JPH07168532A - Electron releasing element - Google Patents

Electron releasing element

Info

Publication number
JPH07168532A
JPH07168532A JP31489993A JP31489993A JPH07168532A JP H07168532 A JPH07168532 A JP H07168532A JP 31489993 A JP31489993 A JP 31489993A JP 31489993 A JP31489993 A JP 31489993A JP H07168532 A JPH07168532 A JP H07168532A
Authority
JP
Japan
Prior art keywords
emitter
electron
layer
insulating
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31489993A
Other languages
Japanese (ja)
Inventor
Akihiro Hoshino
昭裕 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP31489993A priority Critical patent/JPH07168532A/en
Publication of JPH07168532A publication Critical patent/JPH07168532A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a display having the lessened unevenness of image display by using an array of electron releasing elements produced by providing the surfaces of emitter wiring layers with metallic films which are not etched by etching of insulating films and have an electrical conductivity. CONSTITUTION:This electron releasing element has the emitter wiring layers 11 on an insulating substrate 10, the insulating layers 13 on the emitter wiring layers 11, gate electrode 14 layers, plural small holes of a required size formed on the insulating layers 13 and the gate electrode 14 layers and emitter electrodes 17 having pointed front ends within these small holes. The metallic connecting layers 12 which are not etched by etching of the insulating layers 13 and can make electrical connection between the emitter electrodes 17 and the emitter wiring layers 11 are formed between the emitter wiring layers 11 and the emitter electrodes 17 in the bottom parts of the small holes. As a result, the distances between the emitter electrodes 17 having the pointed front ends and the gate electrodes 14 are made uniform over the entire surface of the large-area substrate 10 and the electron releasing element having uniform and stable quality over the entire surface of the substrate 10 is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、平板型画像表示装置等
に用いられる電子放出素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron emitting device used in a flat panel image display device or the like.

【0002】[0002]

【従来の技術】最近、情報化社会の進展によりテレビや
コンピュータ等に用いられるディスプレイ装置は、マン
・マシン・インターフェースとして今や不可欠のものと
なっている。
2. Description of the Related Art Recently, a display device used for a television, a computer and the like has become indispensable as a man-machine interface due to the progress of information society.

【0003】ディスプレイ装置のいろいろな用途への拡
大とともに、表示品質や性能に対する要求は、より厳し
くなってきた。現状の開発動向は、特に大型化と高精細
化と平面化であり、平面ディスプレイとして液晶ディス
プレイが伸びてきており、その理由としては、従来のC
RT表示に比べて小型で、重量が軽く、薄型であるこ
と、そのため航空機、鉄道、車等の狭い空間でのディス
プレイ装置として新たに用途が拡大した。
With the expansion of display devices to various uses, the requirements for display quality and performance have become more severe. The current development trend is especially large size, high definition, and flatness, and liquid crystal displays are growing as flat displays because the conventional C
Compared to RT displays, it is smaller, lighter in weight, and thinner, which has led to new applications for display devices in narrow spaces such as airplanes, railroads, and cars.

【0004】この液晶ディスプレイの欠点は視野角が狭
いこと、バックライトの消費電力が大きいこと等であ
る。そこで、新しい薄型の自発光型ディスプレイ装置の
開発が望まれている。その薄型の自発光型ディスプレイ
装置に用いられる電子放出源として、熱電子よりも低消
費電力が可能な冷陰極の開発が活発に行なわれている。
特に電界放出型電子放出(放射)素子は、強電界(10
7V/cm)が冷陰極に集中するように、陰極の先端の
曲率半径がサブミクロン以下になるように加工されてい
る。このような電界放出型電子放出素子は、以下の特徴
を持っている。(1)電流密度が高い。(2)電力消費
が少ない。(3)近年のLSIの製造技術である微細加
工技術が利用できる。
Disadvantages of this liquid crystal display are that the viewing angle is narrow and the power consumption of the backlight is large. Therefore, development of a new thin self-luminous display device is desired. As an electron emission source used for the thin self-luminous display device, a cold cathode capable of lower power consumption than thermoelectrons has been actively developed.
In particular, the field emission type electron emission (radiation) element is
7 V / cm) is concentrated on the cold cathode so that the radius of curvature of the tip of the cathode is submicron or less. Such a field emission electron-emitting device has the following features. (1) The current density is high. (2) Low power consumption. (3) The fine processing technology, which is a recent LSI manufacturing technology, can be used.

【0005】従来、この電界放出型の電子放出(放射)
素子および製造方法として、幾つか提案がなされてい
る。すなわち、ジャーナル・オブ・アプライド・フィジ
ックス(1968年,第39巻7号,p.3504〜3
505)や、特開昭61ー221783号公報等に記載
されている。
Conventionally, this field emission type electron emission (radiation)
Several proposals have been made as elements and manufacturing methods. That is, Journal of Applied Physics (1968, Vol. 39, No. 7, p. 3504-3.
505) and JP-A-61-217883.

