TW201340353A - 橫向太陽能電池結構 - Google Patents

橫向太陽能電池結構 Download PDF

Info

Publication number
TW201340353A
TW201340353A TW102100827A TW102100827A TW201340353A TW 201340353 A TW201340353 A TW 201340353A TW 102100827 A TW102100827 A TW 102100827A TW 102100827 A TW102100827 A TW 102100827A TW 201340353 A TW201340353 A TW 201340353A
Authority
TW
Taiwan
Prior art keywords
absorption
photovoltaic cell
region
nanocolumn
cell according
Prior art date
Application number
TW102100827A
Other languages
English (en)
Other versions
TWI667799B (zh
Inventor
Eric Michael Rehder
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of TW201340353A publication Critical patent/TW201340353A/zh
Application granted granted Critical
Publication of TWI667799B publication Critical patent/TWI667799B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一種用於橫向太陽能電池結構之系統、方法以及設備係被揭露於此。特別是,本發明教示一種橫向太陽能電池結構,其包含在磊晶成長過程中所形成之奈米柱,用以產生電極延伸進入該吸收區。此結構考慮到該吸收器之長光學吸收長度,例如0.5-3微米,但是也考慮到在次微米之載子的收集使得具有次微米擴散長度之材料有高收集效率。製造該橫向太陽能電池結構之揭露的方法涉及提供一基板以及磊晶地成長一吸收區和一發射區於該基板上。該發射區包含複數個延伸進入該吸收區之奈米柱。該吸收區和奈米柱係被相反地摻雜。該吸收區和奈米柱亦被相對地拉扯。

