TW201349283A - Manufacturing method of pixel structure of field emission display - Google Patents
Manufacturing method of pixel structure of field emission display Download PDFInfo
- Publication number
- TW201349283A TW201349283A TW101119554A TW101119554A TW201349283A TW 201349283 A TW201349283 A TW 201349283A TW 101119554 A TW101119554 A TW 101119554A TW 101119554 A TW101119554 A TW 101119554A TW 201349283 A TW201349283 A TW 201349283A
- Authority
- TW
- Taiwan
- Prior art keywords
- metal layer
- layer
- field emission
- emission display
- insulating layer
- Prior art date
Links
Landscapes
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Cold Cathode And The Manufacture (AREA)
Abstract
Description
本發明是有關於一種畫素結構的製造方法,且特別是關於一種場發射顯示器之畫素結構的製造方法。 The present invention relates to a method of fabricating a pixel structure, and more particularly to a method of fabricating a pixel structure of a field emission display.
隨著多媒體的迅速發展,使用者對於周邊之聲光設備要求愈來愈高。以往常用的陰極射線管或稱影像管(Cathode Ray Tube,CRT)類型的顯示器,由於體積過於龐大,在現今標榜輕、薄、短、小的時代中,已漸不敷需求。因此,近年來有許多平面顯示器(Flat Panel Display)技術相繼被開發出來,如液晶顯示器(Liquid Crystal Display,LCD)、電漿平面顯示器(Plasma Display Panel,PDP),以及場發射顯示器(Field Emission Display,FED)。 With the rapid development of multimedia, users are increasingly demanding peripheral sound and light equipment. In the past, the cathode ray tube or the cathode tube type (CRT) type display, which is commonly used in the era of light, thin, short, and small, has become increasingly indispensable. Therefore, in recent years, many flat panel display technologies have been developed, such as liquid crystal display (LCD), plasma display panel (PDP), and field emission display (Field Emission Display). , FED).
上述各顯示器中,由於場發射顯示器具有較短的光學反應時間(Optical Response Time),因此不會產生影像殘影現象。除此之外,場發射顯示器還具有厚度薄、重量輕、視角廣、亮度高、工作溫度範圍較大以及省能源等優點。因此,場發射顯示器被視為極具有競爭潛力的平面顯示器技術之一。然而,現階段場發射顯示器之畫素結構的製造流程相對複雜。因此,造成製程時間的增加以及製程成本的提高,而不利於市場大量應用。 In each of the above displays, since the field emission display has a short optical response time, image sticking does not occur. In addition, field emission displays have the advantages of thin thickness, light weight, wide viewing angle, high brightness, large operating temperature range and energy saving. Therefore, field emission displays are considered one of the most promising flat panel display technologies. However, the manufacturing process of the pixel structure of the field emission display at this stage is relatively complicated. Therefore, the increase of the processing time and the increase of the process cost are not conducive to a large number of applications in the market.
本發明提供一種場發射顯示器之畫素結構的製造方法,其製程成本低。 The invention provides a method for manufacturing a pixel structure of a field emission display, which has low process cost.
本發明提供一種場發射顯示器之畫素結構的製造方法。首先,在一基板上形成第一電極。在基板上形成第一絕緣層,其中第一絕緣層覆蓋第一電極。在第一絕緣層上形成第二電極。在第一絕緣層以及第二電極上形成多個顆粒。形成第一金屬層,以覆蓋顆粒。移除顆粒並同時使位於顆粒表面的第一金屬層移除,以使第一金屬層形成圖案化金屬層。利用圖案化金屬層作為罩幕以於第一絕緣層中形成多個開口。在圖案化金屬層上以及開口之底部形成第二金屬層,其中第二金屬層與第二電極接觸。在第二金屬層上形成第三金屬層,且第三金屬層於開口中形成多個電子發射器。移除位於電子發射器上方的第三金屬層,以使電子發射器以及第二金屬層暴露出來。 The present invention provides a method of fabricating a pixel structure of a field emission display. First, a first electrode is formed on a substrate. A first insulating layer is formed on the substrate, wherein the first insulating layer covers the first electrode. A second electrode is formed on the first insulating layer. A plurality of particles are formed on the first insulating layer and the second electrode. A first metal layer is formed to cover the particles. The particles are removed while the first metal layer on the surface of the particles is removed such that the first metal layer forms a patterned metal layer. A plurality of openings are formed in the first insulating layer using the patterned metal layer as a mask. A second metal layer is formed on the patterned metal layer and at the bottom of the opening, wherein the second metal layer is in contact with the second electrode. A third metal layer is formed on the second metal layer, and the third metal layer forms a plurality of electron emitters in the opening. A third metal layer over the electron emitter is removed to expose the electron emitter and the second metal layer.
