistance and the low resistivity of an electrode. Is preferable, and it is more preferable that it is 8.9-80.1 mass%.
Furthermore, in the present invention, from the viewpoint of oxidation resistance and low resistivity of the electrode, the content of the copper-containing particles is 9% by mass or more and 88% when the total amount of the copper-containing particles and the silver particles is 100% by mass. It is preferable that it is mass%, and it is more preferable that it is 17 mass% or more and 77 mass%. When the content of the copper-containing particles is 9% by mass or more, for example, the reaction between divanadium pentoxide and silver contained in the glass particles is suppressed, and the volume resistance of the electrode is further reduced. Moreover, it is suppressed that the content rate of the said copper containing particle | grain is 88 mass% or less, and the copper contained in a copper containing particle | grain contacts a silicon substrate, and the contact resistance of an electrode falls more.

また本発明の電極用ペースト組成物においては、耐酸化性、電極の低抵抗率、シリコン基板への塗布性の観点から、前記銅含有粒子および前記銀粒子の総含有量が70〜94質量%であることが好ましく、74〜88質量%であることがより好ましい。前記銅含有粒子および前記銀粒子の総含有量が70質量%以上であることで、電極用ペースト組成物を付与する際に好適な粘度を容易に達成することができる。また前記銅含有粒子および前記銀粒子の総含有量が94質量%以下であることで、電極用ペースト組成物を付与する際のかすれの発生をより効果的に抑制することができる。   In the electrode paste composition of the present invention, the total content of the copper-containing particles and the silver particles is 70 to 94% by mass from the viewpoints of oxidation resistance, low resistivity of the electrode, and applicability to a silicon substrate. It is preferable that it is 74-88 mass%. When the total content of the copper-containing particles and the silver particles is 70% by mass or more, a suitable viscosity can be easily achieved when the electrode paste composition is applied. Moreover, generation | occurrence | production of the blurring at the time of providing the paste composition for electrodes can be suppressed more effectively because the total content of the said copper containing particle | grains and the said silver particle is 94 mass% or less.

さらに本発明の電極用ペースト組成物においては、耐酸化性と電極の低抵抗率の観点から、前記銅含有粒子および前記銀粒子の総含有率が70〜94質量%であって、前記ガラス粒子の含有率が0.1〜10質量%であって、前記溶剤および前記樹脂の総含有率が3〜29.9質量%であることが好ましく、前記銅含有粒子および前記銀粒子の総含有率が72〜90質量%であって、前記ガラス粒子の含有率が0.5〜8質量%であって、前記溶剤および前記樹脂の総含有率が5〜25質量%であることがより好ましく、前記銅含有粒子および前記銀粒子の総含有率が74〜88質量%であって、前記ガラス粒子の含有率が1〜7質量%であって、前記溶剤および前記樹脂の総含有率が7〜20質量%であることがさらに好ましい。   Furthermore, in the electrode paste composition of the present invention, from the viewpoint of oxidation resistance and low resistivity of the electrode, the total content of the copper-containing particles and the silver particles is 70 to 94% by mass, and the glass particles Is preferably 0.1 to 10% by mass, and the total content of the solvent and the resin is preferably 3 to 29.9% by mass, and the total content of the copper-containing particles and the silver particles Is more preferably 72 to 90% by mass, the glass particle content is 0.5 to 8% by mass, and the total content of the solvent and the resin is 5 to 25% by mass, The total content of the copper-containing particles and the silver particles is 74 to 88 mass%, the content of the glass particles is 1 to 7 mass%, and the total content of the solvent and the resin is 7 to 7 mass%. More preferably, it is 20 mass%.

(フラックス)
電極用ペースト組成物は、フラックスの少なくとも1種をさらに含むことができる。フラックスを含むことで耐酸化性がより向上し、形成される電極の抵抗率がより低下する。さらに電極材とシリコン基板の密着性が向上するという効果も得られる。
(flux)
The electrode paste composition may further include at least one flux. By containing the flux, the oxidation resistance is further improved, and the resistivity of the formed electrode is further reduced. Furthermore, the effect that the adhesiveness of an electrode material and a silicon substrate improves is also acquired.

本発明におけるフラックスとしては、銅含有粒子の表面に形成された酸化膜を除去可能なものであれば特に制限はない。具体的には例えば、脂肪酸、ホウ酸化合物、フッ化化合物、およびホウフッ化化合物等を好ましいフラックスとして挙げることができる。   The flux in the present invention is not particularly limited as long as the oxide film formed on the surface of the copper-containing particles can be removed. Specifically, for example, fatty acids, boric acid compounds, fluorinated compounds, borofluorinated compounds and the like can be mentioned as preferred fluxes.

