TW201312693A - Method for manufacturing semiconductor device, and semiconductor device - Google Patents

Method for manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
TW201312693A
TW201312693A TW101132962A TW101132962A TW201312693A TW 201312693 A TW201312693 A TW 201312693A TW 101132962 A TW101132962 A TW 101132962A TW 101132962 A TW101132962 A TW 101132962A TW 201312693 A TW201312693 A TW 201312693A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor
columnar
region
conductor layer
Prior art date
Application number
TW101132962A
Other languages
Chinese (zh)
Inventor
Fujio Masuoka
Nozomu Harada
Original Assignee
Unisantis Elect Singapore Pte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisantis Elect Singapore Pte filed Critical Unisantis Elect Singapore Pte
Publication of TW201312693A publication Critical patent/TW201312693A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Abstract

A method for manufacturing semiconductor device includes a pillar-shaped semiconductor forming step for simultaneously forming first and second pillar-shaped semiconductors (2, 3) on a substrate (1) with the same height, a pillar-shaped semiconductor bottom connection step for doping a donor or receptor impurity in a bottom region of the first pillar-shaped semiconductor (2) to form a first semiconductor layer (5) and connecting the first semiconductor layer and the second pillar-shaped semiconductor (3) with each other, a circuit element forming step for doping a donor or receptor impurity in an upper region of the first pillar-shaped semiconductor to form an upper semiconductor region (11), and forming a circuit element having the upper semiconductor region, a conductor layer forming step for forming a first conductor layer (13) inside the second pillar-shaped semiconductor, a contact hole forming step for forming first and second contact holes (16a, 16b) respectively connected to the first and second pillar-shaped semiconductors, and a wiring metal layer forming step for forming a wiring metal layer connected to the upper semiconductor region and the first conductor layer via the first and second contact holes.

Description

半導體裝置的製造方法,及半導體裝置 Semiconductor device manufacturing method, and semiconductor device

本發明係關於一種半導體裝置及半導體裝置之製造方法,尤有關於在具有柱狀構造之半導體內具備形成有通道(channel)區域之電晶體(transistor)之半導體裝置之製造方法及其半導體裝置。 The present invention relates to a semiconductor device and a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device including a transistor in which a channel region is formed in a semiconductor having a columnar structure, and a semiconductor device therefor.

例如,在將像素形成於柱狀半導體之CMOS(Complementary Metal Oxide Semiconductor,互補式金屬氧化物半導體)固體攝像裝置、或將MOS電晶體形成於柱狀半導體的半導體裝置中,係要求更進一步的高性能化。 For example, in a CMOS (Complementary Metal Oxide Semiconductor) solid-state imaging device in which a pixel is formed in a columnar semiconductor or a semiconductor device in which a MOS transistor is formed in a columnar semiconductor, further requirements are required. Performance.

固體攝像裝置係廣泛應用在視訊攝像機(video camera)、靜態攝像機(still camera)等。再者,亦要求固體攝像裝置之高解像度化、高速化、及高靈敏度化等之性能提升。 Solid-state imaging devices are widely used in video cameras, still cameras, and the like. Further, performance improvement such as high resolution, high speed, and high sensitivity of the solid-state imaging device is also required.

以下一面參照第17A圖至第17D圖一面說明習知例之固體攝像裝置。如第17A圖至第17D圖所示,已知有一種1個像素構成於屬於1個半導體之矽(以下以Si來表示)柱115內之固體攝像裝置(請參照例如專利文獻1)。第17A圖係為單一像素的剖面構造圖。在此像素構造中,係於氧化矽基板114上形成有平板狀信號線N+層(為「含有較多施體(donor)雜質之N形Si半導體層」,以下簡稱為「N+層」)116。在此信號線N+層116上形成有矽柱115。信號線N+層116係藉由擴散亦更擴大形成於矽柱115之下方部 位。在此信號線N+層116上連接有P層117(為「含有較多受體(acceptor)雜質之P形Si半導體層」,以下簡稱為「P層」),且包圍該P層117而形成有閘極(gate)絕緣層118、及在該閘極絕緣層118的外側形成有閘極導體層119。在鄰接於該閘極導體層119的區域,係形成有P層117、及位於該P層117之外周部的N層120。再者,在該P層117與N層120上,形成有像素選擇P+層{為含有較多受體雜質之P形Si半導體層,以下簡稱為P+層}121。再者,在該像素選擇P+層連接有像素選擇線導體層122。 A solid-state imaging device of a conventional example will be described below with reference to FIGS. 17A to 17D. As shown in FIG. 17A to FIG. 17D, a solid-state imaging device in which one pixel is formed in a column 115 (hereinafter referred to as Si) belonging to one semiconductor (see, for example, Patent Document 1) is known. Fig. 17A is a cross-sectional structural view of a single pixel. In this pixel structure, a flat signal line N + layer (which is an N-type Si semiconductor layer containing a large amount of donor impurities) is formed on the yttrium oxide substrate 114, hereinafter referred to as "N + layer". ) 116. A mast 115 is formed on this signal line N + layer 116. The signal line N + layer 116 is formed further below the mast 115 by diffusion. A P layer 117 (which is a "P-type Si semiconductor layer containing a large amount of acceptor impurities", hereinafter simply referred to as a "P layer") is connected to the signal line N + layer 116, and surrounds the P layer 117. A gate insulating layer 118 is formed, and a gate conductor layer 119 is formed outside the gate insulating layer 118. In a region adjacent to the gate conductor layer 119, a P layer 117 and an N layer 120 located on the outer periphery of the P layer 117 are formed. Further, on the P layer 117 and the N layer 120, a pixel-selective P + layer { is a P-type Si semiconductor layer containing a large amount of acceptor impurities, hereinafter abbreviated as a P + layer} 121. Furthermore, a pixel selection line conductor layer 122 is connected to the pixel selection P + layer.

從矽柱115上面射入的光,係在形成有光二極體(photo diode)之P層117與N層120之光電轉換區域被吸收,且產生信號電荷(自由電子)。再者,所產生之信號電荷的大部分,係儲存在光二極體的N層120。在像素矽柱115中,係形成有以該光二極體之N層120為閘極、以被該N層120所包圍之P層117為通道、以像素選擇P+層121為源極(source)、以信號線N+層116附近之P層117為汲極(drain)之接合電晶體。與儲存在光二極體之N層120之信號電荷量對應的信號電流,係藉由施加正(plus)電壓於像素選擇P+層121、及施加接地(ground)電壓於信號線N+層116而讀取。形成有以N層120為源極、以信號線N+層116為汲極、以包圍閘極絕緣層118之閘極導體層119為閘極之重設(reset)MOS電晶體,且儲存於光二極體之N層120的信號電荷,係藉由施加正電壓於閘極導體層119、及施加正電壓於屬於汲極之信號線N+層116,經由信號線 N+層116而去除至外部。 The light incident from the top of the mast 115 is absorbed in the photoelectric conversion region of the P layer 117 and the N layer 120 on which the photo diode is formed, and generates a signal charge (free electron). Furthermore, most of the generated signal charge is stored in the N layer 120 of the photodiode. In the pixel column 115, a N layer 120 of the photodiode is used as a gate, a P layer 117 surrounded by the N layer 120 is used as a channel, and a P + layer 121 is selected as a source by a pixel. The P layer 117 near the signal line N + layer 116 is a bonding transistor of a drain. The signal current corresponding to the amount of signal charge stored in the N layer 120 of the photodiode is selected by the application of a plus voltage to the pixel to select the P + layer 121, and a ground voltage is applied to the signal line N + layer 116. And read. A reset MOS transistor having a N-layer 120 as a source, a signal line N + a layer 116 as a drain, and a gate conductor layer 119 surrounding the gate insulating layer 118 as a gate is formed and stored in The signal charge of the N layer 120 of the photodiode is removed via the signal line N + layer 116 by applying a positive voltage to the gate conductor layer 119 and applying a positive voltage to the signal line N + layer 116 belonging to the drain. external.

如此,習知之固體攝像裝置中之像素的基本動作係由以下的動作所構成:在P層117與N層120之光二極體部進行照射光吸收-信號電荷產生的光電轉換動作;在光二極體之N層120儲存該信號電荷的信號電荷儲存動作;藉由以光二極體N層120為閘極、以像素選擇P+層121為源極、以信號線N+層116附近之P層117為汲極之接合電極體來讀取與該儲存之信號電荷量對應之信號電流的信號電荷讀取動作;及該儲存之信號電荷,藉由以N層120為源極、以信號線N+層116為汲極、以包圍閘極絕緣層118之閘極導體層119為閘極之重設MOS電晶體而去除至信號線N+層116的重設動作。 As described above, the basic operation of the pixel in the conventional solid-state imaging device is composed of the following operations: photoelectric conversion operation of the light absorption/signal charge generation in the photodiode portion of the P layer 117 and the N layer 120; The N-layer 120 of the body stores a signal charge storage operation of the signal charge; by using the photodiode N layer 120 as a gate, the P + layer 121 as a source by a pixel, and the P layer near the signal line N + layer 116 117 is a gate electrode assembly for reading a signal current corresponding to the stored signal charge amount; and the stored signal charge is obtained by using the N layer 120 as a source and a signal line N The + layer 116 is a reset operation in which the drain electrode and the gate electrode layer 119 surrounding the gate insulating layer 118 are gate-replaced MOS transistors and removed to the signal line N + layer 116.

固體攝像裝置之像素係由配置成2維狀的像素區域、及用以驅動像素區域之像素,且對像素信號進行取出信號處理的周邊驅動/輸出電路區域所構成。第17B圖係顯示在像素區域中構成1個像素的矽柱115、信號線N+層116,及像素選擇線導體層122電性連接於周邊驅動/輸出電路區域之上部配線金屬層124a、124b的剖面構造圖。此像素構造的特徵,係分別在矽柱115之上下區域形成有信號線N+層116及像素選擇P+層121。信號線N+層116係從構成像素之矽柱115延伸至周邊驅動輸出電路,且在周邊驅動/輸出電路區域中經由接觸孔(contact hole)123a而連接於信號線金屬層124a。此外,連接於像素選擇P+層121之像素選擇線導體層122,係從構成像素之矽柱115延伸至周 邊驅動/輸出電路,且在該周邊驅動/輸出電路區域中,經由接觸孔123b而連接於像素選擇線金屬層124b。信號線N+層116上之接觸孔123a,係藉由將沉積於該N+層116上之SiO2層125a、125b、125c予以蝕刻而形成。再者,接觸孔123b係藉由僅將像素選擇線導體層122上之SiO2層125c予以蝕刻而形成。藉此,在接觸孔123a與接觸孔123b的深度上,必然會產生相當於構成像素之矽柱115之高度程度的不同。 The pixel of the solid-state imaging device is composed of a pixel region arranged in a two-dimensional shape and a peripheral driving/output circuit region for driving a pixel signal and performing signal extraction processing on the pixel signal. 17B shows a mast 115 and a signal line N + layer 116 which constitute one pixel in the pixel region, and the pixel selection line conductor layer 122 is electrically connected to the upper wiring metal layer 124a, 124b of the peripheral driving/output circuit region. Sectional structure diagram. This pixel structure is characterized in that a signal line N + layer 116 and a pixel selection P + layer 121 are formed in the lower region of the mast 115, respectively. The signal line N + layer 116 extends from the mast 115 constituting the pixel to the peripheral drive output circuit, and is connected to the signal line metal layer 124a via a contact hole 123a in the peripheral drive/output circuit region. Further, the pixel selection line conductor layer 122 connected to the pixel selection P + layer 121 extends from the mast 115 constituting the pixel to the peripheral driving/output circuit, and in the peripheral driving/output circuit region, via the contact hole 123b Connected to the pixel selection line metal layer 124b. The contact hole 123a on the signal line N + layer 116 is formed by etching the SiO 2 layers 125a, 125b, 125c deposited on the N + layer 116. Further, the contact hole 123b is formed by etching only the SiO 2 layer 125c on the pixel selection line conductor layer 122. Thereby, in the depths of the contact hole 123a and the contact hole 123b, a difference in the degree of height corresponding to the mast 115 constituting the pixel is inevitably generated.

此矽柱115的高度,主要係由光二極體之N層120的高度所決定。光係從矽柱115上之像素選擇P+層121的上面射入。由此光照射所導致的信號電荷產生率,係具有從像素選擇P+層121上面相對於Si深度以指數函數減少的特性。在偵測可視光的固體攝像裝置中,為了要有效率地將有助於靈敏度的信號電荷予以取出,光電轉換區域之深度需有2.5至3μm(請參照例如非專利文獻1)。因此,光電轉換光二極體之N層120的高度,至少需2.5至3μm。位於該N層120下方之重設MOS電晶體之閘極導體層119的高度,由於在0.1μm以下亦可動作,因此像素矽柱115之高度至少需要2.5至3μm。 The height of the mast 115 is mainly determined by the height of the N layer 120 of the photodiode. The light system is incident on the upper surface of the P + layer 121 from the pixels on the mast 115. The signal charge generation rate caused by the light irradiation thus has a characteristic of decreasing the exponential function with respect to the Si depth from the pixel selection P + layer 121. In the solid-state imaging device that detects visible light, in order to efficiently take out signal charges that contribute to sensitivity, the depth of the photoelectric conversion region needs to be 2.5 to 3 μm (refer to, for example, Non-Patent Document 1). Therefore, the height of the N layer 120 of the photoelectric conversion photodiode needs to be at least 2.5 to 3 μm. The height of the gate conductor layer 119 of the reset MOS transistor located under the N layer 120 can also operate at 0.1 μm or less. Therefore, the height of the pixel mast 115 needs to be at least 2.5 to 3 μm.

第17C圖係顯示習知例之固體攝像裝置的平面圖。在該圖中,沿著G-G’線的剖面構造圖係與第17B圖對應。如第17C圖所示,配置有構成像素的矽柱P11至P33,此等矽柱P11至P33係形成在朝圖式之縱(行(column))方向延長至周邊驅動/輸出電路區域而形成的信號線N+層116a(116)、 116b、116c上。信號線N+層116a(116)、116b、116c在周邊驅動/輸出電路區域中係經由接觸孔126a(123a)、126b、126c而連接於信號線金屬層128a(124a)、128b、128c。依構成像素之每一矽柱P11至P33之列連接的重設MOS閘極導體層119a(119)、119b、119c、及像素選擇線導體層122a(122)、122b、122c係在凸面的橫(列(row))方向延伸至周邊驅動/輸出電路區域。像素選擇線導體層122a(122)、122b、122c在周邊驅動/輸出電路區域中係經由接觸孔127a(123b)、127b、127c而連接於像素選擇線金屬層129a(124b)、129b、129c。 Fig. 17C is a plan view showing a solid-state imaging device of a conventional example. In the figure, the cross-sectional structure diagram along the G-G' line corresponds to the 17B chart. As shown in Fig. 17C, the masts P 11 to P 33 constituting the pixels are arranged, and the masts P 11 to P 33 are formed to extend in the longitudinal direction (column) of the drawing to the peripheral driving/output. The signal lines N + layers 116a, 116b, 116b, 116c are formed in the circuit regions. The signal line N + layers 116a (116), 116b, 116c are connected to the signal line metal layers 128a (124a), 128b, 128c via contact holes 126a (123a), 126b, 126c in the peripheral drive/output circuit region. The reset MOS gate conductor layers 119a (119), 119b, 119c and the pixel selection line conductor layers 122a (122), 122b, 122c connected in the column of each of the pillars P 11 to P 33 constituting the pixel are convex. The horizontal (row) direction extends to the peripheral drive/output circuit area. The pixel selection line conductor layers 122a (122), 122b, and 122c are connected to the pixel selection line metal layers 129a (124b), 129b, and 129c via the contact holes 127a (123b), 127b, and 127c in the peripheral driving/output circuit region.

在第17C圖中,雖係將信號線N+層116a、116b、116c上之接觸孔126a、126b、126c形成在位於像素區域之外側的周邊驅動/輸出電路區域,但有必須與像素矽柱P11至P33鄰接形成的情形。參照第17C圖,信號電荷讀取動作中的信號電流、與重設動作中的儲存電荷去除電流,係經由位於信號線N+層116a、116b、116c的終端的接觸孔126a、126b、126c而從信號線金屬層128a、128b、128c取出。當藉由在驅動-輸出電路區域進行信號線N+層116a、116b、116c與信號線金屬層128a、128b、128c的接觸時,像素矽柱P11至P33與接觸孔126a、126b、126c之間之信號線N+層116a、116b、116c的電阻值,即會限制信號電流取出與儲存電荷去除之響應時間。因此,為了要高速化,需將該信號線之電阻值減小。 In Fig. 17C, although the contact holes 126a, 126b, and 126c on the signal line N + layers 116a, 116b, and 116c are formed in the peripheral driving/output circuit region on the outer side of the pixel region, it is necessary to cooperate with the pixel column. The case where P 11 to P 33 are adjacent to each other is formed. Referring to Fig. 17C, the signal current in the signal charge reading operation and the stored charge removal current in the reset operation are via the contact holes 126a, 126b, and 126c at the terminals of the signal line N + layers 116a, 116b, and 116c. It is taken out from the signal line metal layers 128a, 128b, and 128c. When the contact of the signal line N + layers 116a, 116b, 116c with the signal line metal layers 128a, 128b, 128c is performed in the drive-output circuit region, the pixel posts P 11 to P 33 and the contact holes 126a, 126b, 126c The resistance values of the signal line N + layers 116a, 116b, 116c between them limit the response time of signal current extraction and storage charge removal. Therefore, in order to speed up, the resistance value of the signal line needs to be reduced.

第17D圖係顯示將信號線之電阻值減小之固體攝像裝 置的平面圖。在該圖中,沿著H-H’線的剖面構造圖係對應於第17B圖。如第17D圖所示,在像素區域中,係與矽柱P11至P33鄰接而形成有接觸孔CH11至CH33。矽柱P11至P33係具有第17B圖中之矽柱115所示之構造,而接觸孔CH11至CH33係具有第17B圖中之接觸孔123a所示之構造。此等矽柱P11至P33與接觸孔CH11至CH33係形成在朝圖式之縱(行)方向延伸之信號線N+層130a、130b、130c上。信號線N+層130a、130b、130c係經由接觸孔CH11至CH33而連接於朝圖式之縱(行)方向延伸之信號線金屬層135a、135b、135c。依構成像素之每一矽柱P11至P33之列延伸之重設MOS閘極導體N+層131a、131b、131c、與像素選擇線導體N+層132a、132b、132c,係一面迴避接觸孔CH11至CH33,一面朝圖式的橫(列)方向延伸至周邊驅動/輸出電路區域。像素選擇線導體N+層132a、132b、132c在周邊驅動/輸出電路區域係經由接觸孔133a、133b、133c而連接於像素選擇線金屬層134a、134b、134c。 Fig. 17D is a plan view showing the solid-state imaging device which reduces the resistance value of the signal line. In the figure, the cross-sectional structural diagram along the line H-H' corresponds to Fig. 17B. As shown on FIG. 17D, in the pixel region, and the silicon-based column P 11 to P 33 adjacent to the contact hole CH 11 CH 33 to be formed. The masts P 11 to P 33 have the configuration shown by the mast 115 in Fig. 17B, and the contact holes CH 11 to CH 33 have the configuration shown by the contact hole 123a in Fig. 17B. The columns P 11 to P 33 and the contact holes CH 11 to CH 33 are formed on the signal line N + layers 130a, 130b, 130c extending in the longitudinal (row) direction of the drawing. N + layer signal lines 130a, 130b, 130c via the line to the contact hole CH 11 CH 33 is connected to the figures toward the longitudinal (row) of the signal line extending in the direction of the metal layer 135a, 135b, 135c. The reset MOS gate conductor N + layers 131a, 131b, 131c and the pixel selection line conductor N + layers 132a, 132b, 132c extending along the column of each of the pillars P 11 to P 33 constituting the pixel are evasively contacted The holes CH 11 to CH 33 extend in the lateral (column) direction of the drawing to the peripheral drive/output circuit area. The pixel selection line conductors N + layers 132a, 132b, and 132c are connected to the pixel selection line metal layers 134a, 134b, and 134c via the contact holes 133a, 133b, and 133c in the peripheral driving/outputting circuit region.

經由該接觸孔CH11至CH33以與信號線N+層130a、130b、130c連接之信號線金屬層135a、135b、135c來進行從信號線之像素至周邊驅動/輸出電路的連接,藉此實現信號線的低電阻化。此係因為相對於信號線N+層130a、130b、130c之電阻率(Ωm)係為約10-5Ωm,而信號線金屬層135a、135b、135c之電阻率當使用鋁(Al)時則成為約3×10-8Ωm,而當使用銅(Cu)時則成為約1.5×10-8Ωm,均極小之故。此時,在像素區域之中,需要形成構成像素的矽 柱P11至P33、及接觸孔CH11至CH33。再者,為了防止信號線金屬層135a、135b、135c、像素選擇線導體N+層132a、132b、132c、重設MOS閘極導體N+層131a、131b、131c的短路,接觸孔CH11至CH33係需以避免像素選擇線導體N+層132a、132b、132c、與重設MOS閘極導體N+層131a、131b、131c之方式形成。此外,由於需與個別構成像素之矽柱P11至P33鄰接而形成接觸孔CH11至CH33,因此需要確保構成個別形成之像素的矽柱P11至P33與接觸孔CH11至CH33的遮罩(mask)對位裕度(margin)來形成。如此,為了減小信號線電阻值,需與構成像素的矽柱P11至P33鄰接而形成接觸孔CH11至CH33,且以信號線金屬層135a、135b、135c來進行從像素至周邊驅動/輸出電路的連接。由此,會產生像素區域之像素集積度的降低。 Connecting the pixel from the signal line to the peripheral driving/output circuit via the contact holes CH 11 to CH 33 with the signal line metal layers 135a, 135b, and 135c connected to the signal line N + layers 130a, 130b, and 130c. A low resistance of the signal line is achieved. This is because the resistivity (Ωm) with respect to the signal line N + layers 130a, 130b, 130c is about 10 -5 Ωm, and the resistivity of the signal line metal layers 135a, 135b, 135c is when aluminum (Al) is used. It is about 3 × 10 -8 Ωm, and when copper (Cu) is used, it is about 1.5 × 10 -8 Ωm, which is extremely small. At this time, among the pixel regions, it is necessary to form the masts P 11 to P 33 constituting the pixels, and the contact holes CH 11 to CH 33 . Furthermore, in order to prevent short-circuiting of the signal line metal layers 135a, 135b, 135c, the pixel selection line conductor N + layers 132a, 132b, 132c, and the reset MOS gate conductor N + layers 131a, 131b, 131c, the contact holes CH 11 to The CH 33 is formed so as to avoid the pixel selection line conductor N + layers 132a, 132b, and 132c and the reset MOS gate conductor N + layers 131a, 131b, and 131c. Further, since the contact holes CH 11 to CH 33 are formed adjacent to the pillars P 11 to P 33 of the individual constituent pixels, it is necessary to secure the masts P 11 to P 33 and the contact holes CH 11 to CH constituting the individually formed pixels. A mask of 33 is formed by a registration margin. Thus, in order to reduce the signal line resistance value, the contact holes CH 11 to CH 33 are formed adjacent to the pillars P 11 to P 33 constituting the pixel, and the signal line metal layers 135a, 135b, and 135c are used to perform the pixel-to-periphery. Drive/output circuit connection. As a result, a decrease in the pixel integration degree of the pixel region occurs.

目前,排列成2維狀於像素區域之像素的間距(pitch),經製品化之最小者為1.4μm,且0.9μm間距的製品亦已發表(請參照例如非專利文獻2)。設計原則(rule)(最小設計尺寸)為0.2μm(200nm)時,通常接觸孔的平面形狀係以該最小設計尺寸來作成。此時,第17B圖所示之信號線N+層116上之接觸孔123a之深寬(aspect)比(相對於接觸孔之寬度長度的深度長度比)係成為至少12.5至15。為了固體攝像裝置的低成本化,乃要求更進一步之像素區域之面積的縮小。在此方面雖需要最小加工尺寸的縮小,但矽柱115的高度,由於光電轉換特性的要求而規定為2.5至3μm,因此乃要求要形成具有更高深寬比的接觸孔123a。 At present, a pitch of pixels arranged in a two-dimensional shape in a pixel region, a product having a minimum of 1.4 μm, and a pitch of 0.9 μm have been published (see, for example, Non-Patent Document 2). When the design rule (minimum design size) is 0.2 μm (200 nm), the planar shape of the contact hole is usually formed with this minimum design size. At this time, the aspect ratio (depth length ratio with respect to the width length of the contact hole) of the contact hole 123a on the signal line N + layer 116 shown in FIG. 17B is at least 12.5 to 15. In order to reduce the cost of the solid-state imaging device, it is required to further reduce the area of the pixel region. In this respect, although the reduction in the minimum processing size is required, the height of the mast 115 is set to 2.5 to 3 μm due to the requirement of photoelectric conversion characteristics, and therefore it is required to form the contact hole 123a having a higher aspect ratio.

在第17C圖、第17D圖所示的固體攝像裝置中,如第17B圖所示,均需形成深度不同之至少相當於構成像素之矽柱115之高度的2個接觸孔123a、123b。通常該接觸孔123a、123b的形成係個別地進行,因此步驟數會增加。再者,由於需個別地確保形成接觸孔123a與接觸孔123b時之遮罩對位裕度,因而產生像素集積度的降低。或者,在同時形成2個接觸孔123a、123b時,為了要使RIE(Reactive Ion Etching,反應性離子蝕刻)等所進行之接觸孔的形成,精確地擋止在信號線N+層116、與前述像素選擇線導體層122的表面,而產生製造上的困難性。再者,同時形成2個接觸孔時,於接觸孔123b之蝕刻到達底部的像素選擇線導體層122之後,於接觸孔123a之蝕刻到達信號線N+層116表面之前,會額外地曝露在蝕刻氣體。因此,必須將像素選擇線導體層增厚。此外,由蝕刻時間變長,故會產生RIE後之蝕刻用遮罩層之去除、或蝕刻殘留物之去除變困難的問題。此種在製造步驟中的困難性,會隨著接觸孔之深寬比變高而變大。 In the solid-state imaging device shown in FIGS. 17C and 17D, as shown in FIG. 17B, it is necessary to form two contact holes 123a and 123b having different depths corresponding to at least the height of the mast 115 constituting the pixel. Usually, the formation of the contact holes 123a, 123b is performed individually, so the number of steps is increased. Furthermore, since the mask alignment margin when the contact hole 123a and the contact hole 123b are formed is separately ensured, the pixel accumulation degree is lowered. Alternatively, when two contact holes 123a and 123b are formed at the same time, in order to form a contact hole by RIE (Reactive Ion Etching) or the like, the signal line N + layer 116 is accurately stopped. The aforementioned pixels select the surface of the line conductor layer 122, which causes manufacturing difficulty. Furthermore, when two contact holes are formed at the same time, after the etching of the contact holes 123b reaches the bottom pixel selection line conductor layer 122, the etching of the contact holes 123a is additionally exposed to the etching before reaching the surface of the signal line N + layer 116. gas. Therefore, the pixel selection line conductor layer must be thickened. Further, since the etching time is long, the removal of the etching mask layer after RIE or the removal of the etching residue is difficult. Such difficulty in the manufacturing step becomes larger as the aspect ratio of the contact hole becomes higher.

與此種固體攝像裝置同樣地,已知有一種SGT(Surrounding Gate Transistor,環繞式閘極電晶體)做為將電路元件形成於矽柱的半導體裝置。SGT係隔著閘極絕緣層而形成閘極導體層於矽柱之外周的構造,且進一步在位於閘極導體層之上方及下方之矽柱的一部份具有成為源極或汲極的雜質擴散層,而源極與汲極雜質擴散層間的矽柱係構成MOS電晶體的通道(請參照例如專利文獻2之第 32圖、第33圖、第34圖)。 Similar to such a solid-state imaging device, an SGT (Surrounding Gate Transistor) is known as a semiconductor device in which a circuit element is formed on a mast. The SGT forms a gate conductor layer on the outer periphery of the mast layer via a gate insulating layer, and further has a source or drain impurity in a portion of the mast located above and below the gate conductor layer. a diffusion layer, and a column between the source and the drain impurity diffusion layer constitutes a channel of the MOS transistor (refer to, for example, Patent Document 2) 32, 33, 34).

以下一面參照第18A圖、第18B圖、第18C圖一面說明使用習知例之SGT的CMOS反相器(inverter)電路。第18A圖係為使用SGT之反相器電路的電路圖。由2個P通道SGT125a、125b與1個N通道SGT125c所構成,所有SGT125a、125b、125c之閘極係連接於輸入端子Vi,P通道SGT125a、125b之汲極係連接於電源端子Vcc,P通道SGT125a、125b之源極與N通道SGT125c之源極係連接於輸出端子Vo,N通道SGT125c之汲極係連接於接地端子Vss。在此電路中,輸入於輸入端子Vi之信號電壓係反轉而從輸出端子Vo輸出。另外,輸入端子Vi係連接於P通道SGT125a、125b之閘極端子Vi1、及N通道SGT125c的閘極端子Vi2。 Hereinafter, a CMOS inverter circuit using the conventional SGT will be described with reference to FIGS. 18A, 18B, and 18C. Figure 18A is a circuit diagram of an inverter circuit using SGT. It consists of two P channels SGT125a, 125b and one N channel SGT125c. The gates of all SGT125a, 125b, and 125c are connected to the input terminal Vi, and the drains of the P channels SGT125a and 125b are connected to the power supply terminal Vcc, P channel. The source of the SGTs 125a and 125b and the source of the N-channel SGT 125c are connected to the output terminal Vo, and the drain of the N-channel SGT 125c is connected to the ground terminal Vss. In this circuit, the signal voltage input to the input terminal Vi is inverted and output from the output terminal Vo. Further, the input terminal Vi is connected to the gate terminal Vi1 of the P channels SGT 125a, 125b and the gate terminal Vi2 of the N channel SGT 125c.

第18B圖係為應用公知之技術將第18A圖所示之CMOS反相器電路形成於氧化矽基板131上時的平面圖。P通道SGT125a、125b之源極P+層126a與N通道SGT125c之源極N+層126b係相接而形成。此外,形成有在源極P+層126a上形成P通道SGT125a、125b之矽柱127a、127b。此外,在源極N+層126b上形成有N通道SGT125c的矽柱127c。SGT125a、125b之閘極導體層128a係包圍矽柱127a、127b而且連續地形成,並且該閘極導體層128a係經由接觸孔129a而連接於輸入配線金屬層130a(Vi1)。SGT125c之閘極導體層128b係包圍矽柱127c而且連續地形成,並且該閘極導體層128b係經由接觸孔129f而連接於輸入配線金 屬層130e(Vi2)。P通道SGT125a、125b之汲極,係經由形成於矽柱127a、127b上的接觸孔129b、129c而連接於電源配線金屬層130b(Vcc)。P+層126a與N+層126b係經由形成於兩者之交界部上的接觸孔129d而連接於輸出配線金屬層130c(Vo)。N通道SGT125c之源極,係經由形成於矽柱127c上之接觸孔129e而連接於接地配線金屬層130d(Vss)。 Fig. 18B is a plan view showing a state in which a CMOS inverter circuit shown in Fig. 18A is formed on a ruthenium oxide substrate 131 by a known technique. The source P + layer 126a of the P channels SGT 125a, 125b is formed in contact with the source N + layer 126b of the N channel SGT 125c. Further, the masts 127a and 127b forming the P-channels SGT 125a and 125b on the source P + layer 126a are formed. Further, a mast 127c of the N-channel SGT 125c is formed on the source N + layer 126b. The gate conductor layer 128a of the SGTs 125a and 125b surrounds the pillars 127a and 127b and is continuously formed, and the gate conductor layer 128a is connected to the input wiring metal layer 130a (Vi1) via the contact hole 129a. The gate conductor layer 128b of the SGT 125c is formed to continuously surround the mast 127c, and the gate conductor layer 128b is connected to the input wiring metal layer 130e (Vi2) via the contact hole 129f. The drains of the P channels SGT 125a and 125b are connected to the power supply wiring metal layer 130b (Vcc) via the contact holes 129b and 129c formed on the masts 127a and 127b. The P + layer 126a and the N + layer 126b are connected to the output wiring metal layer 130c (Vo) via a contact hole 129d formed on the boundary portion between the two. The source of the N-channel SGT 125c is connected to the ground wiring metal layer 130d (Vss) via a contact hole 129e formed on the mast 127c.

第18C圖係為第18B圖之J-J’線之剖面構造圖。如第18C圖所示,在埋入氧化膜131上形成平板狀矽層132,而平板狀矽層132係由源極P+層126a及源極N+層126b所構成,在汲極P+層126a及汲極N+層126b之交界部附近的表面,係形成有用以使汲極P+層126a與汲極N+層126b彼此直接連接的矽化物(silicide)層133。在汲極P+層126a上之矽柱127a、127b形成有P通道SGT125a、125b,並且在汲極N+層126b上之矽柱127c形成有N通道SGT125c。以包圍矽柱127a、127b、127c之方式形成由HfO2等之High-k(高介電常數)膜所構成的閘極絕緣膜136a、136b、136c,並且以包圍該閘極絕緣膜136a、136b、136c之方式形成有由TaN或TiN等之金屬膜所構成的閘極導體層128a、128b。在形成N通道SGT125c之矽柱127c之上部區域形成有汲極N+層139,並且在形成P通道SGT125a、125b之矽柱127a、127b的上部區域形成有汲極P+層138a、138b。再者,以覆蓋此等源極P+層138a、138b之方式形成有接觸擋止(stopper)SiN層140,並且在SiN層140上形成有 層間SiO2層141。再者,形成有用以貫通經平坦化之SiO2層141之接觸孔129a、129b、129c、129d、129e、129f。 Fig. 18C is a cross-sectional structural view taken along line J-J' of Fig. 18B. As shown in Fig. 18C, a planar germanium layer 132 is formed on the buried oxide film 131, and the flat germanium layer 132 is composed of a source P + layer 126a and a source N + layer 126b, in the drain P + A surface near the boundary between the layer 126a and the drain N + layer 126b is formed with a silicide layer 133 for directly connecting the drain P + layer 126a and the drain N + layer 126b to each other. The pillars 127a, 127b on the drain P + layer 126a are formed with P channels SGT 125a, 125b, and the masts 127c on the drain N + layer 126b are formed with N channels SGT 125c. A gate insulating film 136a, 136b, 136c composed of a High-k (high dielectric constant) film of HfO 2 or the like is formed so as to surround the pillars 127a, 127b, and 127c, and surrounds the gate insulating film 136a, In the manner of 136b and 136c, gate conductor layers 128a and 128b made of a metal film such as TaN or TiN are formed. A drain N + layer 139 is formed in an upper portion of the stem 127c forming the N-channel SGT 125c, and a drain P + layer 138a, 138b is formed in an upper region of the stems 127a, 127b forming the P-channels SGT 125a, 125b. Further, a contact stopper SiN layer 140 is formed to cover the source P + layers 138a, 138b, and an interlayer SiO 2 layer 141 is formed on the SiN layer 140. Further, contact holes 129a, 129b, 129c, 129d, 129e, and 129f are formed to penetrate the planarized SiO 2 layer 141.

在源極P+層126a與源極N+層126b之交界部的矽化物層133,係經由接觸孔129d而連接於輸出配線金屬層130c(Vo)。在矽柱127c之上部區域的汲極N+層139,係經由接觸孔129e而連接於接地配線金屬層130d(Vss)。形成P通道SGT125a、125b之矽柱127a、127b之上部區域的汲極P+層138a、138b,係經由接觸孔129b、129c而連接於電源配線金屬層130b(Vcc)。包圍矽柱127a、127b的閘極導體層128a係經由接觸孔129a而連接於輸入配線金屬層130a(Vi1),並且包圍矽柱127c的閘極導體層128b係經由接觸孔129f而連接於輸入配線金屬層130e(Vi2)。 The vaporized layer 133 at the boundary between the source P + layer 126a and the source N + layer 126b is connected to the output wiring metal layer 130c (Vo) via the contact hole 129d. The drain N + layer 139 in the upper region of the mast 127c is connected to the ground wiring metal layer 130d (Vss) via the contact hole 129e. The drain P + layers 138a and 138b forming the upper region of the pillars 127a and 127b of the P-channels SGT 125a and 125b are connected to the power supply wiring metal layer 130b (Vcc) via the contact holes 129b and 129c. The gate conductor layer 128a surrounding the masts 127a and 127b is connected to the input wiring metal layer 130a (Vi1) via the contact hole 129a, and the gate conductor layer 128b surrounding the mast 127c is connected to the input wiring via the contact hole 129f. Metal layer 130e (Vi2).