【0006】この従来の電子放出素子の代表的構造例を
図9の断面図、図10の概要斜視図に示す。図中21は
高濃度に不純物が選択的にドープされた低抵抗率のシリ
コン配線を持つ絶縁基板であり、この基板21上に絶縁
層23として熱酸化膜が形成されており、この絶縁層2
3はエッチングで形成された小孔25が孔設されてい
る。小孔25内には、電子放出部(エミッタ)としてモ
リブデンMo、タングステンW等の高融点金属で且つ低
仕事関数金属である導電材料による第1導電膜22(エ
ミッタ配線パターン)が形成されている。この第1導電
膜22上には、尖った先端部を備えた電子放出部26
(エミッタ電極(陰極))を備え、さらに小孔25外側
の絶縁層23(熱酸化膜等)上には、エミッタ電極を囲
んでゲート電極となるクロムCrやモリブデンMo等の
薄膜による第2導電膜24(ゲート電極)が形成されて
いるものである。
A typical structural example of this conventional electron-emitting device is shown in a sectional view of FIG. 9 and a schematic perspective view of FIG. In the figure, reference numeral 21 denotes an insulating substrate having a low-resistivity silicon wiring selectively doped with a high concentration of impurities, and a thermal oxide film is formed as an insulating layer 23 on the substrate 21.
3 has a small hole 25 formed by etching. In the small hole 25, a first conductive film 22 (emitter wiring pattern) made of a conductive material that is a high melting point metal such as molybdenum Mo and tungsten W and a low work function metal is formed as an electron emitting portion (emitter). . An electron emitting portion 26 having a sharp tip is formed on the first conductive film 22.
(Emitter electrode (cathode)), and on the insulating layer 23 (thermal oxide film or the like) outside the small hole 25, the second conductivity is formed by a thin film such as chromium Cr or molybdenum Mo that surrounds the emitter electrode and becomes a gate electrode. The film 24 (gate electrode) is formed.

【0007】上記従来の電子放出素子の製造方法は、図
11〜図13に示すように、まず、図11に示す様に絶
縁性基板21上に適宜パターン状の第1導電膜22(エ
ミッタ配線パターン)と、絶縁層23、及び第2導電膜
24を順次形成する。
In the conventional method for manufacturing an electron-emitting device, as shown in FIGS. 11 to 13, first, as shown in FIG. 11, a first conductive film 22 (emitter wiring) having an appropriate pattern is formed on an insulating substrate 21. Pattern), the insulating layer 23, and the second conductive film 24 are sequentially formed.

【0008】次に、図12に示す様に第2導電膜24上
に、フォトリソグラフ法によりアレイ状に配列した直径
1〜2μmの複数の微小パターンから構成されるレジス
トパターン(エッチングマスクパターン)を形成し、さ
らに異方性エッチングで、第2導電膜24と絶縁層23
に、第1導電膜22まで達する小孔25を作製する。
Next, as shown in FIG. 12, on the second conductive film 24, a resist pattern (etching mask pattern) composed of a plurality of minute patterns having a diameter of 1 to 2 μm arranged in an array by photolithography is formed. The second conductive film 24 and the insulating layer 23 are formed by anisotropic etching.
Then, a small hole 25 reaching the first conductive film 22 is formed.

【0009】続いて、第2導電膜24上より回転斜方蒸
着法により、銅CuやアルミニウムAlのリフト・オフ
用金属等を用いて、直径1〜2μmの小孔25開口部が
閉塞する方向(開口部の直径が小さくなる方向)に蒸着
して、小孔25の開口径を縮小させて、約0.2〜0.
7μmの直径の縮小開口部を備えた小孔25を形成す
る。
Next, a direction in which the opening of the small hole 25 having a diameter of 1 to 2 μm is closed by using a lift-off metal such as copper Cu or aluminum Al by a rotary oblique deposition method on the second conductive film 24. Vapor is deposited in the direction of decreasing the diameter of the opening to reduce the opening diameter of the small hole 25 to about 0.2 to 0.
A small hole 25 with a 7 μm diameter reduced opening is formed.

【0010】この縮小開口部の真上よりモリブデンMo
やタングステンW等の高融点で且つ低仕事関数の金属を
絶縁性基板21に対して垂直方向より蒸着すると、小孔
25内における第1導電膜22(エミッタ配線パター
ン)上に、先端側が次第に細く尖った形状のエミッタ電
極26が形成されると同時に、開口部はモリブデンMo
やタングステンW等の蒸着材料の蒸着により塞がれる。
Molybdenum Mo is formed just above the reduction opening.
When a metal having a high melting point and a low work function, such as tungsten or tungsten W, is vapor-deposited in a direction perpendicular to the insulating substrate 21, the tip side becomes gradually thin on the first conductive film 22 (emitter wiring pattern) in the small hole 25. At the same time as the pointed emitter electrode 26 is formed, the opening is made of molybdenum Mo.
It is blocked by vapor deposition of a vapor deposition material such as tungsten or tungsten W.