より具体的には、ラウリン酸、ミリスチン酸、バルミチン酸、ステアリン酸、ソルビン酸、スレアロール酸、酸化ホウ素、ホウ酸カリウム、ホウ酸ナトリウム、ホウ酸リチウム、ホウフッ化カリウム、ホウフッ化ナトリウム、ホウフッ化リチウム、酸性フッ化カリウム、酸性フッ化ナトリウム、酸性フッ化リチウム、フッ化カリウム、フッ化ナトリウム、フッ化リチウム等が挙げられる。
中でも、電極材焼成時の耐熱性(フラックスが焼成の低温時に揮発しない特性)および銅含有粒子の耐酸化性補完の観点から、ホウ酸カリウムおよびホウフッ化カリウムが特に好ましいフラックスとして挙げられる。
本発明においてこれらのフラックスは、それぞれ1種単独で使用してもよく、2種類以上を組み合わせて使用することもできる。
More specifically, lauric acid, myristic acid, valmitic acid, stearic acid, sorbic acid, threarolic acid, boron oxide, potassium borate, sodium borate, lithium borate, potassium borofluoride, sodium borofluoride, lithium borofluoride , Acidic potassium fluoride, sodium acidic fluoride, acidic lithium fluoride, potassium fluoride, sodium fluoride, lithium fluoride and the like.
Among these, potassium borate and potassium borofluoride are particularly preferable fluxes from the viewpoints of heat resistance at the time of firing the electrode material (characteristic that the flux does not volatilize at a low temperature during firing) and supplementing the oxidation resistance of the copper-containing particles.
In the present invention, each of these fluxes may be used alone or in combination of two or more.

また本発明の電極用ペースト組成物におけるフラックスの含有量としては、銅含有粒子の耐酸化性を効果的に発現させる観点及び電極材の焼成完了時にフラックスが除去された部分の空隙率低減の観点から、電極用ペースト組成物の全質量中に、0.1〜5質量%であることが好ましく、0.3〜4質量%であることがより好ましく、0.5〜3.5質量%であることがさらに好ましく、0.7〜3質量%であることが特に好ましく、1〜2.5質量%であることが極めて好ましい。   Moreover, as content of the flux in the paste composition for electrodes of the present invention, the viewpoint of effectively expressing the oxidation resistance of the copper-containing particles and the viewpoint of reducing the porosity of the part where the flux is removed when the electrode material is completely fired. From the total mass of the electrode paste composition, it is preferably 0.1 to 5% by mass, more preferably 0.3 to 4% by mass, and 0.5 to 3.5% by mass. More preferably, it is particularly preferably 0.7 to 3% by mass, and particularly preferably 1 to 2.5% by mass.

(その他の成分)
さらに本発明の電極用ペースト組成物は、上述した成分に加え、必要に応じて、当該技術分野で通常用いられるその他の成分をさらに含むことができる。その他の成分としては、例えば、可塑剤、分散剤、界面活性剤、無機結合剤、金属酸化物、セラミック、有機金属化合物等を挙げることができる。
(Other ingredients)
Furthermore, the electrode paste composition of the present invention can further contain other components usually used in the technical field, if necessary, in addition to the components described above. Examples of other components include a plasticizer, a dispersant, a surfactant, an inorganic binder, a metal oxide, a ceramic, and an organometallic compound.

本発明の電極用ペースト組成物の製造方法としては特に制限はない。前記銅含有粒子、ガラス粒子、溶剤、樹脂、および必要に応じて含まれる銀粒子等を、通常用いられる分散・混合方法を用いて、分散・混合することで製造することができる。   There is no restriction | limiting in particular as a manufacturing method of the paste composition for electrodes of this invention. The copper-containing particles, glass particles, solvent, resin, and silver particles contained as necessary can be produced by dispersing and mixing them using a commonly used dispersion and mixing method.

<電極用ペースト組成物を用いた電極の製造方法>
本発明の電極用ペースト組成物を用いて電極を製造する方法としては、前記電極用ペースト組成物を電極を形成する領域に付与し、乾燥後に、焼成することで所望の領域に電極を形成することができる。前記電極用ペースト組成物を用いることで、酸素の存在下(例えば、大気中)で焼成処理を行っても、抵抗率の低い電極を形成することができる。
具体的には例えば、前記電極用ペースト組成物を用いて太陽電池用電極を形成する場合、電極用ペースト組成物はシリコン基板上に所望の形状となるように付与され、乾燥後に、焼成されることで、抵抗率の低い太陽電池電極を所望の形状に形成することができる。また前記電極用ペースト組成物を用いることで、酸素の存在下(例えば、大気中)で焼成処理を行っても、抵抗率の低い電極を形成することができる。
電極用ペースト組成物をシリコン基板上に付与する方法としては、例えば、スクリーン印刷、インクジェット法、およびディスペンサー法等を挙げることができるが、生産性の観点から、スクリーン印刷による塗布であることが好ましい。
<Method for Producing Electrode Using Electrode Paste Composition>
As a method for producing an electrode using the electrode paste composition of the present invention, the electrode paste composition is applied to a region where an electrode is to be formed, and after drying, the electrode is formed in a desired region by firing. be able to. By using the paste composition for an electrode, an electrode having a low resistivity can be formed even when a baking treatment is performed in the presence of oxygen (for example, in the air).
Specifically, for example, when a solar cell electrode is formed using the electrode paste composition, the electrode paste composition is applied on a silicon substrate so as to have a desired shape, and dried and fired. Thereby, a solar cell electrode with low resistivity can be formed in a desired shape. Further, by using the electrode paste composition, an electrode having a low resistivity can be formed even when a baking treatment is performed in the presence of oxygen (for example, in the air).
Examples of the method for applying the electrode paste composition onto the silicon substrate include screen printing, an inkjet method, and a dispenser method. From the viewpoint of productivity, application by screen printing is preferable. .