從第18C圖可理解,連接於輸入配線金屬層130a(Vi1)、130e(Vi2)、130b(Vcc)、130c(Vo)、130d(Vss)之接觸孔129a、129b、129c、129d、129e、129f之高度,係接觸孔129b、129c、129e相同,且以接觸孔129d、129a、129f的順序變深。此外,在各接觸孔129a、129b、129c、129d、129e、129f之底部連接的閘極導體N+層128a、128b、汲極P+層138a、138b、源極N+層139、矽化物層133的材料有所不同。由此,與前述之固體攝像裝置之情形相同,會產生因為要個別地進行接觸孔的形成所導致步驟數的增加、及因為要確保各接觸孔形成時之遮罩對位裕度所導致電路集積度的降低。或者,在藉由RIE等形成接觸孔129a、129b、129c、129d、129e、129f時,需要以良好控制性使 之在閘極導體層128a、128b、汲極P+層138a、138b上、汲極N+層139、矽化物層133之表面停止,並且產生RIE蝕刻後之蝕刻用遮罩層的去除、或蝕刻殘留物之去除等之製造上的困難性。此外,由於將接觸孔129d設在P通道SGT125a、125b之矽柱127a、127b與N通道SGT125c之矽柱127c的中間,因此無法在該接觸孔129d上形成閘極導體層128a、128b,故將P通道SGT125a、125b之閘極導體層128a、與N通道SGT125c之閘極導體層128b,經由個別的接觸孔129a、129f而連接於個別的輸入配線金屬層130a(Vi1)與130e(Vi2)。由於此種連接構造,如第18A圖所示之CMOS反相器電路的集積度會降低。 As can be understood from Fig. 18C, the contact holes 129a, 129b, 129c, 129d, 129e connected to the input wiring metal layers 130a (Vi1), 130e (Vi2), 130b (Vcc), 130c (Vo), 130d (Vss), The height of 129f is the same as that of the contact holes 129b, 129c, and 129e, and is deepened in the order of the contact holes 129d, 129a, and 129f. Further, gate conductor N + layers 128a, 128b, drain P + layers 138a, 138b, source N + layer 139, germanide layer connected at the bottom of each contact hole 129a, 129b, 129c, 129d, 129e, 129f The material of 133 is different. Therefore, as in the case of the above-described solid-state imaging device, an increase in the number of steps due to the formation of the contact holes individually, and a circuit due to the mask matching margin when the contact holes are formed are generated. The reduction in the degree of accumulation. Alternatively, when the contact holes 129a, 129b, 129c, 129d, 129e, and 129f are formed by RIE or the like, it is necessary to have good controllability on the gate conductor layers 128a, 128b, the drain P + layers 138a, 138b, 汲The surface of the pole N + layer 139 and the vaporized layer 133 is stopped, and the manufacturing of the etching mask layer after the RIE etching or the removal of the etching residue is difficult. Further, since the contact hole 129d is provided between the masts 127a and 127b of the P-channels SGT 125a and 125b and the mast 127c of the N-channel SGT 125c, the gate conductor layers 128a and 128b cannot be formed on the contact hole 129d. The gate conductor layer 128a of the P channels SGT 125a and 125b and the gate conductor layer 128b of the N channel SGT 125c are connected to the individual input wiring metal layers 130a (Vi1) and 130e (Vi2) via the individual contact holes 129a and 129f. Due to this connection configuration, the degree of accumulation of the CMOS inverter circuit as shown in Fig. 18A is lowered.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

專利文獻1:國際公開第2009/034623號 Patent Document 1: International Publication No. 2009/034623

專利文獻2:美國專利申請公開第2010/0213539號說明書 Patent Document 2: US Patent Application Publication No. 2010/0213539

[非專利文獻] [Non-patent literature]

非專利文獻1:G.Agranov,R.Mauritzson;J.Ladd,A.Dokoutchaev,X.Fan,X.Li,Z.Yin,R.Johnson,V.lenchenko v,S.Nagaraja,W.Gazeley,J.Bai,H.Lee,瀧澤義順;「CMOS影像感測器(image sensor)之像素尺寸縮小與特性比較」、影像資訊媒體學會報告、ITE Technical Report Vol.33,No.38,pp.9-12(Sept.2009)。 Non-Patent Document 1: G. Agranov, R. Mauritzson; J. Ladd, A. Dokoutchaev, X. Fan, X. Li, Z. Yin, R. Johnson, V. lenchenko v, S. Nagaraja, W. Gazeley, J. Bai, H. Lee, Takizawa Yoshihide; "Pixel Size Reduction and Feature Comparison of CMOS Image Sensors", Image Information Media Society Report, ITE Technical Report Vol. 33, No. 38, pp. 9-12 (Sept. 2009).

非專利文獻2:S.G.Wuu,C.C.Wang,B.C.Hseih,Y.L.Tu, C.H.Tseng,T.H.Hsu,R.S.Hsiao,S.Takahashi,R.J.Lin,C.S.Tsai,Y.P.Chao,K.Y.Chou,P.S.Chou,H.Y.Tu,F.L.Hsueh,L.Tran;"A Leading-Edge 0.9μm Pixel CMOS Image Sensor Technology with Backside Illumination:Future Challenges for Pixel Scaling",IEDM2010 Digest Papers,14.1.1(2010)。 Non-Patent Document 2: S.G. Wuu, C.C. Wang, B.C. Hseih, Y.L. Tu, CHTseng,THHsu,RSHsiao,S.Takahashi,RJLin,CSTsai,YPChao,KYChou,PSChou,HYTu,FLHsueh,L.Tran;"A Leading-Edge 0.9μm Pixel CMOS Image Sensor Technology With Backside Illumination: Future Challenges for Pixel Scaling", IEDM 2010 Digest Papers, 14.1.1 (2010).

在使用第17A至第17D圖所示之固體攝像裝置之像素、第18A圖至第18C圖所示之SGT的半導體裝置中,亦於矽柱形成有像素或SGT。如此,當在矽柱形成像素或SGT時,位於該矽柱之上部及下方區域之經摻雜有施體或受體雜質之擴散層,分別係經由接觸孔而連接於上部配線金屬層。因此,在連接於矽柱之上部及下方區域之接觸孔的深度,會產生至少矽柱之高度程度的不同。由此,當產生需要個別地進行不同深度之接觸孔的形成時,步驟數會增加、且為了確保在各接觸孔形成時之個別的遮罩對位裕度而會使電路集積度降低。此外,要同時形成2個接觸孔時,在藉由RIE等形成接觸孔時,會產生要以良好控制性在各半導體層、導體層停止之製造上的困難性。再者,在同時形成2個接觸孔時,要將RIE等之蝕刻用遮罩層配合深的接觸孔形成增厚,且該RTE蝕刻後的蝕刻用遮罩層的去除,甚至蝕刻殘留物的去除會變得困難。相對於此,則要求一種抑制步驟數量的增加,且電路集積度不會降低,及接觸 孔形成容易之半導體裝置的製造方法及半導體裝置。再者,由於會產生因為要一面避免將位於矽柱下方部位之摻雜有施體或受體雜質的擴散層連接於上部配線金屬層的接觸孔形成區域,一面將導體層配線形成於矽柱外周所導致電路集積度的降低,因此乃要求要防止此電路集積度的降低。 In the semiconductor device using the pixels of the solid-state imaging device shown in FIGS. 17A to 17D and the SGT shown in FIGS. 18A to 18C, a pixel or an SGT is also formed on the mast. As described above, when the pixel or the SGT is formed on the mast, the diffusion layer doped with the donor or acceptor impurity in the upper portion and the lower region of the mast is connected to the upper wiring metal layer via the contact hole. Therefore, at least the depth of the mast is different in the depth of the contact hole connected to the upper portion and the lower portion of the mast. Thus, when the formation of contact holes requiring different depths is required to be formed individually, the number of steps is increased, and the degree of circuit accumulation is lowered in order to ensure individual mask alignment margins at the time of formation of the contact holes. Further, when two contact holes are formed at the same time, when the contact holes are formed by RIE or the like, it is difficult to manufacture the semiconductor layers and the conductor layers with good controllability. Further, when two contact holes are formed at the same time, the etch mask layer for RIE or the like is formed to be thickened by the contact hole, and the etching mask layer after the RTE etching is removed, and even the residue is etched. Removal can become difficult. In contrast, an increase in the number of suppression steps is required, and the circuit accumulation degree is not lowered, and contact A method of manufacturing a semiconductor device and a semiconductor device in which hole formation is easy. Further, since the contact hole formation region in which the diffusion layer doped with the donor or acceptor impurity is not connected to the upper wiring metal layer is prevented from being formed on the lower portion of the mast, the conductor layer wiring is formed on the mast. The peripheral circuit causes a decrease in the degree of circuit accumulation, and therefore it is required to prevent the reduction in the degree of accumulation of this circuit.

本發明係有鑑於上述情形而研創者,其目的在提供一種可防止電路集積度之降低之半導體裝置的製造方法、及半導體裝置。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a method of manufacturing a semiconductor device and a semiconductor device capable of preventing a reduction in circuit integration.

為了達成上述目的,本發明之第1觀點之半導體裝置之製造方法之特徵為具有:柱狀半導體形成步驟,以成為彼此相同高度之方式同時形成第1柱狀半導體與第2柱狀半導體於基板上;柱狀半導體底部連接步驟,將施體或受體雜質摻雜於前述第1柱狀半導體之底部區域及在下方與前述底部區域相接之區域中之至少一個區域而形成第1半導體層,並且將前述第1半導體層與前述第2柱狀半導體予以彼此連接;電路元件形成步驟,將施體或受體雜質摻雜在前述第1柱狀半導體之上部區域而形成上部半導體區域,且形成具有該上部半導體區域之電路元件;導體層形成步驟,在前述第2柱狀半導體內形成第1導體層;接觸孔形成步驟,形成分別連接於前述第1及第2柱狀半導體之第1接觸孔、第2接觸孔; 配線金屬層形成步驟,形成經由前述第1及第2接觸孔而與前述上部半導體區域及前述第1導體層連接的配線金屬層。 In order to achieve the above object, a method of manufacturing a semiconductor device according to a first aspect of the present invention includes a columnar semiconductor forming step of simultaneously forming a first columnar semiconductor and a second columnar semiconductor on the substrate so as to have the same height a columnar semiconductor bottom connection step of doping the donor or acceptor impurity into at least one of a bottom region of the first columnar semiconductor and a region below the bottom region to form a first semiconductor layer And connecting the first semiconductor layer and the second columnar semiconductor to each other; and the circuit element forming step of doping the donor or acceptor impurity in the upper region of the first columnar semiconductor to form an upper semiconductor region, and Forming a circuit element having the upper semiconductor region; forming a conductor layer to form a first conductor layer in the second columnar semiconductor; and forming a contact hole forming step to form a first connection between the first and second columnar semiconductors Contact hole, second contact hole; The wiring metal layer forming step forms a wiring metal layer that is connected to the upper semiconductor region and the first conductor layer via the first and second contact holes.

亦可復具有以與前述上部半導體區域連接之方式在與前述上部半導體區域相同的面上形成第2導體層的步驟;在前述接觸孔形成步驟中,係在前述第2導體層上、及前述第2柱狀半導體上,以與該第2導體層、該第2柱狀半導體連接之方式分別形成第1及第2接觸孔;在前述配線金屬層形成步驟中,係形成經由前述第1及第2接觸孔而與前述第2導體層及前述第1導體層連接之配線金屬層。 Further, a step of forming a second conductor layer on the same surface as the upper semiconductor region so as to be connected to the upper semiconductor region; and the step of forming the contact hole in the second conductor layer and the aforementioned The first columnar semiconductor is formed with the first and second contact holes so as to be connected to the second conductor layer and the second columnar semiconductor, and the first and second contact holes are formed in the wiring metal layer forming step. a wiring metal layer connected to the second conductor layer and the first conductor layer in the second contact hole.

前述導體層形成步驟亦可包括:將施體或受體雜質摻雜於前述第2柱狀半導體內而形成前述第1半導體層的步驟、或在前述第2柱狀半導體內,藉由將摻雜有施體或受體之多晶半導體層、矽化物層及金屬層中之任一層埋入而形成前述第1半導體層的步驟。 The conductor layer forming step may include a step of doping the donor or acceptor impurity into the second columnar semiconductor to form the first semiconductor layer, or a step of doping the second columnar semiconductor in the second columnar semiconductor A step of forming the first semiconductor layer by embedding any one of a polycrystalline semiconductor layer, a vaporized layer, and a metal layer mixed with a donor or a receptor.

亦可具有以分別包圍前述第1及第2柱狀半導體之方式形成第1絕緣層、第2絕緣層之步驟;及以包圍前述第1及第2絕緣層之方式而且以連接前述第1及前述第2柱狀半導體之方式形成閘極導體層之步驟。 The step of forming the first insulating layer and the second insulating layer so as to surround the first and second columnar semiconductors, and the first and second insulating layers may be connected to the first and second insulating layers. The step of forming the gate conductor layer in the form of the second columnar semiconductor.

亦可復具有在前述閘極導體層之上方,以包圍前述第1及第2絕緣層之方式而且以連接前述第1及第2柱狀半導體之方式形成導體層的步驟。 Further, a step of forming a conductor layer so as to surround the first and second insulating layers and to connect the first and second columnar semiconductors may be provided above the gate conductor layer.

前述柱狀半導體底部連接步驟亦可為將施體或受體雜質摻雜於前述第1柱狀半導體之底部區域及在下方與前述底部區域相接之區域中之至少一區域而形成第1半導體層,並且藉由在前述基板上形成第4導體層而將前述第1半導體層與前述第2柱狀半導體予以彼此連接的步驟。 The columnar semiconductor bottom connection step may be performed by doping a donor or acceptor impurity into at least one of a bottom region of the first columnar semiconductor and a region below the bottom region to form a first semiconductor. And a step of connecting the first semiconductor layer and the second columnar semiconductor to each other by forming a fourth conductor layer on the substrate.

前述第2絕緣層亦可使用較前述第1絕緣層更低電容的絕緣材料所形成。 The second insulating layer may be formed of an insulating material having a lower capacitance than the first insulating layer.

亦可具備以下步驟:以成為彼此相同高度之方式同時形成前述第1及第3柱狀半導體的步驟;將含有施體或受體雜質之雜質擴散層、矽化物層、或金屬層形成於前述第3柱狀半導體內的步驟;及在前述第1柱狀半導體的外周,隔著閘極絕緣層使閘極導體層延伸至前述第3柱狀半導體,並且以包圍前述第3柱狀半導體之方式,而且以形成於前述第3柱狀半導體內且與含有施體或受體雜質之雜質擴散層、矽化物層、或金屬層在前述第3柱狀半導體之下方區域連接之方式形成的步驟。 The step of simultaneously forming the first and third columnar semiconductors at the same height as each other may be provided, and an impurity diffusion layer, a vaporized layer or a metal layer containing a donor or acceptor impurity may be formed in the foregoing a step in the third columnar semiconductor; and extending the gate conductor layer to the third columnar semiconductor via the gate insulating layer on the outer circumference of the first columnar semiconductor, and surrounding the third columnar semiconductor And a step of forming the impurity diffusion layer, the vaporization layer, or the metal layer formed in the third columnar semiconductor and containing the donor or acceptor impurity in a region below the third columnar semiconductor .

此外,本發明之第2觀點之半導體裝置之特徵為具備:基板;及形成於前述基板上,且彼此相同高度的第1及第2柱狀半導體;在前述第1柱狀半導體之底部區域及在下方與前述底部區域相接之區域中之至少一區域,係摻雜有施體或受體 雜質而形成有第1半導體層,並且前述第1半導體層與前述第2柱狀半導體係彼此連接;在前述第1柱狀半導體之上部區域,係形成具有摻雜有施體或受體雜質而成之上部半導體區域的電路元件;在前述第2柱狀半導體內係形成有第1導體層;且具有:分別連接於前述第1及第2柱狀半導體的第1接觸孔、第2接觸孔;經由前述第1及第2接觸孔而與前述上部半導體區域及前述第1導體層連接的配線金屬層。 Further, a semiconductor device according to a second aspect of the present invention includes: a substrate; and first and second columnar semiconductors formed on the substrate and having the same height; and a bottom region of the first columnar semiconductor and At least one of the regions below the aforementioned bottom region is doped with a donor or acceptor a first semiconductor layer is formed with impurities, and the first semiconductor layer and the second columnar semiconductor are connected to each other; and the upper portion of the first columnar semiconductor is doped with a donor or acceptor impurity. a circuit element in the upper semiconductor region; a first conductor layer formed in the second columnar semiconductor; and a first contact hole and a second contact hole respectively connected to the first and second columnar semiconductors a wiring metal layer connected to the upper semiconductor region and the first conductor layer via the first and second contact holes.

亦可以分別包圍前述第1及第2柱狀半導體之方式形成第1絕緣層、第2絕緣層,且第3導體層以包圍前述第1及第2絕緣層中之至少前述第1絕緣層之方式延伸於前述第2絕緣層;前述第2柱狀半導體之外周之前述第3導體層的高度,係較前述第1柱狀半導體之外周之前述第3導體層之高度更低,且較該第3導體層的厚度更高。 The first insulating layer and the second insulating layer may be formed to surround the first and second columnar semiconductors, respectively, and the third conductive layer may surround at least the first insulating layer of the first and second insulating layers. The method extends over the second insulating layer; the height of the third conductor layer on the outer circumference of the second columnar semiconductor is lower than the height of the third conductor layer on the outer circumference of the first columnar semiconductor. The thickness of the third conductor layer is higher.

亦可為固體攝像裝置,該固體攝像裝置之像素係具備前述第1及第2柱狀半導體,並且包含前述電路元件;前述像素係具有:形成於前述基板之做為前述第1半導體層的底部半導體層;第2半導體層,在前述第1柱狀半導體內形成於前述底部半導體層的上方,且包括屬於與前述底部半導體層相 反導電型之半導體或本質(Intrinsic type)半導體;閘極導體層,以位於前述底部半導體層之上方之方式,隔著前述第1絕緣層而形成於前述第2半導體層的外周;第3半導體層,以位於前述閘極導體層之上方之方式形成於前述第2半導體層的外周部,且為與前述第1半導體層相同之導電型;做為前述上部半導體區域之第4半導體層,連接於前述第2半導體層,並且形成於前述第3半導體層的上方,且為屬於與前述底部半導體層相反之導電型;前述第1柱狀半導體之底部區域、與前述第2柱狀半導體內之前述第1導體層係藉由前述底部半導體層而彼此連接。 Further, the solid-state imaging device may include the first and second columnar semiconductors and include the circuit element, and the pixel may have a bottom portion formed on the substrate as the first semiconductor layer. a semiconductor layer; the second semiconductor layer is formed over the bottom semiconductor layer in the first columnar semiconductor, and includes a phase opposite to the bottom semiconductor layer a reverse conductivity type semiconductor or an intrinsic type semiconductor; the gate conductor layer is formed on the outer periphery of the second semiconductor layer via the first insulating layer so as to be positioned above the bottom semiconductor layer; and the third semiconductor The layer is formed on the outer peripheral portion of the second semiconductor layer so as to be located above the gate conductive layer, and has the same conductivity type as the first semiconductor layer; and is connected to the fourth semiconductor layer of the upper semiconductor region. The second semiconductor layer is formed above the third semiconductor layer and has a conductivity type opposite to the bottom semiconductor layer; a bottom region of the first columnar semiconductor and the second columnar semiconductor The first conductor layers are connected to each other by the bottom semiconductor layer.

亦可為具有SGT之半導體裝置;在前述第1柱狀半導體中係形成有前述SGT做為前述電路元件;前述SGT係具備:形成於前述基板之做為前述第1半導體層的底部半導體區域;通道半導體層,連接於前述底部半導體區域之上方部位,並且包括屬於與該底部半導體區域相反導電型之半導體或固有半導體;絕緣層,形成於前述通道半導體層的外周;及導體層,隔著前述閘極絕緣層而形成於前述通道半導 體層的外周;前述上部半導體層係連接於前述通道半導體層的上方部位,並且為與前述底部半導體區域相同的導電型,而且,在該底部半導體區域發揮做為前述SGT之源極的功能時係發揮做為汲極之功能,另一方面,在該底部半導體區域發揮做為前述SGT之汲極的功能時係發揮做為源極之功能;前述底部半導體區域與前述第2柱狀半導體內之前述第1導體層係彼此連接。 The SGT may be a semiconductor device; the SGT may be formed as the circuit element in the first columnar semiconductor; and the SGT may include a bottom semiconductor region formed as the first semiconductor layer on the substrate; a channel semiconductor layer connected to the upper portion of the bottom semiconductor region and including a semiconductor or an intrinsic semiconductor belonging to a conductivity type opposite to the bottom semiconductor region; an insulating layer formed on an outer periphery of the channel semiconductor layer; and a conductor layer interposed therebetween a gate insulating layer formed on the channel semiconductive The outer peripheral layer of the bulk layer; the upper semiconductor layer is connected to the upper portion of the channel semiconductor layer and has the same conductivity type as the bottom semiconductor region, and the bottom semiconductor region functions as a source of the SGT On the other hand, when the bottom semiconductor region functions as the drain of the SGT, it functions as a source, and the bottom semiconductor region and the second columnar semiconductor are used. The first conductor layers are connected to each other.

亦可為固體攝像裝置;在配置複數個前述像素的像素區域中,構成該各像素之前述第1及第2柱狀半導體係分別在縱(行)方向及橫(列)方向排列成2維狀。 The solid-state imaging device may be arranged in a pixel region in which a plurality of the pixels are arranged, and the first and second columnar semiconductor systems constituting each of the pixels are arranged in two dimensions in the vertical (row) direction and the horizontal (column) direction. shape.

亦可為固體攝像裝置;做為前述第1半導體層的底部半導體層,係依前述第1柱狀半導體在縱方向排列而成的每一行,連接於該行中之複數個第1柱狀半導體之底部區域,並且朝縱(行)方向延伸,藉此形成第1半導體層連接導體層;前述第1半導體層連接導體層係連接於該第1半導體層連接導體層上之與前述各第1柱狀半導體鄰接之前述第2柱狀半導體之底部區域;前述第1柱狀半導體之前述閘極導體層,係以遮蔽射入至在列方向鄰接之該第1柱狀半導體之間之光之方式彼此連接,藉此而形成朝橫(列)方向延伸之第2半導體層連 接導體層;且具備以遮蔽射入於在行方向鄰接之前述第1柱狀半導體之間之光之方式朝橫(列)方向延伸,並且連接於該各第1柱狀半導體之前述第4半導體層之第3半導體層連接導體層;在形成有前述第2及第3半導體層連接導體層中之至少一者的區域內,形成有複數個前述第2柱狀半導體,並且在該各第2柱狀半導體上形成有接觸孔,而前述第1半導體層連接導體層與前述配線金屬層係經由該各接觸孔與前述各第2柱狀半導體內之前述第1導體層而彼此連接。 A solid-state imaging device may be used. The bottom semiconductor layer of the first semiconductor layer may be connected to the plurality of first columnar semiconductors in the row in a row in which the first columnar semiconductors are arranged in the vertical direction. a bottom region extending in a vertical direction (row direction) to form a first semiconductor layer connection conductor layer; wherein the first semiconductor layer connection conductor layer is connected to the first semiconductor layer connection conductor layer and each of the first a bottom region of the second columnar semiconductor adjacent to the columnar semiconductor; and the gate conductor layer of the first columnar semiconductor is shielded from light incident between the first columnar semiconductors adjacent in the column direction Ways are connected to each other, thereby forming a second semiconductor layer extending in the lateral (column) direction And the fourth layer of the first columnar semiconductor is connected to the first columnar semiconductor so as to shield the light incident between the first columnar semiconductors adjacent to each other in the row direction a third semiconductor layer connecting conductor layer of the semiconductor layer; and a plurality of the second columnar semiconductors are formed in a region in which at least one of the second and third semiconductor layer connecting conductor layers is formed, and A contact hole is formed in the columnar semiconductor, and the first semiconductor layer connection conductor layer and the wiring metal layer are connected to each other via the contact holes and the first conductor layer in each of the second columnar semiconductors.

亦可為固體攝像裝置;在排列有前述像素的像素區域中,做為前述第1半導體層的底部半導體層係依前述第1柱狀半導體在縱方向排列而成的每一行,朝縱(行)方向延伸,藉此形成第1半導體層連接導體層;前述第1柱狀半導體之前述閘極導體層係彼此連接,藉此而形成朝橫(列)方向延伸的第2半導體層連接導體層;且具備連接於前述第1柱狀半導體之前述第4半導體層,且朝橫(列)方向延伸之第3半導體層連接導體層;前述第2及第3半導體層連接導體層從電磁能量(energy)波之射入方向觀看,係以具有彼此重疊之部分之方式形成;前述第2柱狀半導體係形成於前述第1半導體層連接 導體層上,而且在橫(列)方向鄰接之前述第1柱狀半導體之間。 In the pixel region in which the pixels are arranged, the bottom semiconductor layer as the first semiconductor layer is arranged in the vertical direction in the vertical direction of the first columnar semiconductor. a direction in which the first semiconductor layer connection conductor layer is formed, and the gate conductor layers of the first columnar semiconductor are connected to each other, thereby forming a second semiconductor layer connection conductor layer extending in the lateral (row) direction And a third semiconductor layer connecting conductor layer connected to the fourth semiconductor layer of the first columnar semiconductor and extending in a lateral (column) direction; and the second and third semiconductor layer connecting conductor layers from electromagnetic energy ( The energy is formed in a direction in which the waves are incident, and is formed to have a portion overlapping each other; and the second columnar semiconductor is formed on the first semiconductor layer On the conductor layer, between the first columnar semiconductors adjacent in the lateral (column) direction.

亦可為具有SGT之半導體裝置,其係排列有複數個前述第1柱狀半導體;前述第1柱狀半導體之前述閘極導體層係以將複數個前述第1柱狀半導體彼此連接之方式延伸;在形成有前述閘極導體層之區域形成有前述第2柱狀半導體;以包圍前述第2柱狀半導體之方式形成有第2絕緣層;前述閘極導體層係隔著前述第2絕緣層而形成於第2柱狀半導體之外周。 Further, in the semiconductor device having the SGT, a plurality of the first columnar semiconductors may be arranged, and the gate conductor layer of the first columnar semiconductor may be extended by connecting a plurality of the first columnar semiconductors to each other. a second columnar semiconductor formed in a region where the gate conductor layer is formed, a second insulating layer formed to surround the second columnar semiconductor, and the second insulating layer via the gate conductor layer It is formed on the outer circumference of the second columnar semiconductor.

亦可在前述基板上形成有前述第1及第2柱狀半導體、及整體被第3絕緣層所覆蓋的第3柱狀半導體;在前述第1柱狀半導體上形成有第6半導體層,並且在前述第1柱狀半導體之下方區域形成有第7半導體層;以分別包圍前述第1柱狀半導體、前述第2柱狀半導體之方式形成有第1絕緣層、第2絕緣層;以在前述第1柱狀半導體之外周包圍前述第1絕緣層之方式,而且以在前述第2柱狀半導體之外周包圍前述第2絕緣層之方式形成由至少1層所構成的第5導體層,而該第5導體層係連接於前述第3柱狀半導體之上表面;以連接於前述第3柱狀半導體、前述第1柱狀半導體之前述第6半導體層、及前述第2柱狀半導體之方式分別 形成有接觸孔;且具有經由前述接觸孔,連接於前述第6半導體層、前述第7半導體層、及前述第5導體層任一者的配線金屬層。 The first columnar semiconductor and the third columnar semiconductor covered by the third insulating layer may be formed on the substrate, and the sixth semiconductor layer may be formed on the first columnar semiconductor. a seventh semiconductor layer is formed in a region below the first columnar semiconductor; a first insulating layer and a second insulating layer are formed to surround the first columnar semiconductor and the second columnar semiconductor, respectively; A first conductor layer is surrounded by the outer circumference of the first columnar semiconductor, and a fifth conductor layer composed of at least one layer is formed so as to surround the second insulating layer on the outer circumference of the second columnar semiconductor. The fifth conductor layer is connected to the upper surface of the third columnar semiconductor, and is connected to the third columnar semiconductor, the sixth semiconductor layer of the first columnar semiconductor, and the second columnar semiconductor. A contact hole is formed, and a wiring metal layer connected to any one of the sixth semiconductor layer, the seventh semiconductor layer, and the fifth conductor layer via the contact hole is provided.

亦可以分別包圍前述第1柱狀半導體、前述第2柱狀半導體之方式形成有第1絕緣層、第2絕緣層,並且以包圍前述第1絕緣層之方式形成有第7導體層,而該第7導體層係延伸至前述第2柱狀半導體;前述第7導體層係隔著前述第2絕緣層而形成於前述第2柱狀半導體之外周,並且在前述第2柱狀半導體之上部,連接於前述第1導體層。 The first insulating layer and the second insulating layer may be formed to surround the first columnar semiconductor and the second columnar semiconductor, respectively, and the seventh conductive layer may be formed to surround the first insulating layer. The seventh conductor layer extends to the second columnar semiconductor; the seventh conductor layer is formed on the outer circumference of the second columnar semiconductor via the second insulating layer, and is on the upper portion of the second columnar semiconductor. Connected to the first conductor layer.

前述第1及第3柱狀半導體亦可以成為彼此相同高度之方式同時形成者;在前述第3柱狀半導體內,係形成有含有施體或受體雜質之雜質擴散層、矽化物層、或金屬層;在前述第1柱狀半導體之外周,隔著閘極絕緣層而形成有閘極導體層;前述閘極導體層係延伸至前述第3柱狀半導體,並且包圍前述第3柱狀半導體,而且與形成於前述第3柱狀半導體內之含有施體或受體雜質之雜質擴散層、矽化物層、或金屬層,在前述第3柱狀半導體之下方區域連接。 The first and third columnar semiconductors may be formed to have the same height, and an impurity diffusion layer or a telluride layer containing a donor or acceptor impurity may be formed in the third columnar semiconductor. a metal layer; a gate conductor layer is formed on the outer periphery of the first columnar semiconductor via a gate insulating layer; the gate conductor layer extends to the third columnar semiconductor and surrounds the third columnar semiconductor Further, an impurity diffusion layer, a vaporization layer or a metal layer containing a donor or acceptor impurity formed in the third columnar semiconductor is connected to a lower region of the third columnar semiconductor.

依據本發明之半導體裝置之製造方法及半導體裝置,構成電路元件之柱狀半導體之上部區域及下部區域、與配 置於該柱狀半導體之上方之配線層的連接即變得容易,並且可達成具有電路元件之半導體裝置之高積體化、高速驅動化、穩定動作化。 According to the method of manufacturing a semiconductor device and the semiconductor device of the present invention, the upper and lower regions of the columnar semiconductor constituting the circuit element are matched It is easy to connect the wiring layer placed above the columnar semiconductor, and it is possible to achieve high integration, high-speed driving, and stable operation of the semiconductor device having the circuit element.

以下一面參照圖式一面說明本發明之實施形態之半導體裝置之製造方法、及藉由該製造方法所製造之半導體裝置。 Hereinafter, a method of manufacturing a semiconductor device according to an embodiment of the present invention and a semiconductor device manufactured by the method of the present invention will be described with reference to the drawings.

(第1實施形態) (First embodiment)

以下一面參照第1A圖、第1B圖、第2A圖至第2F圖一面說明本發明之第1實施形態之固體攝像裝置、及其製造方法。 Hereinafter, a solid-state imaging device according to a first embodiment of the present invention and a method of manufacturing the same will be described with reference to FIGS. 1A, 1B, 2A, and 2F.

第1A圖係顯示本實施形態之固體攝像裝置的平面圖。在固體攝像裝置之像素區域中,構成像素的矽柱P11至P33係在縱(行)方向及橫(列)方向排列成2維(矩陣(matrix))狀。此等矽柱P11至P33係形成於氧化矽基板1上,且形成於在第1A圖之縱(行)方向延伸至周邊驅動/輸出電路區域之信號線N+層5a、5b、5c上。信號線N+層5a、5b、5c在設於第1A圖之上方部、左方部的周邊驅動/輸出電路區域中,係經由形成於第2矽柱Ca、Cb、Cc上之接觸孔SCa、SCb、SCc而連接於信號線金屬層26a、26b、26c。 Fig. 1A is a plan view showing the solid-state imaging device of the embodiment. In the pixel region of the solid-state imaging device, the masts P 11 to P 33 constituting the pixels are arranged in a two-dimensional (matrix) shape in the vertical (row) direction and the horizontal (column) direction. The columns P 11 to P 33 are formed on the yttrium oxide substrate 1 and formed on the signal line N + layers 5a, 5b, 5c extending in the longitudinal (row) direction of the first A-picture to the peripheral driving/outputting circuit region. on. The signal line N + layers 5a, 5b, and 5c are in the peripheral drive/output circuit region provided in the upper portion and the left portion of the first A-A through the contact hole SCa formed on the second masts Ca, Cb, and Cc. The SCb and SCc are connected to the signal line metal layers 26a, 26b, and 26c.

矽柱P11至P33係被朝橫(列)方向延伸之重設MOS閘極導體層7a、7b、7c所包圍。 The masts P 11 to P 33 are surrounded by the reset MOS gate conductor layers 7a, 7b, 7c extending in the lateral (column) direction.

像素選擇線導體層14a、14b、14c係在第1A圖之橫(列)方向延伸至周邊驅動/輸出電路區域,且在周邊驅動/輸出 電路區域中,經由接觸孔16aa、16ab、16ac而連接於像素選擇線金屬層17aa、17ab、17ac。 The pixel selection line conductor layers 14a, 14b, 14c extend in the lateral (column) direction of the first AA to the peripheral drive/output circuit region, and are driven/outputted at the periphery. In the circuit region, the pixel selection line metal layers 17aa, 17ab, and 17ac are connected via the contact holes 16aa, 16ab, and 16ac.

第1B圖係為沿著第1A圖所示之A-A’線之剖面構造圖。在氧化矽基板1上形成有平板狀信號線N+層5(5a)。在此信號線N+層5(5a)上形成有構成像素之第1矽柱2(P11)、及構成接觸窗(contact)的第2矽柱3(Ca)。信號線N+層5(5a)係藉由施體雜質的熱擴散而形成於第1、第2矽柱2(P11)、3(Ca)的下方區域。 Fig. 1B is a cross-sectional structural view taken along line A-A' shown in Fig. 1A. A flat signal line N + layer 5 (5a) is formed on the ruthenium oxide substrate 1. On the signal line N + layer 5 (5a), a first mast 2 (P 11 ) constituting a pixel and a second mast 3 (Ca) constituting a contact are formed. The signal line N + layer 5 (5a) is formed in a lower region of the first and second masts 2 (P 11 ) and 3 (Ca) by thermal diffusion of donor impurities.

以覆蓋第1、第2矽柱2(P11)、3(Ca)與信號線N+層5(5a)之方式,形成有由氧化矽(SiO2)所構成的絕緣層4b、4c。在此的絕緣層4b係為閘極絕緣層。此外,在氧化矽基板1上係形成有SiO2層6,而在該SiO2層6上及第1矽柱2(P11)之閘極絕緣層4b的外周,形成有重設MOS閘極導體層7(7a)。以鄰接於重設MOS閘極導體層7(7a)之方式,在第1矽柱2(P11)之上方部位中之P層8a之外周部,形成有光二極體N層9。此外,在SiO2層6上係形成有SiO2層10。 Insulating layers 4b and 4c made of yttrium oxide (SiO 2 ) are formed so as to cover the first and second masts 2 (P 11 ) and 3 (Ca) and the signal line N + layer 5 (5a). The insulating layer 4b here is a gate insulating layer. Further, an SiO 2 layer 6 is formed on the yttrium oxide substrate 1, and a reset MOS gate is formed on the SiO 2 layer 6 and the outer periphery of the gate insulating layer 4b of the first pillar 2 (P 11 ). Conductor layer 7 (7a). The photodiode N layer 9 is formed on the outer peripheral portion of the P layer 8a in the upper portion of the first mast 2 (P 11 ) so as to be adjacent to the reset MOS gate conductor layer 7 (7a). Further, an SiO 2 layer 10 is formed on the SiO 2 layer 6.

在第1矽柱2(P11)的上部區域,係形成有像素選擇P+層11。此外,在第2矽柱3(Ca)中,係藉由導入施體雜質而形成有導體N+層13。此外,形成有連接於像素選擇P+層11之像素選擇線導體層14(14a)。再者,以覆蓋此等構造物之整體之方式沉積有SiO2層15。 In the upper region of the first mast 2 (P 11 ), a pixel selection P + layer 11 is formed. Further, in the second column 3 (Ca), the conductor N + layer 13 is formed by introducing a donor impurity. Further, a pixel selection line conductor layer 14 (14a) connected to the pixel selection P + layer 11 is formed. Further, the SiO 2 layer 15 is deposited in such a manner as to cover the entirety of the structures.

