TW201310671A - Structure of photovoltaic cell - Google Patents

Structure of photovoltaic cell Download PDF

Info

Publication number
TW201310671A
TW201310671A TW100131378A TW100131378A TW201310671A TW 201310671 A TW201310671 A TW 201310671A TW 100131378 A TW100131378 A TW 100131378A TW 100131378 A TW100131378 A TW 100131378A TW 201310671 A TW201310671 A TW 201310671A
Authority
TW
Taiwan
Prior art keywords
solar cell
cell structure
dielectric layer
light
front surface
Prior art date
Application number
TW100131378A
Other languages
Chinese (zh)
Inventor
Chih-Chiang Huang
li-guo Wu
Cheng-Yeh Yu
Original Assignee
Tsec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsec Corp filed Critical Tsec Corp
Priority to TW100131378A priority Critical patent/TW201310671A/en
Publication of TW201310671A publication Critical patent/TW201310671A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A structure of a photovoltaic cell includes a substrate having a radiation-receiving front surface and a back surface; a surface doped region disposed on the radiation-receiving front surface; a protecting dielectric covering the surface doped region; at least a bus bar disposed on the radiation-receiving front surface; a transparent conducting film covering the protecting dielectric and the bus bar; and at least a nanoparticle penetrating the protecting dielectric and electrically connecting to the transparent conducting film and the surface doping region.

Description

太陽能電池結構Solar cell structure

本發明係關於一種太陽能電池結構,特別是指一種具有透明導電薄膜之太陽能電池結構。The present invention relates to a solar cell structure, and more particularly to a solar cell structure having a transparent conductive film.

隨著消耗性能源日益枯竭,太陽能等替代能源的開發早已成為重要之發展方向。太陽能電池(photovoltaic cell)的工作原理係利用太陽光之輻射能源與半導體材料作用來產生電能。太陽能電池的主要材料包括有半導體材料,如單晶矽、多晶矽、非晶矽之矽基板或III-V族化合物之半導體材料等,以及用來作為電極之導電膠,例如,銀膠或鋁膠等,其中銀膠主要用於形成太陽能電池之正面和背面電極,且背面電極結構通常還有數道鋁膠,設在半導體基板上。With the depletion of consumable energy, the development of alternative energy sources such as solar energy has long been an important development direction. Photovoltaic cells work by using the radiant energy of sunlight and semiconductor materials to generate electrical energy. The main materials of the solar cell include a semiconductor material such as a single crystal germanium, a polycrystalline germanium, an amorphous germanium substrate or a III-V compound semiconductor material, and a conductive paste used as an electrode, for example, silver paste or aluminum paste. Etc., wherein the silver paste is mainly used to form the front and back electrodes of the solar cell, and the back electrode structure usually has a plurality of aluminum pastes disposed on the semiconductor substrate.

於習知的太陽能電池結構中,指狀電極(finger)係位於受光正面(radiation-receiving front surface),其目的係用以接收來自基板之光電流,並傳導光電流至與外部電路連接之匯流電極(bus bar)。然而,由於指狀電極並不透光,因此必然會遮蔽部分之受光正面,使得太陽能電池之受光面積降低,不利於光電流之產生。傳統採用指狀電極設計之正面遮蓋面積約為7~8%。並且,隨著銀膠價格日益攀升,指狀電極之製作必然造成太陽能電池生產成本增加。In a conventional solar cell structure, a finger is located on a radiation-receiving front surface, the purpose of which is to receive a photocurrent from the substrate and conduct the photocurrent to a confluence with an external circuit. Bus bar. However, since the finger electrodes do not transmit light, the light-receiving front surface of the portion is inevitably shielded, so that the light-receiving area of the solar cell is lowered, which is disadvantageous for the generation of photocurrent. The front cover area of the conventional finger electrode design is about 7 to 8%. Moreover, as the price of silver plastics rises, the production of finger electrodes inevitably leads to an increase in the production cost of solar cells.

因此,有必要提供一種太陽能電池結構,除了可增加光吸收之面積,進而提升光電流產生率,並可同時減少銀膠之使用量,以降低太陽能電池之生產成本。Therefore, it is necessary to provide a solar cell structure, in addition to increasing the area of light absorption, thereby increasing the photocurrent generation rate, and simultaneously reducing the amount of silver glue used to reduce the production cost of the solar cell.

本發明之目的在於提供一種太陽能電池結構,可增進光吸收之面積,進而提升光電流產生率。It is an object of the present invention to provide a solar cell structure which can increase the area of light absorption and thereby increase the photocurrent generation rate.