Description

橫向太陽能電池結構
本發明關於太陽能電池,特別是關於橫向太陽能電池結構。
近來,N和Al之增加以形成合金可產生所希望的能帶間隙,但是該材料品質易於劣化而造成短的少數載子的擴散長度以及低效率。例如,由像是InGaAsN和AlInGaP之材料所直接成長而製成之電池已被研究。然而,由於該該些材料的低載子擴散長度,由該些材料所製成之電池不具有高效率。
例如,圖1描述藉由直接成長以形成的子電池(subcell)部件10。該子電池部件10包含p型背表面場12、p型基底層14、n型發射層16以及n型窗18。基底層14可由InGaAsN或AlInP所製成。對於高效率操作而言,產生於基底層14中之電子20需要可以穿過0.5-3微米厚的基底層14以到達發射層16。相反地,產生於發射層16中之電洞22需要可以穿過空乏區並且到達基底層14。然而,InGaAsN和AlInP之次微米少數載子長度避免此有效地發生。
另一種形成具有理想能帶間隙特性之電池的方式係使用放鬆、變質的緩衝層。很多緩衝層可以使用III-V族合金。一般用以形成1 eV能帶間隙的電池之方式為沉積由InGaP合金所組成之一緩衝層。該所產生 之電池係藉由具有1 eV能帶間隙之InGaAs所形成。然而,該變質的緩衝製程為複雜的且使得製造困難。此外,該變質的緩衝製程造成膜的粗糙度增加並且穿出錯位密度,其減少效率。該變質的緩衝製程亦需要非常厚的緩衝層,其係昂貴的並且減少產出。
另一用於形成具有理想能帶間隙特性之電池係使用晶圓接合以整合電池於GaAs和InP基板上。本方式需要兩個基板以及兩個形成電池於每個分開的基板上之成長製程。晶圓接合係用以將這些電池機械性地且電性地接附。至少一個基板接著被移除以形成多接面電池。因此,該晶圓接合方式涉及可觀的費用而需要具有兩個膜沉積製程,此外還有晶圓接合和基板移除。
本發明之揭露關於一種用於橫向太陽能電池結構之方法、系統以及設備。根據本揭露之一個或多個態樣,提供一種光伏電池,其包含一吸收區;以及一發射區,其包含複數個延伸進入該吸收區的奈米柱。在某些態樣中,該吸收區和奈米柱係被相反地摻雜。在至少一個態樣中,奈米柱為n型並且吸收區為p型。在某些態樣中,奈米柱為p型並且吸收區為n型。在一個或多個態樣中,吸收區和奈米柱係由III-V族合金所製成。在至少一個態樣中,吸收區係由氮砷化鎵(gallium arsenide nitride,GaAsN)、氮砷化鎵銦(indium gallium arsenide nitride,InGaAsN)、磷化鋁銦(aluminum indium phosphide,AlInP)或是磷化鋁銦鎵(aluminum indium gallium phosphide(AlInGaP)所製成。在某些態樣中,奈米柱係由砷化銦(indium arsenide,InAs)、砷化銦鎵(indium gallium arsenide,InGaAs)、砷銻化鎵(gallium arsenide antimonide,GaAsSb)、磷化銦(indium phosphide,InP)或是磷化銦鎵(indium gallium phosphide,InGaP)所製成。
在至少一個態樣中,該光伏電池具有之能帶間隙係大於2.0電子伏特(eV)。在某些態樣中,該光伏電池具有一小於1.4 eV之能帶間隙。
在一個或多個態樣中,在每個奈米柱之間的空隙係小於3微米。在至少一個態樣中,每個奈米柱的直徑在5奈米(nm)到100奈米之間。在某些態樣中,奈米柱的所有面積係小於該吸收區之所有面積的百分之一(1%)。
在至少一個態樣中,奈米柱和吸收區係被相對地拉扯。在某些態樣中,奈米柱係被拉伸拉緊並且該吸收區係被壓縮壓緊。在一個或多個態樣中,奈米柱係被壓縮壓緊並且該吸收區係被拉伸拉緊。在某些態樣中,該吸收區具有之吸收長度為0.5到3微米之間。在至少一個態樣中,奈米柱的長度在該吸收長度的50%到100%之間。
在一個或多個態樣中,一種製造光伏電池之方法涉及提供一基板。該方法進一步涉及磊晶地成長一吸收區和一發射區於該基板上。在至少一個態樣中,該發射區包含複數個奈米柱延伸進入該吸收區。在某些態樣中,該吸收區和奈米柱係被相反地摻雜。
在至少一個態樣中,奈米柱和該吸收區係被相反地緊拉。在某些態樣中,該吸收區具有之吸收長度為0.5到3微米的範圍之間。在一個或多個態樣中,奈米柱的長度在該吸收長度的50%到100%之間。在一個或多個態樣中,每個奈米柱之間的空隙係小於3微米。在某些態樣中,每個奈米柱的直徑在5奈米(nm)到100奈米之間。在至少一個態樣中,奈米柱的 所有面積係小於該吸收區之所有面積的百分之一(1%)。在各種本發明之實施例中或者是該些態樣可被結合於另外其他的實施例中而可個別地達到該些特徵、功能和優點。
10‧‧‧子電池部件
12‧‧‧p型背表面場
14‧‧‧p型基底層
16‧‧‧n型發射層
18‧‧‧n型窗
20‧‧‧電子
22‧‧‧電洞
100‧‧‧子電池部件
112‧‧‧背表面場
114‧‧‧吸收區
116‧‧‧發射區
117‧‧‧額外發射層
118‧‧‧窗
120‧‧‧電子
122‧‧‧電洞
200,200’‧‧‧電池
214,214’‧‧‧p型GaAsN吸收區
216,216’‧‧‧n型InAs奈米柱
300‧‧‧電池
302‧‧‧直徑
304‧‧‧間隙
316‧‧‧奈米柱
402-404‧‧‧步驟
根據下文的敘述、附加申請專利範圍以及隨附圖式,本發明的特徵、功能、態樣和優點可被較佳的理解:圖1為具有理想能帶間隙特性以及低效率的子電池之示意圖。
圖2為根據本發明之至少一態樣之具有理想能帶間隙特性以及高效率的子電池之示意圖
圖3A和3B為根據本揭露之至少一態樣之具有理想能帶間隙特性以及高效率的子電池的範例性示意圖。
圖4為根據本揭露之至少一態樣,該奈米柱的面積覆蓋率對於各種奈米柱直徑以及奈米柱間隙之圖表關係。
圖4A為根據本揭露之至少一態樣所製成之子電池的俯視圖。
圖5為根據本揭露之至少一態樣的方法之流程圖,該方法係用於製造顯示於圖2、3A、3B和4A中之子電池。
揭露於此之方法和設備提供一有效的系統用於橫向太陽能電池結構。特別是,此系統包含多接面太陽能電池,其包含具有理想能帶間隙結合之高效率的子電池。此系統使用奈米柱,其在磊晶成長過程中被形成以產生電極延伸進入該太陽能電池的吸收區。此設計考慮到該吸收器之長光學吸收長度,例如0.5到3微米,但是也考慮到在次微米的距離匹配 的擴散長度之載子的收集。
