TW201405846A - 量子井結構太陽能電池及其製造方法 - Google Patents

量子井結構太陽能電池及其製造方法 Download PDF

Info

Publication number
TW201405846A
TW201405846A TW102120541A TW102120541A TW201405846A TW 201405846 A TW201405846 A TW 201405846A TW 102120541 A TW102120541 A TW 102120541A TW 102120541 A TW102120541 A TW 102120541A TW 201405846 A TW201405846 A TW 201405846A
Authority
TW
Taiwan
Prior art keywords
layer
quantum well
solar cell
forming
well structure
Prior art date
Application number
TW102120541A
Other languages
English (en)
Other versions
TWI557930B (zh
Inventor
Kwang-Ho Kim
Original Assignee
Univ Cheongju Industry & Academy Cooperation Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Cheongju Industry & Academy Cooperation Foundation filed Critical Univ Cheongju Industry & Academy Cooperation Foundation
Publication of TW201405846A publication Critical patent/TW201405846A/zh
Application granted granted Critical
Publication of TWI557930B publication Critical patent/TWI557930B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035254Superlattices; Multiple quantum well structures including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table, e.g. Si-SiGe superlattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

異質結構太陽能電池中,目前可用的量子井結構太陽能電池,藉由插入多量子井結構於p型半導體及n型半導體之間,造成傳輸損失及短波長損失之減少,而具有超出理論轉換效率極限之高效率,且具有低製造成本,並提供一種太陽能電池製造方法。