【0011】最後に、縮小開口部を形成していた銅Cu
やアルミニウムAlのみを選択的にエッチング除去し
て、小孔25の開口部が再び直径1〜2μmに開くこと
により、図13に示すような、小孔25内の第1導電膜
22(エミッタ配線パターン)上に先端側が次第に細
く、尖った形状のエミッタ電極26(陰極)を持ち、小
孔25の開口部上に絶縁層23を挟んで第2導電膜24
(ゲート電極)を備えたアレイ状の電子放出素子を作製
する。
Finally, the copper Cu which formed the reduced opening.
By selectively etching away only aluminum and aluminum Al and opening the opening of the small hole 25 again to a diameter of 1 to 2 μm, the first conductive film 22 (emitter wiring) in the small hole 25 as shown in FIG. Has a sharp tip-shaped emitter electrode 26 (cathode) on the pattern) and has a second conductive film 24 sandwiching the insulating layer 23 on the opening of the small hole 25.
An array of electron-emitting devices having (gate electrode) is produced.

【0012】上記従来の電子放出素子の構造及び製造方
法においては、小孔の作製の際、絶縁膜SiO2 をプラ
ズマエッチング装置で基板に垂直に異方性エッチングす
る。こうして作製した電子放出素子を用いたディスプレ
イにおいて、画面の大きさが3インチ程度の比較的小さ
な場合には問題にならなかった上記異方性エッチングに
よる小孔の深さのムラも6インチ以上の大面積の場合に
は問題となり、大面積でもエッチングムラのない製造方
法の改良が望まれていた。また、エッチングによる小孔
の底部の荒れも問題となっていた。
In the above-described conventional structure and manufacturing method of the electron-emitting device, when the small holes are formed, the insulating film SiO 2 is anisotropically etched perpendicularly to the substrate by the plasma etching apparatus. In the display using the electron-emitting device thus manufactured, the unevenness of the small holes due to the anisotropic etching, which was not a problem when the screen size was relatively small such as about 3 inches, was 6 inches or more. In the case of a large area, it becomes a problem, and there has been a demand for improvement of a manufacturing method which does not cause uneven etching even in a large area. Also, the roughness of the bottom of the small holes due to etching has been a problem.

【0013】[0013]

【発明が解決しようとする課題】本発明は前記問題点に
鑑みてなされたものであり、その目的とするところは、
すなわち、電子放出素子の製造において、絶縁膜SiO
2 をプラズマエッチング装置で異方性エッチングし小孔
を作製する際、大面積の基板全面にわたって小孔の深さ
を均一にし、その結果形成されるエミッタ電極の尖った
先端から底部までの高さが大面積基板全面にわたって均
一で、またエミッタ電極の尖った先端とエミッタ電極を
取り巻くゲート電極のエッジの距離を大面積基板全面に
わたって均一に作製できる電子放出素子を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and its object is to:
That is, in the manufacture of the electron-emitting device, the insulating film SiO
2 is anisotropically etched with a plasma etching device to create small holes, the depth of the small holes is made uniform over the entire surface of a large area substrate, and the height from the sharp tip to the bottom of the resulting emitter electrode is formed. It is an object of the present invention to provide an electron-emitting device that can be manufactured uniformly over the entire surface of a large-area substrate and the distance between the sharp tip of the emitter electrode and the edge of the gate electrode surrounding the emitter electrode can be uniform over the entire surface of the large-area substrate.

【0014】また、絶縁膜SiO2 を反応性イオンエッ
チングで基板に対し垂直に小孔を形成する際、条件によ
ってはエッチング終点付近の小孔の内底部に露出したエ
ミッタ配線層低抵抗Siの表面が針状(小孔の深さが約
1μmの場合、凹凸は、約0.1〜0.8μmであっ
た。)に荒れた。また、この凹凸は、エミッタ配線層S
iの表面の荒れの場合と絶縁膜SiO2 の残さの場合が
あった。そのため、その後に形成する先端の尖ったエミ
ッタ電極膜の膜質に影響することが分かった。すなわち
その膜成長の核となる表面が荒れて凹凸があると、その
上に形成される先端の尖ったエミッタ電極の膜質に緻密
さがなくなり、先端が鋭く尖らなくなり問題となってお
り、新しい構造や製造方法の改良が望まれていた。
Further, when a small hole is formed in the insulating film SiO 2 perpendicularly to the substrate by reactive ion etching, the surface of the emitter wiring layer low resistance Si exposed at the inner bottom of the small hole near the etching end point depending on the conditions. Was rough in the form of needles (when the depth of the small holes was about 1 μm, the unevenness was about 0.1 to 0.8 μm). Further, this unevenness is caused by the emitter wiring layer S.
There was a case where the surface of i was rough and a case where the insulating film SiO 2 remained. Therefore, it was found that the quality of the emitter electrode film with a sharp tip formed thereafter was affected. That is, if the surface that is the nucleus of the film growth is rough and has irregularities, the film quality of the emitter electrode with a sharp tip formed on it will be less dense, and the tip will not be sharp and becomes a problem. It has been desired to improve the manufacturing method.