基於上述,本發明可藉由少的光罩數來製造場發射顯示器之畫素結構,進而降低製程時間以及製程成本。 Based on the above, the present invention can manufacture the pixel structure of the field emission display by reducing the number of masks, thereby reducing the processing time and the process cost.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.
場發射顯示器包括陰極板、陽極板以及位於陰極板以及陽極板之間的真空腔體。圖1為本發明之一實施例之場發射顯示器之陰極板的上視示意圖。請參照圖1,陰極板 100具有顯示區A以及環繞顯示區A之非顯示區B,且顯示區A包括多個畫素結構,而非顯示區B包括貫孔(via)區B1、第一訊號區B2以及第二訊號區B3。 The field emission display includes a cathode plate, an anode plate, and a vacuum chamber between the cathode plate and the anode plate. 1 is a top plan view of a cathode plate of a field emission display according to an embodiment of the present invention. Please refer to Figure 1, cathode plate 100 has a display area A and a non-display area B surrounding the display area A, and the display area A includes a plurality of pixel structures, and the non-display area B includes a via area B1, a first signal area B2, and a second signal. District B3.
以下將以圖2A至圖2M繪示說明場發射顯示器之陰極板的製造方法。圖2A至圖2M中之四個剖面分別為沿圖1中之A-A’、B-B’、C-C’以及D-D’剖線之剖面示意圖。 A method of manufacturing a cathode plate of a field emission display will be described below with reference to FIGS. 2A to 2M. The four cross-sections in Figs. 2A to 2M are schematic cross-sectional views taken along line A-A', B-B', C-C' and D-D' in Fig. 1, respectively.
圖2A至圖2M為本發明之一實施例之場發射顯示器之畫素結構之製造流程的剖面示意圖。請參照圖2A,首先,在基板110上形成第一導電層M1,其包括位於顯示區A中的第一電極E1、位於第一訊號區B2的第一訊號線S1以及位於貫孔區B1的線路層S,其中第一電極E1與對應之第一訊號線S1電性連接。在本實施例中,形成第一導電層M1的方法例如是先沈積一層導電層(未繪示),並藉由微影程序以及蝕刻程序以圖案化導電層以形成第一電極E1、第一訊號線S1以及線路層S。此外,基板110的材質可以是玻璃、石英、有機聚合物或是其他合適的材料,而第一導電層M1(第一電極E1、第一訊號線S1以及線路層S)的材質可為導電的金屬或是金屬疊層。 2A to 2M are schematic cross-sectional views showing a manufacturing process of a pixel structure of a field emission display according to an embodiment of the present invention. Referring to FIG. 2A, first, a first conductive layer M1 is formed on the substrate 110, and includes a first electrode E1 located in the display area A, a first signal line S1 located in the first signal area B2, and a first hole line S1 located in the through hole area B1. The circuit layer S, wherein the first electrode E1 is electrically connected to the corresponding first signal line S1. In this embodiment, the first conductive layer M1 is formed by depositing a conductive layer (not shown), and patterning the conductive layer by a lithography process and an etching process to form the first electrode E1. Signal line S1 and line layer S. In addition, the material of the substrate 110 may be glass, quartz, organic polymer or other suitable materials, and the material of the first conductive layer M1 (the first electrode E1, the first signal line S1 and the circuit layer S) may be electrically conductive. Metal or metal laminate.
請參照圖2B,在基板110上形成第一絕緣層120,其中第一絕緣層120覆蓋第一電極E1、第一訊號線S1以及線路層S。在本實施例中,場發射顯示器之陰極板可進一步地包括一電阻層130,其中電阻層130位於第一絕緣層120以及第一電極E1之間。此外,第一絕緣層120的材質例如是氧化物、氮化物或兩者之疊層,而電阻層130的材 質例如是氮碳化矽(SiCN)、氧碳化矽(SiCO)、碳化矽(SiC)、碳氮化矽(SiCON)或氮氧化矽(SiON)。。接著,在第一訊號線S1以及線路層S上方之第一絕緣層120以及電阻層130中分別形成開口W1以及開口W,其中開口W1暴露出部分第一訊號線S1,而開口W暴露出部分線路層S。在本實施例中,形成開口W1以及開口W的方法例如為蝕刻製程。 Referring to FIG. 2B, a first insulating layer 120 is formed on the substrate 110, wherein the first insulating layer 120 covers the first electrode E1, the first signal line S1, and the circuit layer S. In this embodiment, the cathode plate of the field emission display may further include a resistance layer 130, wherein the resistance layer 130 is located between the first insulation layer 120 and the first electrode E1. In addition, the material of the first insulating layer 120 is, for example, an oxide, a nitride, or a combination of the two, and the material of the resistive layer 130 The substance is, for example, niobium oxynitride (SiCN), niobium oxycarbide (SiCO), niobium carbide (SiC), niobium carbonitride (SiCON) or niobium oxynitride (SiON). . Next, an opening W1 and an opening W are respectively formed in the first insulating layer 120 and the resistive layer 130 above the first signal line S1 and the circuit layer S, wherein the opening W1 exposes a portion of the first signal line S1, and the opening W exposes a portion Line layer S. In the present embodiment, the method of forming the opening W1 and the opening W is, for example, an etching process.