所揭露的系統設計提供具有理想能帶間隙特性之高效率的子電池之製造。藉由形成埋藏傳導奈米柱於相反傳導形式的一吸收區中,則載子的所需行進的距離被減少,從而增加效率。在此方式中,相較於那些上述先前技術所討論之藉由直接成長、變質緩衝或是晶圓接合方式所產生之電池,本發明所揭露的系統提供具有高於那些電池之較高效率的電池。
在下文之描述中,各種細節係被闡述以用來提供對於該系統之較全面性的描述。然而,顯而易見的是,對於所屬技術領域中具有通常知識者而言,本發明所揭露的系統可被實施而不需要這些特定的細節。在其他實例中,眾所周知的功能並沒有被詳細描述,以免不必要地混淆該系統。
圖2描述根據建議的設計之多接面太陽能電池的子電池部件100。子電池部件100包含背表面場112、吸收區114、發射區116、窗118以及任意的額外發射層(發射器#2)117。發射區116係由複數個延伸進入吸收區114之奈米柱116所形成。吸收區114和奈米柱116係由III-V合金所製成。舉例來說,吸收區114可由GaAsP、GaAsN、InGaAsN、AlInP或AlInGaP所製成。奈米柱116可由InAs、InGaAs、GaAsSb、InP或InGaP所製成。這些材料提供理想的能帶間隙範圍。舉例來說,如果N合金(例如GaAsN、InGaAsN)被用以形成吸收區114,則吸收區114將具有小於1.4 eV的能帶間隙,例如在1.0到1.4 eV的範圍中。如果是Al合金(例如AlInP或AlInGaP)被用以形成吸收區114,則吸收區114將具有大於2.0 eV的能帶間隙,例如在2.0到2.3 eV的範圍中。
吸收區114可具有在0.5到3微米之間的吸收長度。舉例來說,奈米柱116的長度可為該吸收長度的50%到100%之間。
奈米柱116和吸收區114具有相反的導電特性,因此形成PN接面。舉例來說,奈米柱116可為n型,而吸收區114可為p型。或者是,奈米柱116可為p型,而吸收區114可為n型。
下文將更為詳細的討論,奈米柱116和吸收區114係相對地拉扯。舉例來說,奈米柱116可被壓縮壓緊,而吸收區114可被拉伸拉緊。或者是,奈米柱116可被拉伸拉緊,而吸收區114可被壓縮壓緊。
顯示於圖2中之結構分隔開光子和電荷載子的路徑。光子吸收長度保持長度在0.5到3微米,然而載子將具有用於收集之次微米長度。舉例來說,如圖2中所描述的,被產生於吸收區114中之電子120可以行進至十分靠近奈米柱116,而不會實質上跨越該吸收區的整個厚度以到達該發射層。
圖3A和3B描述根據本發明所揭露之系統所形成之子電池的範例性實施例。圖3A描述用於1.0 eV吸收之電池200,其具有p型GaAsN吸收區214以及n型InAs奈米柱216。或者是,電池200可具有p型InGaAsN吸收區214和n型InGaAs和GaAsSb奈米柱216。圖3B顯示用於2.3 eV吸收之電池200',其具有p型AlInP吸收區214'和n型InP奈米柱216'。或者是,該2.3eV能帶間隙電池200'可具有p型AlInGaP吸收區214'和n型InGaP奈米柱216'。
具有高應力的奈米柱之厚材料將會形成應變緩解晶體缺陷(strain relieving crystallographic defects),其將會減少太陽能電池的效率。然 而,藉由使用應力補償方式,本發明所揭露之系統可必免前文所述之缺陷。也就是,以具有相對應力之吸收區來平衡奈米柱的應力(拉伸對應壓縮),則晶體缺陷可被避免。此範例圖示於圖3A和3B中,其顯示具有拉伸應力的p型吸收區214和214'。奈米柱216和216'在此範例中為壓縮應力的n型奈米柱216和216'。這些傳導特性和應力特性可為顛倒的而不會改變該系統的主要部件。舉例來說,奈米柱216和216'可為p型並且吸收區214和214'可為n型。奈米柱216和216'可為拉伸並且吸收區214和214'可為壓縮。
對於在該些奈米柱中之光吸收的收集效率可為低的。因此,確保奈米柱的低覆蓋度係為所希望的,以用於最大化電池的效率。也就是,奈米柱的所有面積對應於該吸收區的所有面積之比例應為最小化。在一實施例中,奈米柱的所有面積係小於該吸收區的所有面積的1%。
圖4A為根據本發明所揭露之系統所形成的電池300之俯視圖。圖4A描述每個奈米柱316的直徑302。圖4A亦描述在每個奈米柱316之間的間隙304。奈米柱直徑302和間隙304可藉由使用的成長條件所控制。直徑302可被控制而變化於5到100 nm之間並且在奈米柱316之間的間隙304可被控制而變化至3微米。此結合將使得奈米柱的覆蓋率保持在低於1%,如圖4中所示。圖4中之圖表顯示特定期望的電池效率,可使用維持奈米柱的覆蓋率低於1%、藉由控制奈米柱直徑在5到100nm的範圍之中以及奈米柱間隙小於3微米。使用直徑為20 nm的奈米柱以及間隙為200 nm將具有<1%的奈米柱覆蓋率。此結構將得到電子(120)路徑長度<100 nm,同時允許光學厚基底層的厚度為0.5到3微米。因此,高效率的子電池可由具有低少數載子擴散長度的材料所形成,例如InGaAsN或AlInP。
根據本發明所揭露之系統的製造光伏電池之方法400係被描述於圖5中。該方法揭露步驟402,其提供一基板,以及步驟404之磊晶地成長一吸收區和一發射區於該基板上。如上文所述,該發射區包含複數個奈米柱延伸進入該吸收區,並且該吸收區和該些奈米柱係被相反地摻雜。在磊晶成長過程中,該些奈米柱係透過應力導向自我組織叢生(strain driven self-organized clustering)而形成。島狀物被緊密堆疊在彼此的頂部,以合併成一個單一的、垂直的奈米柱。奈米柱的應力係藉由一具有相對應力的吸收區來平衡。
雖然某些說明性的實施例和方法已經在此公開,對於所屬技術領域中具有通常知識者根據前面之揭露,在不脫離所公開的技術的真實精神和範疇情況下,可以作出這些實施方式和方法的變化和修改是顯而易見的。本技術領域還有許多其他公開的範例存在,每個不同於其他範例只在於詳細事項。因此,其之目的是揭露所附申請專利範圍和適用的法律規則和原則要求的範圍內所限定的技術。
100‧‧‧子電池部件
112‧‧‧背表面場
114‧‧‧吸收區
116‧‧‧發射區
117‧‧‧額外發射層
118‧‧‧窗
120‧‧‧電子
122‧‧‧電洞