【0015】[0015]

【課題を解決するための手段】前記課題を解決するため
に本発明が提供する手段とは、絶縁性基板上にエミッタ
配線層と、エミッタ配線層上に絶縁層と、ゲート電極層
と、絶縁層およびゲート電極層に形成された所要の大き
さの複数の小孔と、該小孔内に尖った先端部をもつエミ
ッタ電極を備えた電子放出素子において、小孔内底部の
エミッタ配線層と前記エミッタ電極の間に前記絶縁層の
エッチングではエッチングされず、しかもエミッタ電極
とエミッタ配線層との間で電気的接続がおこなえる金属
接続層を形成したことを特徴とする電子放出素子であ
る。
Means provided by the present invention for solving the above-mentioned problems include: an emitter wiring layer on an insulating substrate; an insulating layer on the emitter wiring layer; a gate electrode layer; An electron-emitting device having a plurality of small holes of a required size formed in a layer and a gate electrode layer, and an emitter electrode having a sharp tip inside the small holes; The electron-emitting device is characterized in that a metal connection layer is formed between the emitter electrodes, which is not etched by the etching of the insulating layer and which can electrically connect between the emitter electrode and the emitter wiring layer.

【0016】また、前記金属接続層の円形パターンの直
径が、小孔底部の直径より大きく、小孔と小孔のピッチ
の1/2より小さいことを特徴とする電子放出素子であ
る。
Further, in the electron-emitting device, the diameter of the circular pattern of the metal connection layer is larger than the diameter of the bottom of the small holes and smaller than 1/2 of the pitch between the small holes.

【0017】さらに、前記金属接続層の体積抵抗率で1
Ω・cm以下の導電体であることを特徴とする電子放出
素子である。
Further, the volume resistivity of the metal connecting layer is 1
It is an electron-emitting device characterized by being a conductor of Ω · cm or less.

【0018】[0018]

【作用】本発明によれば、絶縁膜SiO2 をプラズマエ
ッチング装置で基板に対して垂直にエッチングし小孔を
作製する際、大面積の基板においてエッチング速度ムラ
があってはやくエッチングされる部分があっても、金属
接続層でエッチングが終了するので、エッチング速度の
遅い部分に合わせエッチング時間を設定できる。そのた
め、大面積基板の全面にわたって深さの均一な小孔を形
成することができる。そのため尖った先端から底部まで
のエミッタ電極の高さが揃い、また尖った先端のエミッ
タ電極とゲート電極の距離を大面積基板全面にわたって
均一に作製でき、基板全面にわたって均一な安定した品
質の電子放出素子が得られる。さらに、小孔と金属接続
層やエミッタ電極と抵抗層のアライメントにズレが多少
生じても問題のない均一な電気特性の電子放出素子が得
られる。また、小孔底部は、エッチングされず荒れるこ
とがないので、その上に蒸着するエミッタ電極の膜質に
影響を与えない。
According to the present invention, when a small hole is formed by etching the insulating film SiO 2 perpendicularly to the substrate with a plasma etching apparatus, a portion of a large area of the substrate that has uneven etching rate and is etched quickly. Even if there is, the etching is completed at the metal connection layer, so that the etching time can be set according to the portion where the etching rate is slow. Therefore, small holes having a uniform depth can be formed over the entire surface of the large-sized substrate. Therefore, the height of the emitter electrode from the sharp tip to the bottom is uniform, and the distance between the emitter electrode and the gate electrode at the sharp tip can be made uniform over the entire surface of the large area substrate, and electron emission of uniform and stable quality over the entire surface of the substrate. The device is obtained. Further, it is possible to obtain an electron-emitting device having uniform electric characteristics with no problem even if the alignment between the small hole and the metal connection layer or the emitter electrode and the resistance layer is slightly deviated. Further, since the bottom of the small hole is not etched and is not roughened, it does not affect the film quality of the emitter electrode deposited thereon.

【0019】特に請求項2のように金属接続層の円形パ
ターンの直径が、小孔底部の直径より大きく、小孔と小
孔のピッチの1/2より小さいことを特徴とする請求項
1に記載の電子放出素子の場合、前記円形パターンと小
孔のアライメントずれによる特性のばらつきが少なく、
特段に優れている。
In particular, as in claim 2, the diameter of the circular pattern of the metal connection layer is larger than the diameter of the bottom of the small holes and is smaller than 1/2 of the pitch between the small holes. In the case of the electron-emitting device described, there is little variation in characteristics due to misalignment between the circular pattern and the small holes,
It is exceptionally good.

【0020】また、請求項3のように前記金属接続層の
体積抵抗率で1Ω・cm以下の導電体であることを特徴
とする請求項1に記載の電子放出素子の場合、特性のば
らつきが少なく、特段に優れている。
Further, in the electron-emitting device according to claim 1, wherein the metal connection layer is a conductor having a volume resistivity of 1 Ω · cm or less as in claim 3, variations in characteristics are caused. There are few, and it is outstanding especially.