本発明の電極用ペースト組成物をスクリーン印刷によって塗布する場合、80〜1000Pa・sの範囲の粘度を有することが好ましい。尚、電極用ペースト組成物の粘度は、ブルックフィールドHBT粘度計を用いて25℃で測定される。   When the electrode paste composition of the present invention is applied by screen printing, it preferably has a viscosity in the range of 80 to 1000 Pa · s. The viscosity of the electrode paste composition is measured at 25 ° C. using a Brookfield HBT viscometer.

前記電極用ペースト組成物の付与量は、形成する電極の大きさに応じて適宜選択することができる。例えば、電極用ペースト組成物付与量として2〜10g/mとすることができ、4〜8g/mであることが好ましい。 The application amount of the electrode paste composition can be appropriately selected according to the size of the electrode to be formed. For example, it can be set as 2-10 g / m < 2 > as a paste composition application amount for electrodes, and it is preferable that it is 4-8 g / m < 2 >.

また本発明の電極用ペースト組成物を用いて電極を形成する際の熱処理条件(焼成条件)としては、当該技術分野で通常用いられる熱処理条件を適用することができる。
一般に、熱処理温度(焼成温度)としては800〜900℃であるが、本発明の電極用ペースト組成物を用いる場合には、より低温での熱処理条件を適用することができ、例えば、600〜850℃の熱処理温度で良好な特性を有する電極を形成することができる。
また熱処理時間は、熱処理温度等に応じて適宜選択することができ、例えば、1秒〜20秒とすることができる。
In addition, as heat treatment conditions (firing conditions) when forming an electrode using the electrode paste composition of the present invention, heat treatment conditions usually used in the technical field can be applied.
Generally, the heat treatment temperature (baking temperature) is 800 to 900 ° C., but when the electrode paste composition of the present invention is used, heat treatment conditions at a lower temperature can be applied, for example, 600 to 850. An electrode having good characteristics can be formed at a heat treatment temperature of ° C.
The heat treatment time can be appropriately selected according to the heat treatment temperature or the like, and can be set to, for example, 1 second to 20 seconds.

<太陽電池>
本発明の太陽電池は、シリコン基板上に付与された前記電極用ペースト組成物を、焼成して形成された電極を有する。これにより、良好な特性を有する太陽電池が得られ、該太陽電池の生産性に優れる。
<Solar cell>
The solar cell of this invention has the electrode formed by baking the said paste composition for electrodes provided on the silicon substrate. Thereby, the solar cell which has a favorable characteristic is obtained, and it is excellent in the productivity of this solar cell.

以下、本発明の太陽電池の具体例を、図面を参照しながら説明するが、本発明はこれに限定されるものではない。
代表的な太陽電池素子の一例を示す断面図、受光面及び裏面の概要を図1、図2及び図3に示す。
通常、太陽電池素子の半導体基板130には、単結晶または多結晶Siなどが使用される。この半導体基板130には、ホウ素などが含有され、p型半導体を構成している。受光面側は、太陽光の反射を抑制するために、エッチングにより凹凸(テクスチャー、図示せず)が形成されている。その受光面側にはリンなどがドーピングされ、n型半導体の拡散層131がサブミクロンオーダーの厚みで設けられているとともに、p型バルク部分との境界にpn接合部が形成されている。さらに受光面側には、拡散層131上に窒化シリコンなどの反射防止層132が蒸着法などによって膜厚100nm前後で設けられている。
Hereinafter, although the specific example of the solar cell of this invention is demonstrated, referring drawings, this invention is not limited to this.
A sectional view showing an example of a typical solar cell element, and outlines of a light receiving surface and a back surface are shown in FIGS.
Usually, single crystal or polycrystalline Si is used for the semiconductor substrate 130 of the solar cell element. The semiconductor substrate 130 contains boron or the like and constitutes a p-type semiconductor. On the light receiving surface side, unevenness (texture, not shown) is formed by etching in order to suppress reflection of sunlight. The light receiving surface side is doped with phosphorus or the like, an n-type semiconductor diffusion layer 131 is provided with a thickness of submicron order, and a pn junction is formed at the boundary with the p-type bulk portion. Further, on the light receiving surface side, an antireflection layer 132 such as silicon nitride is provided on the diffusion layer 131 with a film thickness of about 100 nm by vapor deposition or the like.