為了達到上述目的,根據本發明之較佳實施例,提供一種太陽能電池結構,包含有一基材,包含有一受光正面以及一背面(back surface);一表面摻雜區,設於基材之受光正面;一保護介電層,覆蓋於表面摻雜區上;至少一匯流電極,設於基材之受光正面;一透明導電薄膜,覆蓋於保護介電層與匯流電極上;以及至少一奈米顆粒,穿過保護介電層,電連接透明導電薄膜與表面摻雜區。In order to achieve the above object, in accordance with a preferred embodiment of the present invention, there is provided a solar cell structure comprising a substrate comprising a light-receiving front surface and a back surface; a surface doped region disposed on the light-receiving front surface of the substrate a protective dielectric layer covering the surface doped region; at least one bus electrode disposed on the light receiving front surface of the substrate; a transparent conductive film covering the protective dielectric layer and the bus electrode; and at least one nano particle And passing through the protective dielectric layer to electrically connect the transparent conductive film and the surface doped region.

根據本發明之另一較佳實施例,提供一種太陽能電池結構,包含有一基材,包含有一受光正面以及一背面;一表面摻雜區,設於基材之受光正面;一保護介電層,覆蓋於表面摻雜區上;一第一匯流電極,設於基材之受光正面;一第二匯流電極,平行於第一匯流電極,設於基材之受光正面;一透明導電薄膜,覆蓋於保護介電層與匯流電極上;以及至少一奈米顆粒,穿過保護介電層,電連接透明導電薄膜與表面摻雜區;其中於基材之受光正面上,未設有任何垂直於第一匯流電極或垂直於第二匯流電極之指狀電極。According to another preferred embodiment of the present invention, a solar cell structure includes a substrate including a light-receiving front surface and a back surface, a surface doped region disposed on the light-receiving front surface of the substrate, and a protective dielectric layer. Covering the surface doped region; a first bus electrode disposed on the light receiving front surface of the substrate; a second bus electrode parallel to the first bus electrode disposed on the light receiving front surface of the substrate; and a transparent conductive film covering the front surface Protecting the dielectric layer and the bus electrode; and at least one nano particle passing through the protective dielectric layer to electrically connect the transparent conductive film and the surface doped region; wherein the front surface of the substrate is not provided with any perpendicular a bus electrode or a finger electrode perpendicular to the second bus electrode.

本發明提供一透明導電薄膜,其位於太陽能電池結構之受光正面,可增進光吸收之面積,進而提升光電流產生率。The invention provides a transparent conductive film which is located on the light receiving front surface of the solar cell structure, which can enhance the area of light absorption and thereby increase the photocurrent generation rate.

為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉較佳實施方式,並配合所附圖式,作詳細說明如下。然而如下之較佳實施方式與圖式僅供參考與說明用,並非用來對本發明加以限制者。The above described objects, features and advantages of the present invention will become more apparent from the description of the appended claims. However, the following preferred embodiments and drawings are for illustrative purposes only and are not intended to limit the invention.

請參閱第8圖及第9圖,其為依據本發明較佳實施例所繪示的一種太陽能電池結構剖面圖及俯視圖,其中,相同的元件以相同的元件符號加以說明。需注意的是,圖式係以說明為目的,並未依照原尺寸作圖。FIG. 8 is a cross-sectional view and a plan view of a solar cell structure according to a preferred embodiment of the present invention, wherein the same elements are denoted by the same reference numerals. It should be noted that the drawings are for illustrative purposes and are not mapped to the original dimensions.

請參閱第8圖,其為根據本發明較佳實施例所繪示之一種太陽能電池結構剖面圖。如第8圖所示,太陽能電池結構1包含有一基材101,且基材101包含有一受光正面101a以及一背面101b;至少一表面摻雜區105被設置於受光正面101a上;一保護介電層107,覆蓋於表面摻雜區105上;至少一匯流電極109,設於基材101之受光正面101a;一透明導電薄膜113,覆蓋於保護介電層107與匯流電極109上;以及至少一奈米顆粒115,穿過保護介電層107,電連接透明導電薄膜113與表面摻雜區105。其中,第9圖所示係根據本實施例太陽能電池結構1之俯視圖,可知有至少一指狀電極117電連接匯流電極109,且透明導電薄膜113係覆蓋於保護介電層107與匯流電極109上。在本實施例中,由於有透明導電薄膜113之存在,因此指狀電極117之數目、寬度可少於或細於習知技術中所使用之指狀電極,且一指狀電極117可以僅電連結於一匯流電極109,而不必同時電連接兩匯流電極109。Please refer to FIG. 8 , which is a cross-sectional view showing a structure of a solar cell according to a preferred embodiment of the present invention. As shown in FIG. 8, the solar cell structure 1 includes a substrate 101, and the substrate 101 includes a light-receiving front surface 101a and a back surface 101b; at least one surface-doped region 105 is disposed on the light-receiving front surface 101a; a layer 107 covering the surface doping region 105; at least one bus electrode 109 disposed on the light receiving front surface 101a of the substrate 101; a transparent conductive film 113 covering the protective dielectric layer 107 and the bus electrode 109; and at least one The nanoparticles 115 pass through the protective dielectric layer 107 to electrically connect the transparent conductive film 113 to the surface doping region 105. 9 is a top view of the solar cell structure 1 according to the present embodiment. It can be seen that at least one of the finger electrodes 117 is electrically connected to the bus electrode 109, and the transparent conductive film 113 covers the protective dielectric layer 107 and the bus electrode 109. on. In this embodiment, due to the presence of the transparent conductive film 113, the number and width of the finger electrodes 117 may be less than or finer than those of the finger electrodes used in the prior art, and one of the finger electrodes 117 may be only electrically It is connected to a bus electrode 109 without electrically connecting the two bus electrodes 109 at the same time.