【0021】[0021]

【実施例】本発明の電子放出素子の製造方法を、図1〜
図8に示す実施例の製造工程に従って以下に順に説明す
る。
EXAMPLE A method for manufacturing an electron-emitting device according to the present invention will be described with reference to FIGS.
The manufacturing steps of the embodiment shown in FIG. 8 will be sequentially described below.

【0022】本発明における電子放出素子の構造は、図
2の断面図に示すように、例えばn型またはp型の不純
物が、エミッタ配線層の低抵抗の導電層として絶縁性シ
リコン基板に高濃度にドープ(イオン注入)されている
ような導電層11を備えた絶縁性基板10上にクロムC
rよりなる金属接続層12の円形パターンが複数のアレ
イ状に並び、その上に尖った先端を持ったエミッタ電極
17が形成され、その金属接続層12の円形パターンを
底とし、その周りを囲むように絶縁層13が形成され、
前記絶縁層13上にゲート電極14が形成された電子放
出素子である。また、金属接続層12の円形パターンの
大きさは前記絶縁層の小孔の円形底部より大きく隣接す
る小孔間のピッチの1/2より小さい。
In the structure of the electron-emitting device according to the present invention, as shown in the sectional view of FIG. 2, for example, n-type or p-type impurities are highly concentrated in the insulating silicon substrate as a low resistance conductive layer of the emitter wiring layer. On the insulative substrate 10 with a conductive layer 11 which is doped (ion-implanted)
A circular pattern of the metal connection layer 12 made of r is arranged in a plurality of arrays, and an emitter electrode 17 having a sharp tip is formed on the array, and the circular pattern of the metal connection layer 12 serves as a bottom and surrounds it. The insulating layer 13 is formed as
The electron emitting device has a gate electrode 14 formed on the insulating layer 13. The size of the circular pattern of the metal connection layer 12 is larger than the circular bottom of the small holes of the insulating layer and smaller than 1/2 of the pitch between the adjacent small holes.

【0023】本発明における電子放出素子の製造方法
は、図2の工程に示すように、例えばn型またはp型の
不純物が、エミッタ配線層の低抵抗の導電層として絶縁
性シリコン基板に高濃度にドープ(イオン注入)されて
いるようなエミッタ配線層11を備えた絶縁性基板10
上に、図3の工程に示すように、クロムCrよりなる金
属接続層12を全面に約0.1μmスパッタし、ノボラ
ック系のレジスト(若しくはフォトレジスト)で、直径
が約1μm、膜厚が約1.2μm程度の複数のアレイ状
に並んだ円柱パターンをフォトリソ法で形成する。
In the method of manufacturing the electron-emitting device according to the present invention, as shown in the step of FIG. 2, for example, n-type or p-type impurities are highly concentrated on the insulating silicon substrate as a low resistance conductive layer of the emitter wiring layer. Insulating Substrate 10 with Emitter Wiring Layer 11 as Doped (Ion Implanted)
As shown in the process of FIG. 3, a metal connection layer 12 made of chromium Cr is sputtered on the entire surface by about 0.1 μm, and is a novolac-based resist (or photoresist) with a diameter of about 1 μm and a film thickness of about 1 μm. A columnar pattern of about 1.2 μm arranged in a plurality of arrays is formed by photolithography.

【0024】次に、図4の工程に示すように、そのレジ
ストをマスクとして金属接続層12をCHCl3 ガスを
用いたプラズマエッチングでパターニングする。そこで
図5の工程に示すように、スパッタでSiO2 よりなる
絶縁層13を膜厚約1.2μm全面に形成し、引き続い
てMoよりなるゲート電極材料14をスパッタで膜厚約
0.3μm形成する。
Next, as shown in the step of FIG. 4, the metal connection layer 12 is patterned by plasma etching using CHCl 3 gas using the resist as a mask. Then, as shown in the step of FIG. 5, an insulating layer 13 made of SiO 2 is formed on the entire surface by sputtering to a thickness of about 1.2 μm, and then a gate electrode material 14 made of Mo is formed by sputtering on a thickness of about 0.3 μm. To do.

【0025】次に図6の工程に示すように、更にAlよ
りなる剥離層15を真空蒸着で膜厚約0.3μm形成
し、ドライエッチ耐性のあるノボラック系のフォトレジ
ストをコートして、金属接続層12と同心円となるよう
にアライメントしたフォトマスクを用いて露光し、その
レジスト16をマスクとして、Alよりなる剥離層15
をCHCl3 エッチングガスを用いてプラズマエッチン
グする。
Next, as shown in the step of FIG. 6, a peeling layer 15 made of Al is further formed by vacuum vapor deposition to a film thickness of about 0.3 μm, and a novolac-based photoresist having a dry etch resistance is coated to form a metal. Exposure is performed by using a photomask aligned so as to be concentric with the connection layer 12, and the resist 16 is used as a mask to form a peeling layer 15 made of Al.
Is plasma etched using a CHCl 3 etching gas.