次に受光面側に設けられた受光面電極133と、裏面に形成される集電電極134及び出力取出し電極135について説明する。受光面電極133と出力取出し電極135は、前記電極用ペースト組成物から形成されている。また集電電極134はガラス粉末を含むアルミニウム電極ペースト組成物から形成されている。これらの電極は、前記ペースト組成物をスクリーン印刷等にて所望のパターンに塗布した後、乾燥後に、大気中600〜850℃程度で焼成されて形成される。
本発明においては前記電極用ペースト組成物を用いることで、比較的低温で焼成しても、抵抗率および接触抵抗率に優れる電極を形成することができる。
Next, the light receiving surface electrode 133 provided on the light receiving surface side, and the current collecting electrode 134 and the output extraction electrode 135 formed on the back surface will be described. The light-receiving surface electrode 133 and the output extraction electrode 135 are formed from the electrode paste composition. The collecting electrode 134 is formed from an aluminum electrode paste composition containing glass powder. These electrodes are formed by applying the paste composition to a desired pattern by screen printing or the like, and then baking the paste composition at about 600 to 850 ° C. in the atmosphere.
In the present invention, by using the electrode paste composition, an electrode having excellent resistivity and contact resistivity can be formed even when fired at a relatively low temperature.

その際に、受光面側では、受光面電極133を形成する前記電極用ペースト組成物に含まれるガラス粒子と、反射防止層132とが反応(ファイアースルー)して、受光面電極133と拡散層131が電気的に接続(オーミックコンタクト)される。
本発明においては、前記電極用ペースト組成物を用いて受光面電極133が形成されることで、導電性金属として銅を含みながら、銅の酸化が抑制され、低抵抗率の受光面電極133が、良好な生産性で形成される。
At that time, on the light receiving surface side, the glass particles contained in the electrode paste composition forming the light receiving surface electrode 133 react with the antireflection layer 132 (fire-through), and the light receiving surface electrode 133 and the diffusion layer are reacted. 131 is electrically connected (ohmic contact).
In the present invention, the light-receiving surface electrode 133 is formed using the electrode paste composition, so that copper is suppressed as a conductive metal, and the oxidation of copper is suppressed. , Formed with good productivity.

また、裏面側では、焼成の際に集電電極134を形成するアルミニウム電極ペースト組成物中のアルミニウムが半導体基板130の裏面に拡散して、電極成分拡散層136を形成することによって、半導体基板130と集電電極134、出力取出し電極135との間にオーミックコンタクトを得ることができる。   On the back surface side, aluminum in the aluminum electrode paste composition that forms the collecting electrode 134 during firing diffuses to the back surface of the semiconductor substrate 130 to form the electrode component diffusion layer 136, thereby forming the semiconductor substrate 130. Ohmic contact can be obtained between the current collector electrode 134 and the output extraction electrode 135.

また本発明の別の態様である太陽電池素子の一例である受光面及びAA断面構造の斜視図(a)、ならびに裏面側電極構造の平面図(b)を図4に示す。
図4(a)の斜視図に示すようにp型半導体のシリコン基板からなるセルウェハ1には、レーザドリルまたはエッチング等によって、受光面側および裏面側の両面を貫通したスルーホールが形成されている。また受光面側には光入射効率を向上させるテクスチャー(図示せず)が形成されている。さらに受光面側にはn型化拡散処理によるn型半導体層3と、n型半導体層3上に反射防止膜(図示せず)が形成されている。これらは従来の結晶Si型太陽電池セルと同一の工程により製造される。
FIG. 4 shows a perspective view (a) of a light receiving surface and an AA cross-sectional structure as an example of a solar cell element according to another aspect of the present invention, and a plan view (b) of a back surface side electrode structure.
As shown in the perspective view of FIG. 4A, the cell wafer 1 made of a p-type semiconductor silicon substrate is formed with through holes penetrating both the light receiving surface side and the back surface side by laser drilling or etching. . Further, a texture (not shown) for improving the light incident efficiency is formed on the light receiving surface side. Further, on the light receiving surface side, an n-type semiconductor layer 3 by n-type diffusion treatment and an antireflection film (not shown) are formed on the n-type semiconductor layer 3. These are manufactured by the same process as a conventional crystalline Si type solar battery cell.

次に、先に形成されたスルーホール内部に、本発明の電極用ペースト組成物が印刷法やインクジェット法により充填され、さらに受光面側には同じく本発明の電極用ペースト組成物がグリッド状に印刷され、スルーホール電極4および集電用グリッド電極2を形成する組成物層が形成される。
ここで、充填用と印刷用に用いるペーストでは、粘度を始めとして、それぞれのプロセスに最適な組成のペーストを使用するのが望ましいが、同じ組成のペーストで充填、印刷を一括で行ってもよい。
Next, the electrode paste composition of the present invention is filled into the previously formed through-holes by a printing method or an ink jet method, and the electrode paste composition of the present invention is also formed in a grid on the light receiving surface side. The composition layer which is printed and forms the through-hole electrode 4 and the current collecting grid electrode 2 is formed.
Here, in the paste used for filling and printing, it is desirable to use a paste having an optimum composition for each process including viscosity, but filling and printing may be performed collectively with the paste having the same composition. .