請參照圖2C,在第一絕緣層120上形成一第二導電層M2,其包括位於顯示區A中的第二電極E2以及位於第二訊號區B3的第二訊號線S2,其中第二電極E2與對應之第二訊號線S2電性連接。在本實施例中,形成第二導電層M2的方法例如是先沈積一層導電層(未繪示),並藉由微影程序以及蝕刻程序以圖案化此導電層以形成第二電極E2以及第二訊號線S2。此外,第二電極層(第二電極E2以及第二訊號線S2)的材質可為導電的金屬或是金屬疊層。 Referring to FIG. 2C, a second conductive layer M2 is formed on the first insulating layer 120, and includes a second electrode E2 located in the display area A and a second signal line S2 located in the second signal area B3, wherein the second electrode E2 is electrically connected to the corresponding second signal line S2. In this embodiment, the method for forming the second conductive layer M2 is, for example, first depositing a conductive layer (not shown), and patterning the conductive layer by a lithography process and an etching process to form the second electrode E2 and the first Second signal line S2. In addition, the material of the second electrode layer (the second electrode E2 and the second signal line S2) may be a conductive metal or a metal laminate.
請參照圖2D,在第一絕緣層120以及第二電極E2上形成多個顆粒G。在本實施例中,形成顆粒G之方法包括隨意地噴灑顆粒G於第一絕緣層120上。換句話說,顆粒G亦有可能位於開口W1所暴露出之部分的第一訊號線S1上。當然,本實施例不限定顆粒G形成之位置。 Referring to FIG. 2D, a plurality of particles G are formed on the first insulating layer 120 and the second electrode E2. In the present embodiment, the method of forming the particles G includes randomly spraying the particles G onto the first insulating layer 120. In other words, it is also possible for the particles G to be located on the first signal line S1 of the portion where the opening W1 is exposed. Of course, this embodiment does not limit the position at which the particles G are formed.
請參照圖2E,形成第一金屬層M3以覆蓋顆粒G。在本實施例中,第一金屬層M3的材質例如是鉻(Chromium,Cr)。 Referring to FIG. 2E, a first metal layer M3 is formed to cover the particles G. In the present embodiment, the material of the first metal layer M3 is, for example, chromium (Chromium, Cr).
請參照圖2F,移除顆粒G並同時使位於顆粒G表面的第一金屬層M3移除,以使第一金屬層M3形成圖案化金屬層P,其中圖案化金屬層P暴露出先前顆粒G下方的膜層。在本實施例中,圖案化金屬層P例如是暴露出部分的第一絕緣層120以及部分的第二電極E2。另外,在本實施例中,移除顆粒G並同時使位於顆粒G表面的第一金屬層M3移除之方法包括利用一刷除程序。 Referring to FIG. 2F, the particle G is removed while the first metal layer M3 located on the surface of the particle G is removed, so that the first metal layer M3 forms the patterned metal layer P, wherein the patterned metal layer P exposes the previous particle G. The film layer below. In the present embodiment, the patterned metal layer P is, for example, a portion of the exposed first insulating layer 120 and a portion of the second electrode E2. Further, in the present embodiment, the method of removing the particles G while simultaneously removing the first metal layer M3 located on the surface of the particles G includes using a brushing process.