Description

量子井結構太陽能電池及其製造方法
本發明有關於一種太陽能電池及一種太陽能電池之製造方法,更特別地是目前可用的量子井結構太陽能電池,藉由插入多量子井結構於p型半導體及n型半導體之間,造成傳輸損失及短波長損失之減少,而具有超出理論轉換效率極限之高效率,且具有低製造成本,及一種太陽能電池製造方法。
商業矽基太陽能電池之效能改善及低成本生產之重要性與日俱增。矽為具備優異的電性、化學特性及機械性能的材料,以及為無毒、容易取得且於半導體工業領域被證實為穩定的。第一代太陽能電池係以使用高品質之矽為基礎。雖然,當使用高品質之矽時,由於其低缺陷密度,可預期有高效率,已接近單一能帶隙裝置之效能極限。
為實現高效能矽基太陽能電池,結構及製程技術改善之需求變得越來越重要。
特別是,因為製造流程中可能發生之傳輸損失、量子損失、電子電洞重組損失、太陽能電池之表面反射損失、電流電壓特性所造成之損失等。為了改善轉換效率,其需探討損失形成於太陽能電池之哪一部份,且經由太陽能電池之結構設計及製造流程之改善以最小化損失。
引用文獻列表
非專利文獻
1. Z. H. 呂、D. J. 洛克伍德與J. M.巴瑞伯,"二氧化矽/矽超晶格之量子限域及發光",自然,378,258-260 (1995)。(Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, "Quantum confinement and light emission in SiO2/Si superlattices", Nature, 378, 258-260 (1995))
2. M. A. 格林,"太陽能電池",普倫蒂斯霍爾,英格伍德克里夫,紐澤西(1982)。(M. A. Green, "Solar Cells", Prentice-Hall, Englewood Cliffs, New Jersey (1982).)
3. M. A. 格林,"第三代太陽能電池",施普林格出版社,柏林 海德堡(2003)。 (M. A. Green, "Third Generation Photovoltaics", Springer-Verlag, Berlin Heidelberg (2003))
4. G. 柯尼比爾、M. 格林、E. C. 趙、 D. 康尼格、Y. H. 趙、T. 范西瓦納瑞克、G. 史格德拉、E. 賓克、Y. 黃、T. 帕斯、S. 黃、D. 宋、C. 弗林、S. 朴、X. 郝與D. 曼斯菲爾德,"串接光電伏打電池之矽量子點奈米",固體薄膜,516(20),6748-6756 (2008)。(G. Conibeer, M. Green, E. C. Cho, D. Konig, Y. H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells", Thin Solid Films, 516(20), 6748-6756 (2008).)
5. D. J. 路克伍德、Z. H. 呂與J. M. 巴瑞伯,"二氧化矽/矽超晶格之量子受限發光",物理評論快報,76(3),539-541 (1996)。(D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, "Quantum Confined Luminescence in Si/SiO2 Superlattices", Physical Review Letters, 76(3), 539-541 (1996).)
6. L. 帕維西與D. J. 路克伍德 (編輯者),[矽光子學],斯普林格,柏林,物理主題 94,1-50 (2004)。(L. Pavesi and D. J. Lockwood (Eds.), [Silicon photonics], Springer, Berlin, Topics Appl. Phys. 94, 1-50 (2004).)
7. K. H. 金、H. J. 金、P. 張、C. 榮與 K. 徐文(Seomoon ), "原子沉積三氧化二鋁薄膜與低溫鈍化矽之性質及其太陽光電應用",電子材料快報,7(2), 171-174 (2011)。 (K. H. Kim, H. J. Kim, P. Jang, C. Jung, and K. Seomoon, "Properties of Low-Temperature Passivation of Silicon with ALD Al2O3 Films and their PV Applications", Electronic Materials Letters, 7(2), 171-174 (2011).)
8. K. H. 金 J. H. 金、P. 張、C. 榮與K. 徐文,"太陽能電池應用之矽/氧化矽量子井結構性質", 國際光學工程學會(SPIE)論文,Vol. 8111,81111D1-81111D7 (2011)。(K. H. Kim, J. H. Kim, P. Jang, C. Jung, and K. Seomoon, "Properties of Si/SiOx quantum well structure for solar cells applications", Proceedings of SPIE, Vol. 8111, 81111D1-81111D7 (2011).)
技術問題
本發明之一目的係提供一種藉由最小化因為製造流程之各種損失而具有顯著改善之轉換效能之量子井結構太陽能電池,及其製造方法。
本發明之另一目的係提供一種藉由實現插入多量子井結構於pn異質接面太陽能電池之p型半導體及n型半導體之間之結構而具有高效能,及利用能帶隙增加之作用及鈍化作用之目前可用之量子井結構太陽能電池,及其製造方法。
本發明之又一目的係提供目前可用之量子井結構太陽能電池,其中當製造具多量子井結構之pn異質接面太陽能電池時,具有優異的電子性質之量子井結構以及具有適當厚度之非晶矽或多晶矽之矽射極形成於半導體基板上,及其製造方法。
本發明之另一目的係提供藉由於太陽能電池之電極之形成中形成於網印程序及一般汽相沉積程序可用之金屬電極於前面及背面上以具有減少之製造成本之目前可用之量子井結構太陽能電池。