請參閱第10圖,第10圖為根據本發明另一實施例所繪示之一種太陽能電池結構俯視圖。類似如第8圖及第9圖所示,太陽能電池結構1包含有一基材101,且基材101包含有一受光正面101a以及一背面101b;至少一表面摻雜區105被設置於受光正面101a上;一保護介電層107,覆蓋於表面摻雜區105上;一第一匯流電極109a,設於基材101之受光正面101a;一第二匯流電極109b,平行於第一匯流電極109a,設於基材101之受光正面101a;一透明導電薄膜113,覆蓋於保護介電層107與匯流電極109;以及至少一奈米顆粒115,穿過保護介電層107,電連接透明導電薄膜113與表面摻雜區105;然而,與第8圖及第9圖不同之處在於,在第10圖中,基材101之受光正面101a上,未設有任何垂直於第一匯流電極109a或垂直於第二匯流電極109b之指狀電極。Please refer to FIG. 10, which is a top view of a solar cell structure according to another embodiment of the invention. Similarly, as shown in FIGS. 8 and 9, the solar cell structure 1 includes a substrate 101, and the substrate 101 includes a light-receiving front surface 101a and a back surface 101b; at least one surface-doped region 105 is disposed on the light-receiving front surface 101a. a protective dielectric layer 107 covering the surface doping region 105; a first bus electrode 109a disposed on the light receiving front surface 101a of the substrate 101; and a second bus electrode 109b parallel to the first bus electrode 109a. The light-receiving front surface 101a of the substrate 101; a transparent conductive film 113 covering the protective dielectric layer 107 and the bus electrode 109; and at least one nano-particle 115 passing through the protective dielectric layer 107 to electrically connect the transparent conductive film 113 with The surface doped region 105; however, differs from the eighth and ninth views in that, in FIG. 10, the light-receiving front surface 101a of the substrate 101 is not provided with any perpendicular to the first bus electrode 109a or perpendicular thereto. The finger electrode of the second bus electrode 109b.

以下配合圖式詳細說明製作本發明太陽能電池結構之方法步驟。雖然本發明以實施例揭露如下,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準,且為了不致使本發明之精神晦澀難懂,部分習知製程步驟的細節將不在此揭露。The method steps for fabricating the solar cell structure of the present invention are described in detail below with reference to the drawings. The present invention is not limited to the scope of the invention, and may be modified and retouched without departing from the spirit and scope of the invention. The details of some of the conventional process steps will not be disclosed herein, as defined by the scope of the appended claims.

請參閱第1圖至第7圖,第1圖至第7圖所繪示的是根據本發明較佳實施例之製備太陽能電池結構之方法示意圖。如第1圖所示,在製程初始階段,提供一基材101,基材101具有一第一導電型,例如,P型,且基材101包含有一受光正面101 a以及一背面101b,受光正面101係用以接收輻射來源,例如,太陽光或其他可供半導體層吸收之電磁波段。其中,基材101可為單晶矽晶圓、多晶矽晶圓或其他習知的半導體基材。接著,由於矽晶圓是由矽鑄錠(ingot)經由線鋸切片而成,因此,必須進行一傳統之濕蝕刻製程,以去除位於基材101表面之線鋸缺陷。接著,對基材101之受光正面101 a以及一背面101b進行傳統之表面粗糙化(texture)程序,已知表面粗糙化之目的在於降低輻射源在受光正面101a的反射現象,俾以增加太陽能電池之光電流。Please refer to FIG. 1 to FIG. 7 . FIG. 1 to FIG. 7 are schematic diagrams showing a method for preparing a solar cell structure according to a preferred embodiment of the present invention. As shown in FIG. 1, in the initial stage of the process, a substrate 101 is provided. The substrate 101 has a first conductivity type, for example, a P-type, and the substrate 101 includes a light-receiving front surface 101a and a back surface 101b. The 101 is used to receive a source of radiation, such as sunlight or other electromagnetic bands that are available for absorption by the semiconductor layer. The substrate 101 can be a single crystal germanium wafer, a polycrystalline silicon wafer, or other conventional semiconductor substrates. Then, since the germanium wafer is formed by slicing an ingot through a wire saw, a conventional wet etching process must be performed to remove the wire saw defect on the surface of the substrate 101. Next, a conventional surface roughening process is performed on the light-receiving front surface 101a and the back surface 101b of the substrate 101. It is known that the surface roughening is aimed at reducing the reflection phenomenon of the radiation source on the light-receiving front surface 101a, thereby increasing the solar cell. Light current.