請參照圖2G,利用圖案化金屬層P作為罩幕以於第一絕緣層120中形成多個開口W2,其中開口W2暴露出部分電阻層130。在本實施例中,形成開口W2的方法例如為蝕刻製程,其中蝕刻製程中蝕刻劑(etchant)例如是可以選用對第一絕緣層120蝕刻速率高,但對電阻層130、第一導電層M1(第一電極E1、第一訊號線S1以及線路層S)以及第二導電層M2(第二電極E2以及第二訊號線S2)的蝕刻速率低的蝕刻劑,以盡可能地降低蝕刻劑對電阻層130、第一電極E1、第一訊號線S1、線路層S、第二電極E2以及第二訊號線S2的傷害。 Referring to FIG. 2G, a plurality of openings W2 are formed in the first insulating layer 120 by using the patterned metal layer P as a mask, wherein the opening W2 exposes a portion of the resistive layer 130. In the present embodiment, the method of forming the opening W2 is, for example, an etching process, wherein an etchant in the etching process may, for example, optionally have a high etching rate to the first insulating layer 120, but to the resistive layer 130 and the first conductive layer M1. Etching agent having a low etching rate (first electrode E1, first signal line S1 and wiring layer S) and second conductive layer M2 (second electrode E2 and second signal line S2) to reduce the etchant pair as much as possible The damage of the resistance layer 130, the first electrode E1, the first signal line S1, the circuit layer S, the second electrode E2, and the second signal line S2.
請參照圖2H,在圖案化金屬層P上以及開口W、W1、W2之底部形成第二金屬層M4。在本實施例中,第一金屬層M3以及第二金屬層M4的材質相同。另外,第二金屬層M4與第二電極E2接觸,而位於圖案化金屬層P上的第二金屬層M4與位於開口W2之底部的第二金屬層M4彼此分離。具體而言,透過製程參數的調整,例如是藉由減縮顆粒G的粒徑,使刷除程序以及蝕刻製程後所形成之 開口W2的孔徑縮小或是沉積薄的第二金屬層M4,使第二金屬層M4不會形成於開口W2的側壁,或是即使形成於開口W2的側壁也不會使位於圖案化金屬層P上的第二金屬層M4與位於開口W2之底部的第二金屬層M4連接。如此一來,可達到位於圖案化金屬層P上的第二金屬層M4與位於開口W2之底部的第二金屬層M4彼此分離的效果。 Referring to FIG. 2H, a second metal layer M4 is formed on the patterned metal layer P and at the bottom of the openings W, W1, W2. In this embodiment, the materials of the first metal layer M3 and the second metal layer M4 are the same. In addition, the second metal layer M4 is in contact with the second electrode E2, and the second metal layer M4 on the patterned metal layer P and the second metal layer M4 located at the bottom of the opening W2 are separated from each other. Specifically, the adjustment of the process parameters is performed, for example, by reducing the particle size of the particle G, and forming the brushing process and the etching process. The aperture of the opening W2 is reduced or a thin second metal layer M4 is deposited, so that the second metal layer M4 is not formed on the sidewall of the opening W2, or even if it is formed on the sidewall of the opening W2, the patterned metal layer P is not located. The upper second metal layer M4 is connected to the second metal layer M4 located at the bottom of the opening W2. As a result, the effect that the second metal layer M4 on the patterned metal layer P and the second metal layer M4 located at the bottom of the opening W2 are separated from each other can be achieved.
請參照圖2I,在第二金屬層M4上形成第三金屬層M5,並同時在開口W2中形成電子發射器E。而在形成第三金屬層M5以及電子發射器E的過程中,開口W2會逐漸地被第三金屬層M5所封閉,因此第三金屬層M5與第三金屬層M5彼此分離。此外,第三金屬層M5的材質例如是鉻、鈮(Niobium,Nb)、鉬(Molybdenum,Mo)、鎢(Tungsten,W)、鉿(Hafnium,Hf)、鈦(Titanium,Ti)與六硼化鑭(Lanthanum Hexaboride,LaB6)等具有高熔點或是低功函數(Work Function,Φ)的材料,其中第三金屬層M5的材質較佳是鉬。另外,在本實施例中,場發射顯示器之陰極板可進一步地在第三金屬層M5上形成第二絕緣層140以覆蓋第三金屬層M5。。 Referring to FIG. 2I, a third metal layer M5 is formed on the second metal layer M4, and at the same time, an electron emitter E is formed in the opening W2. In the process of forming the third metal layer M5 and the electron emitter E, the opening W2 is gradually closed by the third metal layer M5, and thus the third metal layer M5 and the third metal layer M5 are separated from each other. Further, the material of the third metal layer M5 is, for example, chromium, niobium (Nb), molybdenum (Mo), tungsten (Tungsten, W), hafnium (Hf), titanium (Titanium, Ti), and hexabos. A material having a high melting point or a low work function (Φ), such as Lanthanum Hexaboride (LaB6), wherein the material of the third metal layer M5 is preferably molybdenum. In addition, in the present embodiment, the cathode plate of the field emission display may further form the second insulating layer 140 on the third metal layer M5 to cover the third metal layer M5. .