再者,在SiO2層15中,係形成有接觸孔16a(16aa)、16b(SCa)。經由接觸孔16a(16aa)連接像素選擇線導體層14(14a)與像素選擇線金屬層17a(17aa),並且經由接觸孔 16b(SCa)而連接有導體N+層13與信號線金屬層17b(26a)。 在此,係在第1及第2矽柱2(P11)、3(Ca)上,形成有相同深度之接觸孔16a(16aa)、16b(SCa)。 Further, in the SiO 2 layer 15, contact holes 16a (16aa) and 16b (SCa) are formed. The pixel selection line conductor layer 14 (14a) and the pixel selection line metal layer 17a (17aa) are connected via the contact hole 16a (16aa), and the conductor N + layer 13 and the signal line metal layer 17b are connected via the contact hole 16b (SCa) (26a). Here, contact holes 16a (16aa) and 16b (SCa) having the same depth are formed on the first and second masts 2 (P 11 ) and 3 (Ca).

以下一面參照第2A圖至第2F圖一面說明本實施形態之固體攝像裝置的製造方法。此製造方法係為製造第1B圖所示之剖面構造圖之固體攝像裝置的方法。 Hereinafter, a method of manufacturing the solid-state imaging device according to the embodiment will be described with reference to FIGS. 2A to 2F. This manufacturing method is a method of manufacturing the solid-state imaging device of the cross-sectional structure diagram shown in FIG. 1B.

本實施形態之固體攝像裝置的製造方法係具有:柱狀半導體形成步驟,在氧化矽基板1上形成平板狀矽層5S,且在該平板狀矽層5S上,使構成固體攝像裝置之像素的第1矽柱2、及構成接觸窗之第2矽柱3成為彼此相同高度而且同時形成;柱狀半導體底部連接步驟,將施體或受體雜質摻雜於第1矽柱2之底部區域及在下方與該底部區域鄰接之區域中之至少一區域而形成信號線N+層5,並且將信號線N+層5與第2矽柱3彼此連接;電路元件形成步驟,將施體或受體雜質摻雜於第1矽柱2之上部區域而形成P+層11,且形成具有該P+層11之電路元件;導體層形成步驟,在第2矽柱3內形成導體N+層13;像素選擇線導體層形成步驟,與形成於第1矽柱2之上部區域之P+層11連接,且形成位於與該P+層11相同面上之像素選擇線導體層14;接觸孔形成步驟,形成分別連接於第1矽柱2或像素選擇線導體層14、及第2矽柱3之接觸孔16a、16b;配線金屬層形成步驟,經由接觸孔16a形成連接於第1矽柱2之上部區域之P+層11或與該P+層11連接之像素選擇線導體層14的像素選擇線金屬層17a,及經由接觸孔16b形 成與第2矽柱3之導體N+層13連接之信號線金屬層17b;以分別包圍第1矽柱2、第2矽柱3之方式形成SiO2層4b、4c的步驟;及以包圍SiO2層4b、4c中之至少SiO2層4b之方式形成為將由至少1層所構成之閘極導體層7連接於SiO2層4c的步驟。 The method of manufacturing a solid-state imaging device according to the present embodiment includes a columnar semiconductor forming step of forming a flat layer of germanium layer 5S on the tantalum oxide substrate 1, and forming pixels of the solid-state imaging device on the flat layered layer 5S. The first column 2 and the second column 3 constituting the contact window are formed at the same height and simultaneously; the columnar semiconductor bottom connection step is performed by doping the donor or acceptor impurity into the bottom region of the first column 2 and Forming a signal line N + layer 5 at least one of the regions adjacent to the bottom region, and connecting the signal line N + layer 5 and the second mast 3 to each other; the circuit element forming step, the donor or the receiving The bulk impurity is doped in the upper region of the first mast 2 to form the P + layer 11 and the circuit component having the P + layer 11 is formed; the conductor layer forming step forms the conductor N + layer 13 in the second mast 3 a pixel selection line conductor layer forming step of connecting to the P + layer 11 formed on the upper portion of the first mast 2 and forming a pixel selection line conductor layer 14 on the same surface as the P + layer 11; the contact hole is formed Steps, forming respectively connected to the first column 2 or pixel selection 14, the second silicon column line contact hole 3 of the conductor layers 16a, 16b; step of forming a wiring metal layer, 16a 2 is formed connected to the upper region of the first silicon pillar 11 of the P + layer or P + layer via the contact hole 11 connected pixel selection line conductor layer 14 of pixel selection line metal layer 17a, and via contact hole 16b formed with signal line metal layer 17b connected to conductor N + layer 13 of second mast 3; respectively, to surround the first mast 2. a step of forming the SiO 2 layers 4b, 4c in the manner of the second column 3; and forming a gate conductor layer composed of at least one layer so as to surround at least the SiO 2 layer 4b of the SiO 2 layers 4b, 4c 7 is a step of connecting to the SiO 2 layer 4c.

在此,係由閘極導體層7與光二極體形成有做為電路元件的像素,該閘極導體層7係隔著SiO2層4b而形成於P層8a的外周,而該光二極體係包括以與形成於信號線N+層5上之P層8a及閘極導體層7鄰接之方式形成於P層8a之外周部的N層9。 Here, a pixel as a circuit element is formed by the gate conductor layer 7 and the photodiode, and the gate conductor layer 7 is formed on the outer periphery of the P layer 8a via the SiO 2 layer 4b, and the photodiode system The N layer 9 formed on the outer peripheral portion of the P layer 8a so as to be adjacent to the P layer 8a and the gate conductor layer 7 formed on the signal line N + layer 5 is included.

以下一面參照第2A圖至第2F圖一面更詳細說明本實施形態之固體攝像裝置之製造方法。 Hereinafter, a method of manufacturing the solid-state imaging device according to the present embodiment will be described in more detail with reference to FIGS. 2A to 2F.

如第2A圖所示,在本實施形態之固體攝像裝置的像素區域中,係於氧化矽基板1上形成平板狀矽層5S,且在該平板狀矽層5S上,形成構成像素的第1矽柱2。此外,在周邊驅動/輸出電路區域中,形成構成接觸窗的第2矽柱3。藉此,第1矽柱2與第2矽柱3即隔著平板狀矽層5S而連接。 As shown in FIG. 2A, in the pixel region of the solid-state imaging device of the present embodiment, a flat ruthenium layer 5S is formed on the ruthenium oxide substrate 1, and the first constituting pixel is formed on the flat ruthenium layer 5S.矽柱2. Further, in the peripheral drive/output circuit region, the second mast 3 constituting the contact window is formed. Thereby, the first mast 2 and the second mast 3 are connected via the flat layer 5S.

接下來,如第2A圖所示,將位於氧化矽基板1上之第1、第2矽柱2、3之高度的矽層,藉由以Si氧化膜(SiO2磨)與Si氮化膜(Si3N4膜)為遮罩之RIE所進行的Si蝕刻予以蝕刻至平板狀矽層5S的高度為止,且以使第1矽柱2及第2矽柱3成為彼此相同高度之方式同時形成。 Next, as shown in FIG. 2A, the tantalum layer having the heights of the first and second masts 2, 3 on the tantalum oxide substrate 1 is made of a Si oxide film (SiO 2 mill) and a Si nitride film. (Si 3 N 4 film) is etched to the height of the flat ruthenium layer 5S by the Si etching performed by the RIE of the mask, and the first mast 2 and the second mast 3 are at the same height as each other. form.

接下來如第2B圖所示,在第1、第2矽柱2、3、與 第1、第2矽柱2、3間之矽層的表面形成SiO2層4a。 Next, as shown in FIG. 2B, the SiO 2 layer 4a is formed on the surfaces of the first and second columns 2, 3 and the first and second columns 2 and 3.

接下來,如第2B圖所示,在第1矽柱2與第2矽柱3之間的矽層,例如將As、P等之施體雜質進行離子注入並且進行熱擴散,且在平板狀矽層5S、與第1、第2矽柱2、3的下方區域形成做為信號線的N+層5。 Next, as shown in FIG. 2B, the ruthenium layer between the first column 2 and the second column 3 is ion-implanted with, for example, As, P, etc., and is thermally diffused, and is in a flat shape. The 矽 layer 5S and the lower region of the first and second masts 2, 3 form an N + layer 5 as a signal line.

接下來,如第2B圖所示,藉由CVD(Chemical Vapor Deposition,化學氣相沉積)沉積SiO2層4a,並且藉由進行回蝕(etch back),在第1矽柱2與第2矽柱3之間的氧化矽基板1上形成SiO2層6。 Next, as shown in FIG. 2B, the SiO 2 layer 4a is deposited by CVD (Chemical Vapor Deposition), and by performing etch back, the first mast 2 and the second crucible are used. An SiO 2 layer 6 is formed on the yttrium oxide substrate 1 between the pillars 3.

接下來,將SiO2層4a去除,且如第2C圖所示,在第1矽柱2、第2矽柱3的表面氧化且在第1矽柱2形成MOS電晶體的閘極SiO2層4b、及在第2矽柱3的表面形成SiO2層4c,且使用鎢(W)、鎳(Ni)、鈷(Co)、鈦(Ti)或此等之氮化物材料而形成MOS電晶體的閘極導體層7。 Next, the SiO 2 layer 4a is removed, and as shown in FIG. 2C, the surface of the first mast 2 and the second mast 3 is oxidized and the gate SiO 2 layer of the MOS transistor is formed in the first mast 2 4b, and forming an SiO 2 layer 4c on the surface of the second column 3, and forming a MOS transistor using tungsten (W), nickel (Ni), cobalt (Co), titanium (Ti) or the like Gate conductor layer 7.

接下來,如第2D圖所示,將經離子注入或摻雜有砷(As)等之施體雜質的CVDSiO2膜做為擴散源,且以鄰接於閘極導體層7之方式,在第1矽柱2之P層8之外周部,形成構成光二極體的N層9。 Next, as shown in FIG. 2D, a CVDSiO 2 film ion-implanted or doped with a donor impurity such as arsenic (As) is used as a diffusion source, and adjacent to the gate conductor layer 7, On the outer peripheral portion of the P layer 8 of the mast 2, an N layer 9 constituting the photodiode is formed.

接下來,如第2D圖所示,藉由CVD沉積SiO2膜10,並且藉由進行蝕刻將SiO2層10之平面予以平坦化之後,在P層8a及N層9之上方,藉由受體雜質之離子注入形成像素選擇P+層11於第1矽柱2的上部區域。 Next, as shown in FIG. 2D, the SiO 2 film 10 is deposited by CVD, and the plane of the SiO 2 layer 10 is planarized by etching, and then over the P layer 8a and the N layer 9 by Ion implantation of bulk impurities forms a pixel-selective P + layer 11 in the upper region of the first mast 2 .

接下來,如第2E圖所示,藉由光微影法(photo lithography)在第2矽柱3之上方區域形成具有貫通孔之 光阻(photo resist)層12,且將磷(P)等之施體雜質進行離子注入於第2矽柱3而形成導體N+層13。在此,由於較理想為此方式在第2矽柱3整體形成導體N+層13,因此在此的離子注入中,較理想為使用利用即使是相同加速電壓亦可將雜質導入深入於Si中之穿隧(Channeling)現象的離子注入法。 Next, as shown in FIG. 2E, a photo resist layer 12 having a through hole is formed in a region above the second mast 3 by photolithography, and phosphorus (P) or the like is applied. The bulk impurities are ion-implanted into the second column 3 to form the conductor N + layer 13. Here, since it is preferable to form the conductor N + layer 13 as a whole in the second column 3 in this manner, in the ion implantation here, it is preferable to use the same acceleration voltage to introduce impurities into the Si. The ion implantation method of the channeling phenomenon.

接下來,將光阻層12去除,且進行經離子注入之施體雜質的活性化熱處理。 Next, the photoresist layer 12 is removed, and an activation heat treatment of the donor impurities by ion implantation is performed.

接下來,如第2F圖所示,形成連接於第1矽柱2之像素選擇P+層11的像素選擇線導體層14。 Next, as shown in FIG. 2F, the pixel selection line conductor layer 14 connected to the pixel selection P + layer 11 of the first mast 2 is formed.

接下來,如第2F圖所示,在SiO2膜10上,藉由CVD形成SiO2層15,並且在SiO2層15形成接觸孔16a、16b。 Next, as shown in FIG. 2F, on the SiO 2 film 10, the SiO 2 layer 15 is formed by CVD, and the contact holes 16a, 16b are formed in the SiO 2 layer 15.

接下來,如第2F圖所示,經由接觸孔16a連接像素選擇線導體層14與像素選擇線金屬層17a,並且經由接觸孔16b連接導體N+層13與信號線金屬層17b。在此,位於第1矽柱2之下方區域的信號線N+層5,係隔著形成於第2矽柱3內之導體N+層13而連接於信號線金屬層17b。 Next, as shown in FIG. 2F, the pixel selection line conductor layer 14 and the pixel selection line metal layer 17a are connected via the contact hole 16a, and the conductor N + layer 13 and the signal line metal layer 17b are connected via the contact hole 16b. Here, the signal line N + layer 5 located in the lower region of the first mast 2 is connected to the signal line metal layer 17b via the conductor N + layer 13 formed in the second mast 3 .

藉此,位於構成像素之第1矽柱2之上部區域的像素選擇P+層11、及位於該第1矽柱2之下方區域的信號線N+層5,即經由彼此相同深度之接觸孔16a、16b而連接於像素選擇線金屬層17a及信號線金屬層17b。 Thereby, the pixel located in the upper portion of the first mast 2 constituting the pixel selects the P + layer 11 and the signal line N + layer 5 located in the lower region of the first mast 2, that is, via the contact holes of the same depth to each other. 16a and 16b are connected to the pixel selection line metal layer 17a and the signal line metal layer 17b.

連接於第1矽柱2之P+層11的像素選擇線導體層14,係在形成於第1矽柱2之上部區域之P+層11的側面連接於該P+層11。像素選擇線導體層14上之接觸孔16a、與 第2矽柱3上之接觸孔16b係以彼此大致相同之深度形成。 Connected to the first silicon pillar P 2 of the pixel selection line + layer 11 of the conductor layer 14, formed in the upper two lines in the region of the first silicon pillar P + layer 11 is connected to the side surface of the P + layer 11. The contact hole 16a on the pixel selection line conductor layer 14 and the contact hole 16b on the second mast 3 are formed to have substantially the same depth.

依據本實施形態,構成固體攝像裝置之像素(電路元件)之第1矽柱2、P11至P33、及構成接觸窗之第2矽柱3、Ca(3)、Cb、Cc,係以成為彼此相同高度之方式而且同時形成。藉此,即可將用以將位於第1矽柱2、P11至P33之下方區域的信號線N+層5、5a、5b、5c、及位於上部區域的像素選擇P+層11(在第1A圖中係位於第1矽柱2、P11至P33的上面)予以連接於信號線金屬層17b、26a、26b、26c及像素選擇線金屬層17a、17aa、17ab、17ac之接觸孔16a、16b、SCa、SCb、SCc、16aa、16ab、16ac設為彼此相同之深度。再者,接觸孔16b、SCa(16b)、SCb、SCc不需如第17B圖所示之習知例之接觸孔123a要設為較深的接觸孔。藉此,即可易於實現位於經由接觸孔16a、16b之第1矽柱2之上下區域的信號線N+層5、5a(5)、5b、5c、與像素選擇P+層11(在第1A圖中係位於第1矽柱P11至P33的上面)、與信號線金屬層17b、26a、26b、26c及像素選擇線金屬層17a、17aa、17ab、17ac的連接。 According to the present embodiment, the pixels constituting the solid-state image pickup apparatus of (circuit element) of the first silicon pillar 2, P 11 to P 33, and forming the contact windows of the second silicon pillar 3, Ca (3), Cb , Cc, based in The way to become the same height of each other and at the same time. Thereby, the signal line N + layers 5, 5a, 5b, 5c located in the lower region of the first mast 2, P 11 to P 33 , and the pixel located in the upper region can be selected as the P + layer 11 ( Contacted in the first column 2, P 11 to P 33 in FIG. 1A) is connected to the contact of the signal line metal layers 17b, 26a, 26b, 26c and the pixel selection line metal layers 17a, 17aa, 17ab, 17ac. The holes 16a, 16b, SCa, SCb, SCc, 16aa, 16ab, 16ac are set to have the same depth. Further, the contact holes 16b, SCa (16b), SCb, and SCc do not need to be set to a deep contact hole as the contact hole 123a of the conventional example shown in Fig. 17B. Thereby, the signal lines N + layers 5, 5a (5), 5b, 5c located in the upper and lower regions of the first mast 2 via the contact holes 16a, 16b can be easily realized, and the pixel selection P + layer 11 (in the first 1A is located above the first masts P 11 to P 33 ), and is connected to the signal line metal layers 17b, 26a, 26b, and 26c and the pixel selection line metal layers 17a, 17aa, 17ab, and 17ac.

一般而言,為了提升固體攝像裝置之紅波長靈敏度,需將構成像素之第1矽柱2、P11至P33的高度增大,且需將屬於光電轉換區域之光二極體長度增長。此係因為紅波長光相較於藍、綠波長光,會在較光射入面更深的Si內被吸收光而產生信號電荷,因此當要以光二極體吸收更多射入之紅波長光時,必須要將第1矽柱2、P11至P33增高之故。然而,在習知技術中,用以連接信號線N+層116與信號線 金屬層124a之接觸孔123a的深度會變得更大。相對於此,依據本實施形態中所獲得的固體攝像裝置,連接於信號線金屬層17b、26a、26b、26c、與像素選擇線金屬層17a、17aa、17ab、17ac之接觸孔16a、16b、SCa、SCb、SCc、16aa、16ab、16ac總是以高度較小而且彼此相同高度之方式形成。因此,本實施形態之固體攝像裝置在獲得具有高紅波長靈敏度之固體攝像裝置時尤其有效。 Generally, in order to enhance the sensitivity of the solid imaging device of a red wavelength, the need to form a first silicon pillar of the pixel 2, the height P 11 to P 33 increases, and the need to belong to the photoelectric conversion region of the diode length is increased. This is because the red wavelength light is absorbed by the light in the deeper Si than the blue and green wavelength light, and the signal charge is generated. Therefore, when the light diode is to absorb more of the incident red wavelength light, At the time, the first mast 2, P 11 to P 33 must be increased. However, in the prior art, the depth of the contact hole 123a for connecting the signal line N + layer 116 and the signal line metal layer 124a may become larger. On the other hand, the solid-state imaging device obtained in the present embodiment is connected to the signal line metal layers 17b, 26a, 26b, and 26c, and the contact holes 16a and 16b of the pixel selection line metal layers 17a, 17aa, 17ab, and 17ac, SCa, SCb, SCc, 16aa, 16ab, 16ac are always formed in such a manner that the height is small and the heights are the same as each other. Therefore, the solid-state imaging device of the present embodiment is particularly effective when obtaining a solid-state imaging device having high red wavelength sensitivity.

(第2實施形態) (Second embodiment)

第3A圖至第3C圖係顯示本實施形態之固體攝像裝置的製造方法。在本實施形態中,係藉由形成矽化物層23以取代第1B圖中之構成接觸窗之第2矽柱3的導體N+層13,來將信號線N+層5與信號線金屬層17b之間的電阻值減小。 3A to 3C are views showing a method of manufacturing the solid-state imaging device according to the embodiment. In the present embodiment, the signal line N + layer 5 and the signal line metal layer are formed by forming the germanide layer 23 in place of the conductor N + layer 13 of the second column 3 constituting the contact window in FIG. 1B. The resistance value between 17b is reduced.

在本實施形態中,首先,係經過第1實施形態中之第2A圖至第2D圖所示的步驟。 In the present embodiment, first, the steps shown in Figs. 2A to 2D in the first embodiment are performed.

接下來,如第3A圖所示,形成連接於第1矽柱2之P+層11的像素選擇線導體層14,且藉由CVD形成SiO2層18與光阻層19,又藉由光微影法與蝕刻而在第2矽柱3上形成貫通孔20。 Next, as shown in FIG. 3A, the pixel selection line conductor layer 14 connected to the P + layer 11 of the first column 2 is formed, and the SiO 2 layer 18 and the photoresist layer 19 are formed by CVD, and by light. Through holes 20 are formed in the second mast 3 by lithography and etching.

接下來,如第3A圖所示,藉由將矽(Si)、氫(H)等之不會成為施體或受體的雜質予以離子注入於第2矽柱3,在第2矽柱3形成非晶(amorphous)或多孔質矽層21之後,將光阻層19去除。 Next, as shown in FIG. 3A, ions are implanted into the second column 3 by impurities such as cerium (Si) or hydrogen (H) which are not donors or acceptors, and the second column 3 is After the formation of the amorphous or porous tantalum layer 21, the photoresist layer 19 is removed.

接下來,如第3B圖所示,藉由蒸鍍法將鎳(Ni)、鈷 (Co)、鉭(Ta)、鎢(W)、鈦(Ti)等之金屬層22予以覆蓋且進行熱處理,於形成非晶或多孔質矽層21之經由矽化物化之矽化物層23之後,將金屬層22予以去除。此矽化物層23係由NiSi2、CoSi2、TaSi2、WSi2、TiS2等材料所形成。 Next, as shown in FIG. 3B, the metal layer 22 of nickel (Ni), cobalt (Co), tantalum (Ta), tungsten (W), titanium (Ti) or the like is covered and heat-treated by a vapor deposition method. After the formation of the amorphous or porous tantalum layer 21 via the vaporized telluride layer 23, the metal layer 22 is removed. The vaporized layer 23 is formed of a material such as NiSi 2 , CoSi 2 , TaSi 2 , WSi 2 , or TiS 2 .

接下來,如第3C圖所示,在SiO2層18形成接觸孔16a、16b,並且形成像素選擇線導體層14經由接觸孔16a而連接的像素選擇線金屬層17a。再者,形成經由第2矽柱3之接觸孔16b而連接於矽化物層23的信號線金屬層17b。 Next, as shown in FIG. 3C, contact holes 16a, 16b are formed in the SiO 2 layer 18, and a pixel selection line metal layer 17a in which the pixel selection line conductor layer 14 is connected via the contact hole 16a is formed. Further, a signal line metal layer 17b connected to the vaporized layer 23 via the contact hole 16b of the second column 3 is formed.

依據本實施形態,由於形成於第1實施形態之第2矽柱3的導體N+層13成為電阻值較低的矽化物層23,因此可降低信號線N+層5與信號線金屬層17b之間的電阻值。由於信號線N+層5與信號線金屬層17b之間的電阻值R、與自信號線N+層5至信號線金屬層17b之各配線間電容C的RC積愈小,像素驅動速度就會愈大,因此可藉由該矽化物層23而達成固體攝像裝置的高速驅動化。 According to the present embodiment, since the conductor N + layer 13 formed in the second mast 3 of the first embodiment has the vaporized layer 23 having a low resistance value, the signal line N + layer 5 and the signal line metal layer 17b can be lowered. The resistance value between. Since the wiring resistance value R between each of the signal lines between the N + layer 5 and the signal line metal layer 17b, and a signal line from the N + layer 5 to the signal line metal layer 17b of the capacitor C of the RC product is smaller, a pixel driving speed is The larger the size, the higher the driving speed of the solid-state imaging device can be achieved by the telluride layer 23.

(第3實施形態) (Third embodiment)

以下一面參照第4A圖至第4D圖、第5圖一面說明本實施形態之固體攝像裝置的製造方法。在本實施形態中,係藉由形成鎢(W)、銅(Cu)等之金屬層70a、70b以取代第1B圖中之構成接觸窗之第2矽柱3的導體N+層13,而將信號線N+層5與信號線金屬層73b之間的電阻值減小。 Hereinafter, a method of manufacturing the solid-state imaging device according to the embodiment will be described with reference to FIGS. 4A to 4D and 5 . In the present embodiment, the metal layer 70a, 70b such as tungsten (W) or copper (Cu) is formed instead of the conductor N + layer 13 of the second column 3 constituting the contact window in Fig. 1B. The resistance value between the signal line N + layer 5 and the signal line metal layer 73b is reduced.

在本實施形態中,首先,係經過第1實施形態中之第2A圖至第2C圖所示的步驟。 In the present embodiment, first, the steps shown in Figs. 2A to 2C in the first embodiment are performed.

接下來,如第4A圖所示,在第1矽柱2的外周部,形成構成光二極體的N層9,且藉由CVD在第1矽柱2、第2矽柱3、SiO2層6上形成氮化Si(SiN)層64。 Next, as shown in FIG. 4A, an N layer 9 constituting a photodiode is formed on the outer peripheral portion of the first mast 2, and the first mast 2, the second mast 3, and the SiO 2 layer are formed by CVD. A nitrided Si (SiN) layer 64 is formed over 6.

接下來,如第4A圖所示,藉由SiO2層65將構造物整體予以覆蓋,並且使用CMP(Chemical Mechanical Polishing,化學機械研磨)將該SiO2層65的表面研磨至第1矽柱2、與第2矽柱3上之SiN層64表面。 Next, as shown in FIG. 4A, the entire structure is covered by the SiO 2 layer 65, and the surface of the SiO 2 layer 65 is polished to the first column 2 by CMP (Chemical Mechanical Polishing). And the surface of the SiN layer 64 on the second column 3.

接下來,如第4B圖所示,藉由RIE將SiO2層65回蝕至使第1矽柱2與第2矽柱之上部露出為止,並且藉由蝕刻將覆蓋所露出之第1矽柱2的SiO2層4b與SiN層64予以去除而形成像素選擇P+層11。 Next, as shown in FIG. 4B, the SiO 2 layer 65 is etched back by RIE until the upper portion of the first mast 2 and the second post are exposed, and the exposed first post is covered by etching. The SiO 2 layer 4b of 2 and the SiN layer 64 are removed to form a pixel selective P + layer 11.

接下來,如第4B圖所示,以連接於像素選擇P+層11之方式形成像素選擇線導體層14,並且藉由CVD以覆蓋構造物整體之方式形成SiO2層66。 Next, as shown in FIG. 4B, the pixel selection line conductor layer 14 is formed in such a manner as to be connected to the pixel selection P + layer 11, and the SiO 2 layer 66 is formed by CVD to cover the entire structure.

接下來,如第4B圖所示,藉由CMP將SiO2層66研磨至第2矽柱3上之SiN層64表面。 Next, as shown in FIG. 4B, the SiO 2 layer 66 is polished to the surface of the SiN layer 64 on the second column 3 by CMP.

接下來,如第4B圖所示,藉由光微影法,使用光阻層67在第2矽柱3上形成貫通孔68,並且以光阻層67做為蝕刻遮罩,將第2矽柱3上之SiN層64、SiO2層4c、第2矽柱3之矽層予以蝕刻而形成貫通孔68a。 Next, as shown in FIG. 4B, a through hole 68 is formed on the second mast 3 by the photolithography method using the photoresist layer 67, and the photoresist layer 67 is used as an etching mask, and the second layer is formed. The layer of the SiN layer 64, the SiO 2 layer 4c, and the second column 3 on the column 3 is etched to form a through hole 68a.

接下來,如第4C圖所示,將光阻層67去除,且在貫通孔68a的底部及側壁的SiO2層4c表面形成氮化鈦(TiN)層69,及藉由CVD在TiN層69上面堆積鎢(W)層70。 Next, as shown in FIG. 4C, the photoresist layer 67 is removed, and a titanium nitride (TiN) layer 69 is formed on the surface of the SiO 2 layer 4c at the bottom and sidewalls of the through hole 68a, and the TiN layer 69 is formed by CVD. A tungsten (W) layer 70 is deposited thereon.

接下來,如第4D圖所示,藉由CMP將W層70研磨至 SiO2層66表面,且藉由CVD將SiO2層71堆積於整體,並且形成接觸孔72a、72b。 Next, as shown in Fig. 4D, the W layer 70 is polished to the surface of the SiO 2 layer 66 by CMP, and the SiO 2 layer 71 is deposited as a whole by CVD, and contact holes 72a, 72b are formed.

接下來,如第4D圖所示,經由接觸孔72a將像素選擇線導體層14與像素選擇線金屬層73a予以連接,且經由接觸孔72b將W層70a與信號線金屬層73b予以連接。 Next, as shown in FIG. 4D, the pixel selection line conductor layer 14 and the pixel selection line metal layer 73a are connected via the contact hole 72a, and the W layer 70a and the signal line metal layer 73b are connected via the contact hole 72b.

藉此,形成於第2矽柱3的導體層,在第2F圖所示之構造中即為導體N+層13,而在第3C圖所示之構造中則即為矽化物層23,相對於此,在本實施形態中,則成為電阻更低的W層70a。 Thereby, the conductor layer formed on the second mast 3 is the conductor N + layer 13 in the structure shown in FIG. 2F, and the vaporized layer 23 in the structure shown in FIG. 3C. Here, in the present embodiment, the W layer 70a having a lower electric resistance is used.

第5圖係顯示形成銅(Cu)層70b以取代前述的W層70a做為形成於第2矽柱3內的導體層。前述之W層70a雖係藉由CVD法形成,但Cu層70b則係使用電場鍍覆法(Electrochemical Deposition)法來形成。此外,在形成W層70a時,於前述的W層70中,為了使SiO2層66、4b與W層70的密接良好,係使用TiN層69做為底塗層(primer),相對於此,在形成Cu層70b時,則係使用阻障晶種(barrier seed)層69a做為Cu層70b的底塗層,該阻障晶種層69a係包括由用以防止Cu擴散於SiO2層4b、65、66之TiN、TaN等所構成的阻障層、及成為Cu電場鍍覆用電極之藉由濺鍍法所形成之由Cu形成的晶種層。再者,藉由CVD堆積SiO2層71,並且在SiO2層71形成接觸孔72a、72b。然後,經由接觸孔72a將像素選擇線導體層14與像素選擇線金屬層73a予以連接,並且經由接觸孔72b將Cu層70b與信號線金屬層73b予以連接。 Fig. 5 shows a copper (Cu) layer 70b formed in place of the aforementioned W layer 70a as a conductor layer formed in the second mast 3. Although the W layer 70a described above is formed by a CVD method, the Cu layer 70b is formed by an electro-chemical plating method (Electrochemical Deposition) method. Further, in the formation of the W layer 70a, in order to make the adhesion between the SiO 2 layers 66, 4b and the W layer 70 good in the aforementioned W layer 70, the TiN layer 69 is used as a primer. When the Cu layer 70b is formed, a barrier seed layer 69a is used as an undercoat layer of the Cu layer 70b, and the barrier seed layer 69a is included to prevent Cu from diffusing to the SiO 2 layer. A barrier layer made of TiN, TaN, or the like of 4b, 65, and 66, and a seed layer formed of Cu formed by a sputtering method as an electrode for Cu electric field plating. Further, the SiO 2 layer 71 is deposited by CVD, and the contact holes 72a and 72b are formed in the SiO 2 layer 71. Then, the pixel selection line conductor layer 14 is connected to the pixel selection line metal layer 73a via the contact hole 72a, and the Cu layer 70b is connected to the signal line metal layer 73b via the contact hole 72b.

(第4實施形態) (Fourth embodiment)

以下一面參照第6圖一面說明本實施形態之固體攝像裝置的製造方法。在第1實施形態之第1B圖的剖面構造中,第1矽柱2與第2矽柱3係形成於信號線N+層5(5a)上,相對於此,在本實施形態中,該信號線N+層5(5a)則成為形成於氧化矽基板1上之W、Co、Ti等之金屬材料、或包含該等金屬材料的導體層。 Hereinafter, a method of manufacturing the solid-state imaging device according to the embodiment will be described with reference to Fig. 6. In the cross-sectional structure of Fig. 1B of the first embodiment, the first mast 2 and the second mast 3 are formed on the signal line N + layer 5 (5a), whereas in the present embodiment, The signal line N + layer 5 (5a) is a metal material such as W, Co, or Ti formed on the yttrium oxide substrate 1, or a conductor layer containing the metal material.

第6圖係為與第1B圖對應之固體攝像裝置的剖面構造圖。 Fig. 6 is a cross-sectional structural view of the solid-state imaging device corresponding to Fig. 1B.

參照第6圖,首先,在氧化矽基板1上,藉由CVD,以W、Co、Ti等之金屬材料、或包含該等金屬之材料來形成信號線導體層28。 Referring to Fig. 6, first, a signal line conductor layer 28 is formed on a ruthenium oxide substrate 1 by CVD, a metal material such as W, Co, or Ti, or a material containing the same.

接下來,在該信號線導體層28上形成構成像素之第1矽柱2a與構成接觸窗之第2矽柱3a,且包圍第1矽柱2a、第2矽柱3a而形成SiO2層29a、29b。 Next, the first column 2a constituting the pixel and the second column 3a constituting the contact window are formed on the signal line conductor layer 28, and the first column 2a and the second column 3a are surrounded to form the SiO 2 layer 29a. 29b.

接下來,以包圍第1矽柱2a之方式,在第1矽柱2a的下方區域,經由SiO2層29a而形成閘極導體層30a,且在第1矽柱2a、第2矽柱3a的下方區域,形成連接於信號線導體層28的N+層31a、31b。 Next, the gate conductor layer 30a is formed via the SiO 2 layer 29a in the lower region of the first mast 2a so as to surround the first mast 2a, and is in the first mast 2a and the second mast 3a. In the lower region, N + layers 31a, 31b connected to the signal line conductor layer 28 are formed.

接下來,在閘極導體層30a的上方於第1矽柱2a的外周部,形成構成光二極體的N層32。 Next, an N layer 32 constituting the photodiode is formed on the outer peripheral portion of the first mast 2a above the gate conductor layer 30a.

接下來,在第1矽柱2a與第2矽柱3a之間,藉由CVD形成SiO2層10a,並且在N層32的上方且為第1矽柱2a之上部區域形成像素選擇P+層33。 Next, between the first column 2a and the second column 3a, the SiO 2 layer 10a is formed by CVD, and a pixel selective P + layer is formed above the N layer 32 and above the first column 2a. 33.

接下來,以連接於該像素選擇P+層33之方式形成像素選擇線導體層14。 Next, the pixel selection line conductor layer 14 is formed in such a manner that the P + layer 33 is selected in connection with the pixel.

接下來,將施體或受體雜質摻雜於直到第2矽柱3a之上面的內部,或是形成經矽化物化的導體層35。 Next, the donor or acceptor impurity is doped to the inside of the upper side of the second column 3a, or the germanide-formed conductor layer 35 is formed.

接下來,在SiO2層10a、第1矽柱2a、第2矽柱3a的上部區域形成SiO2層15,並且分別在像素選擇線導體層14上形成接觸孔16a、及在第2矽柱3a上形成接觸孔16b。 Next, an SiO 2 layer 15 is formed in an upper region of the SiO 2 layer 10a, the first column 2a, and the second column 3a, and a contact hole 16a and a second column are formed on the pixel selection line conductor layer 14, respectively. A contact hole 16b is formed on 3a.

接下來,以經由接觸孔16a而連接於像素選擇線導體層14之方式形成像素選擇線金屬層17a,且以經由接觸孔16b與導體層35連接之方式形成信號線金屬層17b。 Next, the pixel selection line metal layer 17a is formed to be connected to the pixel selection line conductor layer 14 via the contact hole 16a, and the signal line metal layer 17b is formed to be connected to the conductor layer 35 via the contact hole 16b.

在第1B圖所示之步驟中,像素區域之第1矽柱2、與存在於周邊驅動/輸出電路區域之構成接觸窗的第2矽柱3係經由信號線N+層5而彼此連接。相對於此,在本實施形態中,位於第1矽柱2a之下方區域的信號線N+層31a,係藉由電阻較N+層5低的W、Ni、Co等之金屬或矽化物之信號線導體層28而連接,因此可將用以連結設於像素區域之周邊之驅動-輸出電路與位於像素區域之像素間之信號線的電阻予以降低。結果,可達成固體攝像裝置的高速驅動。 In the step shown in FIG. 1B, the first mast 2 of the pixel region and the second mast 3 which forms a contact window existing in the peripheral drive/output circuit region are connected to each other via the signal line N + layer 5. On the other hand, in the present embodiment, the signal line N + layer 31a located in the lower region of the first mast 2a is made of a metal such as W, Ni, Co, or the like having a lower electric resistance than the N + layer 5. Since the signal line conductor layer 28 is connected, the resistance for connecting the drive-output circuit provided at the periphery of the pixel region and the signal line between the pixels located in the pixel region can be reduced. As a result, high-speed driving of the solid-state imaging device can be achieved.