如第2圖所示,接著,利用一擴散爐提供三氯氧磷(Phosphorus chloride oxide,POCl3)氣體,於受光正面101a以及背面101b形成一表面摻雜區105,其具有第二導電型,例如,N型。As shown in FIG. 2, a Phosphorus chloride oxide (POCl 3 ) gas is provided by a diffusion furnace, and a surface doped region 105 is formed on the light receiving front surface 101a and the back surface 101b, and has a second conductivity type. For example, type N.

如第3圖所示,利用氫氟酸(hydrofluoric acid,HF)或其他功能相似的濕式蝕刻方法,去除位於基材101表面之磷玻璃(phosphosilicate glass,PSG)(圖未示),以降低後續製程表面摻雜區105表面與匯流電極109之電阻。As shown in FIG. 3, a phosphosilicate glass (PSG) (not shown) on the surface of the substrate 101 is removed by hydrofluoric acid (HF) or other similarly similar wet etching method to reduce The surface of the surface doped region 105 and the resistance of the bus electrode 109 are subsequently processed.

請參照第4圖,可於受光正面101 a選擇性地設置至少一奈米顆粒115,其中奈米顆粒115包含有金、銀、鈦、鎳、銅等金屬元素、導電氧化物、石墨烯或其組合。可藉由不同之方式設置奈米顆粒115於受光正面101 a,例如,噴灑、旋轉塗佈或其他習知塗佈奈米顆粒115之方式。接著,可形成一厚度介於5nm至10nm之保護介電層107,例如,氧化矽、氮化矽或二氧化鈦,覆蓋於表面摻雜區105上。已知,可透過不同之方式形成保護介電層107,例如,化學氣相沉積(CVD)、低壓化學蒸氣沉積(low pressure CVD,LPCVD)、電漿增強化學氣相沉積(plasma enhanced CVD,PECVD)、噴塗熱解、旋轉塗佈、網印或是其他在此領域中習知的技術。Referring to FIG. 4, at least one nanoparticle 115 may be selectively disposed on the light receiving front surface 101a, wherein the nanoparticle 115 comprises a metal element such as gold, silver, titanium, nickel, copper, conductive oxide, graphene or Its combination. The nanoparticles 115 can be disposed on the light-receiving front side 101a in a different manner, for example, by spraying, spin coating or other conventional means of coating the nanoparticles 115. Next, a protective dielectric layer 107 having a thickness of 5 nm to 10 nm, for example, hafnium oxide, tantalum nitride or titania, may be formed over the surface doping region 105. It is known that the protective dielectric layer 107 can be formed in different ways, for example, chemical vapor deposition (CVD), low pressure CVD (LPCVD), plasma enhanced CVD (PECVD). ), spray pyrolysis, spin coating, screen printing or other techniques well known in the art.

保護介電層107之目的在於鈍化表面摻雜區105,以提升光電流之產生效率。此外,保護介電層107或許也具有抗反射塗層(anti-reflective coating,ARC)之功用。在此需注意的是,奈米顆粒115會與表面摻雜區105構成歐姆接觸。且由於保護介電層107之厚度僅介於5nm至10nm,因此奈米顆粒115足以穿過保護介電層107,以利於後續製程電連接透明導電薄膜113與表面摻雜區105。The purpose of protecting the dielectric layer 107 is to passivate the surface doped region 105 to enhance the efficiency of photocurrent generation. In addition, the protective dielectric layer 107 may also have the function of an anti-reflective coating (ARC). It should be noted here that the nanoparticles 115 will form an ohmic contact with the surface doping region 105. And since the thickness of the protective dielectric layer 107 is only between 5 nm and 10 nm, the nanoparticles 115 are sufficient to pass through the protective dielectric layer 107 to facilitate subsequent connection of the transparent conductive film 113 and the surface doping region 105.

如第5圖所示,形成至少一匯流電極109、指狀電極(圖未示),設於受光正面101a上,並形成至少一接觸電極111,設於背面101b上。在本發明之另一實施例,匯流電極109可包含有一第一匯流電極109 a以及一平行於第一匯流電極109a之第二匯流電極109b。上述形成匯流電極109、指狀電極以及接觸電極111之方法可利用網印或是其它方法,例如,噴墨印刷、印花轉印(decal transfer)、電鍍(plating)、無電鍍(electroless plating),但不限於此。並且,匯流電極109、指狀電極以及接觸電極111之金屬膏成分可包括銀、鋁或其他低阻值之化合物。其中,在本實施例中,由於有透明導電薄膜113之存在,因此指狀電極117之數目、寬度可少於或細於習知技術中所使用之指狀電極117,且一指狀電極117可以僅電連結於一匯流電極109,而不必同時電連接兩匯流電極109。As shown in Fig. 5, at least one bus electrode 109 and a finger electrode (not shown) are formed on the light receiving front surface 101a, and at least one contact electrode 111 is formed on the back surface 101b. In another embodiment of the present invention, the bus electrode 109 may include a first bus electrode 109a and a second bus electrode 109b parallel to the first bus electrode 109a. The above method of forming the bus electrode 109, the finger electrode and the contact electrode 111 may use screen printing or other methods such as inkjet printing, decal transfer, plating, electroless plating, But it is not limited to this. Also, the metal paste component of the bus electrode 109, the finger electrode, and the contact electrode 111 may include silver, aluminum, or other low resistance compound. In the present embodiment, due to the presence of the transparent conductive film 113, the number and width of the finger electrodes 117 may be less than or finer than those of the finger electrodes 117 used in the prior art, and a finger electrode 117 It is possible to electrically connect only to one bus electrode 109 without electrically connecting the two bus electrodes 109 at the same time.