請參照圖2J,移除非顯示區B(包括貫孔區B1、第一訊號區B2以及第二訊號區B3)上之第二絕緣層140以及第三金屬層M5,並移除顯示區A上之部分的第二絕緣層140以及第三金屬層M5,以使第二金屬層M4暴露出來。在本實施例中,在移除部分的第二絕緣層140以及第三金屬層 M5後,第二絕緣層140與第三金屬層M5具有相同的圖案。此外,移除第二絕緣層140以及第三金屬層M5的方法例如是藉由一圖案化光阻層(未繪示)覆蓋於欲保留的第二絕緣層140上,具體而言,將圖案化光阻層覆蓋於顯示區A上之部分的第二絕緣層140上。接著,以圖案化光阻層為罩幕,圖案化第二絕緣層140以及第三金屬層M5,以移除未被圖案化光阻層所覆蓋之第二絕緣層140以及第二絕緣層140下之第三金屬層M5。此外,移除第二絕緣層140以及第三金屬層M5的方法例如為蝕刻製程。 Referring to FIG. 2J, the second insulating layer 140 and the third metal layer M5 on the non-display area B (including the via area B1, the first signal area B2, and the second signal area B3) are removed, and the display area A is removed. The upper portion of the second insulating layer 140 and the third metal layer M5 expose the second metal layer M4. In this embodiment, a portion of the second insulating layer 140 and the third metal layer are removed After M5, the second insulating layer 140 has the same pattern as the third metal layer M5. In addition, the method of removing the second insulating layer 140 and the third metal layer M5 is covered by a patterned photoresist layer (not shown) on the second insulating layer 140 to be retained, specifically, the pattern. The photoresist layer covers a portion of the second insulating layer 140 on the display area A. Next, the second insulating layer 140 and the third metal layer M5 are patterned by using the patterned photoresist layer as a mask to remove the second insulating layer 140 and the second insulating layer 140 that are not covered by the patterned photoresist layer. The third metal layer M5 is underneath. Further, the method of removing the second insulating layer 140 and the third metal layer M5 is, for example, an etching process.
請參照圖2K,在顯示區A之裸露的在第二金屬層M4以及第二電極E2上方之第二絕緣層140上形成間隙圖案FW,其中間隙圖案FW的材質例如是高介電係數之材料。 Referring to FIG. 2K, a gap pattern FW is formed on the exposed second insulating layer 140 over the second metal layer M4 and the second electrode E2 in the display area A, wherein the material of the gap pattern FW is, for example, a material having a high dielectric constant. .
請參照圖2L,移除顯示區A內未被間隙圖案FW所覆蓋之第二絕緣層140以及第三金屬層M5,以使電子發射器E以及未被間隙圖案FW所覆蓋之第二金屬層M4暴露出來。在本實施例中,移除位於電子發射器E上方的第二絕緣層140以及第三金屬層M5的方法包括利用間隙圖案FW作為罩幕,移除第二絕緣層140以及第三金屬層M5,以使電子發射器E裸露出來。在本實施例中,移除第二絕緣層140以及第三金屬層M5的方法包括進行一化學電解蝕刻(electro-chemical etching)程序。此處,化學電解蝕刻程序是藉由將陰極板100(繪示於圖1)浸入電解液中,並將陰極板電性連接負極,利用電解的方式移除第二絕緣層140以及第三金屬層M5。 Referring to FIG. 2L, the second insulating layer 140 and the third metal layer M5 not covered by the gap pattern FW in the display area A are removed to make the electron emitter E and the second metal layer not covered by the gap pattern FW. M4 is exposed. In the present embodiment, the method of removing the second insulating layer 140 and the third metal layer M5 located above the electron emitter E includes removing the second insulating layer 140 and the third metal layer M5 by using the gap pattern FW as a mask. In order to expose the electron emitter E. In the present embodiment, the method of removing the second insulating layer 140 and the third metal layer M5 includes performing a chemical-electrochemical etching process. Here, the chemical electrolytic etching process removes the second insulating layer 140 and the third metal by electrolysis by immersing the cathode plate 100 (shown in FIG. 1) in the electrolyte and electrically connecting the cathode plate to the negative electrode. Layer M5.