(第5實施形態) (Fifth Embodiment)

以下一面參照第7A圖至第7D圖一面說明本實施形態之固體攝像裝置。依據本實施形態,改善關於第17C圖所示之習知例之固體攝像裝置中之高速驅動化的課題、以及第17D所示之習知例之固體攝像裝置中之像素高集積度化的課題。 The solid-state imaging device according to the embodiment will be described below with reference to FIGS. 7A to 7D. According to the present embodiment, the problem of high-speed driving in the solid-state imaging device of the conventional example shown in FIG. 17C and the problem of high pixel integration in the solid-state imaging device of the conventional example shown in FIG. 17D are improved. .

第7A圖係為顯示經由與第2A圖至第2C圖所示之製造步驟相同的步驟所形成之剖面構造的圖。在本實施形態中,係於像素區域,與構成像素之第1矽柱2鄰接,形成構成接觸窗之第2矽柱3a,且在周邊驅動/輸出電路區域形成構成接觸窗的第3矽柱3b。此第3矽柱3b係與信號線N+層分離而形成。以包圍形成為覆蓋第1至第3矽柱2、3a、3b之SiO2層4b、4c、4d之方式形成閘極導體層7a。此閘極導體層7a係以將第1至第3矽柱2、3a、3b彼此連接之方式形成,而且以覆蓋該第3矽柱3b之方式形成。 Fig. 7A is a view showing a cross-sectional structure formed by the same steps as the manufacturing steps shown in Figs. 2A to 2C. In the present embodiment, the second mast 3a constituting the contact window is formed adjacent to the first mast 2 constituting the pixel in the pixel region, and the third mast constituting the contact window is formed in the peripheral drive/output circuit region. 3b. This third column 3b is formed by being separated from the signal line N + layer. The gate conductor layer 7a is formed so as to surround the SiO 2 layers 4b, 4c, and 4d which are formed to cover the first to third pillars 2, 3a, and 3b. The gate conductor layer 7a is formed to connect the first to third masts 2, 3a, and 3b to each other, and is formed to cover the third mast 3b.

第7B圖係接續第7A圖顯示經由與第2D圖、第2E圖、第2F圖相同之步驟所形成之剖面構造的圖。在第2F圖中,像素選擇線導體層14雖與構成接觸窗的第2矽柱3分離,但在本實施形態中,如第7B圖所示,像素選擇線導體層14d係以從第1矽柱2上之像素選擇P+層11延伸之方式形成在包圍第2矽柱3a之SiO2層4c的外周。像素選擇線導體層14d係經由接觸孔16a而與像素選擇線金屬層17a連接。信號線N+層5係經由構成接觸窗之第2矽柱3a的導體層23(21)、與接觸孔16b而連接於信號線金屬層17b。再者,閘極導體層7a係包圍第2矽柱3a之外周,並且延長至第3矽柱3b,且進一步延伸至該第3矽柱3b的上面。再者,閘極導體層7a係從第3矽柱3b上經由接觸孔16c而連接於閘極導體層17c。 Fig. 7B is a view showing a cross-sectional structure formed by the same steps as those of the 2D, 2E, and 2F. In the second F diagram, the pixel selection line conductor layer 14 is separated from the second mast 3 constituting the contact window. However, in the present embodiment, as shown in Fig. 7B, the pixel selection line conductor layer 14d is from the first The pixel on the mast 2 is formed so that the P + layer 11 extends so as to be formed on the outer circumference of the SiO 2 layer 4c surrounding the second mast 3a. The pixel selection line conductor layer 14d is connected to the pixel selection line metal layer 17a via the contact hole 16a. The signal line N + layer 5 is connected to the signal line metal layer 17b via the conductor layer 23 (21) of the second column 3a constituting the contact window and the contact hole 16b. Further, the gate conductor layer 7a surrounds the outer circumference of the second mast 3a, and extends to the third mast 3b, and further extends to the upper surface of the third mast 3b. Further, the gate conductor layer 7a is connected to the gate conductor layer 17c from the third mast 3b via the contact hole 16c.

第7C圖係顯示在第7B圖所示之構成接觸窗之第2矽柱3a之外周形成閘極導體層7a時的平面圖。沿著第7C 圖中之B-B’線的剖面構造圖係對應於第7B圖。 Fig. 7C is a plan view showing a state in which the gate conductor layer 7a is formed on the outer circumference of the second mast 3a constituting the contact window shown in Fig. 7B. Along the 7C The cross-sectional structural diagram of the B-B' line in the figure corresponds to Fig. 7B.

在第7B圖所示的像素區域中,僅圖示有重複排列在第7C圖之橫(列)方向之B-B’線上之最初構成像素之第1矽柱P11(第7B圖之第1矽柱2)、及構成接觸窗之第2矽柱C11(第7B圖之第2矽柱3a)。在實際的固體攝像裝置中,係將構成像素的第1矽柱P11、與構成接觸窗的第2矽柱C11設為一對,且該等係在縱(行)及橫(列)方向排列成2維狀。在本實施形態之固體攝像裝置中,信號線N+層5a(5)、5b、5c係以朝縱(行)方向延伸之方式形成。在此等信號線N+層5a(5)、5b、5c上,形成第1矽柱P11至P33、及以與第1矽柱P11至P33鄰接而排列於橫(列)之方式,形成構成接觸窗的第2矽柱C11至C33。與此同時,在周邊驅動/輸出電路區域以連接於閘極導體層7aa(7a)、7ab、7ac之方式形成第3矽柱36a(3b)、36b、36c。第1、第2矽柱P11至P33、C11至C33之下方區域,係連接於信號線N+層5a(5)、5b、5c。閘極導體層7aa(7a)、7ab、7ac係以朝橫(列)方向延伸之方式形成於第1至第2矽柱P11至P33、C11至C33之外周。再者,閘極導體層7aa(7a)、7ab、7ac在周邊驅動/輸出電路區域中,係延伸至第3矽柱36a(3b)、36b、36c。與此相同,像素選擇線導體層14a(14d)、14b、14c係以朝第7C圖中之橫(列)方向延伸之方式形成於第1至第2矽柱P11、C11至C33之外周。像素選擇線導體層14a(14d)、14b、14c係以朝橫(列)方向延伸之方式形成於第1、第2矽柱P11至P33、C11至C33之外周。再者,在周邊驅動電路區域中, 經由接觸孔16aa(16a)、16ab、16ac而連接於像素選擇線金屬層17aa(17a)、17ab、17cc。閘極導體層7aa(7a)、7ab、7ac係經由形成於第3矽柱36a(3b)、36b、36c上之接觸孔37a(16c)、37b、37c連接於閘極導體層38a(17c)、38b、38c。信號線N+層5a(5)、5b、5c係經由形成於構成接觸窗之第2矽柱C11至C33上之接觸孔SC11至SC23,而連接於信號線金屬層26a(17b)、26b。藉此,在第17C圖所示之習知例的固體攝像裝置中,係於像素區域經由形成於構成像素之第1矽柱P11至P33之最下方之電阻較高的信號線N+層116a、116b、116c,而使信號線被取出於周邊驅動/輸出電路區域,相對於此,在本實施形態中,則係藉由電阻較低的信號線金屬層26a(17b)、26b而取出信號線。結果,依據本實施形態之固體攝像裝置,相較於習知例的固體攝像裝置,可實現高速驅動化。 In the pixel region shown in Fig. 7B, only the first column P 11 of the first pixel constituting the B-B' line which is repeatedly arranged in the horizontal (column) direction of the seventh drawing is shown (the seventh column) 1 column 2), and the second column C 11 constituting the contact window (the second column 3a of Fig. 7B). In an actual solid-state imaging device, the first mast P 11 constituting the pixel and the second mast C 11 constituting the contact window are paired, and the pair is in the vertical (row) and the horizontal (column). The directions are arranged in a two-dimensional shape. In the solid-state imaging device of the present embodiment, the signal line N + layers 5a (5), 5b, and 5c are formed to extend in the vertical (row) direction. On the signal line N + layers 5a (5), 5b, and 5c, the first masts P 11 to P 33 are formed , and the first masts P 11 to P 33 are adjacent to each other and arranged in the horizontal (column). In this manner, the second cylinders C 11 to C 33 constituting the contact window are formed. At the same time, the third masts 36a (3b), 36b, and 36c are formed in the peripheral drive/output circuit region so as to be connected to the gate conductor layers 7aa (7a), 7ab, and 7ac. The lower regions of the first and second masts P 11 to P 33 and C 11 to C 33 are connected to the signal line N + layers 5a (5), 5b, and 5c. The gate conductor layers 7aa (7a), 7ab, and 7ac are formed on the outer circumferences of the first to second masts P 11 to P 33 and C 11 to C 33 so as to extend in the lateral (column) direction. Further, the gate conductor layers 7aa (7a), 7ab, and 7ac extend to the third masts 36a (3b), 36b, and 36c in the peripheral drive/output circuit region. Similarly, the pixel selection line conductor layers 14a (14d), 14b, and 14c are formed on the first to second masts P 11 and C 11 to C 33 so as to extend in the lateral (column) direction in FIG. 7C. Outside the week. Pixel selection line conductor layer 14a (14d), 14b, 14c in line (column) extending in the transverse direction is formed in the first and the second silicon pillar P 11 to P 33, C 11 to C 33 outside weeks. Further, in the peripheral driving circuit region, the pixel selection line metal layers 17aa (17a), 17ab, and 17cc are connected via the contact holes 16aa (16a), 16ab, and 16ac. The gate conductor layers 7aa (7a), 7ab, and 7ac are connected to the gate conductor layer 38a (17c) via contact holes 37a (16c), 37b, 37c formed on the third masts 36a (3b), 36b, 36c. , 38b, 38c. The signal line N + layers 5a, 5b, 5c are connected to the signal line metal layer 26a (17b) via contact holes SC 11 to SC 23 formed on the second pillars C 11 to C 33 constituting the contact window. ), 26b. As a result, in the solid-state imaging device of the conventional example shown in FIG. 17C, the pixel region is formed via the signal line N + which is formed at the lowest position of the first pillars P 11 to P 33 constituting the pixel. In the layers 116a, 116b, and 116c, the signal lines are taken out in the peripheral driving/outputting circuit region. In contrast, in the present embodiment, the signal line metal layers 26a (17b) and 26b are provided with low resistance. Take out the signal line. As a result, according to the solid-state imaging device of the present embodiment, high-speed driving can be realized as compared with the solid-state imaging device of the conventional example.

再者,依據本實施形態,可提升像素區域的像素集積度。 Furthermore, according to the present embodiment, the pixel integration degree of the pixel region can be improved.

亦即,在第17D圖所示的習知技術中,將形成於構成像素之第1矽柱P11至P33之最下方之信號線N+層130a、130b、130c予以連接於形成於最上方之信號線金屬層135a、135b、135c的接觸孔CH11至CH33,在俯視觀看下無法形成為與形成於較信號線N+層130a、130b、130c更上方之MOS電晶體之重設MOS閘極導體層131a、131b、131c、及像素選擇線導體N+層132a、132b、132c重疊。因此,重設MOS閘極導體N+層131a、131b、131c、及像素選擇線 導體N+層1323、132b、132c係需以避開接觸孔CH11至CH33之方式配線。相對於此,在本實施形態中,閘極導體層7aa(7a)、7ab、7ac、及像素選擇線導體層14a(14d)、14b、14c係沿著構成接觸窗之第2矽柱C11至C33的外周,在俯視觀察下形成為重疊。結果,依據本實施形態之固體攝像裝置,相較於習知例之固體攝像裝置,可提升像素區域的像素集積度。 That is, in the conventional technique shown in Fig. 17D, the signal line N + layers 130a, 130b, 130c formed at the lowest of the first masts P 11 to P 33 constituting the pixel are connected to the most The contact holes CH 11 to CH 33 of the upper signal line metal layers 135a, 135b, and 135c cannot be formed to be reset with the MOS transistors formed above the signal line N + layers 130a, 130b, and 130c in plan view. The MOS gate conductor layers 131a, 131b, and 131c and the pixel selection line conductor N + layers 132a, 132b, and 132c overlap. Therefore, the reset MOS gate conductor N + layers 131a, 131b, 131c and the pixel selection line conductor N + layers 1323, 132b, 132c are wired so as to avoid the contact holes CH 11 to CH 33 . On the other hand, in the present embodiment, the gate conductor layers 7aa (7a), 7ab, 7ac, and the pixel selection line conductor layers 14a (14d), 14b, and 14c are along the second mast C 11 constituting the contact window. The outer circumference to C 33 is formed to overlap in plan view. As a result, according to the solid-state imaging device of the present embodiment, the pixel accumulation degree of the pixel region can be improved as compared with the solid-state imaging device of the conventional example.

在第7B圖所示的剖面構造中,形成於構成接觸窗之第2矽柱3a之外周的絕緣層4c係使用與形成於第1矽柱2之外周之閘極絕緣層4b相同的材料層而形成。通常,在該閘極絕緣層4b中,係使用高介電常數(High-K)材料層。因此,形成於構成接觸窗之第2矽柱3a之外周的閘極導體層7a及像素選擇線導體層14b、與構成接觸窗之第2矽柱3a內之導體層23(21)的結合電容會變大。由於此種閘極線/信號線間、像素選擇線/信號線間之結合電容的增大,會損害固體攝像裝置之高速驅動化的效果。此外,由於此情形,亦會因為相互脈衝(pulse)電壓雜訊混入於閘極線/信號線間、像素選擇線/信號線間而損害固體攝像裝置的穩定驅動化。因此,為了固體攝像裝置之高速驅動化/安定驅動化,係要求重設閘極線-信號線間電容、及像素選擇線-信號線間之電容的降低。 In the cross-sectional structure shown in FIG. 7B, the insulating layer 4c formed on the outer periphery of the second mast 3a constituting the contact window is made of the same material layer as the gate insulating layer 4b formed on the outer periphery of the first mast 2 And formed. Generally, in the gate insulating layer 4b, a high dielectric constant (High-K) material layer is used. Therefore, the bonding capacitance of the gate conductor layer 7a and the pixel selection line conductor layer 14b formed on the outer circumference of the second mast 3a constituting the contact window and the conductor layer 23 (21) in the second mast 3a constituting the contact window Will get bigger. Due to the increase in the combined capacitance between the gate line/signal line and the pixel selection line/signal line, the effect of high-speed driving of the solid-state imaging device is impaired. Further, in this case, the mutual drive pulse noise is mixed between the gate line/signal line and the pixel selection line/signal line to impair the stable driving of the solid-state imaging device. Therefore, in order to drive the high-speed driving/stabilization of the solid-state imaging device, it is required to reset the capacitance between the gate line-signal line and the capacitance between the pixel selection line and the signal line.

第7D圖係顯示重設閘極線-信號線間之電容、及像素選擇線-信號線間之電容更為減低之固體攝像裝置的剖面構造圖。第7D圖所示之構造,除了包圍構成接觸窗之第2 矽柱3a之導體層23(21)而形成低電容絕緣層4e以外,均與第7B圖所示的構造相同。低電容絕緣層4e係由含氟(F)或碳(C)之氧化膜(SiOF、SiOC)、多孔(porous)SiO2膜等之低介電常數(Low-k)絕緣層、厚的SiO2膜、或是SiO2膜等絕緣膜與低介電常數絕緣膜的組合所形成。藉由該低電容絕緣層4e,在閘極導體層7a及像素選擇線導體層14d、與連接於信號線N+層5之導體層23(21)之間所形成的結合電容即降低。藉此,可實現固體攝像裝置的高速驅動化、穩定驅動化。 Fig. 7D is a cross-sectional structural view showing the solid-state imaging device in which the capacitance between the gate line and the signal line is reset and the capacitance between the pixel selection line and the signal line is further reduced. The structure shown in Fig. 7D is the same as the structure shown in Fig. 7B except that the conductor layer 23 (21) constituting the second mast 3a of the contact window is formed to form the low-capacitance insulating layer 4e. The low-capacitance insulating layer 4e is a low dielectric constant (Low-k) insulating layer of a fluorine-containing (F) or carbon (C) oxide film (SiOF, SiOC), a porous SiO 2 film, or the like, and a thick SiO. A film or a combination of an insulating film such as a SiO 2 film and a low dielectric constant insulating film is formed. The bonding capacitance formed between the gate conductor layer 7a and the pixel selection line conductor layer 14d and the conductor layer 23 (21) connected to the signal line N + layer 5 is lowered by the low capacitance insulating layer 4e. Thereby, high-speed driving and stable driving of the solid-state imaging device can be achieved.

(第6實施形態) (Sixth embodiment)

以下一面參照第8A圖、第8B圖一面說明本實施形態之固體攝像裝置。本實施形態相較於第5實施形態,固體攝像裝置中之解像度降低、彩色攝像裝置中之混色特性更為提升,並且接觸孔之製作步驟變得容易。 Hereinafter, the solid-state imaging device according to the embodiment will be described with reference to Figs. 8A and 8B. In the fifth embodiment, the resolution of the solid-state imaging device is lowered, the color mixing characteristics in the color image pickup device are further improved, and the manufacturing process of the contact hole is facilitated.

第8A圖係為本實施形態之固體攝像裝置的平面圖。信號線N+層80a、80b、80c係以朝縱(行)方向延伸之方式形成。在像素區域中,於此等信號線N+層80a、80b、80c上,形成有構成像素之第1矽柱P11至P33與構成接觸窗的第2矽柱C11至C33。與此等矽柱同時,在形成於周邊驅動/輸出電路區域之平板狀矽層39a、39b、39c上,形成有構成接觸窗的第3矽柱40a、40b、40c。第1矽柱P11至P33與構成接觸窗的第2矽柱C11至C33在像素區域中,係在縱(行)方向交替配置。閘極導體層81a、81b、81c係形成於構成像素之第1矽柱P11至P33的外周,且一面包圍形成於 朝列方向延伸之第1矽柱P11至P33之間之第2矽柱C11至C33,一面以朝橫(列)方向延伸之方式形成。此等閘極導體層81a、81b、81c係經由形成於設於周邊驅動/輸出電路區域之構成接觸窗之第3矽柱40a、40b、40c的接觸孔41a、41b、41c而連接於閘極導體層42a、42b、42c。與此相同,像素選擇線導體層82a、82b、82c係依朝列方向延伸之每一第1矽柱P11至P33,以朝第8A圖之橫(列)方向延伸之方式形成。此等像素選擇線導體層82a、82b、82c係延長至像素區域的外側,且在周邊驅動/輸出電路區域中,經由接觸孔16aa、16ab、16ac而連接於像素選擇線金屬層17aa、17ab、17ac。閘極導體層81a、81b、81c係沿著構成像素之第1矽柱P11至P33、與構成接觸窗之第2矽柱C11至C33的外周而形成,而且係以與像素選擇線導體層82a、82b、82c交替分別朝橫(列)方向延伸之方式形成。經由形成於構成接觸窗之第2矽柱C11至C33上之接觸孔H11至H33,分別連接有信號線N+層80a與信號線金屬層83a、信號線N+層80b與信號線金屬層83b、信號線N+層80c與信號線金屬層83c。從光射入面側觀看除了構成像素之第1矽柱P11至P33以外,像素區域均係被遮蔽光之閘極導體層81a、81b、81c與像素選擇線導體層82a、82b、82c所覆蓋。 Fig. 8A is a plan view showing the solid-state imaging device of the embodiment. The signal line N + layers 80a, 80b, and 80c are formed to extend in the vertical (row) direction. In the pixel region, this N + layer signal lines such as 80a, 80b, 80c on, a first silicon pillar constituting the pixel P 11 to P 33 is of the second silicon pillar and the contact window 11 constituting the C to C 33 are formed. Simultaneously with the masts, the third masts 40a, 40b, and 40c constituting the contact windows are formed in the flat-plate layers 39a, 39b, and 39c formed in the peripheral drive/output circuit region. The first masts P 11 to P 33 and the second masts C 11 to C 33 constituting the contact window are alternately arranged in the vertical (row) direction in the pixel region. Gate conductor layers 81a, 81b, 81c based formed on the outer periphery 11 to P 33 is composed of the first silicon pillar P pixels of, and side surround is formed first between the first silicon pillar P extending the in towards the column direction 11 to P 33 is The two columns C 11 to C 33 are formed to extend in the lateral (column) direction. The gate conductor layers 81a, 81b, and 81c are connected to the gate via contact holes 41a, 41b, and 41c formed in the third masts 40a, 40b, and 40c of the peripheral drive/output circuit region constituting the contact window. Conductor layers 42a, 42b, 42c. And the same, the pixel selection line extending each conductor layer 82a, 82b, 82c toward a column direction line by a first silicon pillar P 11 to P 33, FIG. 8A to the horizontal toward the second formation (column) extending in the direction of the way. The pixel selection line conductor layers 82a, 82b, 82c are extended to the outside of the pixel region, and are connected to the pixel selection line metal layers 17aa, 17ab via the contact holes 16aa, 16ab, 16ac in the peripheral driving/output circuit region. 17ac. The gate conductor layers 81a, 81b, and 81c are formed along the outer circumferences of the first masts P 11 to P 33 constituting the pixels and the second masts C 11 to C 33 constituting the contact window, and are selected from pixels. The line conductor layers 82a, 82b, and 82c are alternately formed to extend in the lateral (column) direction. The signal line N + layer 80a and the signal line metal layer 83a, the signal line N + layer 80b and the signal are respectively connected via the contact holes H 11 to H 33 formed on the second masts C 11 to C 33 constituting the contact window. The line metal layer 83b, the signal line N + layer 80c, and the signal line metal layer 83c. The pixel regions are shielded light gate conductor layers 81a, 81b, 81c and pixel selection line conductor layers 82a, 82b, 82c, except for the first pillars P 11 to P 33 constituting the pixels, viewed from the light incident surface side. Covered.

第8B圖係為第8A圖所示之C-C’線的剖面構造圖(在第8B圖中,係僅顯示像素區域中,形成在構成像素之第1矽柱P11、與形成於該第1矽柱P11之下方之構成接觸窗之第2矽柱C11,而接觸窗柱C12、C13則予以省略圖示。)。構 成像素之第1矽柱2(P11)、與構成接觸窗之第2矽柱3a(C11)之底部係經由信號線N+層5(80a)而連接。經由閘極絕緣層4b而形成於第1矽柱2(P11)之P層8a之外周的閘極導體層81a係以連接第1、第2矽柱2(P11)、3a(C11)之外周、及第1、第2矽柱2(P11)、3a(C11)之方式形成。該閘極導體層81a在第2矽柱3a(C11)中係形成於絕緣層4c的外周。鄰接於第1矽柱2(P11)之閘極導體層81a,且光二極體的N層9係形成於P層8a的外周部。在形成N層9之上部區域的P+層11連接有像素選擇線導體層14e(82a)。在該像素選擇線導體層14e(82a)及第2矽柱3a(C11)上,形成有彼此相同深度之接觸孔16a(16aa)、16b(H11)。再者,分別經由接觸孔16a(16aa)而連接有像素選擇線導體層14e(82a)與像素選擇線金屬層17a(17aa),且進一步經由接觸孔16b(H11)而連接有第2矽柱3a(C11)之導體層23(21)與信號線N+層80a。 8B is a cross-sectional structural view of the C-C' line shown in FIG. 8A (in FIG. 8B, only the pixel region is formed in the first column P 11 constituting the pixel, and is formed in the P 11 constituting the bottom of the contact hole of the first silicon pillar of the second silicon column C 11, and the contact window column C 12, C 13 shown will be omitted.). The first mast 2 (P 11 ) constituting the pixel and the bottom of the second mast 3a (C 11 ) constituting the contact window are connected via a signal line N + layer 5 (80a). The gate conductor layer 81a formed on the outer periphery of the P layer 8a of the first mast 2 (P 11 ) via the gate insulating layer 4b is connected to the first and second masts 2 (P 11 ), 3a (C 11 ) The outer circumference and the first and second masts 2 (P 11 ) and 3a (C 11 ) are formed. The gate conductor layer 81a on the second silicon pillar 3a (C 11) are formed on the outer periphery of the insulating-based layer 4c. Adjacent to the first silicon pillar 2 (P 11) of the gate conductor layer 81a, and the photo-diode line N layer 9 formed on the outer peripheral portion P layer 8a. A pixel selection line conductor layer 14e (82a) is connected to the P + layer 11 forming the upper portion of the N layer 9. In the pixel selection line conductive layers 14e (82a) on the second silicon pillar 3a (C 11), another contact hole is formed with the same depth of 16a (16aa), 16b (H 11). Further, the pixel selection line conductor layer 14e (82a) and the pixel selection line metal layer 17a (17aa) are connected via the contact hole 16a (16aa), respectively, and the second layer is further connected via the contact hole 16b (H 11 ). The conductor layer 23 (21) of the pillar 3a (C 11 ) and the signal line N + layer 80a.

如以上所說明,本實施形態係具有以下所示的5個特徵。 As described above, the present embodiment has the following five features.

1、像素的信號電流、或重設電流係透過低電阻之信號線金屬層83a、83b、83c從像素區域被取出於周邊驅動/輸出電路,藉此實現固體攝像裝置的高速驅動化。 1. The signal current or the reset current of the pixel is transmitted from the pixel region to the peripheral drive/output circuit through the low-resistance signal line metal layers 83a, 83b, and 83c, thereby realizing high-speed driving of the solid-state imaging device.

2、射入至第1矽柱P11至P33之間之像素區域的光,係被遮蔽光之閘極導體層81a、81b、81c與像素選擇線導體層82a、82b、82c所遮蔽,藉此防止到達信號線N+層80a、80b、80c,實現解像度的提升、及彩色攝像中之混色特性 的改善。此解像度及混色特性的降低,係因為原本射入至1個像素的光到達信號線N+層80a、80b、80c,且以與包圍信號線N+層80a、80b、80c之材料層的多層反射等而射入至鄰接之像素之光電轉換區域而產生。 2. The light incident on the pixel region between the first masts P 11 to P 33 is shielded by the shielded light gate conductor layers 81a, 81b, 81c and the pixel select line conductor layers 82a, 82b, 82c. Thereby, the arrival of the signal line N + layers 80a, 80b, and 80c is prevented, and the resolution is improved and the color mixing characteristics in color imaging are improved. This reduction in resolution and color mixing characteristics is because the light originally incident on one pixel reaches the signal line N + layers 80a, 80b, 80c, and is multi-layered with the material layer surrounding the signal line N + layers 80a, 80b, 80c. It is generated by reflection or the like and incident on the photoelectric conversion region of the adjacent pixel.

3、構成接觸框之第2矽柱C11至C33,係藉由形成在閘極導體層81a、81b、81c之區域之中,而在不使像素集積度降低之情形下實現用以提升解析度與混色特性之閘極導體層81a、81b、81c與像素選擇線導體層82a、82b、82c之配線的配置。 3. The second pillars C 11 to C 33 constituting the contact frame are formed in the region of the gate conductor layers 81a, 81b, and 81c, and are not improved by reducing the pixel accumulation degree. The arrangement of the wirings of the gate conductor layers 81a, 81b, and 81c of the resolution and the color mixture characteristics and the pixel selection line conductor layers 82a, 82b, and 82c.

4、像素選擇線導體層82a、82b、82c係藉由不形成在構成接觸窗之第2矽柱C11至C33之外周,設在構成接觸窗之第2矽柱C11至C33上之接觸孔H11至H33的形成即變得容易。 4, the pixel selection line conductive layers 82a, 82b, 82c are not formed in the system by forming the contact windows of the second silicon pillar 11 to C than C 33 weeks provided on the second silicon column C is a contact window 11 to C 33 The formation of the contact holes H 11 to H 33 becomes easy.

5、由於接觸孔16aa、16ab、16ac、H11至H33、41a、41b、41c係在第1至第3矽柱P11至P33、C11至C33、40a、40b、40c上以高度較小而且相同之深度形成,因此得以容易製造。 5. Since the contact holes 16aa, 16ab, 16ac, H 11 to H 33 , 41a, 41b, 41c are on the first to third masts P 11 to P 33 , C 11 to C 33 , 40 a , 40 b , 40 c The height is small and the same depth is formed, so it is easy to manufacture.

(第7實施形態) (Seventh embodiment)

以下一面參照第9A圖、第9B圖一面說明本實施形態之彩色攝像用固體攝像裝置。 The solid-state imaging device for color imaging of the present embodiment will be described below with reference to FIGS. 9A and 9B.

第9A圖係顯示本實施形態之固體攝像裝置的平面圖。信號線N+層84a、84b、84c、84d係以朝縱(行)方向延伸之方式形成,且與此等連接,形成有構成紅色信號用像素之第1矽柱R1、R2、R3、R4(以下簡稱為R1至R4)、構成 綠色信號用像素之第1矽柱G1、G2、G3、G4(以下簡稱為G1至G4)、構成藍色信號用像素之第1矽柱B1、B2、B3、B4(以下簡稱為B1至B4)。與此等第1矽柱同時形成之構成接觸窗之第2矽柱CC1、CC2、CC3、CC4(以下簡稱為CC1至CC4)係連接於信號線N+層84a、84b、84c、84d,而構成接觸窗之第3矽柱43a、43b、43c、43d係形成於設於周邊驅動/輸出電路區域之平板狀矽層84da、84db、84dc、84dd上。構成接觸窗之第2矽柱CC1、CC2係形成於朝橫(列)方向排列之構成紅色信號用像素之第1矽柱R1、R2之行方向之間且為原本供像素形成之區域。與此相同,構成接觸窗之第2矽柱CC3、CC4係形成於朝橫(列)方向排列之構成紅色信號用像素之第1矽柱R3、R4之行方向之間且為原本供像素形成之區域。閘極導體層85a、85b、85c、85d係形成於構成像素之第1矽柱R1至R4、G1至G4、B1至B4、及構成接觸窗之第2矽柱CC1至CC4之外周,而且以朝橫(列)方向之方式形成。與此相同,像素選擇線導體層86a、86b、86c、86d係形成於構成像素之第1矽柱R1至R4、G1至G4、B1至B4、及構成接觸窗之第2矽柱CC1至CC4之之外周,而且以朝橫(列)方向延伸之方式形成。信號線N+層84a與信號線金屬層87a、信號線N+層84b與信號線金屬層87b、信號線N+層84c與信號線金屬層87c、信號線N+層84d與信號線金屬層87d,係分別經由形成於構成接觸窗之第2矽柱CC1至CC4之上的接觸孔CH1至CH4而連接。閘極導體層85a、85b、85c、85d係經由設於構成接觸窗之第3矽柱 43a、43b、43c、43d上之接觸孔44a、44b、44c、44d而連接於閘極導體層45a、45b、45c、45d。信號線N+層84a、84b、84c、84d與信號線金屬層87a、87b、87c、87d之連接,由於係依像素區域中之構成紅色信號用像素之第1矽柱R1至R4在橫方向排列所形成的每一行而進行,因此可達成固體攝像裝置的高速驅動化。 Fig. 9A is a plan view showing the solid-state imaging device of the embodiment. The signal line N + layers 84a, 84b, 84c, and 84d are formed to extend in the vertical (row) direction, and are connected thereto to form the first masts R1, R2, R3, and R4 constituting the pixels for red signals. (hereinafter referred to as R1 to R4), the first masts G1, G2, G3, and G4 (hereinafter abbreviated as G1 to G4) constituting the pixels for green signals, and the first masts B1 and B2 constituting the pixels for blue signals. B3, B4 (hereinafter referred to as B1 to B4). The second masts CC 1 , CC 2 , CC 3 , and CC 4 (hereinafter abbreviated as CC 1 to CC 4 ) constituting the contact window formed simultaneously with the first masts are connected to the signal line N + layers 84a and 84b. 84c, 84d, and the third masts 43a, 43b, 43c, 43d constituting the contact window are formed on the flat-plate layers 84da, 84db, 84dc, 84dd provided in the peripheral drive/output circuit region. The second columns CC 1 and CC 2 constituting the contact window are formed between the row directions of the first columns R1 and R2 constituting the red signal pixels arranged in the horizontal (column) direction and are originally formed by the pixels. . Similarly, the second masts CC 3 and CC 4 constituting the contact window are formed between the rows of the first masts R3 and R4 constituting the red signal pixels arranged in the horizontal (column) direction. The area in which the pixels are formed. Gate conductor layers 85a, 85b, 85c, 85d line formed on the configuration of the first silicon pillar pixel of R1 to R4, G1 to G4, B1 to B4, and forming the contact windows of the second silicon pillar CC 1 to CC than 4 weeks Moreover, it is formed in a direction toward the horizontal (column). And the same, the pixel selection line conductive layers 86a, 86b, 86c, 86d line formed on the configuration of the first silicon pillar pixel of R1 to R4, G1 to G4, B1 to B4, and forming the contact windows of the second silicon pillar CC 1 to It is formed outside the CC 4 and extends in the direction of the horizontal (column). Signal line N + layer 84a and signal line metal layer 87a, signal line N + layer 84b and signal line metal layer 87b, signal line N + layer 84c and signal line metal layer 87c, signal line N + layer 84d and signal line metal layer 87d, lines were formed via the contact window constituting the second silicon pillar CC 1 over to the contact hole 4 CC CH 1 to CH 4 are connected. The gate conductor layers 85a, 85b, 85c, and 85d are connected to the gate conductor layer 45a via contact holes 44a, 44b, 44c, and 44d provided in the third pillars 43a, 43b, 43c, and 43d constituting the contact window. 45b, 45c, 45d. The signal line N + layers 84a, 84b, 84c, and 84d are connected to the signal line metal layers 87a, 87b, 87c, and 87d in the horizontal direction by the first masts R1 to R4 constituting the red signal pixels in the pixel region. Since each row formed by the arrangement is performed, high-speed driving of the solid-state imaging device can be achieved.

第9B圖係為第9A圖所示之D-D’線的剖面構造圖。在實際的固體攝像裝置中,係於構成像素之第1矽柱R1至R4、G1至G4、B1至B4與構成接觸窗之第2矽柱CC1、CC2、CC3,進一步呈2維狀排列有第1、第2矽柱。在此,茲說明僅形成有沿著D-D’線之第1矽柱R1、R3與構成接觸窗之第2矽柱CC1、CC2的情形。在第9A圖中,於氧化矽基板1上,形成有形成於縱(行)方向之平板狀信號線N+層84a、84b、84c、84d、及平板狀矽層84e。在信號線N+層84a、84b、84c、84d上,形成有構成像素之第1矽柱R1、R3、及構成接觸窗之第2矽柱CC1、CC2,並且在平板狀矽層84e上形成有構成接觸窗之第3矽柱43a。在構成像素之第1矽柱R1、R3之底部的信號線N+層84a、84c上形成有P層8a、8c,並且在P層8a、8c的外周隔著閘極絕緣層4b、4d而形成有閘極導體層85a。此閘極導體層85a亦在構成接觸窗之第2矽柱CC1、CC2的外周延伸,且依第1、第2矽柱R1、CC1、R3、CC2之順序連接。以鄰接於第1矽柱R1、R3之閘極導體層85a之方式,在P層8a、8c之外周形成有光二極體的N層9、9a。形成於光二極體上之P+ 層11、11a的像素選擇線導體層86a,係包含第1、第2矽柱R1、CC1、R3、CC2之外周而延伸。此像素選擇線導體層86a在第2矽柱CC1、CC2中,係包圍絕緣層4c、4e。像素選擇線導體層86a係延長至位於像素區域外側的驅動-輸出電路區域,且經由接觸孔16aa而連接於像素選擇線金屬層17aa。在第2矽柱CC1、CC2之導體層23a、23b上、第3矽柱43a上,係以成為與接觸孔16aa相同深度之方式同時形成有接觸孔SH1、SH2、44a。導體層23a、23b係經由接觸孔SH1、SH2而連接於信號線金屬層87b、87d。在第9A圖中,信號線金屬層87a、87b、87c、87d係以朝縱(行)方向延伸之方式形成。 Fig. 9B is a cross-sectional structural view of the DD' line shown in Fig. 9A. In an actual solid-state imaging device, the first masts R1 to R4, G1 to G4, B1 to B4 constituting the pixel, and the second masts CC 1 , CC 2 , and CC 3 constituting the contact window are further in two dimensions. The first and second masts are arranged in a row. Here, it is explained that only the first masts R1 and R3 along the DD′ line and the second masts CC 1 and CC 2 constituting the contact window are formed. In Fig. 9A, flat-shaped signal lines N + layers 84a, 84b, 84c, 84d and flat ruthenium layers 84e formed in the longitudinal direction are formed on the yttria substrate 1. On the signal line N + layers 84a, 84b, 84c, and 84d, the first masts R1 and R3 constituting the pixels, and the second masts CC 1 and CC 2 constituting the contact windows are formed, and in the flat corrugated layer 84e. A third mast 43a constituting a contact window is formed thereon. P layers 8a and 8c are formed on the signal line N + layers 84a and 84c constituting the bottoms of the first pillars R1 and R3 of the pixel, and the gate insulating layers 4b and 4d are interposed between the outer layers of the P layers 8a and 8c. A gate conductor layer 85a is formed. This gate conductor layer constituting the contact window 85a is also the second silicon pillar of the CC 1, the outer periphery of the CC 2 extends and is connected by a first sequence, the second silicon pillar R1, CC 1, R3, CC 2 of. The N layers 9, 9a of the photodiode are formed on the outer periphery of the P layers 8a and 8c so as to be adjacent to the gate conductor layer 85a of the first pillars R1 and R3. Formed on the P + diode light pixel selection line conductive layers 86a to 11,11a layer, comprising a first line, the second silicon pillar R1, CC 1, R3, CC extends beyond two weeks. This pixel selection line conductor layer 86a surrounds the insulating layers 4c and 4e in the second columns CC 1 and CC 2 . The pixel selection line conductor layer 86a is extended to a drive-output circuit region located outside the pixel region, and is connected to the pixel selection line metal layer 17aa via the contact hole 16aa. Contact holes SH 1 , SH 2 , and 44a are formed simultaneously on the conductor layers 23a and 23b of the second column CC 1 and CC 2 and on the third column 43a so as to have the same depth as the contact hole 16aa. Conductor layers 23a, 23b via a contact hole line SH 1, SH 2 is connected to the signal line metal layer 87b, 87d. In Fig. 9A, the signal line metal layers 87a, 87b, 87c, and 87d are formed to extend in the vertical (row) direction.