在此需注意的是,根據本發明之另一實施例,如第6圖所示之俯視圖,並未於受光正面101a上設有任何垂直於匯流電極108a、108b、108c、108d之指狀電極(圖未示),因此,可增加受光正面101a之受光面積,且匯流電極108a、108b可分別與匯流電極108c、108d呈現分段排列,亦即,可只形成於需焊接外部線路之區域上,而不用為完整條狀。It should be noted here that, according to another embodiment of the present invention, as shown in the top view of FIG. 6, no finger electrodes perpendicular to the bus electrodes 108a, 108b, 108c, and 108d are provided on the light-receiving front surface 101a. (not shown), therefore, the light-receiving area of the light-receiving front surface 101a can be increased, and the bus electrodes 108a, 108b can be arranged in segments with the bus electrodes 108c, 108d, respectively, that is, can be formed only on the area to be soldered to the external line. Instead of being a complete strip.

如第7圖所示,經過一快速燒結爐(fast firing furnace,FFF),使匯流電極109與表面摻雜區105構成歐姆接觸,並使接觸電極111以及鋁膠中的銀、鋁與位於鋁膠覆蓋區119內的矽產生一共晶合金(eutectic alloy)112,此共晶合金112可產生一背面電場(back surface field),已知背面電場可降低電子-電洞對在基材101內的復合機率,因此可提升載子收集率。再利用雷射或切割製程形成絕緣區(圖未示),將匯流電極109以及指狀電極(圖未示)電絕緣接觸電極111。As shown in FIG. 7, after a fast firing furnace (FFF), the bus electrode 109 is in ohmic contact with the surface doped region 105, and the contact electrode 111 and the silver, aluminum and aluminum in the aluminum paste are located. The ruthenium in the glue coverage region 119 produces an eutectic alloy 112 which produces a back surface field which is known to reduce the electron-hole pair in the substrate 101. Composite probability, thus increasing the carrier collection rate. An insulating region (not shown) is formed by a laser or a dicing process, and the bus electrode 109 and the finger electrodes (not shown) are electrically insulated from the contact electrode 111.

最後,如第8圖所示,形成一透明導電薄膜113,覆蓋於保護介電層107與匯流電極109上,其中,透明導電薄膜113包含有鋁摻雜氧化鋅(AZO)、氧化銦錫(ITO)、氧化銻錫(ATO)、氧化錫(SnO2)或石墨烯(graphene)。已知透明導電薄膜113具有導電特性,因此可取代習知技術中位於受光正面101a之指電極,或作為輔助載子流向指狀電極之薄膜。並可利用透明導電薄膜113具有透光之特性,以減少太陽能電池受光正面101a之遮光區域,例如7至8%。Finally, as shown in FIG. 8, a transparent conductive film 113 is formed to cover the protective dielectric layer 107 and the bus electrode 109. The transparent conductive film 113 includes aluminum-doped zinc oxide (AZO) and indium tin oxide (AZ). ITO), antimony tin oxide (ATO), tin oxide (SnO 2 ) or graphene. It is known that the transparent conductive film 113 has a conductive property, and thus can replace the finger electrode located on the light-receiving front surface 101a in the prior art or the film which flows as an auxiliary carrier to the finger electrode. The transparent conductive film 113 can be utilized to have a light transmitting property to reduce a light-shielding region of the light-receiving front surface 101a of the solar cell, for example, 7 to 8%.

此外,利用透明導電薄膜113可減少指狀電極117之使用量,進而節省生產成本。在此需特別強調,由於透明導電薄膜113之耐熱性較差,一般高溫燒結之情況,例如,攝氏600度,會破壞透明導電薄膜113之導電性,因此,根據本發明之所有實施例,於透明導電薄膜113形成後,皆不會再施行上述高溫燒結之程序。In addition, the use of the transparent conductive film 113 can reduce the amount of use of the finger electrodes 117, thereby saving production costs. It is particularly emphasized here that since the heat resistance of the transparent conductive film 113 is poor, generally the case of high-temperature sintering, for example, 600 degrees Celsius, destroys the conductivity of the transparent conductive film 113, and therefore, according to all embodiments of the present invention, it is transparent. After the formation of the conductive film 113, the above-described high-temperature sintering process is not performed.