【0026】更に図7の工程に示すように、引き続きエ
ッチングガスとしてC26 を用いて、SiO2 よりな
る絶縁層13を基板表面に対し垂直に金属接続層12の
表面が露出するまでエッチングし、小孔を形成する。こ
のとき、金属接続層があるために、十分な時間エッチン
グすることが可能であり、基板全面にわたり、エッチン
グの進み具合の遅い所に合わせ時間を設定できるので小
孔の深さを一定にすることが可能である。特にこのよう
な小孔の直径Rと小孔の深さdの関係がR≦dの場合に
は、エッチング表面状態の微妙な差からエッチング速度
ムラが発生しやすく金属接続層が必要である。
Further, as shown in the step of FIG. 7, the insulating layer 13 made of SiO 2 is etched perpendicularly to the substrate surface using C 2 F 6 as an etching gas until the surface of the metal connecting layer 12 is exposed. And form small holes. At this time, since there is a metal connection layer, it is possible to perform etching for a sufficient time, and since it is possible to set the time to a place where the progress of etching is slow over the entire surface of the substrate, keep the depth of the small holes constant. Is possible. In particular, when the relationship between the diameter R of the small hole and the depth d of the small hole is R ≦ d, the etching rate unevenness is likely to occur due to the subtle difference in the etching surface state, and the metal connection layer is required.

【0027】次に、レジスト16を剥離液で除去し、さ
らに酸素プラズマでアッシング洗浄し、図8の工程に示
すように、Moを基板に対し垂直に真空蒸着し先端の尖
った形状のエミッタ電極を形成する。この時、ゲート電
極15上にもMo膜が堆積する。次にAlより成る剥離
層15をウェツトエッチングで除去する。その際、前記
剥離層15ごとその上に堆積しているMo膜も除去し、
いわゆるリフトオフを行って図1のように先端の尖った
エミッタ電極17が露出する。
Next, the resist 16 is removed with a stripping solution, and further washed with oxygen plasma by ashing, and as shown in the process of FIG. 8, Mo is vacuum-deposited perpendicularly to the substrate to form a pointed emitter electrode. To form. At this time, the Mo film is also deposited on the gate electrode 15. Next, the peeling layer 15 made of Al is removed by wet etching. At that time, the Mo film deposited on the peeling layer 15 is also removed,
By so-called lift-off, the emitter electrode 17 having a sharp tip is exposed as shown in FIG.

【0028】絶縁性基板は、シリコン、ガラス等の絶縁
性があるとともに、支持基材として0.5〜3mmの厚
みがあるものである。エミッタ配線層は、n型またはp
型の不純物がイオン注入されているシリコンのほか、金
属等でもよい。また、金属接続層は、Cr、Mo、T
a、Nb、等の金属を用いることが出来、その厚みは
0.1〜0.3μmであればよく、その製造方法も、ス
パッタのほか、蒸着等の手段を用いることができる。レ
ジストとしては、ノボラック系のレジスト、フォトレジ
スト等の手段を用いることが出来る。
The insulating substrate has an insulating property such as silicon and glass and has a thickness of 0.5 to 3 mm as a supporting base material. The emitter wiring layer is n-type or p-type
In addition to silicon in which a type impurity is ion-implanted, a metal or the like may be used. The metal connection layer is made of Cr, Mo, T
Metals such as a, Nb and the like can be used, and the thickness thereof may be 0.1 to 0.3 μm, and the manufacturing method thereof can be sputtering or other means such as vapor deposition. As the resist, a means such as a novolac-based resist or a photoresist can be used.

【0029】パターンニング工程は、このレジストをマ
スクとしてCHCl3 ガスを用いたプラズマエッチング
でパターニングする。次の絶縁層は、SiO2 等を用い
る事が出来、製造方法としてスパッタ、蒸着、CVD等
を用いる事が出来、その膜厚は、0.5〜2μmであ
る。ゲート電極は、Moの他、Cr、W、Nb等を用い
る事が出来、製造方法としてスパッタ、蒸着等を用いる
事が出来、その膜厚は、0.2〜0.7μmである。剥
離層は、Alの他、Cu等を用いる事が出来、製造方法
として真空蒸着、メッキ、スパッタ等を用いる事が出
来、その膜厚は、0.2〜1μmである。次のパターン
ニング工程は、このレジストをマスクとしてBCl3
スを用いたプラズマエッチングでパターニングする。次
のパターンニング工程は、このレジストをマスクとして
26 、CF4 、SF6 等のガスを用いたプラズマエ
ッチングでパターニングする。
In the patterning process, the resist is used as a mask to perform patterning by plasma etching using CHCl 3 gas. For the next insulating layer, SiO 2 or the like can be used, and sputtering, vapor deposition, CVD, or the like can be used as a manufacturing method, and the thickness thereof is 0.5 to 2 μm. In addition to Mo, Cr, W, Nb, or the like can be used for the gate electrode, and sputtering, vapor deposition, or the like can be used as a manufacturing method, and the film thickness is 0.2 to 0.7 μm. For the release layer, Cu or the like can be used in addition to Al, and vacuum deposition, plating, sputtering or the like can be used as a manufacturing method, and the film thickness is 0.2 to 1 μm. In the next patterning step, patterning is performed by plasma etching using BCl 3 gas using this resist as a mask. In the next patterning step, patterning is performed by plasma etching using a gas such as C 2 F 6 , CF 4 or SF 6 using this resist as a mask.