在本實施形態之彩色攝像用固體攝像裝置中,係可藉由像素信號處理,將構成接觸窗之第2矽柱CC1、CC2、CC3、CC4予以處理做為疑似的像素。例如,第2矽柱CC1係設為與排列在相同列之像素R1之信號相同的信號,而第2矽柱CC2係設為與排列在相同列之像素R2之信號相同的信號。此係由於紅色信號用信號帶域較綠色信號用信號帶域低,因此利用了紅色信號用之解析度亦可較綠色信號用之解析度低的此點。在本實施形態之固體攝像裝置中,係藉由將構成接觸窗之第2矽柱CC1至CC4設置在像素區域,可在不降低像素集積度之情形下實現高速驅動化。 In the solid-state imaging device for color imaging of the present embodiment, the second pupils CC 1 , CC 2 , CC 3 , and CC 4 constituting the contact window can be processed as suspected pixels by pixel signal processing. For example, the second column CC 1 is a signal similar to the signal of the pixels R1 arranged in the same column, and the second column CC 2 is a signal similar to the signal of the pixels R2 arranged in the same column. Since the signal band of the red signal is lower than the signal band of the green signal, the resolution for using the red signal can be lower than the resolution for the green signal. In the solid-state imaging device of the present embodiment, by providing the second pupils CC 1 to CC 4 constituting the contact window in the pixel region, high-speed driving can be realized without lowering the pixel integration degree.

(第8實施形態) (Eighth embodiment)

以下一面參照第10A圖至第10C圖一面說明本實施形態之使用P通道SGT的半導體裝置。 Hereinafter, a semiconductor device using the P channel SGT of the present embodiment will be described with reference to FIGS. 10A to 10C.

第10A圖係為1個P通道SGT的電路圖。此P通道SGT係藉由閘極56、源極53、汲極57而構成。再者,閘極56係連接於閘極端子G、源極53係連接於源極端子S、汲極57係連接於汲極端子D。 Figure 10A is a circuit diagram of a P-channel SGT. This P-channel SGT is constituted by a gate 56, a source 53, and a drain 57. Further, the gate 56 is connected to the gate terminal G, the source 53 is connected to the source terminal S, and the gate 57 is connected to the gate terminal D.

第10B圖係為第10A圖所示之P通道SGT的平面圖。在平板狀矽層50形成有構成源極53之源極P+層53a。在此源極P+層53a上,形成有構成SGT之第1矽柱51b、與構成接觸窗之第2矽柱51c。以與構成SGT之第1矽柱51b鄰接之方式,鄰接於閘極56之閘極導體層56a,且形成有構成接觸窗的第3矽柱51a。閘極導體層56a係包圍構成SGT之第1矽柱51b的外周,而且以覆蓋構成接觸窗之第3矽柱51a之方式形成。再者,形成於構成SGT之第1矽柱51b上的汲極P+層57a係經由接觸孔62b而連接於汲極配線金屬層63b(D),而源極P+層53a係與構成接觸窗之第2矽柱51c之導體層59連接、及經由接觸孔62c與源極配線金屬層63c(S)連接,而閘極導體層56a係從構成接觸窗之第3矽柱51a上經由接觸孔62a而連接於閘極金屬層63a(G)。 Fig. 10B is a plan view of the P-channel SGT shown in Fig. 10A. A source P + layer 53a constituting the source 53 is formed in the flat layer 50. On the source P + layer 53a, a first column 51b constituting the SGT and a second column 51c constituting a contact window are formed. The third mast 51a constituting the contact window is formed adjacent to the gate conductor layer 56a of the gate 56 so as to be adjacent to the first mast 51b constituting the SGT. The gate conductor layer 56a surrounds the outer circumference of the first mast 51b constituting the SGT, and is formed to cover the third mast 51a constituting the contact window. Further, the drain P + layer 57a formed on the first column 51b constituting the SGT is connected to the drain wiring metal layer 63b (D) via the contact hole 62b, and the source P + layer 53a is in contact with the composition. The conductor layer 59 of the second mast 51c of the window is connected to the source wiring metal layer 63c (S) via the contact hole 62c, and the gate conductor layer 56a is contacted from the third mast 51a constituting the contact window. The hole 62a is connected to the gate metal layer 63a (G).

第10C圖係為沿著第10B圖所示之平面圖之E-E’線的剖面構造圖。在氧化矽基板1上形成平板狀矽層50。在此平板狀矽層50上形成構成SGT之第1矽柱51b、及構成接觸窗之第2矽柱51c、第3矽柱51a。平板狀矽層50與第1矽柱51b之矽層58,係為N型或本質型的半導體。再者,以覆蓋平板狀矽層50與第1至第3矽柱51a、51b、 51c之露出部之方式形成絕緣層54a、54b、54c。再者,將閘極導體層56a隔著絕緣層54b而形成於第1矽柱51b的外周,且構造物的整體延伸至由絕緣層54a所覆蓋的第3矽柱51a上。在第1矽柱51b與第2矽柱51c之下方區域的平板狀矽層50,形成源極P+層53a。再者,在第1矽柱51b的上部區域,與閘極導體層56a鄰接而形成汲極P+層57a。再者,在構造物的整體覆蓋絕緣層60,且從第2矽柱的源極P+層53a形成連接於第2矽柱51c上面的導體層59。再者,覆蓋絕緣層61,且在此絕緣層61將接觸孔62a形成於第3矽柱51a上,且將接觸孔62b形成於第1矽柱51b上,且將接觸孔62c形成於第2矽柱51c上。再者,經由接觸孔62a將閘極導體層56a與閘極金屬層63a(G)予以連接,且經由接觸孔62b將汲極P+層57a與汲極配線金屬層63b(D)予以連接,且經由形成於接觸孔62c與第2矽柱51c的導體層59將源極P+層53a與源極配線金屬層63c(S)予以連接。藉此,形成於第1矽柱51b、第2矽柱51c、第3矽柱51a上之接觸孔62b、62c、62a即以彼此相同的深度(相同高度)形成。 Fig. 10C is a cross-sectional structural view taken along the line EE' of the plan view shown in Fig. 10B. A flat ruthenium layer 50 is formed on the ruthenium oxide substrate 1. A first mast 51b constituting the SGT, a second mast 51c and a third mast 51a constituting the contact window are formed on the flat layer 50. The flat layer 58 of the flat layer 50 and the first layer 51b are N-type or intrinsic semiconductors. Further, insulating layers 54a, 54b, and 54c are formed so as to cover the exposed portions of the flat ruthenium layer 50 and the first to third masts 51a, 51b, and 51c. Further, the gate conductor layer 56a is formed on the outer periphery of the first mast 51b via the insulating layer 54b, and the entire structure extends over the third mast 51a covered by the insulating layer 54a. A source P + layer 53a is formed in the flat ruthenium layer 50 in the region below the first mast 51b and the second mast 51c. Further, in the upper region of the first mast 51b, a gate P + layer 57a is formed adjacent to the gate conductor layer 56a. Further, the entire structure is covered with the insulating layer 60, and the conductor layer 59 connected to the upper surface of the second column 51c is formed from the source P + layer 53a of the second column. Further, the insulating layer 61 is covered, and the contact hole 62a is formed on the third mast 51a, and the contact hole 62b is formed on the first mast 51b, and the contact hole 62c is formed in the second On the mast 51c. Furthermore, the gate conductor layer 56a is connected to the gate metal layer 63a (G) via the contact hole 62a, and the gate P + layer 57a and the gate wiring metal layer 63b (D) are connected via the contact hole 62b. The source P + layer 53a and the source wiring metal layer 63c (S) are connected via the conductor layer 59 formed in the contact hole 62c and the second column 51c. Thereby, the contact holes 62b, 62c, and 62a formed on the first mast 51b, the second mast 51c, and the third mast 51a are formed at the same depth (the same height).

上述P通道SGT之製造方法係由下列步驟所構成:第1至第3矽柱形成步驟,連接於氧化矽基板1上之平板狀矽層50,且以使構成SGT之第1矽柱51b、構成接觸窗之第2矽柱51c、及第3矽柱51a成為彼此相同高度之方式同時形成;第1、第2矽柱底部連接形成步驟,包圍第1矽柱51b 的底部將SGT之汲極P+層53a形成於平板狀矽層50,且將該源極P+層53a與第2矽柱51c之底部予以連接;第1矽柱SGT形成步驟,分別在第1矽柱51b的外周形成絕緣層54b、及在第2矽柱51c的外周形成絕緣層54c,且包圍絕緣層54b而形成閘極導體層56a,且將閘極導體層56a延長形成至由絕緣層54a所覆蓋之構成接觸窗之第3矽柱51a上,且在第1矽柱51b的上部,與閘極導體層56a鄰接而形成汲極P+層57a,且將被汲極P+層57a與源極P+層53a所包夾之第1矽柱51b之矽層58設為SGT的通道;第2矽柱導體層形成步驟,在構成接觸窗之第2矽柱51c形成經離子注入受體雜質之Si、或矽化物之導體層59;接觸孔形成步驟,以覆蓋第1矽柱51b、第2矽柱51c、及第3矽柱51a之方式形成絕緣層60、61,且分別在構成接觸框的第3矽柱51a上形成接觸孔62a、在構成SGT的第1矽柱51b上形成接觸孔62b、在構成接觸窗的第2矽柱51c上形成接觸孔62c;配線金屬層形成步驟,經由接觸孔62a、62b、62c,將閘極導體層56a與閘極金屬層63a(G)、汲極P+層57a與汲極配線金屬層63b(D)、導體層59與源極配線金屬層63c(S)予以分別連接。 The manufacturing method of the P channel SGT is composed of the following steps: a first to third column forming step, which is connected to the flat layer 50 on the yttrium oxide substrate 1 so as to form the first column 51b constituting the SGT, The second mast 51c and the third mast 51a constituting the contact window are simultaneously formed at the same height; the first and second mast bottom connection forming steps surround the bottom of the first mast 51b to the SGT The P + layer 53a is formed on the flat layer 50, and the source P + layer 53a is connected to the bottom of the second column 51c. The first column SGT forming step is formed on the outer periphery of the first column 51b. The insulating layer 54b and the insulating layer 54c are formed on the outer periphery of the second mast 51c, and the gate conductor layer 56a is formed by surrounding the insulating layer 54b, and the gate conductor layer 56a is formed to be extended to the contact layer covered by the insulating layer 54a. The third pillar 51a of the window is formed on the upper portion of the first mast 51b adjacent to the gate conductor layer 56a to form the drain P + layer 57a, and the drain P + layer 57a and the source P + layer are to be formed. The layer 58 of the first column 51b sandwiched by 53a is set as the channel of the SGT; the second column conductor layer forming step is formed in the second layer of the contact window. 51c forms a conductive layer 59 of ion-implanted acceptor impurity Si or germanium; a contact hole forming step of forming the insulating layer 60 so as to cover the first mast 51b, the second mast 51c, and the third stub 51a And a contact hole 62a is formed in the third column 51a constituting the contact frame, a contact hole 62b is formed in the first column 51b constituting the SGT, and a contact hole is formed in the second column 51c constituting the contact window. 62c; a wiring metal layer forming step of, via the contact holes 62a, 62b, 62c, the gate conductor layer 56a and the gate metal layer 63a (G), the drain P + layer 57a, and the drain wiring metal layer 63b (D), The conductor layer 59 and the source wiring metal layer 63c (S) are connected to each other.

另外,在該SGT中,汲極P+層57a發揮做為源極功能時,源極P+層53a係發揮做為汲極之功能。此外,在N通道SGT中,汲極-源極係由N+層所構成,而通道係由P型、 或本質型的半導體所構成。 Further, in the SGT, when the drain P + layer 57a functions as a source, the source P + layer 53a functions as a drain. Further, in the N-channel SGT, the drain-source is composed of an N + layer, and the channel is composed of a P-type or an intrinsic semiconductor.

(第9實施形態) (Ninth Embodiment)

以下一面參照第11A圖至第11G圖一面說明使用本實施形態之SGT的半導體裝置。 Hereinafter, a semiconductor device using the SGT of the present embodiment will be described with reference to FIGS. 11A to 11G.

第11A圖係為使用SGT之3段CMOS反相器電路圖。初段的反相器電路,係由2個P通道SGT88aa、88ab與1個N通道SGT89a所構成。SGT88aa、88ab、89a之閘極為連接於輸入端子Vi,而P通道SGT88aa、88ab之汲極為連接於電源端子Vcc,且P通道SGT88aa、88ab之源極與N通道SGT89a之源極連接,構成初段輸出端子,並且連接於第2段反相器電路的輸入端子。再者,N通道SGT89a之汲極係連接於接地端子Vss。以與第1段反相器電路相同方式,連接有由P通道SGT88ba、88bb與N通道SGT89b所構成的第2段反相器電路、及由P通道SGT88ca與N通道SGT89c所構成的第3段反相器電路。第2段、第3段反相器電路之P通道SGT88ba、88bb、88ca、88cb之汲極係連接於電源端子Vcc,並且N通道SGT89b、89c之汲極係連接於接地端子Vss。在此3段CMOS反相器電路中,輸入於輸入端子Vi的信號電壓,係一面延遲3時脈(clock)時間,一面做為反轉的信號而從輸出端子Vo輸出。 Figure 11A is a 3-phase CMOS inverter circuit diagram using SGT. The initial stage inverter circuit is composed of two P channels SGT88aa, 88ab and one N channel SGT89a. The gates of SGT88aa, 88ab, and 89a are connected to the input terminal Vi, and the P channels SGT88aa and 88ab are connected to the power terminal Vcc, and the sources of the P channels SGT88aa and 88ab are connected to the source of the N channel SGT89a to form the initial output. The terminal is connected to the input terminal of the second stage inverter circuit. Furthermore, the drain of the N-channel SGT89a is connected to the ground terminal Vss. In the same manner as the first-stage inverter circuit, a second-stage inverter circuit composed of P-channels SGT88ba, 88bb, and N-channel SGT89b, and a third-stage consisting of P-channel SGT88ca and N-channel SGT89c are connected. Inverter circuit. The drains of the P channels SGT88ba, 88bb, 88ca, and 88cb of the second and third inverter circuits are connected to the power supply terminal Vcc, and the drains of the N channels SGT89b and 89c are connected to the ground terminal Vss. In the three-stage CMOS inverter circuit, the signal voltage input to the input terminal Vi is delayed by three clocks, and is output as an inverted signal from the output terminal Vo.

第11B圖係為使用公知的技術,將第11A圖之3段CMOS反相器電路形成於基板上時的平面圖。從第11B圖的下方,形成有初段、第2段、第3段反相器電路。初段反相器電路係將P通道SGT88aa、88ab之源極P+層90ca與N 通道SGT89a之源極N+層90cb彼此連接而形成。在源極P+層90ca上形成有形成P通道SGT88aa、88ab的矽柱91ac、91bc,而在N+層90cb上形成有構成N通道SGT89a的矽柱91cc。SGT88aa、88ab、89a之閘極導體層93c係以包圍形成SGT之矽柱91ac、91bc、91cc之方式連續地形成。閘極導體層93c係經由接觸孔94ac而連接於第1輸入配線金屬層95ca。P通道SGT88aa、88ab之汲極,係經由形成於矽柱91ac、91bc上之接觸孔94bc、94cc而連接於第1電源配線金屬層95a。P+層90ca與源極N+層90cb係經由形成於兩者之交界部上之接觸孔94dc而分別連接於第1輸出配線金屬層95cb。N通道SGT89a之源極,係經由形成於矽柱91cc上之接觸孔94ec而連接於第1接地配線金屬95c。在第1輸入配線金屬層95ca上,與該第1輸入配線金屬層95ca連接而形成有第2輸入配線金屬層101ac(Vi)。在第1輸出配線金屬層95cb上,與該第1輸出配線金屬層95cb連接,而形成有連接於第2段反相器電路之輸入端子的第2輸出配線金屬層101ab。在此初段反相器電路中,閘極導體層93c係以避開接觸孔94dc之方式配線。 Fig. 11B is a plan view showing a three-stage CMOS inverter circuit of Fig. 11A formed on a substrate by a known technique. From the lower side of Fig. 11B, an initial stage, a second stage, and a third stage inverter circuit are formed. The early part of the inverter circuit based P-channel SGT88aa, 88ab source electrode and the P + source layer 90ca SGT89a extreme N-channel N + layer connected to each other to form 90cb. The masts 91ac and 91bc forming the P-channels SGT88aa and 88ab are formed on the source P + layer 90ca, and the mast 91cc constituting the N-channel SGT 89a is formed on the N + layer 90cb. The gate conductor layer 93c of SGT88aa, 88ab, and 89a is continuously formed so as to surround the pillars 91ac, 91bc, and 91cc forming the SGT. The gate conductor layer 93c is connected to the first input wiring metal layer 95ca via the contact hole 94ac. The drains of the P channels SGT88aa and 88ab are connected to the first power supply wiring metal layer 95a via the contact holes 94bc and 94cc formed on the masts 91ac and 91bc. The P + layer 90ca and the source N + layer 90cb are respectively connected to the first output wiring metal layer 95cb via the contact holes 94dc formed in the boundary portion between the two. The source of the N-channel SGT 89a is connected to the first ground wiring metal 95c via a contact hole 94ec formed in the mast 91cc. The second input wiring metal layer 101ac (Vi) is formed on the first input wiring metal layer 95ca by being connected to the first input wiring metal layer 95ca. The first output wiring metal layer 95cb is connected to the first output wiring metal layer 95cb, and a second output wiring metal layer 101ab connected to an input terminal of the second-stage inverter circuit is formed. In this initial stage inverter circuit, the gate conductor layer 93c is wired so as to avoid the contact hole 94dc.

初段反相器電路之第2輸出配線金屬層101ab係連接於第2段反相器電路之第1輸入配線金屬層95ba。第2段反相器電路係以與初段反相器電路相同之配置而形成,且由P通道SGT88ba、88bb之源極P+層90ba、N通道SGT89b之源極N+層90bb、矽柱91ab、91bb、91cb、閘極導體層93b、接觸孔94ab、94bb、94cb、94db、94eb、第1輸入 配線金屬層95ba、第1電源配線金屬層95a、第1接地配線金屬95c、及第1輸出配線金屬層95bb所構成。第1輸出配線金屬層95bb係連接於第2輸出配線金屬層101aa,且連接於第3段反相器電路之第1輸入配線金屬層95aa。第3段反相器電路係以成為與初段/第2段反相器電路相同配置之方式,由P通道SGT88ca、88cb之源極P+層90aa、N通道SGT89c之源極N+層90ba、矽柱91aa、91ba、91ca、閘極導體層93a、接觸孔94aa、94ba、94ca、94da、94ea、第1輸入配線金屬層95aa、第1電源配線金屬層95a、第1接地配線金屬95c、及第1輸出配線金屬層95ab所構成。第1輸出配線金屬層95ab係連接於第2輸出配線金屬層101c(Vo)。再者,第1電源配線金屬層95a係經由接觸孔94fa而連接於第2電源配線金屬層101b(Vcc),而第1接地配線金屬95c係經由接觸孔94fb而連接於第2接地配線金屬層101d(Vss)。 The second output wiring metal layer 101ab of the first-stage inverter circuit is connected to the first input wiring metal layer 95ba of the second-stage inverter circuit. Paragraph inverter circuit 2 in the same system configuration as the initial stage of the inverter circuit is formed, and a P-channel SGT88ba, 88bb source of the P + layer 90 BA electrode, the source electrode of the N-channel SGT89b N + layer 90bb, 91ab silicon column 91bb, 91cb, gate conductor layer 93b, contact holes 94ab, 94bb, 94cb, 94db, 94eb, first input wiring metal layer 95ba, first power wiring metal layer 95a, first ground wiring metal 95c, and first output The wiring metal layer 95bb is formed. The first output wiring metal layer 95bb is connected to the second output wiring metal layer 101aa, and is connected to the first input wiring metal layer 95aa of the third-stage inverter circuit. Paragraph inverter circuit 3 based manner as to be the initial stage / para inverter circuit 2 of the same configuration, the P-channel SGT88ca, 88cb source electrode of the P + layer 90 aa, the N-channel source electrode SGT89c the N + layer 90 BA, The masts 91aa, 91ba, 91ca, the gate conductor layer 93a, the contact holes 94aa, 94ba, 94ca, 94da, 94ea, the first input wiring metal layer 95aa, the first power wiring metal layer 95a, the first ground wiring metal 95c, and The first output wiring metal layer 95ab is formed. The first output wiring metal layer 95ab is connected to the second output wiring metal layer 101c (Vo). In addition, the first power supply wiring metal layer 95a is connected to the second power supply wiring metal layer 101b (Vcc) via the contact hole 94fa, and the first ground wiring metal 95c is connected to the second ground wiring metal layer via the contact hole 94fb. 101d (Vss).

第11C圖係顯示沿著第11B圖之X1-X1’線的剖面構造圖。X1-X1’線係在橫(列)方向相連至接觸孔94aa、P通道SGT88ca、88cb之矽柱91aa、91ba,且在該處彎曲而連接於接觸孔94da,且進一步連接於構成N通道SGT的矽柱91ca。第11C圖係與第3段反相器電路之剖面構造對應。在氧化矽基板1上形成有平板狀矽層108,而在該平板狀矽層108上形成有P通道SGT88ca、88cb之矽柱91aa、91ba、與N通道SGT89c之矽柱91ca。在矽柱91aa、91ba之下方的平板狀矽層108,形成有源極P+層90aa,而在矽 柱91ca之下方的平板狀矽層108,形成有源極P+層90ba。在矽柱91aa、91ba的外周形成有閘極絕緣層110b,而在矽柱91ca的外周形成有閘極絕緣層110d。以包圍此等閘極絕緣層110b、110d之方式,形成有彼此連接的閘極導體層93b。以覆蓋閘極導體層93b之方式形成有擋止SiN層112。在源極P+層90aa與源極P+層90ba的交界部,形成有矽化物層133a。分別在該矽化物層133a上形成有接觸孔94da、在閘極導體層93a上形成接觸孔94aa、在矽柱91aa、91ba、91ca上形成有接觸孔94ba、94ca、94ea。經由此等接觸孔94aa、91ba、94da、91ca分別連接有閘極導體層93a與第1輸入配線金屬層95aa、汲極P+層111a與第1電源配線金屬層95a、矽化物層133a與第1輸出配線金屬層95ab、汲極N+層111b與第1接地配線金屬95c。再者,第1輸入配線金屬層95aa係連接於第2段反相器電路之第2輸出配線金屬層101aa,而第1輸出配線金屬層95ab係連接於第2輸出配線金屬層101c(Vo)。第2段反相器電路之第2輸出配線金屬層101aa、第3段反相器電路之第2輸出配線金屬層101c(Vo)係為藉由雙鑲嵌(dual damascene)技術而形成的銅(Cu)配線層。 Fig. 11C is a cross-sectional structural view taken along line X1-X1' of Fig. 11B. The X1-X1' line is connected in the lateral (column) direction to the contact holes 94aa, the columns 91aa, 91ba of the P channels SGT88ca, 88cb, and is bent there to be connected to the contact hole 94da, and further connected to constitute the N channel SGT. The mast 91ca. The 11Cth diagram corresponds to the cross-sectional structure of the inverter circuit of the third stage. A flat crucible layer 108 is formed on the hafnium oxide substrate 1, and the crucibles 91aa and 91ba of the P channels SGT88ca and 88cb and the mast 91ca of the N channel SGT89c are formed on the flat crucible layer 108. The planar ruthenium layer 108 below the masts 91aa and 91ba forms the source P + layer 90aa, and the flat ruthenium layer 108 below the mast 91ca forms the source P + layer 90ba. A gate insulating layer 110b is formed on the outer circumference of the masts 91aa and 91ba, and a gate insulating layer 110d is formed on the outer circumference of the mast 91ca. A gate conductor layer 93b connected to each other is formed to surround the gate insulating layers 110b and 110d. The stopper SiN layer 112 is formed to cover the gate conductor layer 93b. A vaporized layer 133a is formed at a boundary portion between the source P + layer 90aa and the source P + layer 90ba. Contact holes 94da are formed in the germanide layer 133a, contact holes 94aa are formed on the gate conductor layer 93a, and contact holes 94ba, 94ca, and 94ea are formed on the masts 91aa, 91ba, and 91ca. The gate conductor layer 93a, the first input wiring metal layer 95aa, the drain P + layer 111a, the first power supply wiring metal layer 95a, the germanide layer 133a, and the first via wiring holes 94aa, 91ba, 94da, and 91ca are respectively connected. 1 output wiring metal layer 95ab, drain N + layer 111b, and first ground wiring metal 95c. Further, the first input wiring metal layer 95aa is connected to the second output wiring metal layer 101aa of the second-stage inverter circuit, and the first output wiring metal layer 95ab is connected to the second output wiring metal layer 101c (Vo). . The second output wiring metal layer 101aa of the second-stage inverter circuit and the second output wiring metal layer 101c (Vo) of the third-stage inverter circuit are copper formed by a dual damascene technique ( Cu) wiring layer.

第11D圖係顯示沿著第11B圖所示之Y1-Y1’線的剖面構造圖。在各段反相器電路之源極P+層90aa、90ba、90ca、與源極P+層90ba、90bb、90cb的交界部,形成有矽化物層133a、133b、133c(Y1-Y1’線係位於源極P+層90aa、90ba、90ca側)。以覆蓋源極P+層90aa、90ba、90ca 與源極P+層90ba90bb、90cb之方式形成有絕緣層101b。在絕緣層110b上形成有閘極導體層93a、93b、93c。此外,在構造物的整體沉積有絕緣層113a。再者,在矽化物層133a、133b、133c上形成有接觸孔94da、94db、94dc。接觸孔94da、94db、94dc係與閘極導體層93a、93b、93c離開而形成。經由接觸孔94da、94db、94dc而連接有矽化物層133a、133b、133c與第1輸入配線金屬層95ca、95cb、95cc。再者,在構造物的整體沉積有絕緣膜113b,並且與第1輸入配線金屬層95ca、95cb、95cc連接之第2輸出配線金屬層101c(Vo)、101aa、101ab係例如藉由Cu雙鑲嵌技術而形成。 Fig. 11D is a cross-sectional structural view taken along line Y1-Y1' shown in Fig. 11B. Telluride layers 133a, 133b, and 133c are formed at the boundary between the source P + layers 90aa, 90ba, 90ca and the source P + layers 90ba, 90bb, 90cb of each inverter circuit (Y1-Y1' line It is located on the source P + layer 90aa, 90ba, 90ca side). An insulating layer 101b is formed to cover the source P + layers 90aa, 90ba, 90ca and the source P + layers 90ba90bb, 90cb. Gate conductor layers 93a, 93b, and 93c are formed on the insulating layer 110b. Further, an insulating layer 113a is deposited on the entire structure. Further, contact holes 94da, 94db, and 94dc are formed on the vapor layers 133a, 133b, and 133c. The contact holes 94da, 94db, and 94dc are formed apart from the gate conductor layers 93a, 93b, and 93c. The vaporized layers 133a, 133b, and 133c and the first input wiring metal layers 95ca, 95cb, and 95cc are connected via the contact holes 94da, 94db, and 94dc. Further, the insulating film 113b is deposited on the entire structure, and the second output wiring metal layers 101c (Vo), 101aa, and 101ab connected to the first input wiring metal layers 95ca, 95cb, and 95cc are, for example, Cu double damascene. Formed by technology.

如第11B圖所示,在以習知技術所形成的CMOS反相器電路中,連接於第1輸出配線金屬層95ab、95bb、95cb之接觸孔94da、94db、94dc在俯視觀看下雖係形成為不與閘極導體層93a、93b、93c重疊,但此會成為電路集積度降低的要因。再者,在習知技術中,如第11C圖所示,矽柱91aa、91ba、91ca上之接觸孔94ba、94ca、94ea、與連接於矽柱91aa、91ba、91ca底部之矽化物層133a上之接觸孔94da之深度的差,必然產生相當於矽柱91aa、91ba、91ca的高度。再者,矽化物層133a上之接觸孔94da之深度雖亦與閘極導體層93a上之接觸孔94aa不同(第11C圖),但此會使接觸孔難以形成。 As shown in FIG. 11B, in the CMOS inverter circuit formed by the conventional technique, the contact holes 94da, 94db, and 94dc connected to the first output wiring metal layers 95ab, 95bb, and 95cb are formed in a plan view. In order not to overlap the gate conductor layers 93a, 93b, and 93c, this may cause a decrease in the circuit integration degree. Further, in the prior art, as shown in Fig. 11C, the contact holes 94ba, 94ca, 94ea on the masts 91aa, 91ba, 91ca, and the telluride layer 133a connected to the bottoms of the masts 91aa, 91ba, 91ca The difference in depth between the contact holes 94da necessarily results in a height corresponding to the masts 91aa, 91ba, and 91ca. Further, although the depth of the contact hole 94da on the vaporized layer 133a is different from the contact hole 94aa on the gate conductor layer 93a (Fig. 11C), it is difficult to form the contact hole.

第11E圖係為將本實施形態之第11A圖所示之3段CMOS反相器電路形成於基板上時的平面圖。從第11E圖的 下方,形成有初段、第2段、第3段反相器電路。初段反相器電路係P通道SGT88aa、88ab之源極P+層96ac與N通道SGT89a之源極N+層96bc彼此連接而形成,且藉由在源極P+層96ac上形成有構成P通道SGT88aa、88ab之矽柱97cb、97cc,及在N+層96bc上形成有形成N通道SGT89a之矽柱97ce來構成。與此等矽柱同時,分別在源極P+層96ac與源極N+層96bc的交界部上形成有構成接觸窗的矽柱97cd、且在與源極P+層96ac相接的本質矽層108c上形成有構成接觸窗的矽柱97ca。SGT88aa、88ab、89a之閘極導體層93bc,係包圍矽柱97ca、97cb、97cd、97ce而且連續地形成。該閘極導體層93bc係經由形成於構成接觸窗之矽柱97ca上之接觸孔100ca而連接於第1輸入配線金屬層47ca。P通道SGT88aa、88ab之汲極,係經由形成於矽柱97cb、97cc上之接觸孔100cb、100cc而連接於第1電源配線金屬層107b。P+層96ac與N+層96bc係經由形成於兩者之交界部上之矽柱97cd上之接觸孔100cd而連接於第1輸出配線金屬層47cb。N通道SGT89a之源極,係經由形成於矽柱97ce上之接觸孔100ce而連接於第1接地配線金屬層107d。在第1輸入配線金屬層47ca上,與該第1輸入配線金屬層47ca連接而形成有第2輸入配線金屬層107aa(Vi)。在第1輸出配線金屬層47cb上,連接於該第1輸出配線金屬層47cb而形成有連接於第2段反相器電路之輸入端子之第2輸出配線金屬層107cc。 Fig. 11E is a plan view showing a case where a three-stage CMOS inverter circuit shown in Fig. 11A of the present embodiment is formed on a substrate. From the lower side of Fig. 11E, an initial stage, a second stage, and a third stage inverter circuit are formed. The initial phase inverter circuit P channel SGT88aa, the source P + layer 96ac of 88ab and the source N + layer 96bc of the N channel SGT89a are connected to each other, and a P channel is formed on the source P + layer 96ac. SGT88aa, 88ab column 97cb, 97cc, and a column 97ce forming an N-channel SGT89a on the N + layer 96bc are formed. Simultaneously with these columns, the pillars 97cd constituting the contact window are formed at the boundary portion between the source P + layer 96ac and the source N + layer 96bc, respectively, and are in contact with the source P + layer 96ac. A mast 97ca constituting a contact window is formed on the layer 108c. The gate conductor layer 93bc of SGT88aa, 88ab, and 89a is formed continuously around the masts 97ca, 97cb, 97cd, and 97ce. The gate conductor layer 93bc is connected to the first input wiring metal layer 47ca via a contact hole 100ca formed in the mast 97ca constituting the contact window. The drains of the P channels SGT88aa and 88ab are connected to the first power supply wiring metal layer 107b via the contact holes 100cb and 100cc formed on the masts 97cb and 97cc. The P + layer 96ac and the N + layer 96bc are connected to the first output wiring metal layer 47cb via a contact hole 100cd formed on the mast 97cd formed on the boundary portion between the two. The source of the N-channel SGT 89a is connected to the first ground wiring metal layer 107d via a contact hole 100ce formed in the mast 97ce. The second input wiring metal layer 107aa (Vi) is formed on the first input wiring metal layer 47ca by being connected to the first input wiring metal layer 47ca. The first output wiring metal layer 47cb is connected to the first output wiring metal layer 47cb to form a second output wiring metal layer 107cc connected to an input terminal of the second-stage inverter circuit.

初段反相器電路之第2輸出配線金屬層107cc係連接 於第2段反相器電路之第1輸入配線金屬層47ba。第2段反相器電路係以成為與初段反相器電路相同配置之方式,由本質矽層108b、P通道SGT88ba、88bb之源極P+層96ab、N通道SGT89b之源極N+層96bb、矽柱97ba、97bb、97bc、97bd、97be、閘極導體層93bb、接觸孔100ba、100bb、100bc、100bd、100be、第1輸入配線金屬層47ba、第1電源配線金屬層107b、第1接地配線金屬層107d、及第1輸出配線金屬層47bb所形成。第1輸出配線金屬層47bb係連接於第2輸出配線金屬層107cb,並且連接於第3段反相器電路之第1輸入配線金屬層47aa。第3段反相器電路係以成為與初段及第2段反相器電路相同配置之方式,由P通道SGT88ca、88cb之本質矽層108a、源極P+層96aa、N通道SGT89c之源極N+層96ba、矽柱97aa、97ab、97ac、97ad、97ae、閘極導體層93ba、接觸孔100aa、100ab、100ac、100ad、100ae、第1輸入配線金屬層47aa、第1電源配線金屬層107b、第1接地配線金屬層107d、及第1輸出配線金屬層47ab所構成。第1輸出配線金屬層47ab係連接於第2輸出配線金屬層107ca(Vo)。 The second output wiring metal layer 107cc of the initial stage inverter circuit is connected to the first input wiring metal layer 47ba of the second-stage inverter circuit. Paragraph inverter circuit 2 based manner as to be the same configuration as the initial stage of the inverter circuit, the nature of the silicon layer 108b, P-channel SGT88ba, the source electrode of the P + layer 88bb 96ab, the source electrode of the N-channel SGT89b N + layer 96bb , masts 97ba, 97bb, 97bc, 97bd, 97be, gate conductor layer 93bb, contact holes 100ba, 100bb, 100bc, 100bd, 100be, first input wiring metal layer 47ba, first power wiring metal layer 107b, first ground The wiring metal layer 107d and the first output wiring metal layer 47bb are formed. The first output wiring metal layer 47bb is connected to the second output wiring metal layer 107cb, and is connected to the first input wiring metal layer 47aa of the third-stage inverter circuit. The inverter circuit of the third stage is the same as the initial stage and the second stage inverter circuit, and is composed of the source of the P channel SGT88ca, 88cb, the source layer 108a, the source P + layer 96aa, and the source of the N channel SGT89c. N + layer 96ba, mast 97aa, 97ab, 97ac, 97ad, 97ae, gate conductor layer 93ba, contact holes 100aa, 100ab, 100ac, 100ad, 100ae, first input wiring metal layer 47aa, first power wiring metal layer 107b The first ground wiring metal layer 107d and the first output wiring metal layer 47ab are formed. The first output wiring metal layer 47ab is connected to the second output wiring metal layer 107ca (Vo).