根據本發明之另一實施例,另可分開製備匯流電極109以及接觸電極111,且在不同於上述的製程步驟下設置奈米顆粒115。根據此較佳實施例,延續第3圖,形成至少一接觸電極111,設於背面101b上。之後,再經由快速燒結爐(fast firing furnace,FFF),使位於背面101b之接觸電極111以及鋁膠中的銀、鋁與位於鋁膠覆蓋區119內的矽產生一背面電場。繼以於受光正面101 a設置至少一奈米顆粒115,其中奈米顆粒115包含有金、銀、鈦、鎳、銅等金屬元素、導電氧化物、石墨烯或其組合。接著,可形成一厚度介於5nm至10nm之保護介電層107,例如,氧化矽、氮化矽或二氧化鈦,覆蓋於表面摻雜區105上。並接著形成一透明導電薄膜113,覆蓋於保護介電層107與匯流電極109上,其中,透明導電薄膜113包含有鋁摻雜氧化鋅(AZO)、氧化銦錫(ITO)、氧化銻錫(ATO)、氧化錫(SnO2)或石墨烯(graphene)。在此需注意的是,奈米顆粒115會與表面摻雜區105構成歐姆接觸。且由於保護介電層107之厚度僅介於5nm至10nm,因此奈米顆粒115足以穿過保護介電層107,以利於電連接透明導電薄膜113與表面摻雜區105。之後,利用例如,網印、噴墨印刷、印花轉印(decal transfer)、電鍍(plating)、無電鍍(electroless plating)等方式,製備至少一位於受光正面101a之匯流電極109,並經過一低溫快速燒結,俾使匯流電極109與表面摻雜區105形成歐姆接觸。在此需注意的是,於本發明之此實施例,於受光正面101a上未設有任何垂直於第一匯流電極101a或垂直於第二匯流電極101b之指狀電極117,因此,可增加受光正面101a之受光面積。According to another embodiment of the present invention, the bus electrode 109 and the contact electrode 111 may be separately prepared, and the nanoparticle 115 is disposed under a process step different from the above. According to the preferred embodiment, continuing through FIG. 3, at least one contact electrode 111 is formed on the back surface 101b. Thereafter, a fast electric field (FFF) is used to generate a back surface electric field between the contact electrode 111 on the back surface 101b and the silver and aluminum in the aluminum paste and the crucible located in the aluminum paste-covered region 119. Next, at least one nano particle 115 is disposed on the light receiving front surface 101 a, wherein the nano particle 115 comprises a metal element such as gold, silver, titanium, nickel, copper or the like, a conductive oxide, graphene or a combination thereof. Next, a protective dielectric layer 107 having a thickness of 5 nm to 10 nm, for example, hafnium oxide, tantalum nitride or titania, may be formed over the surface doping region 105. And then forming a transparent conductive film 113 covering the protective dielectric layer 107 and the bus electrode 109, wherein the transparent conductive film 113 comprises aluminum-doped zinc oxide (AZO), indium tin oxide (ITO), and antimony tin oxide ( ATO), tin oxide (SnO 2 ) or graphene. It should be noted here that the nanoparticles 115 will form an ohmic contact with the surface doping region 105. And since the thickness of the protective dielectric layer 107 is only between 5 nm and 10 nm, the nanoparticle 115 is sufficient to pass through the protective dielectric layer 107 to facilitate electrical connection between the transparent conductive film 113 and the surface doping region 105. Thereafter, at least one bus electrode 109 on the light-receiving front surface 101a is prepared by, for example, screen printing, inkjet printing, decal transfer, plating, electroless plating, or the like, and passes through a low temperature. The rapid sintering causes the bus electrode 109 to form an ohmic contact with the surface doping region 105. It should be noted that, in this embodiment of the present invention, any finger electrode 117 perpendicular to the first bus electrode 101a or perpendicular to the second bus electrode 101b is not disposed on the light receiving front surface 101a, thereby increasing the light receiving. The light receiving area of the front side 101a.

綜上所述,本發明提供一種太陽能電池結構1,如第8圖所示,其具有一透明導電薄膜113,覆蓋於保護介電層107與匯流電極109上。利用透明導電薄膜113具有透光以及導電之特性,可減少或取代習知技術中位於受光正面101a之指狀電極117,進而減少太陽能電池受光正面101a之遮光面積。此外,本發明採用透明導電薄膜113用以減少或完全取代指狀電極117,因此可節省指狀電極117原料之耗費成本。In summary, the present invention provides a solar cell structure 1, as shown in FIG. 8, having a transparent conductive film 113 overlying the protective dielectric layer 107 and the bus electrode 109. By utilizing the transparent conductive film 113 to have light transmission and electric conduction characteristics, the finger electrode 117 located on the light receiving front surface 101a in the prior art can be reduced or replaced, thereby reducing the light shielding area of the solar cell light receiving front surface 101a. In addition, the present invention employs a transparent conductive film 113 for reducing or completely replacing the finger electrode 117, thereby saving the cost of the finger electrode 117 material.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

1...太陽能電池結構1. . . Solar cell structure

101...基材101. . . Substrate

101a...受光正面101a. . . Receiving light front

101b...背面101b. . . back

105...表面摻雜區105. . . Surface doped region

107...保護介電層107. . . Protective dielectric layer

108、108a、108b 108c、108d、109...匯流電極108, 108a, 108b 108c, 108d, 109. . . Bus electrode