根據本發明之量子井結構太陽能電池及其製造方法包含藉由利用原子層沉積(atomic layer deposition, ALD)法、化學汽相沉積(chemical vapor deposition. CVD)法或濺鍍法,於低溫下分別依序沉積薄膜絕緣層及薄膜半導體層至1至10 nm之厚度,以形成量子井層,形成具適當厚度之非晶矽或多晶矽矽射極層,於射極層上形成金屬指狀電極,於金屬指狀電極上形成作為抗反射層之SiNx層,於基板之底面上形成鈍化層,以及於鈍化層上形成金屬電極。
在此,背面電場層選擇性地形成於半導體晶圓之底面上以減少於背面之重組率,且因為減少串聯電阻及增加開路電壓而改善太陽能電池之效率。
此外,根據本發明之量子井結構太陽能電池及其製造方法可更包含於形成量子井層之前粗化矽基板。
另外,在根據本發明之量子井結構太陽能電池及其製造方法中,鈍化層可為Al2O3層、Si3N4 層及SiO2 層之其中之一。
另外,雖然量子井之結構相同,當使用p型矽或n型矽作為起始矽基板時,n型半導體或p型半導體被分別用作為非晶矽或多晶矽射極。
根據本發明之量子井結構太陽能電池及其製造方法包含藉由利用原子層沉積(atomic layer deposition, ALD)法、化學汽相沉積(chemical vapor deposition. CVD)法或濺鍍法,於低溫下分別依序沉積薄膜絕緣層及薄膜半導體層至1至10 nm之厚度,以形成量子井層,形成具適當厚度之非晶矽或多晶矽矽射極層,形成作為抗反射層之SiNx層,於抗反射層上形成金屬指狀電極,於基板之底面上形成鈍化層,以及於鈍化層上形成金屬電極。
在此,背面電場層選擇性地形成於半導體晶圓之底面以減少背面之重組率,且因為減少串聯電阻及增加開路電壓而改善太陽能電池之效率。
在此,根據本發明之量子井結構太陽能電池及其製造方法可更包含在形成量子井層之前粗化矽基板。
另外,在根據本發明之量子井結構太陽能電池及其製造方法中,鈍化層可為Al2O3層、Si3N4層及SiO2 層之其中之一。
另外,雖然量子井結構相同,當使用p型矽或n型矽作為起始矽基板時,n型半導體或p型半導體被分別用作為非晶矽或多晶矽射極。
根據本發明,可能製造其中能帶隙係藉由在pn異質接面太陽能電池中,自約1 nm至大約10 nm地變換三明治夾層於絕緣薄膜間之半導體薄膜之厚度而控制有效能帶隙之寬帶(1.2至1.9 eV)能帶隙太陽能電池。
有利的影響
如上述,根據本發明, 可能製造其中能帶隙係藉由在pn異質接面太陽能電池中,自約1 nm至大約10 nm地變換三明治夾層於絕緣薄膜間之半導體薄膜之厚度而控制有效能帶隙之寬帶(1.2至1.9 eV)能帶隙太陽能電池。能帶隙因此,由於傳輸損失及短波長損失減少,高效能太陽能電池可被實現。
此外,根據本發明,由於具有高載子移動性之n型矽及p型矽被使用於pn異質接面太陽能電池中,更高效能之太陽能電池可被實現。
另外,由於前面電極及背面電極係為了增加對於典型太陽能電池生產線中使用之網印程序之匹配,而皆由網印法形成,可經由最小化對現有生產生之改變而減少太陽能電池之製造成本。
110、210:半導體晶圓
120、220:量子井結構
130、230:射極層
140、240:指狀電極
150、250:抗反射塗層
160、260:鈍化層
170、270:p+摻雜層
180、280:鋁電極
310、410:基板
330、430:射極電極
370、470:n+層
第1A圖係為顯示應用於根據本發明之太陽能電池之量子井結構之能帶隙能量控制之示意圖。
第1B圖係為根據本發明之量子井結構之太陽能電池能量帶圖。
第2圖係為根據本發明之第一實施例之具有量子井結構之pn異質接面太陽能電池之剖面圖。
第3圖係為根據本發明之第二實施例之具有量子井結構之pn異質接面太陽能電池之剖面圖。
第4圖係為根據本發明之第三實施例之具有量子井結構之pn異質接面太陽能電池之剖面圖。
第5圖係為根據本發明之第四實施例之具有量子井結構之pn異質接面太陽能電池之剖面圖。
各個實施例將藉參照於其中顯示一些實施例之圖式更充分地描述。然而,本發明可以不同形式實施,而不應被解讀為限制於此闡述之實施例。反之,提供這些實施例以使此揭露為徹底及完整的,且對本領域之通常知識者充分表達本發明。在圖式中,層及區域之尺寸及相對尺寸可能為求清晰而被誇大。
為了實現高效率之矽基太陽能電池,根據本發明之量子井結構太陽能電池及其製造方法可藉由探討太陽能電池哪一部份之損失而改善轉換效率,例如,傳輸損失、量子損失、電子電洞重組損失、太陽能電池之表面反射損失、電流電壓特性所造成之損失等,主要源於生產過程中之損失,且藉由改善太陽能電池之結構設計及製造流程而最小化各種損失。另外,根據本發明之量子井結構太陽能電池及其製造方法可使用能帶隙增加之效應及鈍化效應,實現將多量子井結構插入於pn異質接面太陽能電池之p型半導體及n型半導體之間之結構。
基本上,夾在絕緣體中之矽量子井係藉由矽之引入而被最佳化。一般情況下,當單結晶矽之尺寸小於波耳半徑(約5 nm)時,有效能帶隙可能會因為量子侷限效應而增加。因此,當如第1A及1B圖所示,在量子井結構之矽薄膜之厚度d減少時,能帶隙E g 可如下列公式1中所示地增加。
第1A圖係為顯示應用於根據本發明之太陽能電池之量子井結構之能帶隙能量控制之示意圖,而第1B圖係為根據本發明之量子井結構之太陽能電池能量帶圖。
公式1 
此外,鈍化效應可發生在此結構之界面,因此矽量子井於實現矽集成堆疊型太陽能電池(silicon integrated tandem solar cell)上係一個很好的結構。根據本發明,為達到高效率之太陽能電池,多量子井結構係利用矽量子井之量子侷限現象而形成。於p-層及n-層之間插入量子井結構之太陽能電池被預期達到超越理論之太陽能電池轉換效率之極限之高效能。
藉由根據本發明之量子井結構太陽能電池提供之太陽能電池,及其製造方法係以具有超越具有單一能量門檻之材料之理論太陽能電池之轉換效率之極限(26至28%)之高效能之裝置為基礎。
本發明之太陽能電池相較於單結太陽能電池具有提高效率之原因是,第一,由於可吸收之太陽光譜之能帶寬因為根據量子尺寸效應及多能帶之形成導致可吸收之太陽光譜之能帶寬之增加而增加,而減少傳輸損失,及第二,因為載子藉由量子井之間之電連結之隧道效應而可以高速輸送,故短波長損失係藉由控制熱能損失而減少。