第11F圖係顯示沿著第11E圖所示之X2-X2’線的剖面構造圖。此剖面構造圖係顯示第3段反相器電路的剖面構造。在氧化矽基板1上形成有平板狀矽層108a,並且在該平板狀矽層108a上,形成有P通道SGT88ca、88cb之矽柱97ab、97ac、N通道SGT89c之矽柱97ae、構成接觸窗之矽柱97aa、97ad。在矽柱97ab、97ac之下方的平板狀 矽層108a形成有源極P+層96aa,並且在矽柱97ae之下方的平板狀矽層108a形成有源極N+層96ba。在源極P+層96aa與源極N+層96ba之交界部上形成有構成接觸窗之矽柱97ad。在矽柱97ab、97ac、97ae的外周,形成有閘極絕緣層110b、110d,並且在構成接觸窗之矽柱97aa、97ad的外周,形成有絕緣層110a、110c。此在等閘極絕緣層110b、110d、與絕緣層110a、110c的外周,形成有彼此連接的閘極導體層93b。在構成接觸窗的矽柱97aa中,構造物的整體係被絕緣層110a所覆蓋。閘極導體層93b係以覆蓋構成接觸窗之矽柱97aa之絕緣層110a之方式形成。再者,以覆蓋構造物之整體之方式,形成有擋止SiN層112a。接下來,接觸孔100aa、100ab、100ac、100ae係形成於矽柱97aa、97ab、97ac、97ad、97ae上。再者,經由此等接觸孔100aa、100ab、100ac、100ad、100ae,分別連接有閘極導體層93b與第1輸入配線金屬層47aa、汲極P+層111a與第1電源配線金屬層107b、形成於構成接觸窗之矽柱97ad之導體層109a與第1輸出配線金屬層47ab、汲極N+層111b與第1接地配線金屬層107d。再者,第1輸入配線金屬層47aa係連接於第2段反相器電路之第2輸入配線金屬層107aa,並且第1輸出配線金屬層47ab係連接於第2輸出配線金屬層107ac。第2段反相器電路之第2輸入配線金屬層107aa、第3段反相器電路之第2輸出配線金屬層107ac均係為藉由雙鑲嵌技術所形成的銅(Cu)配線層。 Fig. 11F is a cross-sectional structural view taken along the line X2-X2' shown in Fig. 11E. This cross-sectional structure diagram shows the cross-sectional structure of the inverter circuit of the third stage. A flat ruthenium layer 108a is formed on the ruthenium oxide substrate 1, and on the flat ruthenium layer 108a, the masts 97ab and 97ac of the P channels SGT88ca and 88cb and the masts 97ae of the N-channel SGT89c are formed, and the contact window is formed. 97 97aa, 97ad. The planar ruthenium layer 108a under the masts 97ab, 97ac forms a source P + layer 96aa, and the planar ruthenium layer 108a below the mast 97ae forms a source P + layer 96ba. A mast 97ad constituting a contact window is formed on a boundary portion between the source P + layer 96aa and the source N + layer 96ba. On the outer circumferences of the masts 97ab, 97ac, and 97ae, gate insulating layers 110b and 110d are formed, and insulating layers 110a and 110c are formed on the outer circumferences of the masts 97aa and 97ad constituting the contact windows. On the outer circumferences of the gate insulating layers 110b and 110d and the insulating layers 110a and 110c, gate conductive layers 93b connected to each other are formed. In the mast 97aa constituting the contact window, the entirety of the structure is covered by the insulating layer 110a. The gate conductor layer 93b is formed to cover the insulating layer 110a of the mast 97aa constituting the contact window. Further, the stopper SiN layer 112a is formed so as to cover the entire structure. Next, the contact holes 100aa, 100ab, 100ac, and 100ae are formed on the masts 97aa, 97ab, 97ac, 97ad, and 97ae. Further, via the contact holes 100aa, 100ab, 100ac, 100ad, and 100ae, the gate conductor layer 93b and the first input wiring metal layer 47aa, the drain P + layer 111a, and the first power wiring metal layer 107b are respectively connected. The conductor layer 109a formed on the mast 97ad of the contact window, the first output wiring metal layer 47ab, the drain N + layer 111b, and the first ground wiring metal layer 107d. In addition, the first input wiring metal layer 47aa is connected to the second input wiring metal layer 107aa of the second-stage inverter circuit, and the first output wiring metal layer 47ab is connected to the second output wiring metal layer 107ac. The second input wiring metal layer 107aa of the second-stage inverter circuit and the second output wiring metal layer 107ac of the third-stage inverter circuit are each a copper (Cu) wiring layer formed by a dual damascene technique.

第11G圖係為沿著第11E圖所示之Y2-Y2’線的剖面 構造圖。在各段反相器電路之源極P+層96aa、96ab、96ac與源極N+層96ba、96bb、96bc之交界部上形成有構成接觸窗之矽柱97ad、97bd、97cd(Y2-Y2’線係位於源極P+層96aa、96ab、96ac側)。以覆蓋矽柱97ad、97bd、97cd、源極P+層96aa、96ab、96ac與源極N+層96ba、96bb、96bc之方式形成有絕緣層110cc、110cb、110ac。在矽柱97ad、97bd、97cd之絕緣層110ac、110cb、110cc之外周形成有閘極導體層93ba、93bb、93bc。此外,在整體堆積有擋止SiN層112a、112b、112c與絕緣層113a。再者,在矽柱97ad、97bd、97cd形成有接觸孔100ad、100bd、100cd。經由接觸孔100ad、100bd、100cd而連接有導體層109a、109b、109c與第1輸出配線金屬層47ab、47bb、47cb。再者,整體堆積有絕緣膜113b,且與第1輸出配線金屬層47ab、47bb、47cb連接之第2輸出配線金屬層107ca、107cb、107cc係例如藉由Cu雙鑲嵌技術而形成。 Fig. 11G is a cross-sectional structural view taken along line Y2-Y2' shown in Fig. 11E. On the interface between the source P + layers 96aa, 96ab, 96ac and the source N + layers 96ba, 96bb, 96bc of each inverter circuit, the masts 97ad, 97bd, 97cd (Y2-Y2) constituting the contact window are formed. 'The line is located on the source P + layer 96aa, 96ab, 96ac side). Insulating layers 110cc, 110cb, and 110ac are formed so as to cover the pillars 97ad, 97bd, and 97cd, the source P + layers 96aa, 96ab, and 96ac and the source N + layers 96ba, 96bb, and 96bc. Gate conductor layers 93ba, 93bb, and 93bc are formed on the outer circumferences of the insulating layers 110ac, 110cb, and 110cc of the masts 97ad, 97bd, and 97cd. Further, the stopper SiN layers 112a, 112b, and 112c and the insulating layer 113a are stacked as a whole. Further, contact holes 100ad, 100bd, and 100cd are formed in the masts 97ad, 97bd, and 97cd. The conductor layers 109a, 109b, and 109c and the first output wiring metal layers 47ab, 47bb, and 47cb are connected via the contact holes 100ad, 100bd, and 100cd. Further, the insulating film 113b is entirely deposited, and the second output wiring metal layers 107ca, 107cb, and 107cc connected to the first output wiring metal layers 47ab, 47bb, and 47cb are formed by, for example, Cu dual damascene technique.

如第11B圖所示,在習知例之CMOS反相器電路中,連接於第1輸出配線金屬層95ab、95bb、95cb之接觸孔94da、94db、94dc雖需形成為在俯視觀察線不會與閘極導體層93a、93b、93c重疊,但此會成為電路集積度降低的要因。相對於此,在本實施形態中,如第11E圖所示,閘極導體層93ba、93bb、93bc係形成於構成接觸窗的矽柱97ad、97bd、97cd上。在俯視觀察下,由於係在閘極導體層93ba、93bb、93bc的區域形成有接觸孔100ad、100bd、100cd,因此各段的接觸孔(100aa、100ab、100ac、100ad、 100ae)、(100ba、100bb、100bc、100bd、100be)、(100ca、100cb、100cd、100ce)係可在橫(列)方向直線排列。藉此,即可提升本實施形態之CMOS反相器電路的電路集積度。再者,在本實施形態中,如第11F圖所示,連接於第1輸入配線金屬層47aa、第1電源配線金屬層107b、第1輸出配線金屬層47ab、第1接地配線金屬層107d之接觸孔100aa、100ab、100ac、100ad、100ae,係在矽柱97aa、97ab、97ac、97ad、97ae上以相同深度形成。藉此,即可易於製造該CMOS反相器電路。 As shown in FIG. 11B, in the CMOS inverter circuit of the conventional example, the contact holes 94da, 94db, and 94dc connected to the first output wiring metal layers 95ab, 95bb, and 95cb are not formed in a plan view line. It overlaps with the gate conductor layers 93a, 93b, and 93c, but this causes a decrease in the circuit integration degree. On the other hand, in the present embodiment, as shown in Fig. 11E, the gate conductor layers 93ba, 93bb, and 93bc are formed on the masts 97ad, 97bd, and 97cd constituting the contact windows. In the plan view, since the contact holes 100ad, 100bd, and 100cd are formed in the regions of the gate conductor layers 93ba, 93bb, and 93bc, the contact holes of the respective segments (100aa, 100ab, 100ac, 100ad, 100ae), (100ba, 100bb, 100bc, 100bd, 100be), (100ca, 100cb, 100cd, 100ce) are linearly arranged in the horizontal (column) direction. Thereby, the circuit integration degree of the CMOS inverter circuit of this embodiment can be improved. In the present embodiment, as shown in FIG. 11F, the first input wiring metal layer 47aa, the first power wiring metal layer 107b, the first output wiring metal layer 47ab, and the first ground wiring metal layer 107d are connected. The contact holes 100aa, 100ab, 100ac, 100ad, 100ae are formed at the same depth on the masts 97aa, 97ab, 97ac, 97ad, 97ae. Thereby, the CMOS inverter circuit can be easily fabricated.

(第10實施形態) (Tenth embodiment)

以下一面參照第12圖一面說明第10實施形態之半導體裝置。 Hereinafter, a semiconductor device according to a tenth embodiment will be described with reference to Fig. 12 .

第12圖係為將本實施形態應用在第11A圖所示之3段CMOS反相器電路時之與第11F圖對應的剖面構造圖。此剖面構造係除了第11F圖中之閘極導體層93b以外均相同。在本實施形態中,形成於構成接觸窗之矽柱97ad之外周之閘極導體層93bb的高度,係形成為較形成有SGT之矽柱97ab、97ac、97ae者還低,而且至少成為閘極導體層93bb的厚度。藉此,即可將閘極導體層93bb與構成接觸窗之矽柱97ad之導體層109a的結合電容減小。由於導體層109a係連接於第1及第2輸出配線金屬層47ab、107ac,因此可將閘極導體層93bb與輸出配線間的結合電容減小。藉此,依據本實施形態,相較於第11F圖所示的電路,可實現SGT電路的高速驅動化。 Fig. 12 is a cross-sectional structural view corresponding to Fig. 11F when the present embodiment is applied to the three-segment CMOS inverter circuit shown in Fig. 11A. This cross-sectional structure is the same except for the gate conductor layer 93b in Fig. 11F. In the present embodiment, the height of the gate conductor layer 93bb formed on the outer periphery of the mast 97ad constituting the contact window is lower than that of the masts 97ab, 97ac, and 97ae in which the SGT is formed, and at least becomes the gate. The thickness of the conductor layer 93bb. Thereby, the coupling capacitance of the gate conductor layer 93bb and the conductor layer 109a of the mast 97ad constituting the contact window can be reduced. Since the conductor layer 109a is connected to the first and second output wiring metal layers 47ab and 107ac, the coupling capacitance between the gate conductor layer 93bb and the output wiring can be reduced. As a result, according to the present embodiment, the SGT circuit can be driven at a high speed compared to the circuit shown in FIG.

形成於構成接觸窗之矽柱97ad之外周之閘極導體層93bb的高度,係可依據電路的要求性能,降低至閘極導體層93bb的厚度。 The height of the gate conductor layer 93bb formed on the outer periphery of the mast 97ad constituting the contact window can be lowered to the thickness of the gate conductor layer 93bb in accordance with the required performance of the circuit.

(第11實施形態) (Eleventh embodiment)

以下一面參照第13A圖、第13B圖一面說明本實施形態之固體攝像裝置。 The solid-state imaging device according to the embodiment will be described below with reference to FIGS. 13A and 13B.

本實施形態係在設於像素區域之構成接觸窗之第2矽柱3之外周的整體,形成閘極導體層7a、與像素選擇線導體層104a,且將此等閘極導體層7a、像素選擇線導體層104a,經由設在橫(列)方向兩側之周邊驅動/輸出電路區域之構成接觸窗之第3矽柱102a、102b、102c、102d上之接觸孔105a、105b、105c、105d而連接於閘極導體層106a、106d、像素選擇線金屬層106b、106c,此點為其特徵。藉此,尤其可實現像素選擇線導體層104a與閘極導體層7a的兩側驅動,不會產生像素集積度的降低。 In the present embodiment, the gate conductor layer 7a and the pixel selection line conductor layer 104a are formed on the entire outer circumference of the second mast 3 which constitutes the contact window of the pixel region, and the gate conductor layer 7a and the pixel are formed. The line conductor layer 104a is selected to pass through the contact holes 105a, 105b, 105c, 105d on the third masts 102a, 102b, 102c, 102d constituting the contact windows of the peripheral driving/outputting circuit regions provided on both sides in the lateral (column) direction. This is characterized by being connected to the gate conductor layers 106a, 106d and the pixel selection line metal layers 106b, 106c. Thereby, in particular, driving of both sides of the pixel selection line conductor layer 104a and the gate conductor layer 7a can be achieved without causing a decrease in the pixel integration degree.

第13A圖係為本實施形態之固體攝像裝置的剖面構造圖。此剖面構造在形成於像素區域中之構成像素之第1矽柱2與構成接觸窗之第2矽柱3的構造,除了像素選擇線導體層104a以外均與第9B圖所示者相同。在像素區域,形成有構成像素之第1矽柱2、及構成接觸窗的第2矽柱3。在設於周邊驅動/輸出區域之平板狀矽層5c、5d上,形成有構成接觸窗之第3矽柱102a、102b、102c、102d。在第1至第3矽柱2、3、102a、102b、102c、102d的外周,形成有絕緣層4b、4c、103a、103b。閘極導體層7a係沿 著絕緣層4b、4c、第3矽柱102b、102c之絕緣層103a、103b之外周而連續形成,在第3矽柱102a、102d中,係以覆蓋第3矽柱102a、102d之上部整體之方式形成。連接於形成於第1矽柱2之上部之P+層11的像素選擇線導體層104a,係以包圍第1矽柱2之光二極體N層9之外周之方式形成。像素選擇線導體層104a係沿著第2矽柱3之側面的絕緣層4c而形成,在第3矽柱102b、102c中,係以覆蓋第3矽柱102b、102c之上部整體之方式形成。在形成於矽柱2、3、102a、102b、102c、102d間之平坦部,閘極導體層7a係形成於SiO2層6上,而像素選擇線導體層104a係形成於SiO2層10a上。信號線N+層5係連接於第2矽柱3之導體層23(21),且經由接觸孔16b而連接於信號線金屬層17b。閘極導體層7a係經由形成於第3矽柱102a、102d上之接觸孔105a、105d而形成於閘極導體層106d。像素選擇線導體層104a係經由形成於第3矽柱102b、102c上之接觸孔105b、105c而連接於像素選擇線金屬層106b、106c。 Fig. 13A is a cross-sectional structural view of the solid-state imaging device of the embodiment. The structure in which the first stub 2 constituting the pixel formed in the pixel region and the second mast 3 constituting the contact window are the same as those shown in FIG. 9B except for the pixel selection line conductor layer 104a. In the pixel region, a first mast 2 constituting a pixel and a second mast 3 constituting a contact window are formed. The third masts 102a, 102b, 102c, and 102d constituting the contact window are formed in the flat layered layers 5c and 5d provided in the peripheral driving/outputting region. Insulating layers 4b, 4c, 103a, and 103b are formed on the outer circumferences of the first to third masts 2, 3, 102a, 102b, 102c, and 102d. The gate conductor layer 7a is continuously formed along the outer circumferences of the insulating layers 10b and 4c of the insulating layers 4b and 4c and the third pillars 102b and 102c, and the third masts 102a and 102d are covered with the third mast. The upper portions of 102a and 102d are formed as a whole. The pixel selection line conductor layer 104a connected to the P + layer 11 formed on the upper portion of the first mast 2 is formed to surround the outer periphery of the photodiode N layer 9 of the first mast 2 . The pixel selection line conductor layer 104a is formed along the insulating layer 4c on the side surface of the second mast 3, and is formed to cover the entire upper portion of the third mast 102b, 102c in the third mast 102b, 102c. In the flat portion formed between the masts 2, 3, 102a, 102b, 102c, and 102d, the gate conductor layer 7a is formed on the SiO 2 layer 6, and the pixel selection line conductor layer 104a is formed on the SiO 2 layer 10a. . The signal line N + layer 5 is connected to the conductor layer 23 (21) of the second mast 3, and is connected to the signal line metal layer 17b via the contact hole 16b. The gate conductor layer 7a is formed in the gate conductor layer 106d via the contact holes 105a and 105d formed in the third pillars 102a and 102d. The pixel selection line conductor layer 104a is connected to the pixel selection line metal layers 106b and 106c via the contact holes 105b and 105c formed on the third pillars 102b and 102c.

藉此,即可將用以將信號線N+層5、閘極導體層7a、像素選擇線導體層104a分別連接於信號線金屬層17b、閘極導體層106a、106d、像素選擇線金屬層106b、106c之接觸孔16b、105a、105b、105c、105d,在第2及第3矽柱3、102a、102b、102c、102d的上方以相同深度形成。再者,由於可將閘極導體層7a與像素選擇線導體層104a沿著其他配線之構成接觸窗之矽柱的側面而配線,因此可 實現固體攝像裝置之像素集積度的提升。 Thereby, the signal line N + layer 5, the gate conductor layer 7a, and the pixel selection line conductor layer 104a can be respectively connected to the signal line metal layer 17b, the gate conductor layers 106a, 106d, and the pixel selection line metal layer. The contact holes 16b, 105a, 105b, 105c, and 105d of 106b and 106c are formed at the same depth above the second and third masts 3, 102a, 102b, 102c, and 102d. Further, since the gate conductor layer 7a and the pixel selection line conductor layer 104a can be wired along the side surface of the mast which constitutes the contact window of the other wiring, the pixel collection degree of the solid-state imaging device can be improved.

依據本實施形態,可形成第13B圖所示的固體攝像裝置。沿著第13B圖中之F-F’線的剖面構造圖,係與第13A圖對應(在第13A圖之像素區域中,僅記載有重複排列在橫(列)方向之F-F’線上之最初構成像素的第1矽柱P11、及構成接觸窗之第2矽柱C11。)。在像素區域中,係在橫(列)方向交替形成有第1矽柱P11(2)至P33、及構成接觸窗之第2矽柱C11(3)至C23。此等第1、第2矽柱P11至P33、C11至C23係形成於在縱(行)方向連續的信號線N+層5a(5)、5b、5c上。像素選擇線導體層104a、104b、104c係連接於第1、第2矽柱P11至P33、C11至C23的外周,且延長形成至設於兩端之周邊驅動/輸出電路區域之第3矽柱102b、102c、102bb、102cb、102bc、102cc。閘極導體層104aa、104ab、104ac係形成於第1、第2矽柱P11至P33、C11至C23的外周,且延長形成至設於兩端之周邊驅動/輸出電路區域之第3矽柱102b、102c、102bb、102cb、102bc、102cc。閘極導體層104aa、104ab、104ac係經由設於兩端之第3矽柱102a、102ab、102ac、102d、102db、102dc上之接觸孔105a、105bd、105ac、105d、105ab、105dc而連接於閘極導體層106a、106ab、106ac、106c、106cb、106cc。像素選擇線導體層104a、104b、104c係經由設於兩端之第3矽柱102b、102bb、102bc、102c、102cb、102cc上之接觸孔105b、105bb、105bc、105c、105cb、105cc而連接於閘極導體層106b、106bb、106bc、106d、106db、106dc。藉此,即可 從閘極導體層104aa、104ab、104ac與像素選擇線導體層104a、104b、104c的兩端驅動,因此可將施加驅動脈衝電壓於閘極導體層104aa、104ab、104ac與像素選擇線導體層104a、104b、104c的重設動作與信號讀取動作高速化。 According to this embodiment, the solid-state imaging device shown in Fig. 13B can be formed. The cross-sectional structure diagram along the line F-F' in Fig. 13B corresponds to Fig. 13A (in the pixel region of Fig. 13A, only the F-F' line which is repeatedly arranged in the horizontal (column) direction is described. The first mast P 11 constituting the pixel and the second mast C 11 constituting the contact window. In the pixel region, the first masts P 11 (2) to P 33 and the second masts C 11 (3) to C 23 constituting the contact windows are alternately formed in the horizontal (column) direction. These first and second masts P 11 to P 33 and C 11 to C 23 are formed on the signal line N + layers 5a (5), 5b, and 5c which are continuous in the longitudinal (row) direction. Pixel selection line conductive layers 104a, 104b, 104c line connected to the first, the second silicon pillar P 11 to P 33, C the outer periphery 11 to C 23, and the extension is formed to provided a drive on the periphery of both ends of the I / O circuit area The third masts 102b, 102c, 102bb, 102cb, 102bc, and 102cc. Gate conductive layer 104aa, 104ab, 104ac lines formed in the first, the second silicon pillar P 11 to P 33, the outer periphery of C 11 to C 23, and the extension is formed to provided at the periphery of both ends of the first drive / output circuit area 3 masts 102b, 102c, 102bb, 102cb, 102bc, 102cc. The gate conductor layers 104aa, 104ab, and 104ac are connected to the gate via contact holes 105a, 105bd, 105ac, 105d, 105ab, and 105dc provided on the third masts 102a, 102ab, 102ac, 102d, 102db, and 102dc at both ends. The pole conductor layers 106a, 106ab, 106ac, 106c, 106cb, 106cc. The pixel selection line conductor layers 104a, 104b, and 104c are connected via contact holes 105b, 105bb, 105bc, 105c, 105cb, and 105cc provided on the third masts 102b, 102bb, 102bc, 102c, 102cb, and 102cc at both ends. Gate conductor layers 106b, 106bb, 106bc, 106d, 106db, 106dc. Thereby, the gate conductor layers 104aa, 104ab, 104ac and the pixel selection line conductor layers 104a, 104b, 104c can be driven at both ends, so that the driving pulse voltage can be applied to the gate conductor layers 104aa, 104ab, 104ac and the pixels. The reset operation of the selected line conductor layers 104a, 104b, and 104c and the signal reading operation are speeded up.

在本實施形態中,如第13A圖所示,像素選擇線導體層104a與閘極導體層7a並未上下彼此重疊。然而不限定於此,亦可在閘極導體層7a的表面形成絕緣層,以與像素選擇線導體層104a相接之處的一部份,設置在縱方向的重疊。藉此,即可更有效地防止射入於構成複數個像素之第1矽柱2之間的光,洩漏於構成鄰接之像素之第1矽柱2內而產生信號電荷所導致解析度的降低、彩色攝像中的混色。 In the present embodiment, as shown in Fig. 13A, the pixel selection line conductor layer 104a and the gate conductor layer 7a do not overlap each other vertically. However, the present invention is not limited thereto, and an insulating layer may be formed on the surface of the gate conductor layer 7a, and a portion overlapping the pixel selection line conductor layer 104a may be provided in the vertical direction. Thereby, it is possible to more effectively prevent the light incident between the first masts 2 constituting the plurality of pixels from leaking into the first mast 2 constituting the adjacent pixel, thereby causing a decrease in the resolution due to signal charges. Color mixing in color photography.

(第12實施形態) (Twelfth embodiment)

以下一面參照第14A圖、第14B圖、第14C圖一面說明使用本實施形態之SGT的半導體裝置。 Hereinafter, a semiconductor device using the SGT of the present embodiment will be described with reference to FIGS. 14A, 14B, and 14C.

第14A圖係顯示以空乏(depletion)形N通道SGT114a為負載,且以強化(enhance)形N通道SGT為驅動電晶體的E/D(強化形驅動/空乏形負載)反相器電路。N通道SGT114b之閘極係連接於輸入端子Vi,而N通道SGT114a之源極與閘極係連接於輸出端子Vo。此外,N通道SGT114a之源極與N通道SGT114b之汲極係連接於輸出端子Vo,而N通道SGT114b之汲極係連接於接地端子Vss。在此E/D反相器電路中,輸入於輸入端子Vi之信號電壓係反轉而從輸出端子輸出。 Fig. 14A shows an E/D (reinforced drive/empty load) inverter circuit with a depletion-shaped N-channel SGT 114a as a load and an enhancement-shaped N-channel SGT as a driving transistor. The gate of the N-channel SGT 114b is connected to the input terminal Vi, and the source and the gate of the N-channel SGT 114a are connected to the output terminal Vo. Further, the source of the N-channel SGT 114a and the drain of the N-channel SGT 114b are connected to the output terminal Vo, and the drain of the N-channel SGT 114b is connected to the ground terminal Vss. In this E/D inverter circuit, the signal voltage input to the input terminal Vi is inverted and output from the output terminal.

第14B圖係顯示在第14A圖中被虛線所包圍之N通道SGT114a之區域的剖面構造。在構成N通道SGT之第3矽柱51a的外周形成有閘極絕緣層54a,而形成於該閘極絕緣層54a之外周的閘極導體層56b係延長至構成接觸窗之矽柱51b,且沿著形成於構成該接觸窗之矽柱51b之外周的絕緣層54b而被向上拉至構成接觸窗之矽柱51b的上部而連接於導體層59。N通道SGT114a之汲極N+層57係經由形成於絕緣層61之接觸孔62a與電源配線金屬層63a(Vcc)連接,而與N通道SGT114a之汲極N+層53相連之構成接觸窗之矽柱51b之導體層59與閘極導體層56b係經由接觸孔62b,在構成接觸窗的矽柱51b上,連接於輸出配線金屬層63b(Vo)。 Fig. 14B is a cross-sectional view showing a region of the N-channel SGT 114a surrounded by a broken line in Fig. 14A. A gate insulating layer 54a is formed on an outer circumference of the third pillar 51a constituting the N-channel SGT, and the gate conductor layer 56b formed on the outer periphery of the gate insulating layer 54a is extended to the mast 51b constituting the contact window, and The conductor layer 59 is connected to the upper portion of the mast 51b constituting the contact window along the insulating layer 54b formed on the outer periphery of the mast 51b constituting the contact window. The drain N + layer 57 of the N channel SGT 114a is connected to the power wiring metal layer 63a (Vcc) via the contact hole 62a formed in the insulating layer 61, and is connected to the drain N + layer 53 of the N channel SGT 114a to form a contact window. The conductor layer 59 and the gate conductor layer 56b of the mast 51b are connected to the output wiring metal layer 63b (Vo) via the contact hole 62b via the mast 51b constituting the contact window.

如此一來,N通道SGT114a之汲極N+層53與閘極導體層56b的連接,在構成接觸窗之矽柱51b的上面,不需追加新的接觸孔即可實現。再者,可形成彼此相同深度的接觸孔62a、62b。 As a result, the connection between the drain N + layer 53 of the N-channel SGT 114a and the gate conductor layer 56b can be realized without adding a new contact hole on the upper surface of the mast 51b constituting the contact window. Further, contact holes 62a, 62b having the same depth as each other can be formed.

第14C圖係顯示閘極導體層56b、與構成接觸窗之矽柱51b之導體層59的連接,在導體層59之側面進行之實施形態。形成於導體層59之外周的絕緣層54c,係被去除直到較形成於構成SGT之矽柱51a之外周之閘極導體層56b的高度還低的部分。再者,形成有閘極導體層56b,而閘極導體層56b與導體層59的連接係在導體層59的上方進行。N通道SGT之汲極N+層57、與絕緣層61上之電源配線金屬層63a(Vcc)的連接,係經由接觸孔62a而進行。 閘極導體層56b、與N通道SGT114a之源極N+層53之輸出配線金屬層63b(Vo)的連接,係經由接觸孔62b來進行。 Fig. 14C shows an embodiment in which the gate conductor layer 56b is connected to the conductor layer 59 of the mast 51b constituting the contact window, and is formed on the side surface of the conductor layer 59. The insulating layer 54c formed on the outer periphery of the conductor layer 59 is removed until it is lower than the height of the gate conductor layer 56b formed on the outer periphery of the mast 51a constituting the SGT. Further, the gate conductor layer 56b is formed, and the connection of the gate conductor layer 56b and the conductor layer 59 is performed above the conductor layer 59. The connection of the drain N + layer 57 of the N channel SGT to the power wiring metal layer 63a (Vcc) on the insulating layer 61 is performed via the contact hole 62a. The connection of the gate conductor layer 56b and the output wiring metal layer 63b (Vo) of the source N + layer 53 of the N channel SGT 114a is performed via the contact hole 62b.

如此一來,與第14B圖所示之構造相同,N通道SGT114a之源極N+層53與閘極導體層56b的連接,在構成接觸窗之矽柱51b的上面,不需追加新的接觸孔即可實現。結果,可形成彼此相同深度的接觸孔62a、62b。 As a result, in the same manner as the structure shown in FIG. 14B, the connection of the source N + layer 53 of the N-channel SGT 114a and the gate conductor layer 56b does not require new contact on the top of the mast 51b constituting the contact window. The hole can be achieved. As a result, the contact holes 62a, 62b having the same depth as each other can be formed.

(第13實施形態) (Thirteenth embodiment)

以下一面參照第15A圖、第15B圖一面說明本實施形態之固體攝像裝置。 Hereinafter, the solid-state imaging device according to the embodiment will be described with reference to Figs. 15A and 15B.

第15A圖係為顯示經由與第2A圖至第2C圖所示之製造步驟相同之步驟所形成的剖面構造圖。在本實施形態中,係於固體攝像裝置的像素區域,以與構成像素之第1矽柱2鄰接之方式,形成有構成接觸窗之第2矽柱3a,且在周邊驅動/輸出電路區域形成有構成接觸窗的第3矽柱3b。此第3矽柱3b係與信號線N+層分離而形成。SiO2層4b、4c、4d係以覆蓋第1至第3矽柱2、3a、3b之方式形成。之後,將第3矽柱3b之外周部的SiO2層4d去除。閘極導體層7a係包圍SiO2層4b、4c、與第3矽柱3b而形成。該閘極導體層7a係以將第1至第3矽柱2、3a、3b彼此連接之方式形成於SiO2層6上。在此,閘極導體層7a係與第3矽柱3b之P層8c直接連接。 Fig. 15A is a cross-sectional structural view showing the same steps as the manufacturing steps shown in Figs. 2A to 2C. In the present embodiment, the second mast 3a constituting the contact window is formed in the pixel region of the solid-state imaging device so as to be adjacent to the first mast 2 constituting the pixel, and is formed in the peripheral drive/output circuit region. There is a third mast 3b constituting a contact window. This third column 3b is formed by being separated from the signal line N + layer. The SiO 2 layers 4b, 4c, and 4d are formed to cover the first to third masts 2, 3a, and 3b. Thereafter, the SiO 2 layer 4d on the outer peripheral portion of the third column 3b is removed. The gate conductor layer 7a is formed by surrounding the SiO 2 layers 4b and 4c and the third column 3b. The gate conductor layer 7a is formed on the SiO 2 layer 6 so that the first to third masts 2, 3a, and 3b are connected to each other. Here, the gate conductor layer 7a is directly connected to the P layer 8c of the third mast 3b.

第15B圖係為接續第15A圖顯示經由與第3A圖至第3C圖相同的步驟而形成固體攝像裝置時之剖面構造圖。在第3矽柱3b,係以與在第2矽柱3a形成矽化物層23時相 同之方式形成矽化物層23a。之後,以與第7B圖所示之步驟相同之方式形成固體攝像裝置。 Fig. 15B is a cross-sectional structural view showing a solid-state imaging device formed by the same steps as those of Figs. 3A to 3C. In the third column 3b, when the vaporization layer 23 is formed on the second column 3a The telluride layer 23a is formed in the same manner. Thereafter, the solid-state imaging device is formed in the same manner as the step shown in Fig. 7B.

如第15B圖所示,閘極導體層7a係在第3矽柱3b的下方部位與矽化物層23a連接。藉此,如第7B圖所示,本實施形態不需將閘極導體層7a連接至第3矽柱3b上來形成。此係由於可將包圍第1至第3矽柱2、3a、3b之各閘極導體層7a之高度設為彼此相同之高度,因此如第7B圖所示,不需將第3矽柱3b之閘極導體層7a殘存至第3矽柱3b的上部。 As shown in Fig. 15B, the gate conductor layer 7a is connected to the vaporized layer 23a at a lower portion of the third mast 3b. Thereby, as shown in Fig. 7B, the present embodiment is formed without connecting the gate conductor layer 7a to the third mast 3b. Since the heights of the gate conductor layers 7a surrounding the first to third masts 2, 3a, and 3b can be set to be the same height, the third mast 3b is not required to be shown in FIG. 7B. The gate conductor layer 7a remains to the upper portion of the third mast 3b.

在第15A圖中,係說明閘極導體層7a未與第3矽柱之矽化物層23a反應而形成之情形。相對於此,在閘極導體層7a以形成Si與矽化物之類的金屬層,例如包含W、Pt、Co、Ti等金屬材料的金屬層形成時,在第3矽柱3b中,以熱處理方式,藉由閘極導體層7a與矽化物層反應將兩者連接。 In Fig. 15A, the case where the gate conductor layer 7a is not reacted with the telluride layer 23a of the third column is described. On the other hand, when the gate conductor layer 7a is formed of a metal layer such as Si or a germanide, for example, a metal layer containing a metal material such as W, Pt, Co, or Ti, heat treatment is performed in the third column 3b. In this manner, the gate conductor layer 7a is reacted with the telluride layer to connect the two.

此外,本實施形態中亦可應用在第14A圖至第14C圖所示之N通道SGT114a之汲極N+層53與閘極導體層56b之連接。此時,此連接係可藉由在供接觸孔用之矽柱51b的下方部位,將閘極導體層56b與導體層59直接連接來進行。 Further, in the present embodiment, the connection of the drain N + layer 53 of the N-channel SGT 114a shown in Figs. 14A to 14C to the gate conductor layer 56b can be applied. In this case, the connection can be made by directly connecting the gate conductor layer 56b and the conductor layer 59 to the lower portion of the mast 51b for the contact hole.

(第14實施形態) (Fourteenth embodiment)

以下一面參照第16A圖、第16B圖一面說明本實施形態之固體攝像裝置。在第13圖之實施形態中,係將閘極導體層7a與第3矽柱3b之矽化物層23a,直接連接在第3 矽柱3b的下方部位。相對於此,在本實施形態中,係連接有第3矽柱3b中之銅(Cu)、鎢(W)等之金屬導體層、閘極導體層7a,以取代矽化物層23a,此點為其特徵。 The solid-state imaging device of the present embodiment will be described below with reference to FIGS. 16A and 16B. In the embodiment of Fig. 13, the gate conductor layer 7a and the germanium layer 23a of the third column 3b are directly connected to the third The lower part of the mast 3b. On the other hand, in the present embodiment, the metal conductor layer such as copper (Cu) or tungsten (W) and the gate conductor layer 7a in the third mast 3b are connected instead of the telluride layer 23a. It is characterized by it.

在本實施形態中,如第16A圖所示,與第15A圖所示之情形有所不同,第3矽柱3b之外周的SiO2層4d未被去除而殘存。在本實施形態中,閘極導體層7a係包圍第1至第3矽柱2、3a、3b之外周部的SiO2層4b、4c、4d,且連續地形成於第1層間絕緣膜6上。 In the present embodiment, as shown in Fig. 16A, unlike the case shown in Fig. 15A, the SiO 2 layer 4d on the outer periphery of the third mast 3b is not removed and remains. In the present embodiment, the gate conductor layer 7a surrounds the SiO 2 layers 4b, 4c, and 4d on the outer peripheral portions of the first to third masts 2, 3a, and 3b, and is continuously formed on the first interlayer insulating film 6. .