【0030】剥離液は、それぞれの金属エッチング液等
を用いる事が出来、また、洗浄は、酸素プラズマでアッ
シング洗浄等を用いることができる。
As the stripping solution, each metal etching solution or the like can be used, and as the cleaning, ashing cleaning with oxygen plasma can be used.

【0031】[0031]

【発明の効果】本発明は、電子放出素子の構造におい
て、絶縁膜のエッチングムラにより小孔の深さにムラが
生じないよう、絶縁膜のエッチングでエッチングされな
い、かつエッチングで表面が荒れない、かつ電気導伝性
のある金属膜をエミッタ配線層上に設けることによっ
て、大面積基板の全面にわたって、先端側が尖った先端
部を備えたエミッタ電極を均一な大きさで形成すること
ができ、その結果作製した電子放出素子のアレイを用い
て画像表示のムラの少ないディスプレイが作製できた。
As described above, according to the present invention, in the structure of the electron-emitting device, the insulating film is not etched by the etching of the insulating film and the surface is not roughened by the etching so that the unevenness of the small hole is not caused by the etching unevenness of the insulating film. Further, by providing a metal film having electrical conductivity on the emitter wiring layer, it is possible to form an emitter electrode having a sharp tip on the entire surface of the large-area substrate in a uniform size. As a result, a display with less unevenness in image display could be produced using the produced array of electron-emitting devices.

【0032】[0032]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子放出素子の製造方法による完成断
面図である。
FIG. 1 is a completed sectional view of a method for manufacturing an electron-emitting device of the present invention.

【図2】図1の電子放出素子の製造方法による製造途中
の断面図である。
2A and 2B are cross-sectional views of the electron-emitting device of FIG.

【図3】図1の電子放出素子の製造方法による製造途中
の断面図である。
3A and 3B are cross-sectional views of the electron-emitting device of FIG. 1 in the middle of manufacturing by the manufacturing method.

【図4】図1の電子放出素子の製造方法による製造途中
の断面図である。
FIG. 4 is a sectional view of the electron-emitting device of FIG. 1 in the process of manufacturing by the manufacturing method.

【図5】図1の電子放出素子の製造方法による製造途中
の断面図である。
5A and 5B are cross-sectional views of the electron-emitting device of FIG. 1 during manufacturing by the method of manufacturing the same.

【図6】図1の電子放出素子の製造方法による製造途中
の断面図である。
6A and 6B are cross-sectional views of the electron-emitting device of FIG. 1 during manufacturing by the method of manufacturing the same.

【図7】図1の電子放出素子の製造方法による製造途中
の断面図である。
7A and 7B are cross-sectional views of the electron-emitting device of FIG. 1 in the middle of manufacturing by the manufacturing method.

【図8】図1の電子放出素子の製造方法による製造途中
の断面図である。
8A and 8B are cross-sectional views of the electron-emitting device of FIG. 1 in the middle of manufacturing by the manufacturing method.

【図9】従来の電子放出素子の構造の断面図である。FIG. 9 is a sectional view of a structure of a conventional electron-emitting device.

【図10】従来の電子放出素子の構造の斜視図である。FIG. 10 is a perspective view of a structure of a conventional electron-emitting device.

【図11】従来の電子放出素子の製造工程の断面図であ
る。
FIG. 11 is a cross-sectional view of a manufacturing process of a conventional electron-emitting device.

【図12】図11と同じ電子放出素子の製造工程の断面
図である。
FIG. 12 is a cross-sectional view showing the same manufacturing process of the electron-emitting device as in FIG. 11.

【図13】図11と同じ電子放出素子の製造工程の断面
完成図である。
FIG. 13 is a cross-sectional view showing the same manufacturing process as in the electron-emitting device shown in FIG.

【符号の説明】[Explanation of symbols]