Claims (13)

  1. 一種光伏電池,其包含:一吸收區114;以及一發射區116,其包含複數個延伸進入該吸收區114的奈米柱,其中,該吸收區114和該奈米柱係被相反地摻雜。
  2. 根據申請專利範圍第1項之光伏電池,其中該奈米柱為n型並且該吸收區114為p型。
  3. 根據申請專利範圍第1項之光伏電池,其中該奈米柱為p型並且該吸收區114為n型。
  4. 根據申請專利範圍第1項之光伏電池,其中該吸收區114和該奈米柱係由III-V族合金所製成。
  5. 根據申請專利範圍第1項之光伏電池,其中該吸收區114係由GaAsN、InGaAsN、AlInP和AlInGaP中之任一者所製成。
  6. 根據申請專利範圍第1項之光伏電池,其中該奈米柱係由InAs、InGaAs、GaAsSb、InP和InGaP中之任一者所製成。
  7. 根據申請專利範圍第1項之光伏電池,其具有大於2.0電子伏特(eV)的能帶間隙。
  8. 根據申請專利範圍第1項之光伏電池,其具有小於1.4電子伏特(eV)的能帶間隙。
  9. 根據申請專利範圍第1項之光伏電池,其中在每個該奈米柱之間的空隙係小於3微米。
  10. 根據申請專利範圍第1項之光伏電池,其中每個該奈米柱的直徑在5 奈米(nm)到100奈米之間。
  11. 根據申請專利範圍第1項之光伏電池,其中該奈米柱的所有面積係小於該吸收區114之所有面積的1%。
  12. 根據申請專利範圍第1項之光伏電池,其中該奈米柱和吸收區114係被相對地拉扯。
  13. 一種製造光伏電池之方法,其包含:提供一基板;以及磊晶地成長一吸收區114和一發射區116於該基板上,其中該發射區116包含複數個延伸進入該吸收區114之該奈米柱,其中該吸收區114和該奈米柱係被相反地摻雜。
TW102100827A 2012-01-10 2013-01-10 橫向太陽能電池結構 TWI667799B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/346,982 US9911886B2 (en) 2012-01-10 2012-01-10 Lateral solar cell structure
US13/346,982 2012-01-10

Publications (2)