之後,如第4B圖所示,將第3矽柱3b之P層8c蝕刻至第3矽柱3b之下方部位,然後,將露出於藉由蝕刻所形成之孔之內部的SiO2層4c予以去除,且使閘極導體層7a露出。接下來,如第16B圖所示,在所蝕刻之第3矽柱3b之P層8c上面、及藉由蝕刻所形成之孔的側面,例如形成由TiN、TaN、Cu等所構成的阻障晶種層141,之後,使用鑲嵌技術,將Cu充填於該孔內。之後,經過與第4D所示之步驟相同的步驟,獲得第16B圖所示之剖面構造。 Thereafter, as shown in Fig. 4B, the P layer 8c of the third column 3b is etched to the lower portion of the third column 3b, and then exposed to the SiO 2 layer 4c which is exposed inside the hole formed by etching. It is removed and the gate conductor layer 7a is exposed. Next, as shown in FIG. 16B, a barrier layer made of TiN, TaN, Cu, or the like is formed on the P layer 8c of the third pillar 3b to be etched, and on the side surface of the hole formed by etching. The seed layer 141 is then filled with Cu in the hole using a damascene technique. Thereafter, the cross-sectional structure shown in Fig. 16B is obtained through the same steps as those shown in Fig. 4D.

在本實施形態中,如第13實施形態,與屬於第1矽柱2之閘極絕緣層之SiO2層4b同時形成之第3矽柱3b之外周部的SiO2層4d,亦可在形成閘極導體層7a之前予以去除。第3矽柱3b之SiO2層4d的去除,係將其以外的區域以光阻層來覆蓋,且進一步將SiO2層4d去除,並將光阻層予以去除處理來進行。在此步驟中,屬於閘極之第1矽柱2之SiO2層4b雖然受污染的可能性較大,但在本實施形態中,並未有在形成閘極導體層7a之前將SiO2層4d 去除的情形,因此可避免此種閘極SiO2層4b受到污染的缺失。再者,不須與第13實施形態相同,要將閘極導體層7a形成至第3矽柱3b的上部。 In the present embodiment, as in the thirteenth embodiment, the SiO 2 layer 4d on the outer peripheral portion of the third mast 3b formed simultaneously with the SiO 2 layer 4b belonging to the gate insulating layer of the first mast 2 may be formed. The gate conductor layer 7a is removed before. The removal of the SiO 2 layer 4d of the third column 3b is performed by covering the other regions with a photoresist layer, further removing the SiO 2 layer 4d, and removing the photoresist layer. In this step, the SiO 2 layer 4b belonging to the first column 2 of the gate is likely to be contaminated, but in the present embodiment, the SiO 2 layer is not formed before the gate conductor layer 7a is formed. 4d is removed, so that the absence of contamination of such gate SiO 2 layer 4b can be avoided. Further, it is not necessary to form the gate conductor layer 7a to the upper portion of the third mast 3b as in the thirteenth embodiment.

在上述第1至第14實施形態中,雖係使用Si半導體,但在使用鍺(germanium)Si(GeSi)、銦銻(InSb)等之其他半導體時,亦可獲得相同的效果。 In the above-described first to fourteenth embodiments, Si semiconductors are used, but the same effects can be obtained when other semiconductors such as germanium Si (GeSi) or indium germanium (InSb) are used.

此外,在本實施形態中,構成像素的矽柱2、2a、與構成SGT的矽柱51a、97a、97b、97c,雖係以由P型、或N型Si所形成之例進行了說明,但亦可由本質型的Si所形成。 Further, in the present embodiment, the masts 2, 2a constituting the pixel and the masts 51a, 97a, 97b, and 97c constituting the SGT are described by an example in which P-type or N-type Si is formed. However, it can also be formed by an intrinsic type of Si.

在本實施形態中,形成於第1矽柱2、2a、51a、97a、97b、97c、51a之外周部的閘極導體層7、30a、43a、43b、56b、7a至7c、7ae至7ac、104a至c、93、93a、93b雖係由單層的材料層所形成,但亦可由被絕緣層分離的複數層所形成。再者,該複數層中任一層亦可包含電性浮游的導體層。 In the present embodiment, the gate conductor layers 7, 30a, 43a, 43b, 56b, 7a to 7c, 7ae to 7ac formed on the outer peripheral portions of the first masts 2, 2a, 51a, 97a, 97b, 97c, 51a. 104a to c, 93, 93a, and 93b are formed of a single layer of material layers, but may be formed of a plurality of layers separated by an insulating layer. Furthermore, any of the plurality of layers may also comprise an electrically floating conductor layer.

此外,像素選擇線導體層14、14a、14b、14c、34亦可為電阻率較小的金屬層等,或微透明導電膜的ITO(Indium Tin Oxide,銦錫氧化物)層。使用ITO膜時,在第8A圖所示的固體攝像裝置中,由於像素選擇線導體層82a、82b、82c不會與構成接觸窗之矽柱C11至C33上下重疊,因此亦可以覆蓋第1矽柱P11至P33之上面之方式配線。與此相同,如第1A圖所示,ITO膜亦可適用在構成接觸窗之第2矽柱Ca、Cb、Cc不存在於像素區域,而形成於周邊 驅動/輸出電路區域的情形。 Further, the pixel selection line conductor layers 14, 14a, 14b, 14c, and 34 may be a metal layer having a small specific resistance or the like, or an ITO (Indium Tin Oxide) layer of a micro transparent conductive film. When the ITO film is used, the solid state imaging device of FIG. 8A, since the pixel selection line conductive layers 82a, 82b, 82c of the contact window will not be silicon constituting the C 11 to C 33 columns vertically overlap, can also cover the first Wiring is performed on the top of the column P 11 to P 33 . Similarly, as shown in FIG. 1A, the ITO film can also be applied to a case where the second pillars Ca, Cb, and Cc constituting the contact window are not present in the pixel region and are formed in the peripheral driving/output circuit region.

在第6圖中,在代用於接觸孔之第2矽柱3a的下方部位雖殘存有N+層31b,但矽化物層35即使直接與信號線導體層28相接,亦不會喪失本發明之技術思想所達成的效果。此外,在本實施形態中,雖將本發明應用於固體攝像裝置,但即使應用於使用SGT的半導體裝置,亦有助於配線的低電阻化,故有助於電路之驅動速度的高速化。 In Fig. 6, although the N + layer 31b remains in the lower portion of the second mast 3a for the contact hole, the telluride layer 35 does not lose the present invention even if it directly contacts the signal line conductor layer 28. The effect achieved by the technical idea. Further, in the present embodiment, the present invention is applied to a solid-state imaging device. However, even when applied to a semiconductor device using the SGT, the wiring is reduced in resistance, which contributes to an increase in the driving speed of the circuit.

此外,在第4D圖、第5圖中,W層70a、Cu層70b係藉由將金屬材料埋入於接觸窗柱之孔68的鑲嵌技術而形成。但不限定於此,亦可藉由將包含施體雜質之N+多晶Si埋入來形成。 Further, in FIGS. 4D and 5, the W layer 70a and the Cu layer 70b are formed by a damascene technique in which a metal material is buried in the hole 68 of the contact window pillar. However, it is not limited thereto, and it may be formed by embedding N + polycrystalline Si containing a donor impurity.

此外,在第4B圖中,係將第2矽柱3之矽層蝕刻至SiO2層4c露出為止而形成孔68a。然而不限定於此,亦可不以此方式經由孔使之露出,而藉由使矽層殘存,來緩和所埋入之W層或Cu層等之金屬層所導致的應力。 Further, in Fig. 4B, the tantalum layer of the second column 3 is etched until the SiO 2 layer 4c is exposed to form a hole 68a. However, the present invention is not limited thereto, and the barrier layer may be exposed in this manner, and the stress caused by the buried metal layer such as the W layer or the Cu layer may be alleviated by leaving the ruthenium layer.

在第7C圖、第8A圖、第9A圖、第13B圖中,係在像素區域將構成接觸窗之第2矽柱C11至C33,相對於構成像素之第1矽柱P11至P33各設置1個。然而不限定於此,即使連接於信號線N+層5a、5b、5c、80a、80b、80c,且依複數個第1矽柱P11至P33之每一矽柱,設置構成1個接觸窗的矽柱,亦可降低信號線的電阻值。 At. 7C, Figure 8A, first. 9A, first Fig. 13B, based in the pixel region constituting the contact holes of the silicon column C 11 to C 33 2, relative to the first silicon pillar P constituting a pixel of 11 to P 33 each set. However, the present invention is not limited thereto, and is connected to the signal line N + layers 5a, 5b, 5c, 80a, 80b, and 80c, and each of the plurality of first masts P 11 to P 33 is configured to constitute one contact. The mast of the window can also reduce the resistance of the signal line.

例如,在第7C圖、第8A圖、第9A圖、第13B圖中,係以構成像素的第1矽柱P11至P33將存在於像素區域之構成接觸窗的第2矽柱C11至C33分開。亦即,在該等圖中, 係分開為分別構成像素與接觸孔的矽柱來予以圖示。在此之構成像素的第1矽柱,係顯示具備具有光二極體的光電轉換部、具有接合電晶體的信號讀取部、具有重設電晶體的重設部的矽柱。 For example, in Fig. 7C, Figure 8A, first. 9A, first Fig. 13B, based in the first silicon pillar P pixels constituting 11 to P 33 is present in the pixels constituting the region of the contact window in the second silicon column C 11 Separate to C 33 . That is, in the figures, it is illustrated as being separated into columns that respectively constitute pixels and contact holes. The first column constituting the pixel here is a column including a photoelectric conversion portion having a photodiode, a signal reading portion having a bonded transistor, and a reset portion having a reset transistor.

另外,在第8A圖中,MOS電晶體之閘極導體層81a、81b、81c與像素選擇線導體層82a、82b、82c的配線配置,亦可加以替換來形成。此係由於均可獲得相同效果之故。 Further, in Fig. 8A, the wiring arrangement of the gate conductor layers 81a, 81b, and 81c of the MOS transistor and the pixel selection line conductor layers 82a, 82b, and 82c may be replaced. This is because the same effect can be obtained.

在第12圖中,係將本發明之技術思想應用在使用SGT之CMOS反相器電路。然而不限定於此,由於結合電容的降低有助於電路的高速驅動化、穩定動作化,因此本發明之技術思想亦可應用於在第1矽柱2具有1個或複數個導體層的固體攝像裝置。 In Fig. 12, the technical idea of the present invention is applied to a CMOS inverter circuit using SGT. However, the present invention is not limited to this, and since the reduction in the coupling capacitance contributes to high-speed driving and stable operation of the circuit, the technical idea of the present invention can also be applied to a solid having one or a plurality of conductor layers in the first mast 2 . Camera unit.

在上述實施形態中,係將本發明之技術思想應用在將固體攝像裝置之像素或半導體裝置之SGT形成於Si之柱狀半導體的情形。然而,本發明之技術思想,亦可廣泛應用在固體攝像裝置,不限定於SGT而將電路元件形成於柱狀半導體的半導體裝置。亦即,本發明之技術思想之特徵為在形成於形成有電路元件之柱狀半導體之底部的半導體區域、將與構成電路元件之柱狀半導體同時形成之構成接觸窗之柱狀半導體之內部所形成的導體層予以電性連接且在構成電路元件之柱狀半導體上或構成電路元件之柱狀半導體之上部所形成的半導體區域、與形成於與該區域相同面上之構成電路元件之柱狀半導體之上部半導體區域連接的導體層、及構成接觸窗的柱狀半導體上,經由以大致相同 深度形成之接觸孔而連接上部配線金屬層。 In the above embodiment, the technical idea of the present invention is applied to a case where a pixel of a solid-state imaging device or an SGT of a semiconductor device is formed in a columnar semiconductor of Si. However, the technical idea of the present invention can also be widely applied to a solid-state imaging device, and is not limited to the SGT, and the circuit element is formed in a semiconductor device of a columnar semiconductor. That is, the technical idea of the present invention is characterized in that the semiconductor region formed at the bottom of the columnar semiconductor in which the circuit element is formed, and the inside of the columnar semiconductor which constitutes the contact window which is formed simultaneously with the columnar semiconductor constituting the circuit element The formed conductor layer is electrically connected to the columnar semiconductor constituting the circuit element or the semiconductor region formed on the upper portion of the columnar semiconductor constituting the circuit element, and the columnar portion constituting the circuit element formed on the same surface as the region The conductor layer connected to the semiconductor region above the semiconductor and the columnar semiconductor constituting the contact window are substantially identical The upper wiring metal layer is connected to the contact hole formed in depth.

另外,構成電路元件的柱狀半導體、與構成接觸窗的柱狀半導體,亦可不必同時形成。 Further, the columnar semiconductor constituting the circuit element and the columnar semiconductor constituting the contact window may not necessarily be formed at the same time.

在上述實施形態中,固體攝像裝置中之信號線N+層的形狀雖係與位於構成SGT之矽柱之下方的P+層或N+層不同,但此係藉由與顯示習知技術之第17A圖之固體攝像裝置、第18C圖所示之使用SGT之半導體裝置中之形狀整合所形成者,此等N+層或P+層的形狀係可為彼此相同,亦可因製造方法的相異而不同。 In the above embodiment, the shape of the signal line N + layer in the solid-state imaging device is different from the P + layer or the N + layer located below the mast constituting the SGT, but this is by the conventional technique. In the solid-state imaging device of FIG. 17A and the shape integration in the semiconductor device using SGT shown in FIG. 18C, the shape of the N + layer or the P + layer may be the same as each other, or may be the same as the manufacturing method. Different and different.

如第1A圖所示,相對於固體攝像裝置中之像素之閘極導體層7a、7b、7c之俯視觀看的形狀為矩形,第11E圖所示之SGT閘極導體層93ba、93bb、93bc,雖係設為包圍矽柱97aa、97ab、97ac、97ad、97ae等而形成為圓形的形狀,但亦可為任何的形狀。此外,閘極導體層7a、7b、7c之俯視觀看的形狀,亦可為其他形狀,例如可為橢圓形、五角形等,依半導體裝置之設計而適當不同。 As shown in FIG. 1A, the shape of the gate conductor layers 7a, 7b, and 7c of the pixel in the solid-state imaging device is rectangular in plan view, and the SGT gate conductor layers 93ba, 93bb, and 93bc shown in FIG. 11E are Although it is formed in a circular shape by surrounding the masts 97aa, 97ab, 97ac, 97ad, 97ae, etc., it may be any shape. Further, the shape of the gate conductor layers 7a, 7b, and 7c in plan view may be other shapes, and may be, for example, an elliptical shape or a pentagon shape, and may be appropriately different depending on the design of the semiconductor device.

如第11A圖至第11G圖所示,第9實施形態雖係將本發明之技術思想應用於使用SGT的半導體裝置,但第10實施形態亦可應用在固體攝像裝置的驅動-輸出-輸入電路、或其他半導體裝置。 As shown in FIGS. 11A to 11G, the ninth embodiment applies the technical idea of the present invention to a semiconductor device using an SGT, but the tenth embodiment can also be applied to a drive-output-input circuit of a solid-state imaging device. Or other semiconductor devices.

例如,在第10C圖、第11F圖中,構成接觸窗的矽柱51a、97aa,雖係形成在連接於源極P+層53a、96aa、源極N+層96ba之平板狀矽層50、108a上,但與第7B圖所示之固體攝像裝置相同,亦可形成在形成有源極N+層96ba之 平板狀Si、及分離的平板狀矽層上。 For example, in the 10th and 11th F1, the masts 51a and 97aa constituting the contact window are formed in the flat layer 50 which is connected to the source P + layers 53a and 96aa and the source N + layer 96ba. In the case of 108a, similarly to the solid-state imaging device shown in Fig. 7B, it may be formed on the flat Si which forms the active electrode N + layer 96ba and the separated flat layer.

例如,在第11E圖、第11F圖、第11G圖中,雖係已說明了形成在形成P通道SGT之矽柱97ab、97ac與形成N通道SGT之矽柱97ae之外周之閘極導體層93ba、93bb、93bc為相同材料層的情形,但由於閘極導體層93ba、93bb、93bc係設定臨限值電壓,因此亦可以彼此不同的材料層、或包含彼此不同材料層的導體層來形成。 For example, in the 11Eth, 11th, and 11thth drawings, the gate conductor layer 93ba formed on the outer periphery of the mast 97aa, 97ac forming the P-channel SGT and the mast 97ae forming the N-channel SGT has been described. Although 93bb and 93bc are the same material layers, the gate conductor layers 93ba, 93bb, and 93bc are formed by a material layer different from each other or a conductor layer containing different material layers.

此外,在第13A圖中,像素選擇線導體層104a雖係與位於第1矽柱2之上部區域的P+層11連接,但亦可與P+層11電性分離而形成,並且如第7B圖所示之像素選擇線導體層14d,在與P+層11相同的層,以構成像素選擇線導體層之方式形成。此外,位於第1矽柱2之閘極導體層7a、像素選擇線導體層104a,即使是由2個以上的層所構成時,也可藉由將與各個導體層對應之構成接觸窗之第3矽柱102a、102b、102c、102d之數量增加,來謀求固體攝像裝置之電路集積度的提升。 Further, in FIG. 13A, the pixel selection line conductor layer 104a is connected to the P + layer 11 located in the upper portion of the first mast 2, but may be formed electrically separated from the P + layer 11, and is The pixel selection line conductor layer 14d shown in FIG. 7B is formed in the same layer as the P + layer 11 so as to constitute a pixel selection line conductor layer. Further, when the gate conductor layer 7a and the pixel selection line conductor layer 104a located in the first mast 2 are composed of two or more layers, the contact window corresponding to each conductor layer can be formed. The number of the three masts 102a, 102b, 102c, and 102d is increased to improve the circuit integration degree of the solid-state imaging device.

在第10C圖中,於第1矽柱51b中,僅形成有1個閘極導體層56。但不限定於此,與第13A圖之固體攝像裝置之情形相同,本發明之技術思想亦可應用於在該第1矽柱51b之高度方向具有複數個閘極導體層的SGT。此時,由於第1矽柱51b的高度變大,因此本發明之效果更為提高。 In Fig. 10C, only one gate conductor layer 56 is formed in the first mast 51b. However, the present invention is not limited to this. As in the case of the solid-state imaging device of Fig. 13A, the technical idea of the present invention can also be applied to an SGT having a plurality of gate conductor layers in the height direction of the first mast 51b. At this time, since the height of the first mast 51b is increased, the effect of the present invention is further improved.

在第1B圖的剖面圖中雖使用氧化矽基板1(SiO2基板)作為基板進行了說明,惟該基板亦可為其他絕緣材料層、或半導體層。使用半導體層時,係藉由形成與N+區域5相 連而包含有固體攝像裝置可動作之施體或受體之擴散層而成為基板。此在其他實施形態之固體攝像裝置、或半導體裝置中亦相同。 In the cross-sectional view of FIG. 1B, the yttrium oxide substrate 1 (SiO 2 substrate) is used as the substrate, but the substrate may be another insulating material layer or a semiconductor layer. When a semiconductor layer is used, a diffusion layer including a donor or an acceptor that can be operated by a solid-state imaging device is formed by being connected to the N + region 5 to form a substrate. This is also the same in the solid-state imaging device or the semiconductor device of the other embodiment.

另外,本發明在不脫離本發明之廣義精神與範圍下,均可進行各種實施形態及變形。此外,上述實施形態係用以說明本發明之一實施例者,並非用以限定本發明之範圍。 In addition, the present invention can be variously modified and modified without departing from the spirit and scope of the invention. In addition, the above embodiments are intended to describe one embodiment of the invention and are not intended to limit the scope of the invention.

[產業上之可利用性] [Industrial availability]

本發明亦可廣泛應用在固體攝像裝置、及將電路元件形成於SGT等之柱狀半導體的半導體裝置。 The present invention is also widely applicable to a solid-state imaging device and a semiconductor device in which a circuit element is formed in a columnar semiconductor such as an SGT.

1、114‧‧‧氧化矽基板 1, 114‧‧‧ oxide substrate

2、2a、B1、B2、B3、B4、G1、G2、G3、G4、R1至R4、P11至P33‧‧‧第1矽柱(第1柱狀半導體) 2, 2a, B1, B2, B3, B4, G1, G2, G3, G4, R1 to R4, P 11 to P 33 ‧ ‧ 1st column (1st columnar semiconductor)

3、3a、51c、C11至C33、Ca、Cb、Cc、CC1、CC2、CC3、CC4‧‧‧第2矽柱(第2柱狀半導體) 3, 3a, 51c, C 11 to C 33 , Ca, Cb, Cc, CC 1 , CC 2 , CC 3 , CC 4 ‧ ‧ 2nd column (second columnar semiconductor)

3b、36a、40a、40b、40c、43a、43b、43c、43d、102a、102b‧‧‧第3矽柱 3b, 36a, 40a, 40b, 40c, 43a, 43b, 43c, 43d, 102a, 102b‧‧‧3rd column

4a、4b、4c、6‧‧‧SiO2層(絕緣層) 4a, 4b, 4c, 6‧‧‧ SiO 2 layer (insulation layer)

4d、4e‧‧‧低電容絕緣層 4d, 4e‧‧‧ low capacitance insulation

5、5a、5b、5c‧‧‧信號線N+層(底部半導體層) 5, 5a, 5b, 5c‧‧‧ signal line N + layer (bottom semiconductor layer)

6‧‧‧第1層間絕緣膜 6‧‧‧1st interlayer insulating film

7a、7b、7c、131a、131b、131c‧‧‧重設MOS閘極導體 7a, 7b, 7c, 131a, 131b, 131c‧‧‧Reset MOS gate conductor

7、7a、7aa、7b、7c、30a、17c、30a、38a、42a、42b、42c、56a、56b、81a、81b、81c、85a、85b、85c、85d、93a、93b、93ba、93bb、93bc、93c、104aa、106a、106b、119‧‧‧閘極導體層 7, 7a, 7aa, 7b, 7c, 30a, 17c, 30a, 38a, 42a, 42b, 42c, 56a, 56b, 81a, 81b, 81c, 85a, 85b, 85c, 85d, 93a, 93b, 93ba, 93bb, 93bc, 93c, 104aa, 106a, 106b, 119‧‧ ‧ gate conductor layer

8a、117‧‧‧第1矽柱P層 8a, 117‧‧‧1st column P layer

8b‧‧‧第2矽柱P層 8b‧‧‧2nd column P layer

9、32、120‧‧‧N層 9, 32, 120‧‧‧N layers

10、10a、15、18、29a、65、66、71‧‧‧SiO210, 10a, 15, 18, 29a, 65, 66, 71‧‧ SiO 2

11、33、121‧‧‧P+11, 33, 121‧‧‧P + layers

12、19、67‧‧‧光阻層 12, 19, 67‧‧‧ photoresist layer

13‧‧‧接觸窗柱N+13‧‧‧Contact window column N + layer

14、14a、14b、14c、14d、14e、82a、82b、82c、86a、86b、86c、86d、104a、122、122a、122b、122c‧‧‧像素選擇線導體層 14, 14a, 14b, 14c, 14d, 14e, 82a, 82b, 82c, 86a, 86b, 86c, 86d, 104a, 122, 122a, 122b, 122c‧‧‧ pixel selection line conductor layer

16a、16aa、16ab、16ac、16b、16c、37a、41a、41b、41c、44a、44b、44c、44d、62a、62b、62c、72a、72b、94aa、94ab、94ac、94ba、94bc、94da、94eb、94ec、94fa、94fb、100aa、100ad、100ba、100ca、100cb、100cd、100ce、100aa、100ab、100ac、123a、123b、126a、126b、126c、129a、129b、 129c、129d、129e、129f、133a、133b、133c、CH1至CH4、CH11至CH33、H11至H33、SC11至SC22、SCa、SCb、SCc、SH1、SH2‧‧‧接觸孔 16a, 16aa, 16ab, 16ac, 16b, 16c, 37a, 41a, 41b, 41c, 44a, 44b, 44c, 44d, 62a, 62b, 62c, 72a, 72b, 94aa, 94ab, 94ac, 94ba, 94bc, 94da, 94eb, 94ec, 94fa, 94fb, 100aa, 100ad, 100ba, 100ca, 100cb, 100cd, 100ce, 100aa, 100ab, 100ac, 123a, 123b, 126a, 126b, 126c, 129a, 129b, 129c, 129d, 129e, 129f, 133a, 133b, 133c, CH 1 to CH 4 , CH 11 to CH 33 , H 11 to H 33 , SC 11 to SC 22 , SCa, SCb, SCc, SH 1 , SH 2 ‧ ‧ contact holes

17a、17aa、17ab、17ac、49a、73a、106b、124b、134a、134b、134c‧‧‧像素選擇線金屬層 17a, 17aa, 17ab, 17ac, 49a, 73a, 106b, 124b, 134a, 134b, 134c‧‧‧ pixel selection line metal layer

17b、26a、26b、26c、28、73b、83a、83b、83c、87a、87b、87c、87d 124a、128a、128b、128c、135a、135b、135c‧‧‧信號線金屬層 17b, 26a, 26b, 26c, 28, 73b, 83a, 83b, 83c, 87a, 87b, 87c, 87d 124a, 128a, 128b, 128c, 135a, 135b, 135c‧‧‧ signal line metal layer

20、68、68a‧‧‧孔 20, 68, 68a‧‧ holes

21‧‧‧非晶或多孔質矽層 21‧‧‧Amorphous or porous layer

22‧‧‧Ni、Co、Ta、W、Ti等的金屬層 22‧‧‧Metal layers of Ni, Co, Ta, W, Ti, etc.

23、23a、129‧‧‧矽化物層 23, 23a, 129‧‧‧ Telluride layer

27‧‧‧絕緣基板 27‧‧‧Insert substrate

31a、31b‧‧‧N+31a, 31b‧‧‧N + layers

33、121‧‧‧像素選擇P+33, 121‧‧‧ pixels select P + layer

35‧‧‧接觸窗柱導體層 35‧‧‧Contact window pillar conductor layer

37、39a、39b、39c、50、84da、84db、84dc、84dd、126、108、108a‧‧‧平板狀矽層 37, 39a, 39b, 39c, 50, 84da, 84db, 84dc, 84dd, 126, 108, 108a‧‧‧ flat layer

47aa、47ba、47ca、95aa、95ca‧‧‧第1輸入配線金屬層 47aa, 47ba, 47ca, 95aa, 95ca‧‧‧1st input wiring metal layer

47bb、47cd、95ab、95bb、95cb‧‧‧第1輸出配線金屬層 47bb, 47cd, 95ab, 95bb, 95cb‧‧‧1st output wiring metal layer

49c‧‧‧重設汲極金屬層 49c‧‧‧Resetting the bungee metal layer

51a‧‧‧構成SGT的矽柱 51a‧‧‧ constitutes the pillar of the SGT

51b‧‧‧構成接觸窗的矽柱 51b‧‧‧The pillar that forms the contact window

53、57a、111a、111a、134a、134b‧‧‧汲極P+53, 57a, 111a, 111a, 134a, 134b‧‧‧ bungee P + layers

53a、53aa、57、90aa、90ba、90ca、96aa、96ab、96ac、138a、138b‧‧‧源極P+53a, 53aa, 57, 90aa, 90ba, 90ca, 96aa, 96ab, 96ac, 138a, 138b‧‧‧ source P + layers

54c、100a、100c‧‧‧接觸窗柱絕緣層 54c, 100a, 100c‧‧‧Contact window pillar insulation

54a、54b、60、61、110a、110ac、110cc、103a、113a、113b‧‧‧ 絕緣層 54a, 54b, 60, 61, 110a, 110ac, 110cc, 103a, 113a, 113b‧‧ Insulation

54、110b、110d、118、136a、136b、136c‧‧‧閘極絕緣層 54, 110b, 110d, 118, 136a, 136b, 136c‧‧‧ gate insulation

56‧‧‧構成SGT的閘極導體層 56‧‧‧The gate conductor layer forming the SGT

58‧‧‧第1矽柱N層 58‧‧‧1st column N layer

59、109a‧‧‧導體層 59, 109a‧‧‧ conductor layer

63c‧‧‧源極配線金屬層 63c‧‧‧Source wiring metal layer

63a、63b、95c、101c、140c‧‧‧輸出配線金屬層 63a, 63b, 95c, 101c, 140c‧‧‧ output wiring metal layer

64‧‧‧SiN層 64‧‧‧SiN layer

68、68a‧‧‧貫通孔 68, 68a‧‧‧through holes

69‧‧‧TiN層 69‧‧‧TiN layer

69a、141‧‧‧阻障晶種層 69a, 141‧‧ ‧ barrier seed layer

70b‧‧‧Cu層 70b‧‧‧Cu layer

70、70a‧‧‧W層 70, 70a‧‧‧W layer

80a、80b、80c、84a、84b、84c、84d、116、116a、116b、116c、130a、130b、130c‧‧‧信號線N+80a, 80b, 80c, 84a, 84b, 84c, 84d, 116, 116a, 116b, 116c, 130a, 130b, 130c‧‧‧ signal line N + layer

88aa、88ba、88ca、125a、125b‧‧‧P通道SGT 88aa, 88ba, 88ca, 125a, 125b‧‧‧P channel SGT

89a、89b、89bb、89c、89cb、114a、114b、125c‧‧‧N通道SGT 89a, 89b, 89bb, 89c, 89cb, 114a, 114b, 125c‧‧‧N-channel SGT

90ba、90bb、96bc、90cb、139‧‧‧源極N+90ba, 90bb, 96bc, 90cb, 139‧‧‧ source N + layer

91aa、91ab、91ac、91ca、91cc、97aa、97ab、97ac、97ad、97ae、97ba、97ca、97cb、97cd、97ce、115、127a、127b、127c、P11至P33‧‧‧矽柱 91aa, 91ab, 91ac, 91ca, 91cc, 97aa, 97ab, 97ac, 97ad, 97ae, 97ba, 97ca, 97cb, 97cd, 97ce, 115, 127a, 127b, 127c, P 11 to P 33 ‧ ‧ 矽

95c、95d、107d‧‧‧第1接地配線金屬 95c, 95d, 107d‧‧‧1st grounding wiring metal

95a、101b、95b、107b、140b‧‧‧第1電源配線金屬層 95a, 101b, 95b, 107b, 140b‧‧‧1st power wiring metal layer

101d、107ad‧‧‧第2接地配線金屬層 101d, 107ad‧‧‧2nd grounding wiring metal layer

101b、107ab‧‧‧第2電源配線金屬層 101b, 107ab‧‧‧2nd power wiring metal layer

101ac、107aa‧‧‧第2輸入配線金屬層 101ac, 107aa‧‧‧2nd input wiring metal layer

107ac、107ca、107cb、107cc‧‧‧第2輸出配線金屬層 107ac, 107ca, 107cb, 107cc‧‧‧2nd output wiring metal layer

108b、108c‧‧‧本質矽層 108b, 108c‧‧‧ Essential layer

111b、127‧‧‧汲極N+111b, 127‧‧ ‧ bungee N + layer

112、112a‧‧‧擋止SiN層 112, 112a‧‧‧ Stop the SiN layer

117‧‧‧P層 117‧‧‧P layer

119a‧‧‧MOS閘極導體層 119a‧‧‧MOS gate conductor layer

125‧‧‧埋入氧化膜 125‧‧‧ buried oxide film

132a、132b、132c‧‧‧像素選擇線導體N+132a, 132b, 132c‧‧‧ pixel selection line conductor N + layer

137a‧‧‧閘極導體N+137a‧‧ ‧ gate conductor N + layer

138、140‧‧‧接觸窗擋止SiN層 138, 140‧‧‧Contact window blocking SiN layer

C‧‧‧電容 C‧‧‧ capacitor

C12、C13‧‧‧接觸窗柱 C 12 , C 13 ‧ ‧ contact window columns

Vcc‧‧‧電源端子 Vcc‧‧‧ power terminal

Vi‧‧‧輸入端子 Vi‧‧‧ input terminal

Vi1、Vi2‧‧‧閘極端子 Vi1, Vi2‧‧‧ gate extremes

Vo‧‧‧輸出端子 Vo‧‧‧ output terminal

Vss‧‧‧接地端子 Vss‧‧‧ Grounding terminal

S‧‧‧源極端子 S‧‧‧ source terminal

第1A圖係為顯示本發明第1實施形態之固體攝像裝置的平面圖。 Fig. 1A is a plan view showing a solid-state imaging device according to a first embodiment of the present invention.

第1B圖係為顯示第1實施形態之固體攝像裝置的剖面構造圖。 Fig. 1B is a cross-sectional structural view showing the solid-state imaging device according to the first embodiment.

第2A圖係為用以說明第1實施形態之固體攝像裝置之製造方法的剖面構造圖。 FIG. 2A is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the first embodiment.

第2B圖係為用以說明第1實施形態之固體攝像裝置之製造方法的剖面構造圖。 FIG. 2B is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the first embodiment.

第2C圖係為用以說明第1實施形態之固體攝像裝置之製造方法的剖面構造圖。 FIG. 2C is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the first embodiment.

第2D圖係為用以說明第1實施形態之固體攝像裝置之製造方法的剖面構造圖。 FIG. 2D is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the first embodiment.

第2E圖係為用以說明第1實施形態之固體攝像裝置之製造方法的剖面構造圖。 FIG. 2E is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the first embodiment.

第2F圖係為用以說明第1實施形態之固體攝像裝置之製造方法的剖面構造圖。 FIG. 2F is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the first embodiment.

第3A圖係為用以說明本發明第2實施形態之固體攝像裝置之製造方法的剖面構造圖。 3A is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the second embodiment of the present invention.

第3B圖係為用以說明第2實施形態之固體攝像裝置之製造方法的剖面構造圖。 3B is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the second embodiment.

第3C圖係為用以說明第2實施形態之固體攝像裝置之製造方法的剖面構造圖。 3C is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the second embodiment.

第4A圖係為用以說明本發明第3實施形態之固體攝像裝置之製造方法的剖面構造圖。 Fig. 4A is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the third embodiment of the present invention.

第4B圖係為用以說明第3實施形態之固體攝像裝置之製造方法的剖面構造圖。 Fig. 4B is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the third embodiment.

第4C圖係為用以說明第3實施形態之固體攝像裝置之製造方法的剖面構造圖。 Fig. 4C is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the third embodiment.

第4D圖係為用以說明第3實施形態之固體攝像裝置之製造方法(導體層係使用鎢(W))之剖面構造圖。 4D is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the third embodiment (tungsten (W) is used for the conductor layer).

第5圖係為在第3實施形態之固體攝像裝置之製造方法中,於導體層使用銅(Cu)時之剖面構造圖。 Fig. 5 is a cross-sectional structural view showing a case where copper (Cu) is used for the conductor layer in the method of manufacturing the solid-state imaging device according to the third embodiment.

第6圖係為顯示本發明第4實施形態之固體攝像裝置之剖面構造圖。 Fig. 6 is a cross-sectional structural view showing a solid-state imaging device according to a fourth embodiment of the present invention.

第7A圖係為用以說明本發明第5實施形態之固體攝像裝置之製造方法的剖面構造圖。 Fig. 7A is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the fifth embodiment of the present invention.

第7B圖係為用以說明第5實施形態之固體攝像裝置之製造方法的剖面構造圖。 Fig. 7B is a cross-sectional structural view for explaining a method of manufacturing the solid-state imaging device according to the fifth embodiment.

第7C圖係為用以說明第5實施形態之固體攝像裝置的平面圖。 Fig. 7C is a plan view for explaining the solid-state imaging device according to the fifth embodiment.

第7D圖係為用以說明第5實施形態之固體攝像裝置的剖面構造圖。 Fig. 7D is a cross-sectional structural view for explaining the solid-state imaging device according to the fifth embodiment.

第8A圖係為用以說明本發明第6實施形態之固體攝像裝置的平面圖。 Fig. 8A is a plan view showing a solid-state imaging device according to a sixth embodiment of the present invention.

第8B圖係為用以說明第6實施形態之固體攝像裝置的剖面構造圖。 Fig. 8B is a cross-sectional structural view for explaining the solid-state imaging device according to the sixth embodiment.

第9A圖係為用以說明本發明第7實施形態之固體攝像裝置的平面圖。 Fig. 9A is a plan view showing a solid-state imaging device according to a seventh embodiment of the present invention.

第9B圖係為用以說明第7實施形態之固體攝像裝置的剖面構造圖。 Fig. 9B is a cross-sectional structural view for explaining the solid-state imaging device according to the seventh embodiment.

第10A圖係為本發明第8實施形態之P通道SGT的電路圖。 Fig. 10A is a circuit diagram of a P-channel SGT according to an eighth embodiment of the present invention.

第10B圖係為顯示第8實施形態之P通道SGT的平面圖。 Fig. 10B is a plan view showing the P channel SGT of the eighth embodiment.

第10C圖係為顯示第8實施形態之P通道SGT的剖面構造圖。 Fig. 10C is a cross-sectional structural view showing the P channel SGT of the eighth embodiment.