請參照圖2M,在間隙圖案FW之一頂部表面T形成導電層150,其中導電層150與貫孔區B1(繪示於圖1)之線路層S電性連接。在本實施例中,形成導電層150的方法包括進行一斜向蒸鍍程序。此處,斜向蒸鍍程序是藉由將陰極板100放置於蒸鍍室中,遮蔽非顯示區B(繪示於圖1)並暴露出顯示區A(繪示於圖1),並藉由調整陰極板100的傾角(未繪示)來使導電層150覆蓋於間隙圖案FW之頂部表面T。在形成一導電層150之後,本實施例之場發射顯示器的陰極板100即初步完成,其中陰極板100包括位於顯示區A之畫素結構PS。 Referring to FIG. 2M, a conductive layer 150 is formed on a top surface T of one of the gap patterns FW, wherein the conductive layer 150 is electrically connected to the wiring layer S of the through-hole region B1 (shown in FIG. 1). In the present embodiment, the method of forming the conductive layer 150 includes performing an oblique vapor deposition process. Here, the oblique vapor deposition process is performed by placing the cathode plate 100 in the vapor deposition chamber, shielding the non-display area B (shown in FIG. 1) and exposing the display area A (shown in FIG. 1), and borrowing The conductive layer 150 is covered on the top surface T of the gap pattern FW by adjusting the tilt angle (not shown) of the cathode plate 100. After forming a conductive layer 150, the cathode plate 100 of the field emission display of the present embodiment is initially completed, wherein the cathode plate 100 includes a pixel structure PS located in the display area A.
值得一提的是,藉由上述製造方法所形成之場發射顯示器的畫素結構PS可以只用五道光罩完成製作。相較之下,習知技術在移除顆粒以及位於顆粒G表面的第一金屬層後,需多一道光罩移除在第一訊號線上方之第一金屬層。此外,習知技術在形成第三金屬層之前,會形成一絕緣層於第三金屬層以及第二金屬層之間,並需多一道光罩以於絕緣層上蝕刻出一開口。因此,相較於習知技術需七道光罩製造場發射顯示器的畫素結構,本實施例之場發射顯示器之畫素結構的製造方法可縮減所需的光罩數,因而可減少所需之製程時間以及製程成本。 It is worth mentioning that the pixel structure PS of the field emission display formed by the above manufacturing method can be completed by only five masks. In contrast, conventional techniques require a mask to remove the first metal layer above the first signal line after removing the particles and the first metal layer on the surface of the particle G. In addition, prior art prior to forming the third metal layer, an insulating layer is formed between the third metal layer and the second metal layer, and a photomask is required to etch an opening on the insulating layer. Therefore, compared with the conventional technique, the pixel structure of the seven-mask manufacturing field emission display is required, and the manufacturing method of the pixel structure of the field emission display of the embodiment can reduce the number of masks required, thereby reducing the required number of masks. Process time and process cost.
本實施例之畫素結構PS適用於一場發射顯示器中,以下特以圖3舉例說明。 The pixel structure PS of this embodiment is suitable for use in a field emission display, which is exemplified below with reference to FIG.
圖3為應用本實施例之畫素結構之場發射顯示器的剖面示意圖。請參考圖3,本實施例之場發射顯示器FED包 括如上述方式製造之陰極板100以及與陰極板100對向配置的陽極板200,其中陽極板200包括基板210、螢光層220、電極層230以及多個間隙物(spacer)240。螢光層220塗佈於基板210上,電極層230配置於基板210上,且螢光層220位於基板210以及電極層230之間,而間隙物240頂抵於陰極板100以及陽極板200之間。在本實施例中,間隙物240頂抵於陰極板100之導電層150以及陽極板200之間。此外,陰極板100以及陽極板200之間可以是真空,又或者是填充有惰性氣體。 3 is a schematic cross-sectional view of a field emission display to which the pixel structure of the present embodiment is applied. Please refer to FIG. 3, the field emission display FED package of this embodiment. The cathode plate 100 manufactured as described above and the anode plate 200 disposed opposite to the cathode plate 100 include an substrate 210, a phosphor layer 220, an electrode layer 230, and a plurality of spacers 240. The phosphor layer 220 is coated on the substrate 210, the electrode layer 230 is disposed on the substrate 210, and the phosphor layer 220 is disposed between the substrate 210 and the electrode layer 230, and the spacer 240 abuts against the cathode plate 100 and the anode plate 200. between. In the present embodiment, the spacer 240 abuts between the conductive layer 150 of the cathode plate 100 and the anode plate 200. Further, the cathode plate 100 and the anode plate 200 may be vacuumed or filled with an inert gas.
場發射顯示器FED的發光原理例如是在真空環境下,利用電場使電子發射器E之尖端放出電子e,電子e離開陰極板100並受到陽極板200上正電壓的加速以及吸引,而撞擊至陽極板200的螢光層220,進而放光。 The principle of illumination of the field emission display FED is, for example, in a vacuum environment, using an electric field to cause the tip of the electron emitter E to emit electrons e, which leave the cathode plate 100 and are accelerated and attracted by the positive voltage on the anode plate 200, and impinge on the anode. The phosphor layer 220 of the board 200 is then exposed.