一方、受光面の反対側(裏面側)には、キャリア再結合を防止するための高濃度ドープ層5が形成される。ここで高濃度ドープ層5を形成する不純物元素として、ボロン(B)やアルミニウム(Al)が用いられ、p層が形成されている。この高濃度ドープ層5は、例えばBを拡散源とした熱拡散処理が、前記反射防止膜形成前のセル製造工程において実施されることで形成されていてもよく、あるいは、Alを用いる場合には、前記印刷工程において、反対面側にAlペーストを印刷することで形成されていてもよい。 On the other hand, a heavily doped layer 5 for preventing carrier recombination is formed on the opposite side (back side) of the light receiving surface. Here, boron (B) or aluminum (Al) is used as an impurity element for forming the high-concentration doped layer 5, and a p + layer is formed. The high-concentration doped layer 5 may be formed by performing a thermal diffusion process using, for example, B as a diffusion source in a cell manufacturing process before forming the antireflection film, or when using Al. May be formed by printing an Al paste on the opposite surface side in the printing step.

その後、650から850℃において焼成され、前記スルーホール内部と受光面側に形成された反射防止膜上に充填、印刷された前記電極用ペースト組成物は、ファイアースルー効果により、下部n型層とのオーミックコンタクトが達成される。   Thereafter, the electrode paste composition fired at 650 to 850 ° C., filled in and printed on the antireflection film formed in the through hole and on the light receiving surface side, has a lower n-type layer due to the fire through effect. Ohmic contact is achieved.

また反対面側には、図4(b)の平面図で示すように、本発明による電極用ペースト組成物をそれぞれn側、p側共にストライプ上に印刷、焼成することによって、裏面電極6、7が形成されている。   On the opposite surface side, as shown in the plan view of FIG. 4 (b), the electrode paste composition according to the present invention is printed on the stripes on both the n side and the p side, respectively, and fired, whereby the back electrode 6, 7 is formed.

本発明においては、前記電極用ペースト組成物を用いて、スルーホール電極4、集電用グリッド電極2、裏面電極6および裏面電極7が形成されることで、導電性金属として銅を含みながら、銅の酸化が抑制され、低抵抗率のスルーホール電極4、集電用グリッド電極2、裏面電極6および裏面電極7が、優れた生産性で形成される。
なお、本発明の電極用ペースト組成物は、上記したような太陽電池電極の用途に限定されるものではなく、例えば、プラズマディスプレイの電極配線及びシールド配線、セラミックスコンデンサ、アンテナ回路、各種センサー回路、半導体デバイスの放熱材料等の用途にも好適に使用することができる。
In the present invention, the through-hole electrode 4, the current collecting grid electrode 2, the back electrode 6 and the back electrode 7 are formed by using the electrode paste composition, so as to contain copper as a conductive metal, Copper oxidation is suppressed, and the low resistivity through-hole electrode 4, current collecting grid electrode 2, back electrode 6 and back electrode 7 are formed with excellent productivity.
The electrode paste composition of the present invention is not limited to the use of the solar cell electrode as described above. For example, electrode wiring and shield wiring of a plasma display, ceramic capacitor, antenna circuit, various sensor circuits, It can also be suitably used for applications such as heat dissipation materials for semiconductor devices.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass.

<実施例1>
(a)電極用ペースト組成物の調製
酸化バナジウム(V)10部、酸化リン(P)29.6部、酸化バリウム(BaO)10.4部、酸化モリブデン(MoO)10部、酸化タングステン(WO)30部、酸化カリウム(KO)10部からなるガラス(以下、「K41」と略記することがある)を調製した。得られたガラスK41の軟化点は554℃、結晶化温度は600℃を超えていた。
得られたガラスK41を用いて、粒子径(D50%)が1.7μmであるガラス粒子を得た。
<Example 1>
(A) Preparation of electrode paste composition 10 parts of vanadium oxide (V 2 O 5 ), 29.6 parts of phosphorus oxide (P 2 O 5 ), 10.4 parts of barium oxide (BaO), molybdenum oxide (MoO 3 ) A glass (hereinafter sometimes abbreviated as “K41”) consisting of 10 parts, tungsten oxide (WO 3 ) 30 parts, and potassium oxide (K 2 O) 10 parts was prepared. The obtained glass K41 had a softening point of 554 ° C. and a crystallization temperature of over 600 ° C.
Glass particles having a particle diameter (D50%) of 1.7 μm were obtained using the obtained glass K41.