第11A圖係為顯示本發明第9實施形態之使用SGT之CMOS反相器電路的電路圖。 Fig. 11A is a circuit diagram showing a CMOS inverter circuit using SGT in the ninth embodiment of the present invention.

第11B圖係為顯示第9實施形態之使用習知技術之SGT之CMOS反相器電路的平面圖。 Fig. 11B is a plan view showing a CMOS inverter circuit using a conventional SGT of the ninth embodiment.

第11C圖係為顯示第9實施形態之使用習知技術之SGT之CMOS反相器電路的剖面構造圖。 Fig. 11C is a cross-sectional structural view showing a CMOS inverter circuit using a conventional SGT of the ninth embodiment.

第11D圖係為顯示第9實施形態之使用習知技術之SGT之CMOS反相器電路的剖面構造圖。 Fig. 11D is a cross-sectional structural view showing a CMOS inverter circuit using a conventional SGT of the ninth embodiment.

第11E圖係為顯示第9實施形態之使用SGT之CMOS反相器電路的平面圖。 Fig. 11E is a plan view showing a CMOS inverter circuit using SGT in the ninth embodiment.

第11F圖係為顯示第9實施形態之使用SGT之CMOS反相器電路的剖面構造圖。 Fig. 11F is a cross-sectional structural view showing a CMOS inverter circuit using SGT in the ninth embodiment.

第11G圖係為顯示第9實施形態之使用SGT之CMOS反相器電路的剖面構造圖。 Fig. 11G is a cross-sectional structural view showing a CMOS inverter circuit using SGT in the ninth embodiment.

第12圖係為顯示本發明第10實施形態之使用SGT之CMOS反相器電路的剖面構造圖。 Fig. 12 is a cross-sectional structural view showing a CMOS inverter circuit using an SGT according to a tenth embodiment of the present invention.

第13A圖係為顯示本發明第11實施形態之固體攝像裝置的剖面構造圖。 Fig. 13A is a cross-sectional structural view showing a solid-state imaging device according to an eleventh embodiment of the present invention.

第13B圖係為顯示第11實施形態之固體攝像裝置的平面圖。 Fig. 13B is a plan view showing the solid-state imaging device of the eleventh embodiment.

第14A圖係為顯示本發明第12實施形態之使用SGT之E/D反相器電路之平面圖。 Fig. 14A is a plan view showing an E/D inverter circuit using an SGT according to a twelfth embodiment of the present invention.

第14B圖係為顯示第12實施形態之使用SGT之E/D反相器電路的剖面構造圖。 Fig. 14B is a cross-sectional structural view showing an E/D inverter circuit using SGT in the twelfth embodiment.

第14C圖係為顯示第12實施形態之使用SGT之E/D反相器電路之負載N通道SGT部的剖面構造圖。 Fig. 14C is a cross-sectional structural view showing a load N-channel SGT portion of the E/D inverter circuit using the SGT of the twelfth embodiment.

第15A圖係為本發明第13實施形態之固體攝像裝置的剖面構造圖。 15A is a cross-sectional structural view of a solid-state imaging device according to a thirteenth embodiment of the present invention.

第15B圖係為第13實施形態之固體攝像裝置之剖面構造圖。 Fig. 15B is a cross-sectional structural view showing a solid-state imaging device according to a thirteenth embodiment.

第16A圖係為本發明第14實施形態之固體攝像裝置之剖面構造圖。 Fig. 16A is a cross-sectional structural view showing a solid-state imaging device according to a fourteenth embodiment of the present invention.

第16B圖係為第14實施形態之固體攝像裝置之剖面構造圖。 Fig. 16B is a cross-sectional structural view showing a solid-state imaging device according to a fourteenth embodiment.

第17A圖係為顯示習知例之固體攝像裝置的像素剖面構造圖。 Fig. 17A is a diagram showing a pixel cross-sectional structure of a solid-state imaging device of a conventional example.

第17B圖係為顯示習知例之含有配線金屬層之固體攝像裝置的剖面構造圖。 Fig. 17B is a cross-sectional structural view showing a solid-state imaging device including a wiring metal layer in a conventional example.

第17C圖係為顯示習知例之固體攝像裝置的平面圖。 Fig. 17C is a plan view showing a solid-state imaging device of a conventional example.

第17D圖係為顯示在像素區域形成連接信號線N+層與信號線金屬層之接觸孔之習知例之固體攝像裝置的平面圖。 Fig. 17D is a plan view showing a solid-state imaging device of a conventional example in which a contact hole for connecting a signal line N + layer and a signal line metal layer is formed in a pixel region.

第18A圖係為使用SGT之習知例之CMOS反相器電路圖。 Fig. 18A is a circuit diagram of a CMOS inverter using a conventional example of SGT.

第18B圖係為顯示使用SGT之習知例之CMOS反相器電路的平面圖。 Fig. 18B is a plan view showing a CMOS inverter circuit of a conventional example using SGT.

第18C圖係為顯示使用SGT之習知例之CMOS反相器電路的剖面構造圖。 Fig. 18C is a cross-sectional structural view showing a CMOS inverter circuit using a conventional example of SGT.

1‧‧‧氧化矽基板 1‧‧‧Oxide substrate

2、P11‧‧‧第1矽柱(第1柱狀半導體) 2. P 11 ‧‧‧1st column (1st columnar semiconductor)

3、Ca‧‧‧第2矽柱(第2柱狀半導體) 3. Ca‧‧‧2nd column (2nd columnar semiconductor)

4b、4c、6‧‧‧SiO2層(絕緣層) 4b, 4c, 6‧‧‧ SiO 2 layer (insulation layer)

5、5a‧‧‧信號線N+層(底部半導體層) 5, 5a‧‧‧ signal line N + layer (bottom semiconductor layer)

6‧‧‧第1層間絕緣膜 6‧‧‧1st interlayer insulating film

7、7a‧‧‧閘極導體層 7, 7a‧‧ ‧ gate conductor layer

8a‧‧‧第1矽柱P層 8a‧‧‧1st column P layer

9‧‧‧N層 9‧‧‧N layer

10、15‧‧‧SiO210, 15‧‧‧ SiO 2 layer

11‧‧‧P+11‧‧‧P + layer

13‧‧‧接觸窗柱N+13‧‧‧Contact window column N + layer

14、14a‧‧‧像素選擇線導體層 14, 14a‧‧‧ pixel selection line conductor layer

16a、16aa、16b、SCa‧‧‧接觸孔 16a, 16aa, 16b, SCa‧‧ contact holes

17a、17aa‧‧‧像素選擇線金屬層 17a, 17aa‧‧‧ pixel selection line metal layer

17h、26a‧‧‧信號線金屬層 17h, 26a‧‧‧ signal line metal layer

Claims (19)

一種半導體裝置的製造方法,其特徵為具有:柱狀半導體形成步驟,以成為彼此相同高度之方式,同時形成第1柱狀半導體與第2柱狀半導體於基板上;柱狀半導體底部連接步驟,將施體或受體雜質摻雜於前述第1柱狀半導體之底部區域及在下方與前述底部區域相接之區域中之至少一個區域而形成第1半導體層,並且將前述第1半導體層與前述第2柱狀半導體予以彼此連接;電路元件形成步驟,將施體或受體雜質摻雜在前述第1柱狀半導體之上部區域而形成上部半導體區域,且形成具有該上部半導體區域之電路元件;導體層形成步驟,在前述第2柱狀半導體內形成第1導體層;接觸孔形成步驟,形成分別連接於前述第1及第2柱狀半導體之第1接觸孔、第2接觸孔;配線金屬層形成步驟,形成經由前述第1及第2接觸孔而連接於前述上部半導體區域及前述第1導體層之各者的配線金屬層;第1絕緣層形成步驟,以包圍前述第1柱狀半導體之方式形成第1絕緣層;及柱狀半導體連接導體層形成步驟,以包圍前述第1絕緣層及前述第2柱狀半導體之方式而且以連接前述 第1及前述第2柱狀半導體之方式形成柱狀半導體連接導體層。 A method of manufacturing a semiconductor device, comprising: a columnar semiconductor forming step of forming a first columnar semiconductor and a second columnar semiconductor on a substrate so as to have the same height; and a columnar semiconductor bottom connection step Forming a first semiconductor layer by doping the acceptor or the acceptor impurity in at least one of a bottom region of the first columnar semiconductor and a region in contact with the bottom region, and forming the first semiconductor layer The second columnar semiconductors are connected to each other; and the circuit element forming step of doping the donor or acceptor impurities in the upper region of the first columnar semiconductor to form an upper semiconductor region, and forming a circuit component having the upper semiconductor region a conductor layer forming step of forming a first conductor layer in the second columnar semiconductor; and a contact hole forming step of forming a first contact hole and a second contact hole respectively connected to the first and second columnar semiconductors; a metal layer forming step of forming each of the upper semiconductor region and the first conductor layer via the first and second contact holes a wiring metal layer; a first insulating layer forming step of forming the first insulating layer so as to surround the first columnar semiconductor; and a columnar semiconductor connecting conductor layer forming step to surround the first insulating layer and the second The manner of the columnar semiconductor A columnar semiconductor connecting conductor layer is formed in the first and second columnar semiconductors. 如申請專利範圍第1項所述之半導體裝置的製造方法,其中,復具有以與前述上部半導體區域連接之方式在與前述上部半導體區域相同的面上形成第2導體層的步驟;在前述接觸孔形成步驟中,係在前述第2導體層上、及前述第2柱狀半導體上,以與該第2導體層、該第2柱狀半導體連接之方式分別形成第1及第2接觸孔;在前述配線金屬層形成步驟中,係形成經由前述第1及第2接觸孔而與前述第2導體層及前述第1導體層連接之配線金屬層。 The method of manufacturing a semiconductor device according to claim 1, further comprising the step of forming a second conductor layer on the same surface as the upper semiconductor region so as to be connected to the upper semiconductor region; In the hole forming step, the first and second contact holes are formed on the second conductor layer and the second columnar semiconductor so as to be connected to the second conductor layer and the second columnar semiconductor; In the wiring metal layer forming step, a wiring metal layer that is connected to the second conductor layer and the first conductor layer via the first and second contact holes is formed. 如申請專利範圍第1項所述之半導體裝置的製造方法,其中,前述導體層形成步驟係包括:將施體或受體雜質摻雜於前述第2柱狀半導體內而形成前述第1半導體層的步驟、或在前述第2柱狀半導體內,藉由將摻雜有施體或受體之多晶半導體層、矽化物層及金屬層中之任一層埋入而形成前述第1半導體層的步驟。 The method of manufacturing a semiconductor device according to claim 1, wherein the conductor layer forming step includes doping the donor or acceptor impurity into the second columnar semiconductor to form the first semiconductor layer. a step of forming the first semiconductor layer by embedding any one of a polycrystalline semiconductor layer, a vaporized layer, and a metal layer doped with a donor or a acceptor in the second columnar semiconductor. step. 如申請專利範圍第1項所述之半導體裝置的製造方法,其中,在前述柱狀半導體連接導體層形成步驟中,係以包圍前述第2柱狀半導體之方式進一步形成第2絕緣層,且以包圍前述第1及第2絕緣層之方式而且以連接前述第1及前述第2柱狀半導體之方式形成前述柱狀半 導體連接導體層。 The method of manufacturing a semiconductor device according to claim 1, wherein in the step of forming the columnar semiconductor connecting conductor layer, the second insulating layer is further formed to surround the second columnar semiconductor, and Forming the columnar half so as to surround the first and second insulating layers and connecting the first and second columnar semiconductors The conductor is connected to the conductor layer. 如申請專利範圍第1或4項所述之半導體裝置的製造方法,其中,復具有:在前述柱狀半導體連接導體層之上方,以包圍前述第1及第2絕緣層之方式而且以連接前述第1及第2柱狀半導體之方式形成柱狀半導體連接上方導體層的步驟。 The method of manufacturing a semiconductor device according to claim 1 or 4, further comprising: connecting the first and second insulating layers above the columnar semiconductor connecting conductor layer and connecting the foregoing The step of forming the columnar semiconductor to the upper conductor layer in the form of the first and second columnar semiconductors. 如申請專利範圍第1項所述之半導體裝置的製造方法,其中,前述柱狀半導體底部連接步驟係為將施體或受體雜質摻雜於前述第1柱狀半導體之底部區域及在下方與前述底部區域相接之區域中之至少一區域而形成第1半導體層,並且藉由在前述基板上形成第4導體層而將前述第1半導體層與前述第2柱狀半導體予以彼此連接的步驟。 The method of manufacturing a semiconductor device according to claim 1, wherein the columnar semiconductor bottom connection step is performed by doping a donor or acceptor impurity into a bottom region of the first columnar semiconductor and underlying a step of forming a first semiconductor layer in at least one of regions in which the bottom regions are in contact with each other, and connecting the first semiconductor layer and the second columnar semiconductor to each other by forming a fourth conductor layer on the substrate . 如申請專利範圍第1項所述之半導體裝置的製造方法,其中,前述第2絕緣層係使用較前述第1絕緣層更低電容的絕緣材料所形成。 The method of manufacturing a semiconductor device according to claim 1, wherein the second insulating layer is formed using an insulating material having a lower capacitance than the first insulating layer. 如申請專利範圍第1項所述之半導體裝置的製造方法,其中,具備以下步驟:以成為彼此相同高度之方式,同時形成前述第1及第3柱狀半導體的步驟;將含有施體或受體雜質之雜質擴散層、矽化物層、或金屬層形成於前述第3柱狀半導體內的步驟;及從前述第1柱狀半導體的外周,經由前述第1絕緣層使前述柱狀半導體連接導體層延伸至前述第3柱狀 半導體,並且以包圍前述第3柱狀半導體之方式,而且以形成於前述第3柱狀半導體內且與含有施體或受體雜質之雜質擴散層、矽化物層、或金屬層在前述第3柱狀半導體之下方區域連接之方式形成的步驟。 The method of manufacturing a semiconductor device according to the first aspect of the invention, further comprising the steps of: forming the first and third columnar semiconductors at the same height to each other; and containing the donor or the acceptor a step of forming an impurity diffusion layer, a vaporization layer, or a metal layer of the bulk impurity in the third columnar semiconductor; and forming the columnar semiconductor connection conductor from the outer periphery of the first columnar semiconductor via the first insulating layer The layer extends to the aforementioned third column The semiconductor is surrounded by the third columnar semiconductor, and is formed in the third columnar semiconductor and is provided with an impurity diffusion layer, a vaporized layer or a metal layer containing a donor or acceptor impurity in the third A step of forming a lower region of the columnar semiconductor. 一種半導體裝置,其特徵為具備:基板;及形成於前述基板上,且彼此相同高度的第1及第2柱狀半導體;在前述第1柱狀半導體之底部區域及在下方與前述底部區域相接之區域中之至少一區域,係摻雜有施體或受體雜質而形成有第1半導體層,並且前述第1半導體層與前述第2柱狀半導體係彼此連接;在前述第1柱狀半導體之上部區域,係形成具有摻雜有施體或受體雜質而成之上部半導體區域的電路元件;在前述第2柱狀半導體內係形成有第1導體層;且具有:分別連接於前述第1及第2柱狀半導體的第1接觸孔、第2接觸孔;經由前述第1及第2接觸孔而與前述上部半導體區域及前述第1導體層連接的配線金屬層;以分別包圍前述第1及第2柱狀半導體之方式形成的第1及第2絕緣層;及前述第1及第2絕緣層之中,至少包圍前述第1 絕緣層,而且延伸至前述第2絕緣層的前述柱狀半導體連接導體層。 A semiconductor device comprising: a substrate; and first and second columnar semiconductors formed on the substrate and having the same height; and a bottom region of the first columnar semiconductor and a bottom region of the first columnar semiconductor At least one of the regions in the region is doped with a donor or acceptor impurity to form a first semiconductor layer, and the first semiconductor layer and the second columnar semiconductor are connected to each other; and the first columnar shape a semiconductor device having a semiconductor region doped with a donor or acceptor impurity; and a first conductive layer formed in the second columnar semiconductor; a first contact hole and a second contact hole of the first and second columnar semiconductors; and a wiring metal layer connected to the upper semiconductor region and the first conductor layer via the first and second contact holes; The first and second insulating layers formed by the first and second columnar semiconductors; and the first and second insulating layers surround at least the first The insulating layer extends to the columnar semiconductor connecting conductor layer of the second insulating layer. 如申請專利範圍第9項所述之半導體裝置,其中,前述第2柱狀半導體之外周之前述柱狀半導體連接導體層的高度,係較前述第1柱狀半導體之外周之前述柱狀半導體連接導體層的高度還低,且較該柱狀半導體連接導體層的厚度還高。 The semiconductor device according to claim 9, wherein the height of the columnar semiconductor connecting conductor layer on the outer circumference of the second columnar semiconductor is higher than the columnar semiconductor connection on the outer circumference of the first columnar semiconductor. The height of the conductor layer is also low and is higher than the thickness of the columnar semiconductor connection conductor layer. 如申請專利範圍第9項所述之半導體裝置,其係為固體攝像裝置,該固體攝像裝置之像素係具備前述第1及第2柱狀半導體,並且包含前述電路元件;前述像素係具有:形成於前述基板之做為前述第1半導體層的底部半導體層;第2半導體層,在前述第1柱狀半導體內形成於前述底部半導體層的上方,且包括屬於與前述底部半導體層相反導電型之半導體或本微半導體;第3半導體層,以位於前述柱狀半導體連接導體層之上方之方式形成於前述第2半導體層的外周部,且屬於與前述第1半導體層相同之導電型,其中,前述柱狀半導體連接導體層以位於前述底部半導體層之上方之方式經由前述第1絕緣層而形成於前述第2半導體層的外周;及做為前述上部半導體區域之第4半導體層,連接於前述第2半導體層,並且形成於前述第3半導體層之上 方,且屬於與前述底部半導體層相反之導電型;前述第1柱狀半導體之底部區域、與前述第2柱狀半導體內之前述第1導體層係藉由前述底部半導體層而彼此連接。 The semiconductor device according to claim 9, which is a solid-state imaging device, wherein the pixel of the solid-state imaging device includes the first and second columnar semiconductors, and includes the circuit element; and the pixel system has a shape The substrate is a bottom semiconductor layer of the first semiconductor layer; the second semiconductor layer is formed over the bottom semiconductor layer in the first columnar semiconductor, and includes a conductivity type opposite to the bottom semiconductor layer a semiconductor or a micro semiconductor; the third semiconductor layer is formed on the outer peripheral portion of the second semiconductor layer so as to be located above the columnar semiconductor connection conductor layer, and is of the same conductivity type as the first semiconductor layer, wherein The columnar semiconductor connecting conductor layer is formed on the outer periphery of the second semiconductor layer via the first insulating layer so as to be positioned above the bottom semiconductor layer, and the fourth semiconductor layer as the upper semiconductor region is connected to the foregoing a second semiconductor layer formed on the third semiconductor layer And a conductive type opposite to the bottom semiconductor layer; the bottom region of the first columnar semiconductor and the first conductor layer in the second columnar semiconductor are connected to each other by the bottom semiconductor layer. 如申請專利範圍第9項所述之半導體裝置,其係為具有環繞式閘極電晶體(SGT;Surround Gate Transistor)之半導體裝置;在前述第1柱狀半導體中係形成有前述SGT做為前述電路元件;前述SGT係具備:形成於前述基板之做為前述第1半導體層的底部半導體區域;通道半導體層,連接於前述底部半導體區域之上方部位,並且包含屬於與該底部半導體區域相反之導電型之半導體或固有半導體;絕緣層,形成於前述通道半導體層的外周;及導體層,隔著前述絕緣層而形成於前述通道半導體層的外周;前述上部半導體層係連接於前述通道半導體層的上方部位,並且為與前述底部半導體區域相同的導電型,而且,在該底部半導體區域發揮做為前述SGT之源極的功能時係發揮做為汲極之功能,另一方面,在該底部半導體區域發揮做為前述SGT之汲極的功能時係發揮做為源極之功能; 前述底部半導體區域與前述第2柱狀半導體內之前述第1導體層係彼此連接。 The semiconductor device according to claim 9, which is a semiconductor device having a Surround Gate Transistor (SGT); wherein the SGT is formed in the first columnar semiconductor as the foregoing a circuit element; the SGT system includes: a bottom semiconductor region formed as the first semiconductor layer on the substrate; and a channel semiconductor layer connected to an upper portion of the bottom semiconductor region and including a conductive region opposite to the bottom semiconductor region a semiconductor or an intrinsic semiconductor; an insulating layer formed on an outer circumference of the channel semiconductor layer; and a conductor layer formed on an outer periphery of the channel semiconductor layer via the insulating layer; and the upper semiconductor layer is connected to the channel semiconductor layer The upper portion is the same conductivity type as the bottom semiconductor region, and functions as a drain when the bottom semiconductor region functions as a source of the SGT. On the other hand, the bottom semiconductor When the region plays a role as the bungee of the aforementioned SGT, it plays a role as a source. ; The bottom semiconductor region and the first conductor layer in the second columnar semiconductor are connected to each other. 如申請專利範圍第11項所述之半導體裝置,其係為固體攝像裝置;在配置複數個前述像素的像素區域中,構成該各像素之前述第1及第2柱狀半導體係分別在縱(行)方向及橫(列)方向排列成2維狀。 The semiconductor device according to claim 11, wherein the semiconductor device is a solid-state imaging device; and in the pixel region in which the plurality of pixels are arranged, the first and second columnar semiconductor systems constituting each of the pixels are respectively vertical ( The row direction and the horizontal (column) direction are arranged in a two-dimensional shape. 如申請專利範圍第13項所述之半導體裝置,其係為固體攝像裝置;做為前述第1半導體層的底部半導體層,係依前述第1柱狀半導體在縱方向排列而成的每一行,連接於該行中之複數個第1柱狀半導體之底部區域,並且朝縱(行)方向延伸,藉此形成第1半導體層連接導體層;前述第1半導體層連接導體層係連接於該第1半導體層連接導體層上之與前述各第1柱狀半導體相鄰之前述第2柱狀半導體之底部區域;前述第1柱狀半導體之前述柱狀半導體連接導體層,係以遮蔽射入至在列方向鄰接之該第1柱狀半導體之間之光之方式彼此連接,藉此形成朝橫(列)方向延伸之第2半導體層連接導體層;且具備以遮蔽射入於在行方向鄰接之前述第1柱狀半導體之間之光之方式朝橫(列)方向延伸並且連接於該各第1柱狀半導體之前述第4半導體層之第3半導體層連接導體層; 在形成有前述第2及第3半導體層連接導體層中之至少一者的區域內,形成有複數個前述第2柱狀半導體,並且在該各第2柱狀半導體上形成有接觸孔,而前述第1半導體層連接導體層與前述配線金屬層係經由該各接觸孔與前述各第2柱狀半導體內之前述第1導體層而彼此連接。 The semiconductor device according to claim 13, wherein the semiconductor device is a solid-state imaging device; and the bottom semiconductor layer of the first semiconductor layer is arranged in a row in the longitudinal direction of the first columnar semiconductor. Connecting the bottom region of the plurality of first columnar semiconductors in the row and extending in the vertical direction (row direction) to form a first semiconductor layer connection conductor layer; the first semiconductor layer connection conductor layer is connected to the first a semiconductor substrate connecting conductor layer on a bottom region of the second columnar semiconductor adjacent to each of the first columnar semiconductors; and the columnar semiconductor connecting conductor layer of the first columnar semiconductor is shielded and incident on Light connecting between the first columnar semiconductors adjacent in the column direction is connected to each other to form a second semiconductor layer connecting conductor layer extending in the lateral direction (column) direction, and is provided to be incident in the row direction by shielding The light between the first columnar semiconductors extends in the horizontal (column) direction and is connected to the third semiconductor layer connecting conductor layer of the fourth semiconductor layer of each of the first columnar semiconductors; A plurality of the second columnar semiconductors are formed in a region in which at least one of the second and third semiconductor layer connection conductor layers is formed, and contact holes are formed in the second columnar semiconductors. The first semiconductor layer connection conductor layer and the wiring metal layer are connected to each other via the contact holes and the first conductor layer in each of the second columnar semiconductors. 如申請專利範圍第13項所述之半導體裝置,其係為固體攝像裝置;在排列有前述像素的像素區域中,做為前述第1半導體層的底部半導體層係依前述第1柱狀半導體在縱方向排列而成的每一行,朝縱(行)方向延伸,藉此形成第1半導體層連接導體層;前述第1柱狀半導體之前述柱狀半導體連接導體層係彼此連接,藉此形成朝橫(列)方向延伸的第2半導體層連接導體層;且具備連接於前述第1柱狀半導體之前述第4半導體層,且朝橫(列)方向延伸之第3半導體層連接導體層;前述第2及第3半導體層連接導體層從電磁能量波之射入方向觀看,係以具有彼此重疊之部分之方式形成;前述第2柱狀半導體係形成於前述第1半導體層連接導體層上,而且在橫(列)方向鄰接之前述第1柱狀半導體之間。 The semiconductor device according to claim 13, wherein the semiconductor device is a solid-state imaging device; and in the pixel region in which the pixel is arranged, the bottom semiconductor layer as the first semiconductor layer is in accordance with the first columnar semiconductor. Each of the rows arranged in the longitudinal direction extends in the vertical direction (row direction) to form a first semiconductor layer connection conductor layer, and the columnar semiconductor connection conductor layers of the first columnar semiconductor are connected to each other to form a second semiconductor layer connecting conductor layer extending in the horizontal (column) direction; and a third semiconductor layer connecting conductor layer connected to the fourth semiconductor layer of the first columnar semiconductor and extending in the lateral (row) direction; The second and third semiconductor layer connection conductor layers are formed so as to overlap each other when viewed from the direction in which the electromagnetic energy waves are incident, and the second columnar semiconductor is formed on the first semiconductor layer connection conductor layer. Further, between the first columnar semiconductors adjacent to each other in the horizontal (column) direction. 如申請專利範圍第12項所述之半導體裝置,其係為具有SGT之半導體裝置,其中,排列有複數個前述第1柱狀半導體;前述第1柱狀半導體之前述柱狀半導體連接導體層係以將複數個前述第1柱狀半導體彼此連接之方式延伸;在形成有前述柱狀半導體連接導體層之區域形成有前述第2柱狀半導體;以包圍前述第2柱狀半導體之方式形成有第2絕緣層;前述柱狀半導體連接導體層係隔著前述第2絕緣層而形成於第2柱狀半導體之外周。 The semiconductor device according to claim 12, which is a semiconductor device having an SGT, wherein a plurality of the first columnar semiconductors are arranged, and the columnar semiconductor connecting conductor layer of the first columnar semiconductor is The plurality of first columnar semiconductors are connected to each other, the second columnar semiconductor is formed in a region where the columnar semiconductor connecting conductor layer is formed, and the second columnar semiconductor is surrounded by the second columnar semiconductor. 2. The insulating layer; the columnar semiconductor connecting conductor layer is formed on the outer circumference of the second columnar semiconductor via the second insulating layer. 如申請專利範圍第9項所述之半導體裝置,其中,在前述基板上形成有前述第1及第2柱狀半導體、及整體被第3絕緣層所覆蓋的第3柱狀半導體;在前述第1柱狀半導體上形成有第6半導體層,並且在前述第1柱狀半導體之下方區域形成有第7半導體層;以分別包圍前述第1柱狀半導體、前述第2柱狀半導體之方式形成有第1絕緣層、第2絕緣層;前述柱狀半導體連接導體層係以在前述第1柱狀半導體之外周包圍前述第1絕緣層之方式,而且以在前述第2柱狀半導體之外周包圍前述第2絕緣層之方式形成至少1層,而該柱狀半導體連接導體層係連接於前述 第3柱狀半導體之上表面;以連接於前述第3柱狀半導體前述第1柱狀半導體之前述第6半導體層、及前述第2柱狀半導體之方式分別形成有接觸孔;且具有經由前述接觸孔,連接於前述第6半導體層、前述第7半導體層、及前述柱狀半導體連接導體層任一者的配線金屬層。 The semiconductor device according to claim 9, wherein the first and second columnar semiconductors and the third columnar semiconductor covered by the third insulating layer are formed on the substrate; a sixth semiconductor layer is formed on the columnar semiconductor, and a seventh semiconductor layer is formed in a region below the first columnar semiconductor; and the first columnar semiconductor and the second columnar semiconductor are surrounded by the first columnar semiconductor. a first insulating layer and a second insulating layer, wherein the columnar semiconductor connecting conductor layer surrounds the first insulating layer on the outer circumference of the first columnar semiconductor, and surrounds the outer circumference of the second columnar semiconductor The second insulating layer is formed in at least one layer, and the columnar semiconductor connecting conductor layer is connected to the foregoing a top surface of the third columnar semiconductor; a contact hole formed in each of the sixth semiconductor layer and the second columnar semiconductor connected to the third columnar semiconductor; and the second columnar semiconductor; The contact hole is connected to the wiring metal layer of any one of the sixth semiconductor layer, the seventh semiconductor layer, and the columnar semiconductor connection conductor layer. 如申請專利範圍第9項所述之半導體裝置,其中,以分別包圍前述第1柱狀半導體前述第2柱狀半導體之方式形成有第1絕緣層、第2絕緣層;前述柱狀半導體連接導體層係在前述第2柱狀半導體之上部連接於前述第1導體層。 The semiconductor device according to claim 9, wherein the first insulating layer and the second insulating layer are formed to surround the first columnar semiconductor, and the columnar semiconductor connecting conductor The layer is connected to the first conductor layer on the upper portion of the second columnar semiconductor. 如申請專利範圍第9項所述之半導體裝置,其中,前述第1及第3柱狀半導體係以成為彼此相同高度之方式同時形成者;在前述第3柱狀半導體內,係形成有含有施體或受體雜質之雜質擴散層、矽化物層、或金屬層;前述柱狀半導體連接導體層係延伸至前述第3柱狀半導體,並且包圍前述第3柱狀半導體,而且與形成於前述第3柱狀半導體內之含有施體或受體雜質之雜質擴散層、矽化物層、或金屬層,在前述第3柱狀半導體之下方區域連接。 The semiconductor device according to claim 9, wherein the first and third columnar semiconductors are simultaneously formed to have the same height, and the third columnar semiconductor is formed with a coating. An impurity diffusion layer, a vaporization layer, or a metal layer of a bulk or acceptor impurity; wherein the columnar semiconductor connection conductor layer extends to the third columnar semiconductor and surrounds the third columnar semiconductor, and is formed in the foregoing An impurity diffusion layer, a vaporization layer, or a metal layer containing a donor or acceptor impurity in the columnar semiconductor is connected to a lower region of the third columnar semiconductor.
TW101132962A 2011-09-15 2012-09-10 Method for manufacturing semiconductor device, and semiconductor device TW201312693A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071162 WO2013038553A1 (en) 2011-09-15 2011-09-15 Method for producing semiconductor device, and semiconductor device

Publications (1)

Publication Number Publication Date
TW201312693A true TW201312693A (en) 2013-03-16

Family

ID=47882812

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101132962A TW201312693A (en) 2011-09-15 2012-09-10 Method for manufacturing semiconductor device, and semiconductor device

Country Status (5)

Country Link
JP (1) JP5279971B1 (en)
KR (1) KR20130056897A (en)
CN (1) CN103119720A (en)
TW (1) TW201312693A (en)
WO (1) WO2013038553A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607327B (en) * 2015-12-25 2017-12-01 矽創電子股份有限公司 Semiconductor devices
TWI741835B (en) * 2019-10-30 2021-10-01 新加坡商新加坡優尼山帝斯電子私人有限公司 Columnar semiconductor device and manufacturing method thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872054B2 (en) * 2013-06-17 2016-03-01 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
WO2015019444A1 (en) * 2013-08-07 2015-02-12 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device manufacturing method and semiconductor device
WO2015040705A1 (en) * 2013-09-18 2015-03-26 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and semiconductor device manufacturing method
JP5658425B1 (en) * 2013-09-26 2015-01-28 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device and manufacturing method of semiconductor device
WO2015049773A1 (en) * 2013-10-03 2015-04-09 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and method for manufacturing semiconductor device
WO2015068241A1 (en) 2013-11-07 2015-05-14 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Storage device, semiconductor device, and method for manufacturing storage device and semiconductor device
WO2015071983A1 (en) 2013-11-13 2015-05-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and semiconductor device manufacturing method
WO2015071982A1 (en) * 2013-11-13 2015-05-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Storage device and storage device manufacturing method
WO2015075819A1 (en) * 2013-11-22 2015-05-28 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device, and manufacturing method for semiconductor device
JP5657151B1 (en) * 2014-01-23 2015-01-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device and manufacturing method of semiconductor device
WO2015121921A1 (en) * 2014-02-12 2015-08-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and semiconductor device manufacturing method
WO2015121961A1 (en) * 2014-02-14 2015-08-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and semiconductor device manufacturing method
JP5832057B1 (en) * 2014-02-24 2015-12-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. STORAGE DEVICE, SEMICONDUCTOR DEVICE, STORAGE DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP5838012B1 (en) 2014-02-28 2015-12-24 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device and manufacturing method of semiconductor device
EP3158588A4 (en) 2014-06-23 2018-01-17 Intel Corporation Techniques for forming vertical transistor architectures
JP5864713B2 (en) * 2014-12-17 2016-02-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device
JP5894251B2 (en) * 2014-12-22 2016-03-23 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device
JP6190435B2 (en) * 2015-10-26 2017-08-30 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Storage device and semiconductor device
JP6174174B2 (en) * 2016-02-05 2017-08-02 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
WO2018179026A1 (en) * 2017-03-27 2018-10-04 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Pillar-shaped semiconductor device and method for manufacturing same
JP6329299B2 (en) * 2017-04-20 2018-05-23 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6328832B2 (en) * 2017-07-05 2018-05-23 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
CN113228241A (en) * 2018-12-21 2021-08-06 新加坡优尼山帝斯电子私人有限公司 Method for manufacturing three-dimensional semiconductor device
CN114999922B (en) * 2022-08-08 2022-11-04 泰科天润半导体科技(北京)有限公司 Manufacturing method of silicon carbide MOSFET with voltage-resistant structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142684A (en) * 2001-11-02 2003-05-16 Toshiba Corp Semiconductor element and semiconductor device
EP2197032B1 (en) * 2007-09-12 2014-11-05 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
WO2009096001A1 (en) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device and memory embedded semiconductor device, and manufacturing method thereof
WO2009096000A1 (en) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
JP4487221B1 (en) * 2009-04-17 2010-06-23 日本ユニサンティスエレクトロニクス株式会社 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607327B (en) * 2015-12-25 2017-12-01 矽創電子股份有限公司 Semiconductor devices
TWI741835B (en) * 2019-10-30 2021-10-01 新加坡商新加坡優尼山帝斯電子私人有限公司 Columnar semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
CN103119720A (en) 2013-05-22
JP5279971B1 (en) 2013-09-04
KR20130056897A (en) 2013-05-30
WO2013038553A1 (en) 2013-03-21
JPWO2013038553A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
TW201312693A (en) Method for manufacturing semiconductor device, and semiconductor device
US8669601B2 (en) Method for producing semiconductor device and semiconductor device having pillar-shaped semiconductor
KR101964262B1 (en) Semiconductor device and method of manufacturing same
DE102011055527B4 (en) Image sensors with a gate electrode that surrounds a potential-free diffusion area
JP2517375B2 (en) Solid-state imaging device, charge transfer device used in the device, and manufacturing method thereof
US8564034B2 (en) Solid-state imaging device
US20220149090A1 (en) Light detecting element and method of manufacturing same
KR20100102043A (en) Pixel sensor cell including light shield
US11004880B2 (en) Semiconductor imaging device having improved dark current performance
JP6193695B2 (en) Semiconductor device and manufacturing method thereof
TW201025582A (en) Solid-state imaging device, manufacturing method of the same, and imaging apparatus
US20160043118A1 (en) Semiconductor device
CN114762127A (en) Columnar semiconductor device and method for manufacturing the same
KR100688589B1 (en) Image sensor with improved fill factor and fabrication method thereof
TW200937622A (en) Active device array substrate and fabrication method thereof
US11737282B2 (en) Semiconductor storage device, manufacturing method of semiconductor storage device, and electronic device
US20060076581A1 (en) Solid-state image sensor
KR100725366B1 (en) Image Sensor having dual gate pattern and method of manufacturing the same
TW201709349A (en) Method for manufacturing semiconductor integrated circuit device, and semiconductor integrated circuit device
JPH05226378A (en) Manufacture of charge transfer element
EP2221872A2 (en) Solid-state imaging element and driving method of the solid-state imaging element
TW201312736A (en) Solid-state imaging device
JP2008078331A (en) Semiconductor device
CN220021113U (en) Image sensor
JP4346364B2 (en) Method for manufacturing solid-state imaging device