Publication Number Publication Date
TW201340353A true TW201340353A (zh) 2013-10-01
TWI667799B TWI667799B (zh) 2019-08-01

Family

ID=47603266

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102100827A TWI667799B (zh) 2012-01-10 2013-01-10 橫向太陽能電池結構

Country Status (4)

Country Link
US (1) US9911886B2 (zh)
EP (1) EP2615649B1 (zh)
JP (1) JP6312984B2 (zh)
TW (1) TWI667799B (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0118150D0 (en) * 2001-07-25 2001-09-19 Imperial College Thermophotovoltaic device
US20060207647A1 (en) 2005-03-16 2006-09-21 General Electric Company High efficiency inorganic nanorod-enhanced photovoltaic devices
US8314327B2 (en) * 2005-11-06 2012-11-20 Banpil Photonics, Inc. Photovoltaic cells based on nano or micro-scale structures
US7635600B2 (en) 2005-11-16 2009-12-22 Sharp Laboratories Of America, Inc. Photovoltaic structure with a conductive nanowire array electrode
EP1892769A2 (en) * 2006-08-25 2008-02-27 General Electric Company Single conformal junction nanowire photovoltaic devices
US20080135089A1 (en) 2006-11-15 2008-06-12 General Electric Company Graded hybrid amorphous silicon nanowire solar cells
US20080110486A1 (en) * 2006-11-15 2008-05-15 General Electric Company Amorphous-crystalline tandem nanostructured solar cells
US8237151B2 (en) * 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
GB2462108A (en) * 2008-07-24 2010-01-27 Sharp Kk Deposition of a thin film on a nanostructured surface
CN101740654B (zh) * 2008-11-19 2011-12-07 中国科学院半导体研究所 一种半导体p-i-n结太阳能电池外延片及其制备方法
JP2011135058A (ja) * 2009-11-30 2011-07-07 Honda Motor Co Ltd 太陽電池素子、カラーセンサ、ならびに発光素子及び受光素子の製造方法
US20110146788A1 (en) * 2009-12-23 2011-06-23 General Electric Company Photovoltaic cell
JP2011138804A (ja) * 2009-12-25 2011-07-14 Honda Motor Co Ltd ナノワイヤ太陽電池及びその製造方法

Also Published As

Publication number Publication date
US20130174893A1 (en) 2013-07-11
TWI667799B (zh) 2019-08-01
EP2615649B1 (en) 2022-09-28
EP2615649A3 (en) 2013-10-23
JP6312984B2 (ja) 2018-04-18
EP2615649A2 (en) 2013-07-17
JP2013143569A (ja) 2013-07-22
US9911886B2 (en) 2018-03-06

Similar Documents

Publication Publication Date Title
Otnes et al. Towards high efficiency nanowire solar cells
CN101183689B (zh) 分级混合式非晶硅纳米线太阳能电池
JP5479574B2 (ja) ナノワイヤを有する多接合光電池
US9117954B2 (en) High efficiency nanostructured photovoltaic device manufacturing
US20150280032A1 (en) High efficiency photovoltaic cells
US20140345679A1 (en) Multijunction photovoltaic device having sige(sn) and gaasnsb cells
US20110005570A1 (en) High efficiency tandem solar cells and a method for fabricating same
US9496434B2 (en) Solar cell and method for producing solar cell
KR20080044183A (ko) 비정질-결정성 탠덤형 나노구조 태양전지
JP2009527108A (ja) ナノ構造層を備える光起電装置
CN103189998A (zh) 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结
JP2013508966A (ja) ナノワイヤトンネルダイオードおよびその製造方法
WO2016104711A1 (ja) 太陽電池
CN101304051B (zh) 具渐变式超晶格结构的太阳电池
JP5481665B2 (ja) 多接合型太陽電池
CN106159002A (zh) 一种基于纳米线/量子点复合结构的中间带太阳能电池及其制备方法
Goodnick et al. Solar cells
TWI667799B (zh) 橫向太陽能電池結構
JP5669228B2 (ja) 多接合太陽電池およびその製造方法
CN110797427B (zh) 倒装生长的双异质结四结柔性太阳能电池及其制备方法
JP2013172072A (ja) 2接合太陽電池
Aly et al. Performance evaluation of nanostructured solar cells
WO2014045333A1 (ja) 太陽電池及びその製造方法
KR101353350B1 (ko) 광대역 파장 흡수 및 에너지변환을 이용한 고효율 태양전지
Atwater Nanostructures for high-efficiency photovoltaics