藉由插入多量子井結構於p型半導體及n型半導體之間,特別是於利用單結晶矽作為基板,且非晶或多晶矽作為射極之異質接面結構太陽能電池中,根據本發明之量子井結構太陽能電池及其製造方式可實現超越理論轉換效率之高效率太陽能電池,因為陽光之傳輸損失係由於界面鈍化效應及藉由量子侷限增加之能帶隙之效應而減少,且陽光之短波長損失係由於藉由量子井之間之電連結隧道效應導致之高速載子傳輸而減少。另外,根據本發明之量子井結構太陽能電池及其製造方法,於太陽能電池電極之形成上,可藉由形成可用於網印法之金屬電極於正面及背面上以實現具有減少製造成本之目前可用之量子井結構太陽能電池。
於下文中,將藉參照第2至5圖,描述根據本發明之第一實施例之量子井結構太陽能電池之製造方法。
第2圖係為根據本發明之第一實施例之具有量子井結構之pn異質接面之太陽能電池之剖面圖,及第3圖係為根據本發明之第二實施例之具有量子井結構之pn異質接面之太陽能電池之剖面圖。第4圖係為根據本發明之第三實施例之具有量子井結構之pn異質接面之太陽能電池之剖面圖,及第5圖係為根據本發明之第四實施例之具有量子井結構之pn異質接面之太陽能電池之剖面圖。
首先,參照第2圖,根據本發明之第一實施例之具有量子井結構pn異質接面太陽能電池之製造方法包含形成所需之循環數(幾個至幾十個循環)之量子井結構120。在此,形成量子井結構120之流程之一循環包含利用 原子層沉積(atomic layer deposition, ALD)法、化學汽相沉積(chemical vapor deposition. CVD)法或濺鍍法 形成厚度為1至10 nm之薄膜絕緣層於p型矽半導體晶圓110之上表面上,及接著於其上形成厚度為1至10 nm之薄膜半導體層。
在形成所需循環數之量子井結構120之後,射極層130係藉由形成與基板為不同型之半導體之n型矽為具有適當厚度(0.1至1 )之非晶矽或多晶矽層於量子井結構120上而形成。接著,正面金屬指狀電極140藉由網印法或 汽相沉積法 形成於射極層130上。在利用 汽相沉積法 之情況下,指狀電極140較佳地為以矽化物形成,而在利用網印法之情況下,較佳地為利用Ag膏形成。於形成量子井結構120之前粗化半導體晶圓為較佳。形成指狀電極140之後,半導體晶圓於形成抗反射塗層(anti-reflective coating, ARC) 150之前進行乾燥。
接著,在金屬指狀電極140已形成於其上之整個表面上形成SiNx層作為抗反射塗(ARC)層150。
同時,如Al2O3 、Si3N4 及SiO2 層之鈍化層160利用ALD法、CVD法、濺鍍法或 汽相沉積法 形成於半導體晶圓110之背面上。接著,執行用以局部地產生背面電場之 圖樣製程 ,且p+摻雜層170形成於圖案化之區域上。接著,如同正面一般 , 背面鋁電極180利用 汽相沉積法或網印法 形成於圖案化之區域上。在這情況下,較佳的,當鋁電極180係藉由網印法形成時,正面金屬指狀電極140及背面鋁電極180可同時共燒。
根據上述製造流程,製造出具有量子井結構之太陽能電池。最後,較佳的進行於其中對處理過之太陽能電池結構於氮氣氣氛中進行熱處理30分鐘之後金屬化退火(post-metallization annealing, PMA)程序。
參照第3圖,根據本發明之第二實施例之具有量子井結構之pn異質接面太陽能電池之製造方法包含 形成所需 循環數(幾個至幾十個循環)之量子井結構220。在此, 形成量子井結構220之流程之一循環包含利用 ALD法、CVD法或濺鍍法 形成厚度為1至10 nm之薄膜絕緣層於p型矽半導體晶圓210之上表面上,及接著於其上形成厚度為1至10 nm之薄膜半導體層。 在形成所需循環數之量子井結構220之後,射極層230係藉由形成與基板為不同型之半導體之n型矽為具有適當厚度(0.1至1 )之非晶矽或多晶矽層於量子井結構220上而形成。 接著,作為抗反射塗(ARC)層250之SiNx層形成於射極層230之表面上。接著,正面金屬指狀電極240藉由網印法形成於抗反射塗 (ARC)層250上。於形成量子井結構220之前粗化半導體晶圓為較佳的。形成指狀電極240之後,半導體晶圓於形成抗反射塗層250之前進行乾燥。
同時,如Al2O3 、Si3N4 及SiO2 層之鈍化層260係利用ALD、CVD、濺鍍或 汽相沉積法 形成於半導體晶圓210之背面。接著,執行用以局部地產生背面電場之圖樣製程,且p+摻雜層270形成於圖案化之區域上。接著,如同正面一般,背面鋁電極280利用 汽相沉積法或網印法 形成於圖案化之區域上。
在這情況下,當鋁電極280係藉由網印法形成時,較佳的,正面金屬指狀電極140及背面鋁電極180可同時共燒。根據上述製造流程,製造出具有量子井結構之太陽能電池。最後,較佳的進行於其中對處理過之太陽能電池結構進行熱處理之後金屬化退火(post-metallization annealing, PMA)程序。
接著,根據本發明之第三實施例之具有量子井結構之pn異質接面太陽能電池之製造方法將參照第4圖描述。參照第4圖,除了少數如下所示之例外,本發明之第三實施例可具有類似上述第一實施例之製造方法及流程順序。亦即,起始基板310係為n型矽,射極電極330係為p型,及n+層370係摻雜於用以局部地產生背面電場之圖樣化區域中。特別是,當電極於第三實施例中係藉由網印法形成時,為了減少接觸電阻,較佳地,第一實施例之正面電極及背面電極被分別改為第三實施例之背面電極極及正面電極,或以適合之金屬電極取代。
接著,參照第5圖,根據本發明之第四實施例之具有量子井結構之pn異質接面太陽能電池,除了少數如下所示之例外,可具有類似上述之第二實施例之製造方法及流程順序。
亦即,起始基板410係為n型矽,射極電極430係為p型,及n+層470係摻雜於用以局部地產生背面電場之圖樣化區域。特別是,當電極於第四實施例中係藉由網印法形成時,為了減少接觸電阻,較佳地,第一實施例之正面電極及背面電極分別改為第三實施例之背面電極及正面電極,或以適合之金屬電極取代。
上述內容為實施例的說明,並且不被解釋為其限制。雖然已描述一些實施例,本領域具通常知識者將容易理解,在不實質上背離新穎性之教示及優點下之許多修改為可能。因此,所有這樣的修改皆意圖包含在如在申請專利範圍中所定義之本發明之範圍之中。
110:半導體晶圓
120:量子井結構
130:射極層
140:指狀電極
150:抗反射塗層
160:鈍化層
170:p+摻雜層
180:鋁電極