綜上所述,本申請可藉由少的光罩數製造出場發射顯示器之畫素結構,因此所需之製程成本低。 In summary, the present application can produce a pixel structure of a field emission display by using a small number of masks, and thus the required process cost is low.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧陰極板 100‧‧‧ cathode plate
110、210‧‧‧基板 110, 210‧‧‧ substrate
120‧‧‧第一絕緣層 120‧‧‧First insulation
130‧‧‧電阻層 130‧‧‧resistance layer
140‧‧‧第二絕緣層 140‧‧‧Second insulation
150‧‧‧導電層 150‧‧‧ Conductive layer
200‧‧‧陽極板 200‧‧‧Anode plate
220‧‧‧螢光層 220‧‧‧Fluorescent layer
230‧‧‧電極層 230‧‧‧electrode layer
240‧‧‧間隙物 240‧‧‧ spacers
A‧‧‧顯示區 A‧‧‧ display area
B‧‧‧非顯示區 B‧‧‧Non-display area
B1‧‧‧貫孔區 B1‧‧‧Tongkong District
B2‧‧‧第一訊號區 B2‧‧‧First Signal Zone
B3‧‧‧第二訊號區 B3‧‧‧Second Signal Area
E1‧‧‧第一電極 E1‧‧‧first electrode
E2‧‧‧第二電極 E2‧‧‧second electrode
S1‧‧‧第一訊號線 S1‧‧‧first signal line
S2‧‧‧第二訊號線 S2‧‧‧second signal line
S‧‧‧線路層 S‧‧‧ circuit layer
W、W1、W2‧‧‧開口 W, W1, W2‧‧‧ openings
G‧‧‧顆粒 G‧‧‧ granules
M1‧‧‧第一導電層 M1‧‧‧ first conductive layer
M2‧‧‧第二導電層 M2‧‧‧Second conductive layer
M3‧‧‧第一金屬層 M3‧‧‧ first metal layer
M4‧‧‧第二金屬層 M4‧‧‧Second metal layer
M5‧‧‧第三金屬層 M5‧‧‧ third metal layer
E‧‧‧電子發射器 E‧‧‧Electronic transmitter
FW‧‧‧間隙圖案 FW‧‧‧ gap pattern
T‧‧‧頂部表面 T‧‧‧ top surface
P‧‧‧圖案化金屬層 P‧‧‧ patterned metal layer
PS‧‧‧畫素結構 PS‧‧‧ pixel structure
FED‧‧‧場發射顯示器 FED‧‧ field emission display
e‧‧‧電子 e‧‧‧Electronics
A-A’、B-B’、C-C’、D-D’‧‧‧剖線 A-A’, B-B’, C-C’, D-D’‧‧‧
圖1為本發明之一實施例之場發射顯示器之陰極板的上視示意圖。 1 is a top plan view of a cathode plate of a field emission display according to an embodiment of the present invention.
圖2A至圖2M為本發明之一實施例之場發射顯示器之畫素結構之製造流程的剖面示意圖。 2A to 2M are schematic cross-sectional views showing a manufacturing process of a pixel structure of a field emission display according to an embodiment of the present invention.
圖3為應用本實施例之畫素結構之場發射顯示器的剖面示意圖。 3 is a schematic cross-sectional view of a field emission display to which the pixel structure of the present embodiment is applied.