銅粒子(三井金属鉱業株式会社製、純度99.9%、粒子径(D50%)1.5μm)を39.2部、銀粒子(粒子径(D50%)3μm、アルドリッチ社製高純度化学品)を45.9部、ガラス粒子(K41)を1.7部、および、4%のエチルセルロース(EC)を含むブチルカルビトールアセテート(BCA)溶液13.2部を混ぜ合わせ、メノウ製乳鉢の中で20分間かき混ぜ、電極用ペースト組成物1を調製した。   39.2 parts of copper particles (Mitsui Mining & Smelting Co., Ltd., purity 99.9%, particle size (D50%) 1.5 μm), silver particles (particle size (D50%) 3 μm), high purity chemical manufactured by Aldrich 45.9 parts, 1.7 parts of glass particles (K41), and 13.2 parts of a butyl carbitol acetate (BCA) solution containing 4% ethylcellulose (EC) in an agate mortar. The electrode paste composition 1 was prepared by stirring for 20 minutes.

(b)太陽電池セルの作製
受光面にn型半導体層、テクスチャーおよび反射防止膜(窒化珪素膜)が形成された膜厚190μmのp型半導体基板を用意し、125mm×125mmの大きさに切り出した。その受光面にスクリーン印刷法を用い、上記で得られた電極用ペースト組成物1を図2に示すような電極パターンとなるように印刷した。電極のパターンは150μm幅のフィンガーラインと1.1mm幅のバスバーで構成され、焼成後の膜厚が20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
(B) Production of Solar Cell A p-type semiconductor substrate having a film thickness of 190 μm having an n-type semiconductor layer, a texture and an antireflection film (silicon nitride film) formed on the light receiving surface is prepared and cut into a size of 125 mm × 125 mm It was. Using the screen printing method on the light receiving surface, the electrode paste composition 1 obtained above was printed so as to have an electrode pattern as shown in FIG. The electrode pattern was composed of a finger line with a width of 150 μm and a bus bar with a width of 1.1 mm, and the printing conditions (screen plate mesh, printing speed, printing pressure) were appropriately adjusted so that the film thickness after firing was 20 μm. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.

続いて、裏面にアルミニウム電極ペーストを同様にスクリーン印刷で全面に印刷した。焼成後の膜厚が40μmとなるよう印刷条件は適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
続いて、赤外線急速加熱炉内で大気雰囲気下、850℃で2秒間の加熱処理(焼成)を行って、所望の電極が形成された太陽電池セル1を作製した。
Subsequently, an aluminum electrode paste was similarly printed on the back surface by screen printing. The printing conditions were appropriately adjusted so that the film thickness after firing was 40 μm. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
Subsequently, heat treatment (baking) was performed at 850 ° C. for 2 seconds in an infrared rapid heating furnace in an air atmosphere to produce a solar battery cell 1 on which a desired electrode was formed.

<実施例2〜8>
実施例1において、銅粒子の粒子径(D50%)および含有量、銀粒子の粒子径(D50%)および含有量、ガラス粒子の種類および含有量、4%のエチルセルロース(EC)を含むブチルカルビトールアセテート(BCA)溶液の含有量を表1に示したように変更したこと以外は、実施例1と同様にして電極用ペースト組成物2〜8を調製した。
尚、ガラス粒子(AY1)は、酸化バナジウム(V)45部、酸化リン(P)24.2部、酸化バリウム(BaO)20.8部、酸化アンチモン(Sb)5部、酸化タングステン(WO)5部からなり、粒子径(D50%)が1.7μmであった。またこのガラスの軟化点は、492℃、結晶化温度は600℃を超えていた。
<Examples 2 to 8>
In Example 1, the particle size (D50%) and content of copper particles, the particle size (D50%) and content of silver particles, the type and content of glass particles, and 4% ethyl cellulose (EC) Electrode paste compositions 2 to 8 were prepared in the same manner as in Example 1 except that the content of the tall acetate (BCA) solution was changed as shown in Table 1.
The glass particles (AY1) are composed of 45 parts of vanadium oxide (V 2 O 5 ), 24.2 parts of phosphorus oxide (P 2 O 5 ), 20.8 parts of barium oxide (BaO), and antimony oxide (Sb 2 O 3). ) 5 parts and 5 parts of tungsten oxide (WO 3 ), and the particle diameter (D50%) was 1.7 μm. The glass had a softening point of 492 ° C. and a crystallization temperature of over 600 ° C.

次いで、得られた電極用ペースト組成物2〜8をそれぞれ用い、加熱処理の温度および処理時間を表1に示したように変更したこと以外は、実施例1と同様にして所望の電極が形成された太陽電池セル2〜8をそれぞれ作製した。   Next, using the obtained electrode paste compositions 2 to 8 respectively, a desired electrode was formed in the same manner as in Example 1 except that the heat treatment temperature and treatment time were changed as shown in Table 1. The solar cells 2 to 8 were produced.

<比較例1>
実施例1において、電極用ペースト組成物として、銀粒子および鉛ガラス粒子を含む市販の太陽電池用銀ペースト(デュポン株式会社製、PV159)を用いたこと以外は、実施例1と同様にして太陽電池セルC1を作製した。
<Comparative Example 1>
In Example 1, the solar cell was obtained in the same manner as in Example 1 except that a commercially available silver paste for solar cells containing silver particles and lead glass particles (PV159, manufactured by DuPont) was used as the electrode paste composition. Battery cell C1 was produced.