Claims (12)

  1. 一種量子井結構太陽能電池之製造方法,其包含:
    藉由於一p型或n型矽基板上以幾到幾十循環地依序形成厚度為1至10 nm之一薄膜絕緣層及厚度為1至10 nm之一薄膜半導體層以形成一量子井層;
    利用與該矽基板具有不同型之矽於該量子井層上形成一射極層;
    形成一金屬指狀電極於該射極層上;
    形成作為一抗反射層之SiNx層於該金屬指狀電極之整個表面上;以及形成鈍化層於該矽基板之一底面上。
  2. 如申請專利範圍第1項所述之方法,其更包含:於形成該量子井層之前粗化該矽基板。
  3. 一種量子井結構太陽能電池之製造方法,其包含:
    藉由於一p型或n型矽基板上以幾到幾十循環地依序形成厚度為1至10 nm之一薄膜絕緣層及厚度為1至10 nm之一薄膜半導體層以形成一量子井層;
    利用與該矽基板具有不同型之矽於該量子井層上形成一射極層;
    形成作為一抗反射層之SiNx層於整個表面上;以及形成一金屬指狀電極於該抗反射層上,且進行熱處理以使該金屬指狀電極接觸該射極層。
  4. 如申請專利範圍第3項所述之方法,其更包含:於形成該量子井層之前粗化該矽基板。
  5. 一種量子井結構太陽能電池,其包含:
    一量子井層,係藉由於一p型或n型矽基板上以幾到幾十循環地依序形成厚度為1至10 nm之一薄膜絕緣層及厚度為1至10 nm之一薄膜半導體層而形成;
    一射極層,係由與該矽基板具有不同型之矽形成於該量子井層上;
    一金屬指狀電極,係形成於該射極層上;
    一抗反射層,係以SiNx層形成於該金屬指狀電極之整個表面上;以及一鈍化層,係形成於該矽基板之一底面上。
  6. 如申請專利範圍第5項所述之量子井結構太陽能電池,其中該射極層具有厚度為0.1至1  之非晶矽結構及多晶矽結構之其中之一。
  7. 如申請專利範圍第5項所述之量子井結構太陽能電池,其中該鈍化層係為 Al2O3 層、 Si3N4 層及 SiO2 層之其中之一。
  8. 如申請專利範圍第5項所述之量子井結構太陽能電池,其中一背面電場係藉由具有與該矽基板相同之導電類型之一局部地高摻雜層於該矽基板之背面上進一步產生。
  9. 一種量子井結構太陽能電池,其包含:
    一量子井層,係藉由於一p型或n型矽基板上以幾到幾十循環地依序形成厚度為1至10 nm之一薄膜絕緣層及厚度為1至10 nm之一薄膜半導體層而形成;
    一射極層,係由與該矽基板具有不同型之矽形成於該量子井層上;
    一抗反射層,係以SiNx形成於整個該射極層上;以及一金屬指狀電極,係形成於該抗反射層上且藉由熱處理接觸該射極層。
  10. 如申請專利範圍第9項所述之量子井結構太陽能電池,其中該射極層具有厚度為0.1至1 之非晶矽結構及多晶矽結構之其中之一。
  11. 如申請專利範圍第9項所述之量子井結構太陽能電池,其中該鈍化層係為 Al2O3 層、 Si3N4 層及 SiO2 層之其中之一。
  12. 如申請專利範圍第9項所述之量子井結構太陽能電池,其中一背面電場係藉由具有與該基板相同之導電類型之一局部地高摻雜層於該矽基板背面上進一步產生。
TW102120541A 2012-06-25 2013-06-10 量子井結構太陽能電池及其製造方法 TWI557930B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120068180A KR101461602B1 (ko) 2012-06-25 2012-06-25 양자우물 구조 태양전지 및 그 제조 방법