10…基板 11…エミッタ配線層 12…金属接続層 13…絶縁層 14…ゲート電極 15…剥離層 16…レジスト 17…エミッタ電極 18…エミッタ電極材料 21…絶縁性基板 22…エミッタ配線導電層(第1導電層) 23…絶縁層 24…ゲート電極導電層(第2導電層) 25…小孔 26…エミッタ電極 DESCRIPTION OF SYMBOLS 10 ... Substrate 11 ... Emitter wiring layer 12 ... Metal connection layer 13 ... Insulating layer 14 ... Gate electrode 15 ... Release layer 16 ... Resist 17 ... Emitter electrode 18 ... Emitter electrode material 21 ... Insulating substrate 22 ... Emitter wiring conductive layer (first 1 conductive layer) 23 ... Insulating layer 24 ... Gate electrode conductive layer (second conductive layer) 25 ... Small hole 26 ... Emitter electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上にエミッタ配線層と、エミッ
タ配線層上に絶縁層と、ゲート電極層と、絶縁層および
ゲート電極層に形成された所要の大きさの複数の小孔
と、該小孔内に尖った先端部をもつエミッタ電極を備え
た電子放出素子において、小孔内底部のエミッタ配線層
と前記エミッタ電極の間に前記絶縁層のエッチングでは
エッチングされず、しかもエミッタ電極とエミッタ配線
層との間で電気的接続がおこなえる金属接続層を形成し
たことを特徴とする電子放出素子。
1. An emitter wiring layer on an insulating substrate, an insulating layer on the emitter wiring layer, a gate electrode layer, and a plurality of small holes of a required size formed in the insulating layer and the gate electrode layer. In an electron-emitting device including an emitter electrode having a sharp tip in the small hole, the insulating layer is not etched between the emitter wiring layer and the emitter electrode at the bottom of the small hole, and the emitter electrode An electron-emitting device characterized in that a metal connection layer capable of making an electrical connection with an emitter wiring layer is formed.
【請求項2】前記金属接続層の円形パターンの直径が、
小孔底部の直径より大きく、小孔と小孔のピッチの1/
2より小さいことを特徴とする請求項1に記載の電子放
出素子。
2. The diameter of the circular pattern of the metal connecting layer is
It is larger than the diameter of the bottom of the small holes and is 1 / the pitch of the small holes.
The electron-emitting device according to claim 1, which is smaller than 2.
【請求項3】前記金属接続層の体積抵抗率で1Ω・cm
以下の導電体であることを特徴とする請求項1に記載の
電子放出素子。
3. The volume resistivity of the metal connecting layer is 1 Ω · cm.
The electron-emitting device according to claim 1, which is the following conductor.
JP31489993A 1993-12-15 1993-12-15 Electron releasing element Pending JPH07168532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31489993A JPH07168532A (en) 1993-12-15 1993-12-15 Electron releasing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31489993A JPH07168532A (en) 1993-12-15 1993-12-15 Electron releasing element

Publications (1)

Publication Number Publication Date
JPH07168532A true JPH07168532A (en) 1995-07-04

Family

ID=18058981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31489993A Pending JPH07168532A (en) 1993-12-15 1993-12-15 Electron releasing element

Country Status (1)

Country Link
JP (1) JPH07168532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224595A (en) * 1998-02-06 1999-08-17 Toppan Printing Co Ltd Cold electron emission element and its manufacture
KR100441751B1 (en) * 2001-12-28 2004-07-27 한국전자통신연구원 Method for Fabricating field emission devices
JP2006049287A (en) * 2004-07-30 2006-02-16 Samsung Sdi Co Ltd Electron emission device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224595A (en) * 1998-02-06 1999-08-17 Toppan Printing Co Ltd Cold electron emission element and its manufacture
KR100441751B1 (en) * 2001-12-28 2004-07-27 한국전자통신연구원 Method for Fabricating field emission devices
JP2006049287A (en) * 2004-07-30 2006-02-16 Samsung Sdi Co Ltd Electron emission device and its manufacturing method

Similar Documents

Publication Publication Date Title
KR100366191B1 (en) How to manufacture flat panel display system and components
US5394006A (en) Narrow gate opening manufacturing of gated fluid emitters
EP1221710B1 (en) Method of manufacturing triode carbon nanotube field emitter array
US5151061A (en) Method to form self-aligned tips for flat panel displays
KR20050071480A (en) Barrier metal layer for a carbon nanotube flat panel display
JPH09219144A (en) Electric field emitting cathode and its manufacture
US5584740A (en) Thin-film edge field emitter device and method of manufacture therefor
JPH07168532A (en) Electron releasing element
US5930590A (en) Fabrication of volcano-shaped field emitters by chemical-mechanical polishing (CMP)
US6824698B2 (en) Uniform emitter array for display devices, etch mask for the same, and methods for making the same
JP3033178B2 (en) Field emission type emitter
JP3086445B2 (en) Method of forming field emission device
KR100724369B1 (en) Field emission device with ultraviolet protection layer and manufacturing method thereof
KR100286450B1 (en) Field emission emitter and method of manufacturing the same
KR100257568B1 (en) Method for a field emitter array of a field emission display
KR100286454B1 (en) Field emission emitter and method of manufacturing the same
JPH06310023A (en) Electron emission element and manufacture thereof
JP3832070B2 (en) Method for manufacturing cold electron-emitting device
KR100262199B1 (en) Field emission cathode and manufacturing method of the same
KR100352972B1 (en) Field Emission Devices and Fabrication Methods thereof
JP2001143602A (en) Field emission type cold cathode and method of fabricating the same
KR100205056B1 (en) Manufacturing method of volcano typed metal fea
JP3463376B2 (en) Method for manufacturing electron-emitting device
KR100329370B1 (en) Fabrication method of field emission devices
US5892320A (en) Field emission display with self-aligned grid