109a...第一匯流電極109a. . . First bus electrode

109b...第二匯流電極109b. . . Second bus electrode

111...接觸電極111. . . Contact electrode

112...共晶合金112. . . Eutectic alloy

113...透明導電薄膜113. . . Transparent conductive film

115...奈米顆粒115. . . Nanoparticle

117...指狀電極117. . . Finger electrode

119...鋁膠覆蓋區119. . . Aluminum glue coverage area

第1圖至第7圖所繪示的是根據本發明實施例之一種太陽能電池結構之製作方法示意圖。1 to 7 are schematic views showing a manufacturing method of a solar cell structure according to an embodiment of the present invention.

第8圖所繪示的是根據本發明另一實施例之一種太陽能電池結構剖面圖。Figure 8 is a cross-sectional view showing the structure of a solar cell according to another embodiment of the present invention.

第9圖所繪示的是根據本發明另一實施例之一種太陽能電池結構俯視圖。FIG. 9 is a top plan view showing a solar cell structure according to another embodiment of the present invention.

第10圖所繪示的是根據本發明另一實施例之一種太陽能電池結構俯視圖。Figure 10 is a plan view showing a solar cell structure in accordance with another embodiment of the present invention.

1...太陽能電池結構1. . . Solar cell structure

101...基材101. . . Substrate

101a...受光正面101a. . . Receiving light front

101b...背面101b. . . back

105...表面摻雜區105. . . Surface doped region

107...保護介電層107. . . Protective dielectric layer

109...匯流電極109. . . Bus electrode

109a...第一匯流電極109a. . . First bus electrode

109b...第二匯流電極109b. . . Second bus electrode

111...接觸電極111. . . Contact electrode

112...共晶合金112. . . Eutectic alloy

113...透明導電薄膜113. . . Transparent conductive film

115...奈米顆粒115. . . Nanoparticle

119...鋁膠覆蓋區119. . . Aluminum glue coverage area

Claims (12)

一種太陽能電池結構,包含有:一基材,包含有一受光正面以及一背面;一表面摻雜區,設於該基材之該受光正面;一保護介電層,覆蓋於該表面摻雜區上;至少一匯流電極(bus bar),設於該基材之該受光正面;一透明導電薄膜,覆蓋於該保護介電層與該匯流電極上;以及至少一奈米顆粒,穿過該保護介電層,電連接該透明導電薄膜與該表面摻雜區。A solar cell structure comprising: a substrate comprising a light-receiving front surface and a back surface; a surface doped region disposed on the light-receiving front surface of the substrate; and a protective dielectric layer overlying the surface doped region At least one bus bar disposed on the light receiving front surface of the substrate; a transparent conductive film covering the protective dielectric layer and the bus electrode; and at least one nano particle passing through the protective layer And an electrical layer electrically connecting the transparent conductive film and the surface doped region. 如申請專利範圍第1項所述之太陽能電池結構,其中該保護介電層包含有氧化矽、氮化矽或二氧化鈦。The solar cell structure of claim 1, wherein the protective dielectric layer comprises cerium oxide, cerium nitride or titanium dioxide. 如申請專利範圍第2項所述之太陽能電池結構,其中該保護介電層的厚度介於5奈米(nm)至10奈米(nm)。The solar cell structure of claim 2, wherein the protective dielectric layer has a thickness of from 5 nanometers (nm) to 10 nanometers (nm). 如申請專利範圍第1項所述之太陽能電池結構,其中該透明導電薄膜包含有鋁摻雜氧化鋅(AZO)、氧化銦錫(ITO)、氧化銻錫(ATO)、氧化錫(SnO2)或石墨烯(graphene)。The solar cell structure according to claim 1, wherein the transparent conductive film comprises aluminum-doped zinc oxide (AZO), indium tin oxide (ITO), antimony tin oxide (ATO), and tin oxide (SnO 2 ). Or graphene. 如申請專利範圍第1項所述之太陽能電池結構,其中該奈米顆粒與該表面摻雜區構成歐姆接觸。The solar cell structure of claim 1, wherein the nanoparticle forms an ohmic contact with the surface doped region. 如申請專利範圍第1項所述之太陽能電池結構,其中該奈米顆粒包含有金、銀、鈦、鎳、銅或其組合。The solar cell structure of claim 1, wherein the nanoparticle comprises gold, silver, titanium, nickel, copper or a combination thereof. 一種太陽能電池結構,包含有:一基材,包含有一受光正面以及一背面;一表面摻雜區,設於該基材之該受光正面;一保護介電層,覆蓋於該表面摻雜區上;一第一匯流電極,設於該基材之該受光正面;一第二匯流電極,平行於該第一匯流電極,設於該基材之該受光正面;一透明導電薄膜,覆蓋於該保護介電層與該匯流電極上;以及至少一奈米顆粒,穿過該保護介電層,電連接該透明導電薄膜與該表面摻雜區;其中於該基材之該受光正面上,未設有任何垂直於該第一匯流電極或垂直於該第二匯流電極之指狀電極。A solar cell structure comprising: a substrate comprising a light-receiving front surface and a back surface; a surface doped region disposed on the light-receiving front surface of the substrate; and a protective dielectric layer overlying the surface doped region a first bus electrode disposed on the light-receiving front surface of the substrate; a second bus electrode disposed parallel to the first bus electrode on the light-receiving front surface of the substrate; and a transparent conductive film covering the protection a dielectric layer and the bus electrode; and at least one nanoparticle passing through the protective dielectric layer to electrically connect the transparent conductive film and the surface doping region; wherein the light receiving front surface of the substrate is not provided There are any finger electrodes perpendicular to the first bus electrode or perpendicular to the second bus electrode. 如申請專利範圍第7項所述之太陽能電池結構,其中該保護介電層包含有氧化矽、氮化矽或二氧化鈦。The solar cell structure of claim 7, wherein the protective dielectric layer comprises cerium oxide, cerium nitride or titanium dioxide. 如申請專利範圍第8項所述之太陽能電池結構,其中該保護介電層的厚度介於5奈米(nm)至10奈米(nm)。The solar cell structure of claim 8, wherein the protective dielectric layer has a thickness of from 5 nanometers (nm) to 10 nanometers (nm). 如申請專利範圍第7項所述之太陽能電池結構,其中該透明導電薄膜包含有鋁摻雜氧化鋅(AZO)、氧化銦錫(ITO)、氧化銻錫(ATO)、氧化錫(SnO2)或石墨烯(graphene)。The solar cell structure according to claim 7, wherein the transparent conductive film comprises aluminum-doped zinc oxide (AZO), indium tin oxide (ITO), antimony tin oxide (ATO), and tin oxide (SnO 2 ). Or graphene. 如申請專利範圍第7項所述之太陽能電池結構,其中該奈米顆粒與該表面摻雜區構成歐姆接觸。The solar cell structure of claim 7, wherein the nanoparticle forms an ohmic contact with the surface doped region. 如申請專利範圍第7項所述之太陽能電池結構,其中該奈米顆粒包含有金、銀、鈦、鎳、銅或其組合。The solar cell structure of claim 7, wherein the nanoparticle comprises gold, silver, titanium, nickel, copper or a combination thereof.
TW100131378A 2011-08-31 2011-08-31 Structure of photovoltaic cell TW201310671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100131378A TW201310671A (en) 2011-08-31 2011-08-31 Structure of photovoltaic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100131378A TW201310671A (en) 2011-08-31 2011-08-31 Structure of photovoltaic cell