Publications (2)

Publication Number Publication Date
TW201405846A true TW201405846A (zh) 2014-02-01
TWI557930B TWI557930B (zh) 2016-11-11

Family

ID=49783422

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102120541A TWI557930B (zh) 2012-06-25 2013-06-10 量子井結構太陽能電池及其製造方法

Country Status (5)

Country Link
US (1) US20160204291A1 (zh)
JP (1) JP2015526894A (zh)
KR (1) KR101461602B1 (zh)
TW (1) TWI557930B (zh)
WO (1) WO2014003326A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632691B (zh) * 2016-06-01 2018-08-11 日商三菱電機股份有限公司 光伏特元件及其製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615611B1 (ko) 2014-12-30 2016-04-27 청주대학교 산학협력단 터널링 다층 양자우물구조체를 이용한 태양전지 및 그 제조방법
CN106129172B (zh) * 2016-07-01 2017-07-04 江苏微导纳米装备科技有限公司 一种可调节电荷密度的晶硅太阳能电池表面钝化方法
US10418781B1 (en) 2018-07-06 2019-09-17 Ii-Vi Delaware, Inc. Quantum well passivation structure for laser facets
KR102523706B1 (ko) * 2021-04-13 2023-04-19 성균관대학교산학협력단 실리콘 양자우물 구조를 갖는 터널 산화막 실리콘 태양전지 및 이의 제조 방법
KR102499055B1 (ko) * 2022-01-05 2023-02-13 청주대학교 산학협력단 반도체 pn 접합구조와 직결된 터널링 양자우물 구조의 태양전지