<比較例2>
実施例1における電極用ペースト組成物の調製において銅含有粒子を用いずに、表1に示した組成となるように各成分を変更したこと以外は、実施例1と同様にして電極用ペースト組成物C2を調製した。
銅含有粒子を含まない電極用ペースト組成物C2を用いたこと以外は、実施例1と同様にして太陽電池セルC2を作製した。
<Comparative example 2>
In the preparation of the electrode paste composition in Example 1, without using the copper-containing particles, each component was changed to the composition shown in Table 1, and the electrode paste composition was the same as in Example 1. Product C2 was prepared.
A solar battery cell C2 was produced in the same manner as in Example 1 except that the electrode paste composition C2 containing no copper-containing particles was used.

<評価>
作製した太陽電池セルの評価は、擬似太陽光として(株)ワコム電創製WXS−155S−10、電流−電圧(I-V)評価測定器としてI−V CURVE TRACER MP−160(EKO INSTRUMENT社製)の測定装置を組み合わせて行った。太陽電池としての発電性能を示すEff(変換効率)、FF(フィルファクター)、Voc(開放電圧)およびJsc(短絡電流)は、それぞれJIS−C−8912、JIS−C−8913、JIS−C−8914に準拠して測定を行なうことで得られたものである。得られた各測定値を、比較例1の測定値を100.0とした相対値に換算して表2に示した。
<Evaluation>
Evaluation of the produced solar battery cell is WXS-155S-10 manufactured by Wacom Denso Co., Ltd. as pseudo-sunlight, and I-V CURVE TRACER MP-160 (manufactured by EKO INSTRUMENT, Inc.) as a current-voltage (IV) evaluation measuring instrument. ) Was combined with the measuring device. Eff (conversion efficiency), FF (fill factor), Voc (open circuit voltage), and Jsc (short circuit current) indicating the power generation performance as a solar cell are JIS-C-8912, JIS-C-8913, and JIS-C-, respectively. It is obtained by performing measurement according to 8914. The obtained measured values are converted into relative values with the measured value of Comparative Example 1 as 100.0, and are shown in Table 2.

以上から、本発明の電極用ペースト組成物を用いることで、電極の導電性金属として銅を主成分とする金属粒子を用いても、抵抗率の低い電極を形成することができ、優れた特性を示す太陽電池を構成できたことがわかる。   From the above, by using the electrode paste composition of the present invention, an electrode having a low resistivity can be formed even when metal particles containing copper as a main component are used as the conductive metal of the electrode. It can be seen that a solar cell showing

130 半導体基板
131 拡散層
132 反射防止層
133 受光面電極
134 集電電極
135 出力取出し電極
136 電極成分拡散層
1 p型シリコン基板からなるセルウェハ
2 集電用グリッド電極
3 n型半導体層
4 スルーホール電極
5 高濃度ドープ層
6 裏面電極
7 裏面電極
130 Semiconductor substrate 131 Diffusion layer 132 Antireflection layer 133 Light receiving surface electrode 134 Current collecting electrode 135 Output extraction electrode 136 Electrode component diffusion layer 1 Cell wafer made of p-type silicon substrate 2 Current collecting grid electrode 3 N-type semiconductor layer 4 Through-hole electrode 5 Highly doped layer 6 Back electrode 7 Back electrode

Claims (4)

リン含有銅合金粒子と、五酸化二リンおよび五酸化二バナジウムを含むとともに前記五酸化二バナジウムの含有率が1質量%以上であるガラス粒子と、溶剤と、樹脂と、を含む電極用ペースト組成物。 A paste composition for an electrode comprising phosphorus-containing copper alloy particles, glass particles containing diphosphorus pentoxide and divanadium pentoxide and having a content of divanadium pentoxide of 1% by mass or more, a solvent, and a resin. object. 前記ガラス粒子は、ガラス軟化点が600℃以下であって、結晶化開始温度が600℃を超える請求項1に記載の電極用ペースト組成物。   2. The electrode paste composition according to claim 1, wherein the glass particles have a glass softening point of 600 ° C. or lower and a crystallization start temperature of over 600 ° C. 3. 銀粒子をさらに含む請求項1または請求項2に記載の電極用ペースト組成物。   The electrode paste composition according to claim 1 or 2, further comprising silver particles. シリコン基板上に付与された請求項1〜請求項3のいずれか1項に記載の電極用ペースト組成物を焼成して形成された電極を有する太陽電池。   The solar cell which has an electrode formed by baking the paste composition for electrodes of any one of Claims 1-3 given on the silicon substrate.
JP2010222202A 2010-01-25 2010-09-30 Electrode paste composition and solar cell Expired - Fee Related JP5633284B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010222202A JP5633284B2 (en) 2010-01-25 2010-09-30 Electrode paste composition and solar cell
PCT/JP2011/051362 WO2011090212A1 (en) 2010-01-25 2011-01-25 Electrode paste composition and solar cell
TW100102724A TW201135754A (en) 2010-01-25 2011-01-25 Paste composition for electrode and photovoltaic cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010013514 2010-01-25
JP2010013514 2010-01-25
JP2010222202A JP5633284B2 (en) 2010-01-25 2010-09-30 Electrode paste composition and solar cell