Publications (1)

Publication Number Publication Date
TW201310671A true TW201310671A (en) 2013-03-01

Family

ID=48482084

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100131378A TW201310671A (en) 2011-08-31 2011-08-31 Structure of photovoltaic cell

Country Status (1)

Country Link
TW (1) TW201310671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492402B (en) * 2013-06-05 2015-07-11 Motech Ind Inc Solar cell and module comprising the same
TWI508311B (en) * 2013-04-23 2015-11-11 Motech Ind Inc Solar cell and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508311B (en) * 2013-04-23 2015-11-11 Motech Ind Inc Solar cell and manufacturing method thereof
TWI492402B (en) * 2013-06-05 2015-07-11 Motech Ind Inc Solar cell and module comprising the same

Similar Documents

Publication Publication Date Title
US9812594B2 (en) Solar cell and method of manufacture thereof, and solar cell module
US9722101B2 (en) Solar cell, solar cell manufacturing method, and solar cell module
JP5695283B1 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
US10964826B2 (en) Solar cell and production method therefor, and solar cell module
JP6550042B2 (en) Solar cell module and method of manufacturing the same
WO2014192408A1 (en) Method for manufacturing crystalline-silicon solar cell and method for manufacturing crystalline-silicon solar-cell module
US20200091362A1 (en) Solar cell module and method for producing same
TW201517291A (en) Transparent cover, solar module, and method of fabricating solar cell
US20180033904A1 (en) Solar cell, method for manufacturing same, and solar cell module
JP5705389B1 (en) SOLAR CELL AND ITS MANUFACTURING METHOD, SOLAR CELL MODULE AND ITS MANUFACTURING METHOD
KR20150090606A (en) Solar cell and manufacturing method thereof
JP6164939B2 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
TW201310671A (en) Structure of photovoltaic cell
JP2014107403A (en) Solar dell, method of manufacturing the same, and solar cell module
JP2014229712A (en) Solar cell and method for manufacturing the same, and solar cell module
JP6151566B2 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP6474578B2 (en) Solar cell module and manufacturing method thereof
TWI469367B (en) Back-contacted photovoltaic cell
US9293608B2 (en) Method for producing a photovoltaic cell having a heterojunction
JP2023527064A (en) Solar cells and solar cell modules
JP2013243171A (en) Crystal silicon solar cell
TW201312775A (en) Structure of photovoltaic cell