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958497B2 (en) * 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
GB0118150D0 (en) * 2001-07-25 2001-09-19 Imperial College Thermophotovoltaic device
US20080257405A1 (en) * 2007-04-18 2008-10-23 Emcore Corp. Multijunction solar cell with strained-balanced quantum well middle cell
US8101856B2 (en) * 2008-10-02 2012-01-24 International Business Machines Corporation Quantum well GaP/Si tandem photovoltaic cells
US7951640B2 (en) * 2008-11-07 2011-05-31 Sunpreme, Ltd. Low-cost multi-junction solar cells and methods for their production
US8288645B2 (en) * 2009-03-17 2012-10-16 Sharp Laboratories Of America, Inc. Single heterojunction back contact solar cell
US8294027B2 (en) * 2010-01-19 2012-10-23 International Business Machines Corporation Efficiency in antireflective coating layers for solar cells
WO2012039800A2 (en) * 2010-06-15 2012-03-29 California Institute Of Technology Surface passivation by quantum exclusion using multiple layers
US8217258B2 (en) * 2010-07-09 2012-07-10 Ostendo Technologies, Inc. Alternating bias hot carrier solar cells
KR101130196B1 (ko) * 2010-11-11 2012-03-30 엘지전자 주식회사 태양 전지
JP5557721B2 (ja) * 2010-12-10 2014-07-23 株式会社日立製作所 太陽電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632691B (zh) * 2016-06-01 2018-08-11 日商三菱電機股份有限公司 光伏特元件及其製造方法

Also Published As

Publication number Publication date
US20160204291A1 (en) 2016-07-14
WO2014003326A1 (ko) 2014-01-03
KR20140003718A (ko) 2014-01-10
KR101461602B1 (ko) 2014-11-20
JP2015526894A (ja) 2015-09-10
TWI557930B (zh) 2016-11-11

Similar Documents

Publication Publication Date Title
JP6746854B2 (ja) ワイドバンドギャップ半導体材料含有のエミッタ領域を有する太陽電池
US10535791B2 (en) 2-terminal metal halide semiconductor/C-silicon multijunction solar cell with tunnel junction
JP5546616B2 (ja) トンネル酸化物を有する後面接合太陽電池
TWI557930B (zh) 量子井結構太陽能電池及其製造方法
JP2009164544A (ja) 太陽電池のパッシベーション層構造およびその製造方法
JP2007281156A (ja) 裏面電極型半導体へテロ接合太陽電池ならびにその製造方法と製造装置
TWI699900B (zh) 具有鈍化層之太陽能電池及其製造方法
CN113571590A (zh) 利用晶体硅对太阳能电池光接收表面进行钝化
Tao et al. 730 mV implied Voc enabled by tunnel oxide passivated contact with PECVD grown and crystallized n+ polycrystalline Si
JP2017506826A (ja) ソーラーセル及びその製造方法
KR20180045587A (ko) 태양전지 및 이의 제조방법
JP2015514305A (ja) シリコン光起電力技術のための正孔ブロックシリコン‐酸化チタンヘテロ接合
JP5307688B2 (ja) 結晶シリコン系太陽電池
Jeon et al. Passivation effect of tunnel oxide grown by N2O plasma for c-Si solar cell applications
JP2010123916A (ja) 太陽エネルギ電池のGexSi1−x緩衝層をシリコンウェハ上に形成する方法。
WO2014134515A1 (en) High-efficiency, low-cost silicon-zinc oxide heterojunction solar cells
JPWO2015060434A1 (ja) 光電変換素子、光電変換モジュール、並びに、太陽光発電システム
KR20100094224A (ko) 태양전지 및 이의 제조방법
US20130180577A1 (en) Photoelectric conversion device
TWI675490B (zh) 製造太陽能電池的方法
KR101615611B1 (ko) 터널링 다층 양자우물구조체를 이용한 태양전지 및 그 제조방법
JP5980060B2 (ja) 太陽電池
KR20110107934A (ko) 탄소나노튜브/ZnO 투명태양전지 및 그 제조방법
TW201222639A (en) Method for producing a semiconductor device and a semiconductor device
TWI481055B (zh) Method for manufacturing photoelectric conversion device