Publications (2)

Publication Number Publication Date
JP2011171271A JP2011171271A (en) 2011-09-01
JP5633284B2 true JP5633284B2 (en) 2014-12-03

Family

ID=44307013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222202A Expired - Fee Related JP5633284B2 (en) 2010-01-25 2010-09-30 Electrode paste composition and solar cell

Country Status (3)

Country Link
JP (1) JP5633284B2 (en)
TW (1) TW201135754A (en)
WO (1) WO2011090212A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123937B (en) * 2011-11-18 2015-09-16 茂迪股份有限公司 There is solar cell and the manufacture method thereof of passivation structure on back
EP2750140A1 (en) * 2012-12-28 2014-07-02 Heraeus Precious Metals GmbH & Co. KG An electro-conductive paste comprising a vanadium containing compound and a phosphorus containing material in the preparation of electrodes in MWT solar cells
EP2750139B1 (en) * 2012-12-28 2019-02-27 Heraeus Deutschland GmbH & Co. KG An electro-conductive paste comprising a vanadium containing compound in the preparation of electrodes in MWT solar cells
EP2750142B1 (en) * 2012-12-28 2017-05-24 Heraeus Deutschland GmbH & Co. KG An electro-conductive paste comprising an inorganic reaction system with a high glass transition temperature in the preparation of electrodes in mwt solar cells
EP2750141B1 (en) * 2012-12-28 2018-02-07 Heraeus Deutschland GmbH & Co. KG An electro-conductive paste comprising coarse inorganic oxide particles in the preparation of electrodes in MWT solar cells
TWI508311B (en) * 2013-04-23 2015-11-11 Motech Ind Inc Solar cell and manufacturing method thereof
JP5991945B2 (en) * 2013-06-07 2016-09-14 信越化学工業株式会社 Solar cell and solar cell module
ES2649662T3 (en) * 2013-07-09 2018-01-15 Heraeus Deutschland GmbH & Co. KG An electroconductive paste comprising Ag particles with a multimodal diameter distribution in the preparation of electrodes in MWT solar cells
KR102004792B1 (en) * 2014-06-24 2019-07-29 삼성전기주식회사 Multilayered electronic component and conductive paste compound for internal electrode
JP6801586B2 (en) * 2017-05-26 2020-12-16 住友金属鉱山株式会社 Compositions for forming conductors, conductors and their manufacturing methods, and chip resistors
CN113161470A (en) * 2021-04-09 2021-07-23 河南鸿昌电子有限公司 Material for producing semiconductor refrigeration element, semiconductor crystal grain and refrigeration element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222868A (en) * 1985-07-22 1987-01-31 Copal Co Ltd Electrically conductive composition
GB8730196D0 (en) * 1987-12-24 1988-02-03 Johnson Matthey Plc Silver-filled glass
JPH08138969A (en) * 1994-11-02 1996-05-31 Murata Mfg Co Ltd Manufacture of electronic component
JP3861648B2 (en) * 2001-10-10 2006-12-20 住友金属鉱山株式会社 Copper conductor paste composition, method for producing the same, and electronic component using the same
US8945436B2 (en) * 2009-03-27 2015-02-03 Hitachi, Ltd. Conductive paste and electronic part equipped with electrode wiring formed from same

Also Published As

Publication number Publication date
WO2011090212A1 (en) 2011-07-28
TW201135754A (en) 2011-10-16
JP2011171271A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5633285B2 (en) Electrode paste composition and solar cell
JP5633284B2 (en) Electrode paste composition and solar cell
JP5633286B2 (en) Electrode paste composition and solar cell
US9390829B2 (en) Paste composition for electrode and photovoltaic cell
JP5120477B2 (en) Electrode paste composition and solar cell
US20110209751A1 (en) Paste composition for electrode and photovoltaic cell
WO2011090211A1 (en) Paste composition for electrode, and solar cell
US20110180137A1 (en) Paste composition for electrode and photovoltaic cell
WO2012140786A1 (en) Electrode paste composition, solar-cell element, and solar cell
JP5708807B2 (en) Device and solar cell
WO2011090213A1 (en) Electrode paste composition and solar cell
JP5725180B2 (en) Element and solar cell
US20110180138A1 (en) Paste composition for electrode and photovoltaic cell
JPWO2013073478A1 (en) Electrode paste composition, solar cell element and solar cell
JP5879790B2 (en) Electrode paste composition and solar cell
JP5747447B2 (en) Electrode forming paste composition having donor element diffusion function, solar cell, and method for producing solar cell
JP2017195195A (en) Paste composition for electrode and solar cell
JP5408322B2 (en) Electrode paste composition and solar cell
JP6065049B2 (en) Electrode paste composition and solar cell
JP2015179866A (en) P-type diffusion layer formation composition, and solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

LAPS Cancellation because of no payment of annual fees