100‧‧‧陰極板 100‧‧‧ cathode plate
110、210‧‧‧基板 110, 210‧‧‧ substrate
120‧‧‧第一絕緣層 120‧‧‧First insulation
130‧‧‧電阻層 130‧‧‧resistance layer
140‧‧‧第二絕緣層 140‧‧‧Second insulation
150‧‧‧導電層 150‧‧‧ Conductive layer
200‧‧‧陽極板 200‧‧‧Anode plate
220‧‧‧螢光層 220‧‧‧Fluorescent layer
230‧‧‧電極層 230‧‧‧electrode layer
240‧‧‧間隙物 240‧‧‧ spacers
e‧‧‧電子 e‧‧‧Electronics
E1‧‧‧第一電極 E1‧‧‧first electrode
E2‧‧‧第二電極 E2‧‧‧second electrode
W2‧‧‧開口 W2‧‧‧ openings
M3‧‧‧第一金屬層 M3‧‧‧ first metal layer
M4‧‧‧第二金屬層 M4‧‧‧Second metal layer
M5‧‧‧第三金屬層 M5‧‧‧ third metal layer
P‧‧‧圖案化金屬層 P‧‧‧ patterned metal layer
E‧‧‧電子發射器 E‧‧‧Electronic transmitter
FW‧‧‧間隙圖案 FW‧‧‧ gap pattern
T‧‧‧頂部表面 T‧‧‧ top surface
FED‧‧‧場發射顯示器 FED‧‧ field emission display
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101119554A TWI441237B (en) | 2012-05-31 | 2012-05-31 | Manufacturing method of pixel structure of field emission display |
CN201210312467.0A CN102820188B (en) | 2012-05-31 | 2012-08-29 | Method for manufacturing pixel structure of field emission display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101119554A TWI441237B (en) | 2012-05-31 | 2012-05-31 | Manufacturing method of pixel structure of field emission display |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201349283A true TW201349283A (en) | 2013-12-01 |
TWI441237B TWI441237B (en) | 2014-06-11 |
Family
ID=47304239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101119554A TWI441237B (en) | 2012-05-31 | 2012-05-31 | Manufacturing method of pixel structure of field emission display |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102820188B (en) |
TW (1) | TWI441237B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5865657A (en) * | 1996-06-07 | 1999-02-02 | Candescent Technologies Corporation | Fabrication of gated electron-emitting device utilizing distributed particles to form gate openings typically beveled and/or combined with lift-off or electrochemical removal of excess emitter material |
KR100323289B1 (en) * | 1996-06-07 | 2002-03-08 | 컨데슨트 인터렉추얼 프로퍼티 서비시스 인코포레이티드 | Fabrication of gated electron-emitting device utilizing distributed particles to define gate openings |
TW486709B (en) * | 2001-02-06 | 2002-05-11 | Au Optronics Corp | Field emission display cathode panel with inner via and its manufacturing method |
JP2002270087A (en) * | 2001-03-14 | 2002-09-20 | Sony Corp | Method of manufacturing cold cathode field electron emission element and method of manufacturing cold cathode field electron emission display device |
CN1885474B (en) * | 2005-06-24 | 2011-01-26 | 清华大学 | Field emission cathode device and field emission display |
TWI336945B (en) * | 2006-06-15 | 2011-02-01 | Au Optronics Corp | Dual-gate transistor and pixel structure using the same |
JP2009170280A (en) * | 2008-01-17 | 2009-07-30 | Sony Corp | Cold cathode field electron emission element manufacturing method and cold cathode field electron emission display device manufacturing method |
-
2012
- 2012-05-31 TW TW101119554A patent/TWI441237B/en not_active IP Right Cessation
- 2012-08-29 CN CN201210312467.0A patent/CN102820188B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102820188A (en) | 2012-12-12 |
TWI441237B (en) | 2014-06-11 |
CN102820188B (en) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1221710B1 (en) | Method of manufacturing triode carbon nanotube field emitter array | |
US7508124B2 (en) | Field emission device, display adopting the same and method of manufacturing the same | |
JP2003234062A (en) | Triode structure electric field emission element having carbon nanotube and its manufacturing method | |
KR20050018391A (en) | Field emission display having carbon nanotube emitter and method of manufacturing the same | |
US7268480B2 (en) | Field emission device, display adopting the same and method of manufacturing the same | |
JP2005158748A (en) | Method for forming carbon nanotube emitter, and manufacturing method of field emission display element using it | |
TWI441237B (en) | Manufacturing method of pixel structure of field emission display | |
US7432217B1 (en) | Method of achieving uniform length of carbon nanotubes (CNTS) and method of manufacturing field emission device (FED) using such CNTS | |
CN114334582B (en) | Manufacturing method of field emission device structure and field emission device structure | |
KR100519754B1 (en) | Field emission display with double gate structure and method of manufacturing thereof | |
KR20010003764A (en) | Method of manufacturing organic field emission display device | |
US7563148B2 (en) | Method for manufacturing a field emission display | |
US6824698B2 (en) | Uniform emitter array for display devices, etch mask for the same, and methods for making the same | |
KR100745737B1 (en) | Method of manufacturing field emission display using half tone photomask | |
KR100569264B1 (en) | Method of manufacturing field emission display device | |
KR100296955B1 (en) | Field emission display device and emitter fabrication thereof | |
JPH07168532A (en) | Electron releasing element | |
KR100784511B1 (en) | Appratus for Field Emission Display and Method for fabricating thereof | |
KR100692066B1 (en) | Appratus for field emission display and method for fabricating thereof | |
TWI250820B (en) | Method for making a field emission display | |
JP2009032585A (en) | Focusing-type field emission cathode, and field emission display device | |
KR20010003752A (en) | Method of manufacturing field emission display device | |
KR20070027345A (en) | Field emission display apparatus and making method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |