WO2015071982A1 - Storage device and storage device manufacturing method - Google Patents

Storage device and storage device manufacturing method Download PDF

Info

Publication number
WO2015071982A1
WO2015071982A1 PCT/JP2013/080719 JP2013080719W WO2015071982A1 WO 2015071982 A1 WO2015071982 A1 WO 2015071982A1 JP 2013080719 W JP2013080719 W JP 2013080719W WO 2015071982 A1 WO2015071982 A1 WO 2015071982A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
gate
columnar
insulating film
layer
Prior art date
Application number
PCT/JP2013/080719
Other languages
French (fr)
Japanese (ja)
Inventor
舛岡 富士雄
広記 中村
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
舛岡 富士雄
広記 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 舛岡 富士雄, 広記 中村 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2013/080719 priority Critical patent/WO2015071982A1/en
Publication of WO2015071982A1 publication Critical patent/WO2015071982A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • H10B63/34Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more terminals, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • H10N70/8265Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa or cup type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Definitions

  • the present invention relates to a storage device and a method for manufacturing the storage device.
  • phase change memories have been developed (see, for example, Patent Document 1).
  • the phase change memory stores information by changing and recording the resistance of the information storage element of the memory cell.
  • the Reset current is very large at 200 uA.
  • the memory cell size becomes very large.
  • a selection element such as a bipolar transistor or a diode can be used (see, for example, Patent Document 1).
  • the diode is a two-terminal element, in order to select a memory cell, when one source line is selected, the current of all the memory cells connected to one source line flows to one source line. It becomes. Therefore, the IR drop at the resistance of the source line becomes large.
  • a bipolar transistor is a three-terminal element, but since a current flows through the gate, it is difficult to connect many transistors to the word line.
  • the heater element is formed on the side wall of the gate of the planar transistor, and the GST film is formed on the gate, thereby reducing the cross-sectional area of the GST film and the heater element in the direction in which the current flows.
  • a cell string using a planar transistor is required (for example, see Patent Document 1).
  • SGT Surrounding Gate Transistor
  • a source, a gate, and a drain are arranged in a vertical direction with respect to a substrate and a gate electrode surrounds a columnar semiconductor layer.
  • Patent Document 2 Since the source, gate, and drain are arranged in the vertical direction with respect to the substrate, a small cell area can be realized.
  • an object of the present invention is to provide a structure and a manufacturing method of a memory device that can be reset by using a reset gate and can reduce a cross-sectional area in a direction in which a current flowing through a film whose resistance changes and a lower electrode flows. To do.
  • the memory device includes a columnar insulator layer, a film formed around the upper portion of the columnar insulator layer, and a resistance changing portion, and is formed around the lower portion of the columnar insulator layer. And a reset gate insulating film that surrounds the film whose resistance is changed, and a reset gate that surrounds the reset gate insulating film.
  • the columnar insulator layer is made of a nitride film, and further has a lower electrode under the columnar insulator layer.
  • the reset gate is made of titanium nitride.
  • the reset gate insulating film is made of a nitride film.
  • the lower electrode is made of titanium nitride.
  • the film in which the resistance changes is reset by passing a current through the reset gate.
  • the gate wiring extends in a direction orthogonal to the fin-like semiconductor layer, and the second diffusion layer is further formed in the fin-like semiconductor layer.
  • the second diffusion layer is further formed on the semiconductor substrate.
  • the fin-like semiconductor layer, the second diffusion layer formed under the second columnar semiconductor layer, and the contact electrode is connected to the second diffusion layer, and Features.
  • the width outside the gate electrode is the same as the width of the gate wiring, and the width of the first columnar semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer is orthogonal to the fin-shaped semiconductor layer. It is the same as the width of the fin-like semiconductor layer.
  • the gate insulating film is formed between the second columnar semiconductor layer and the contact electrode.
  • the width of the second columnar semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer is the same as the width of the fin-shaped semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer.
  • the gate insulating film is formed around the contact electrode and the contact wiring.
  • the outer width of the contact electrode and the width of the contact wiring are the same.
  • a second interlayer insulating film is deposited on a substrate, a contact hole is formed, a second metal and a nitride film are deposited, and the second interlayer insulating film is formed.
  • a third step of forming a fourth dummy gate forming a second diffusion layer above the fin-like semiconductor layer, below the first columnar semiconductor layer, and below the second columnar semiconductor layer, and A fifth insulating film is formed around the dummy gate 3 and the fourth dummy gate, etched, and left in a sidewall shape to form a sidewall made of the fifth insulating film; A metal on the second diffusion layer;
  • an interlayer insulating film is deposited and planarized, and the first dummy gate, the second dummy gate, the third dummy gate, An upper portion of the fourth dummy gate is exposed, the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are removed, and the second insulating film And the fourth insulating film is removed, and a gate insulating film is formed around the first columnar semiconductor layer, around the second columnar semiconductor layer, and inside the fifth insul
  • the method further includes depositing a first polysilicon on the second insulating film and planarizing the first polysilicon, and then forming a third insulating film on the first polysilicon.
  • a third resist is formed. Etchback is performed to expose the upper portion of the first columnar semiconductor layer, and a first diffusion layer is formed on the upper portion of the first columnar semiconductor layer.
  • a structure and a manufacturing method of a memory device that can be reset by using a reset gate and that can reduce a cross-sectional area of a film in which resistance changes and a current flowing through a lower electrode. be able to.
  • a columnar insulator layer a film formed around the upper portion of the columnar insulator layer and having a variable resistance, and a lower electrode formed around the columnar insulator layer and connected to the film having the variable resistance.
  • a reset gate insulating film that surrounds the film whose resistance changes and a reset gate that surrounds the reset gate insulating film, so that a current flows through the reset gate, so that heat is generated in the reset gate that is a heater.
  • chalcogenide glass GST: Ge2Sb2Te5
  • the reset gate surrounds the film whose resistance changes, the film whose resistance changes easily heats.
  • the cross-sectional area in the direction in which the current flows through the phase change film, which is a film whose resistance changes, and the heater element, which is a lower electrode, can be reduced.
  • the columnar insulator layer is made of a nitride film, so that the cooling of the phase change film can be accelerated. Further, by further providing a lower electrode under the columnar insulator layer, the contact resistance between the lower electrode and the select transistor can be reduced.
  • the gate electrode is made of metal and the gate wiring is made of metal, the cooling can be accelerated. Also, since the metal gate is formed by the gate last by having the gate electrode and the gate insulating film formed on the periphery and the bottom of the gate wiring, it is possible to achieve both the metal gate process and the high temperature process. Can do.
  • the gate wiring extends in a direction perpendicular to the fin-shaped semiconductor layer, and the second diffusion layer is further formed on the fin-shaped semiconductor layer, and the width outside the gate electrode and the width of the gate wiring
  • the width of the first columnar semiconductor layer is the same as the width of the fin-shaped semiconductor layer, whereby the fin-shaped semiconductor layer of the semiconductor device, the columnar semiconductor layer, Gate electrode and gate arrangement But the two masks, since it is formed in self-alignment, it is possible to reduce the number of steps.
  • one contact wiring parallel to the gate wiring is arranged for every two memory cells arranged in a line in the bit line direction, every four, every eight, every sixteen, every thirty-two, every 64. It is preferable to do.
  • the structure formed by the second columnar semiconductor layer, the contact electrode formed around the second columnar semiconductor layer, and the contact wiring is a transistor structure except that the contact electrode is connected to the second diffusion layer. Since all the source lines in the direction parallel to the gate wiring are connected to the contact wiring, the number of processes can be reduced.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the memory
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 1 The structure of the storage device is shown in FIG. 1
  • the film 501 whose resistance changes is preferably chalcogenide glass (GST: Ge2Sb2Te5).
  • the reset gate 503 may be any material that generates heat when a current flows. Titanium nitride is preferred.
  • the reset gate insulating film 502 may be an insulating film having good thermal conductivity. A nitride film is preferred.
  • the lower electrode 504 may be any material that generates heat when a current flows. Titanium nitride is preferred.
  • the reset gate 503 By passing a current through the reset gate 503, heat is generated in the reset gate 503, which is a heater, and the film 501 whose resistance is in contact with the heater is melted to change the state.
  • FIG. 2 shows a memory cell which is a memory device of the present invention arranged in a first row, a first column, a first row, a third column, a second row, a first column, and a second row, a third column, Contact devices having contact wiring are arranged in the first row, second column, and second row, second column.
  • the memory cell in the second row and the first column includes a fin-like semiconductor layer 104 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like semiconductor layer 104, and the fin-like semiconductor layer 104.
  • the first columnar semiconductor layer 129 formed thereon and the width of the first columnar semiconductor layer 129 in the direction orthogonal to the fin-shaped semiconductor layer 104 are the fins in the direction orthogonal to the fin-shaped semiconductor layer 104.
  • the gate insulating film 162 and the gate wiring 168b formed on the periphery and bottom of the gate b extend in a direction orthogonal to the fin-like semiconductor layer 104, and the width outside the gate electrode 168a and the gate
  • the wiring 168b has the same width, and the first diffusion layer 302 formed above the first columnar semiconductor layer 129 and the second diffusion layer formed below the first columnar semiconductor layer 129.
  • the diffusion layer 143 a and the second diffusion layer 143 a are further formed on the fin-like semiconductor layer 104.
  • a lower electrode 184 is further provided under the columnar insulator layer 180.
  • the film 189 whose resistance changes is preferably a phase change film such as chalcogenide glass (GST: Ge2Sb2Te5).
  • the lower electrode 184 that is a heater element is preferably titanium nitride, for example.
  • the memory cell in the second row and the third column includes a fin-like semiconductor layer 104 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like semiconductor layer 104, and the fin-like semiconductor layer.
  • the width of the first columnar semiconductor layer 131 formed on the first columnar semiconductor layer 131 and the direction of the first columnar semiconductor layer 131 perpendicular to the fin-shaped semiconductor layer 104 is the width of the first columnar semiconductor layer 131 perpendicular to the fin-shaped semiconductor layer 104.
  • the width of the fin-shaped semiconductor layer 104 is the same as that of the first columnar semiconductor layer 131, the gate insulating film 163 formed around the first columnar semiconductor layer 131, and the gate insulating film 163.
  • the gate insulating film 163 and the gate wiring 170b formed on the periphery and the bottom of b extend in a direction perpendicular to the fin-like semiconductor layer 104, and the width outside the gate electrode 170a and the gate
  • the wiring 170b has the same width, and the first diffusion layer 304 formed above the first columnar semiconductor layer 131 and the second diffusion layer 304 formed below the first columnar semiconductor layer 131.
  • the diffusion layer 143 a and the second diffusion layer 143 a are further formed on the fin-like semiconductor layer 104.
  • a lower electrode 185 is further provided under the columnar insulator layer 181.
  • the film 189 whose resistance changes and the film 190 whose resistance changes are connected by a bit line 203a.
  • the memory cell in the first row and the first column includes a fin-like semiconductor layer 105 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like semiconductor layer 105, and the fin-like semiconductor layer 105.
  • the width of the first columnar semiconductor layer 132 formed in the direction perpendicular to the fin-shaped semiconductor layer 105 and the width of the first columnar semiconductor layer 132 in the direction orthogonal to the fin-shaped semiconductor layer 105 are The width of the semiconductor layer 105 is the same, and the first columnar semiconductor layer 132, the gate insulating film 162 formed around the first columnar semiconductor layer 132, and the gate insulating film 162 are formed.
  • the gate insulating film 162 and the gate wiring 168b formed on the periphery and the bottom of b extend in a direction perpendicular to the fin-like semiconductor layer 105, and the width outside the gate electrode 168a and the gate
  • the wiring 168b has the same width, and the first diffusion layer 305 formed above the first columnar semiconductor layer 132 and the second diffusion layer 305 formed below the first columnar semiconductor layer 132.
  • the diffusion layer 143 b and the second diffusion layer 143 b are further formed on the fin-like semiconductor layer 105.
  • a lower electrode 186 is further provided under the columnar insulator layer 182.
  • the memory cell in the first row and the third column includes a fin-like semiconductor layer 105 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like semiconductor layer 105, and the fin-like semiconductor layer 105.
  • the width of the first columnar semiconductor layer 134 formed above and the direction of the first columnar semiconductor layer 134 in the direction orthogonal to the fin-shaped semiconductor layer 105 is the fin in the direction orthogonal to the fin-shaped semiconductor layer 105.
  • the gate insulating film 163 and the gate wiring 170b formed on the periphery and the bottom of b extend in a direction orthogonal to the fin-like semiconductor layer 105, and the width outside the gate electrode 170a and the gate
  • the width of the wiring 170b is the same, and the first diffusion layer 307 formed above the first columnar semiconductor layer 134 and the second diffusion layer 307 formed below the first columnar semiconductor layer 134.
  • the diffusion layer 143 b and the second diffusion layer 143 b are further formed on the fin-like semiconductor layer 105.
  • a lower electrode 187 is further provided under the columnar insulator layer 183.
  • the film 191 whose resistance changes and the film 192 whose resistance changes are connected by a bit line 203b.
  • the columnar insulator layers 180, 181, 182, and 183 are made of nitride films, so that the cooling of the phase change film, which is a film whose resistance changes, can be accelerated. Further, by having lower electrodes 184, 185, 186, and 187 under the columnar insulator layers 180, 181, 182, and 183, the contact resistance between the lower electrodes 184, 185, 186, and 187 and the select transistor is reduced. can do.
  • the gate electrodes 168a and 170a are made of metal and the gate wirings 168b and 170b are made of metal, the cooling can be accelerated.
  • the gate electrodes 168a and 170a and the gate insulating films 168b and 170b formed on the periphery and the bottom of the gate wiring are provided, a metal gate is formed by gate last. A high temperature process can be made compatible.
  • the wirings 168b and 170b are metal, the gate wirings 168b and 170b extend in a direction perpendicular to the fin-like semiconductor layers 104 and 105, and the second diffusion layers 143a and 143b are the fin-like shapes.
  • the outer widths of the gate electrodes 168a and 170a and the widths of the gate wirings 168b and 170b are the same, and the first columnar semiconductor layers 129, 131, 132, and 134 are formed.
  • the width is the same as the width of the fin-like semiconductor layers 104 and 105, whereby the present semiconductor
  • the fin-shaped semiconductor layers 104 and 105, the first columnar semiconductor layers 129, 131, 132, and 134, the gate electrodes 168a and 170a, and the gate wirings 168b and 170b are formed in a self-aligned manner using two masks. Thus, the number of processes can be reduced.
  • the contact device in the second row and the second column includes the fin-like semiconductor layer 104 formed on the semiconductor substrate 101, the first insulating film 106 formed around the fin-like semiconductor layer 104, and the fin
  • the width of the second columnar semiconductor layer 130 formed on the semiconductor layer 104 and the direction of the second columnar semiconductor layer 130 perpendicular to the fin-shaped semiconductor layer 104 is perpendicular to the fin-shaped semiconductor layer 104.
  • a contact electrode 169a made of a metal having the same width as that of the fin-shaped semiconductor layer 104 and formed around the second columnar semiconductor layer 130, and the second columnar semiconductor layer 130 and the contact electrode 169a. In the direction perpendicular to the fin-like semiconductor layer 104 connected to the contact electrode 169a.
  • the contact wiring 169b made of an existing metal, and the gate insulating film 164 formed around the contact electrode 169a and the contact wiring 169b. are the same, the second diffusion layer 143a formed under the fin-like semiconductor layer 104 and the second columnar semiconductor layer 130, and the contact electrode 169a connected to the second diffusion layer 143a. It has and has.
  • the contact device in the first row and the second column includes the fin-shaped semiconductor layer 105 formed on the semiconductor substrate 101, the first insulating film 106 formed around the fin-shaped semiconductor layer 105, and the fin-shaped semiconductor device.
  • the second columnar semiconductor layer 133 formed on the semiconductor layer 105 and the width of the second columnar semiconductor layer 133 in the direction orthogonal to the fin-shaped semiconductor layer 105 are in the direction orthogonal to the fin-shaped semiconductor layer 105.
  • a contact electrode 169a having the same width as the fin-like semiconductor layer 105 and formed around the second columnar semiconductor layer 133; the second columnar semiconductor layer 133; and the contact electrode 169a.
  • the contact wiring 169b made of an existing metal, and the gate insulating film 164 formed around the contact electrode 169a and the contact wiring 169b, and the width outside the contact electrode 169a and the width of the contact wiring 169b Are the same, the second diffusion layer 143b formed below the fin-shaped semiconductor layer 105 and the second columnar semiconductor layer 133, and the contact electrode 169a connected to the second diffusion layer 143b. It has and has.
  • the contact wiring 169b parallel to the gate wirings 168b and 170b is, for example, every two memory cells arranged in a line in the direction of the bit lines 187 and 188, every four, every eight, every sixteen, every thirty-two, It is preferable to arrange one for every 64 pieces.
  • the contact electrode 169a has the second diffusion.
  • the transistor structure is the same as that of the transistor structure except that it is connected to the layers 143a and 143b. All source lines including the second diffusion layers 143a and 143b in the direction parallel to the gate wirings 168b and 170b are connected to the contact wiring 169b. Therefore, the number of steps can be reduced.
  • FIG. 3 shows a structure in which the second diffusion layer 143c is formed deeply into the semiconductor substrate 101, and the second diffusion layers 143a and 143b in FIG. 2 are connected. With this structure, the source resistance can be further reduced.
  • FIG. 4 omits the fin-like semiconductor layer 105 of FIG. 3 and the first insulating film 106 formed around the fin-like semiconductor layer 105, and forms a second diffusion layer 143d on the semiconductor substrate 101.
  • FIG. This is the structure. With this structure, the source resistance can be further reduced.
  • a first step of forming a fin-like semiconductor layer on a semiconductor substrate and forming a first insulating film around the fin-like semiconductor layer is shown.
  • a silicon substrate is used, but any semiconductor may be used.
  • first resists 102 and 103 for forming a fin-like silicon layer are formed on a silicon substrate 101.
  • the silicon substrate 101 is etched to form fin-like silicon layers 104 and 105.
  • the fin-like silicon layer is formed using a resist as a mask this time, a hard mask such as an oxide film or a nitride film may be used.
  • the first resists 102 and 103 are removed.
  • a first insulating film 106 is deposited around the fin-like silicon layers 104 and 105.
  • An oxide film formed by high-density plasma or an oxide film formed by low-pressure CVD (Chemical Vapor Deposition) may be used as the first insulating film.
  • the first insulating film 106 is etched back, and the upper portions of the fin-like silicon layers 104 and 105 are exposed.
  • the first step of forming the fin-like semiconductor layer on the semiconductor substrate and forming the first insulating film around the fin-like semiconductor layer is shown.
  • a second insulating film is formed around the fin-like semiconductor layer, and first polysilicon is deposited and planarized on the second insulating film, and gate wiring and Forming a second resist for forming a first columnar semiconductor layer, a second columnar semiconductor layer, and a contact wiring in a direction perpendicular to the direction of the fin-shaped semiconductor layer; And the second insulating film and the fin-shaped semiconductor layer are etched, thereby the first columnar semiconductor layer, the first polysilicon first dummy gate, the second columnar semiconductor layer, and the first columnar semiconductor layer.
  • the 2nd process of forming the 2nd dummy gate by polysilicon is shown.
  • second insulating films 107 and 108 are formed around the fin-like silicon layers 104 and 105.
  • the second insulating films 107 and 108 are preferably oxide films.
  • a first polysilicon 109 is deposited on the second insulating films 107 and 108 and planarized.
  • a third insulating film 110 is formed on the first polysilicon 109.
  • the third insulating film 110 is preferably a nitride film.
  • the second resist 111 for forming the gate wirings 168b and 170b, the first columnar semiconductor layers 129, 131, 132, and 134, the second columnar semiconductor layers 130 and 133, and the contact wiring 169b. , 112 and 113 are formed in a direction perpendicular to the direction of the fin-like silicon layers 104 and 105.
  • the third insulating film 110 As shown in FIG. 14, by etching the third insulating film 110, the first polysilicon 109, the second insulating films 107 and 108, and the fin-like silicon layers 104 and 105, a first Columnar silicon layers 129, 131, 132, 134, first dummy gates 117, 119 made of the first polysilicon, second columnar silicon layers 130, 133, and a second dummy gate 118 made of the first polysilicon.
  • the third insulating film 110 is separated and becomes third insulating films 114, 115, and 116.
  • the second insulating films 107 and 108 are separated to become second insulating films 123, 124, 125, 126, 127, and 128.
  • the third insulating films 114, 115, and 116 function as a hard mask.
  • the third insulating film may not be used.
  • the second resists 114, 115, and 116 are removed.
  • the second insulating film is formed around the fin-like semiconductor layer, and the first polysilicon is deposited and planarized on the second insulating film.
  • the second insulating film and the fin-shaped semiconductor layer are etched, thereby the first columnar semiconductor layer, the first polysilicon first dummy gate, the second columnar semiconductor layer, and the first columnar semiconductor layer.
  • a second step of forming a second dummy gate of polysilicon has been shown.
  • a fourth insulating film is formed around the first columnar semiconductor layer, the second columnar semiconductor layer, the first dummy gate, and the second dummy gate.
  • a second polysilicon is deposited around the fourth insulating film and etched, whereby the first dummy gate, the first columnar semiconductor layer, the second dummy gate, and the second dummy gate are etched.
  • a third step of forming the third dummy gate and the fourth dummy gate by remaining on the side wall of the columnar semiconductor layer is shown.
  • a fourth insulating film 135 is formed around the substrate.
  • the fourth insulating film 135 is preferably an oxide film.
  • a third resist 301 is formed and etched back to expose the upper portions of the first columnar silicon layers 129, 131, 132, and 134. At this time, the upper portions of the second columnar silicon layers 130 and 133 may be exposed.
  • first diffusion layers 302, 304, 305, 307 are introduced to form first diffusion layers 302, 304, 305, 307 on the first columnar silicon layers 129, 131, 132, 134. Further, the first diffusion layers 303 and 306 may be formed on the second columnar silicon layers 130 and 133. In the case of an n-type diffusion layer, it is preferable to introduce arsenic or phosphorus. In the case of a p-type diffusion layer, it is preferable to introduce boron.
  • the third resist 301 is removed.
  • a second polysilicon 136 is deposited around the fourth insulating film 135.
  • the first dummy gates 117, 119, the first columnar silicon layers 129, 131, 132, 134, and the second dummy Third dummy gates 137 and 139 and a fourth dummy gate 138 are formed by remaining on the side walls of the gate 118 and the second columnar silicon layers 130 and 133.
  • the fourth insulating film 135 may be separated to form fourth insulating films 140, 141, and 142.
  • a fourth insulating film is formed around the first columnar semiconductor layer, the second columnar semiconductor layer, the first dummy gate, and the second dummy gate.
  • a second polysilicon is deposited around the fourth insulating film and etched, whereby the first dummy gate, the first columnar semiconductor layer, the second dummy gate, and the second dummy gate are etched.
  • the third step of forming the third dummy gate and the fourth dummy gate by remaining on the side wall of the columnar semiconductor layer is shown.
  • a second diffusion layer is formed in the upper part of the fin-like semiconductor layer, the lower part of the first columnar semiconductor layer, and the lower part of the second columnar semiconductor layer, and the third dummy gate and the fourth dummy gate are formed.
  • a fifth insulating film is formed around the substrate, etched, and left in a sidewall shape to form a sidewall made of the fifth insulating film, and a metal and a semiconductor are formed on the second diffusion layer. The 4th process of forming the compound of is shown.
  • second diffusion layers 143a and 143b under the first columnar silicon layers 129, 131, 132, and 134 and under the second columnar silicon layers 130 and 133, respectively.
  • impurities are introduced to form second diffusion layers 143a and 143b under the first columnar silicon layers 129, 131, 132, and 134 and under the second columnar silicon layers 130 and 133, respectively.
  • To do. In the case of an n-type diffusion layer, it is preferable to introduce arsenic or phosphorus. In the case of a p-type diffusion layer, it is preferable to introduce boron.
  • the diffusion layer may be formed after forming a sidewall made of a fifth insulating film described later.
  • a fifth insulating film 144 is formed around the third dummy gates 137 and 139 and the fourth dummy gate 138.
  • the fifth insulating film 144 is preferably a nitride film.
  • the fifth insulating film 144 is etched to remain in a sidewall shape, and sidewalls 145, 146, and 147 made of the fifth insulating film are formed.
  • metal and semiconductor compounds 148, 149, 150, 151, 152, 153, 154, and 155 are formed on the second diffusion layers 143a and 143b.
  • metal and semiconductor compounds 156, 158, and 157 are also formed on the third dummy gates 137 and 139 and on the fourth dummy gate 138, respectively.
  • a second diffusion layer is formed in the upper part of the fin-shaped semiconductor layer, the lower part of the first columnar semiconductor layer, and the lower part of the second columnar semiconductor layer, and the third dummy gate and the fourth dummy gate are formed.
  • a fifth insulating film is formed around the substrate, etched, and left in a sidewall shape to form a sidewall made of the fifth insulating film, and a metal and a semiconductor are formed on the second diffusion layer.
  • a fourth step of forming the compound was shown.
  • an interlayer insulating film is deposited and planarized, and an upper portion of the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate is formed.
  • the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are removed, and the second insulating film and the fourth insulating film are removed.
  • a gate insulating film is formed around the first columnar semiconductor layer, around the second columnar semiconductor layer, and inside the fifth insulating film; and around the bottom of the second columnar semiconductor layer.
  • a fourth resist for removing the gate insulating film is formed, the gate insulating film around the bottom of the second columnar semiconductor layer is removed, a metal is deposited, etch back is performed, and the first columnar semiconductor is formed.
  • an interlayer insulating film 159 is deposited.
  • a contact stopper film may be used.
  • the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gate 138 are removed.
  • the second insulating films 123, 124, 125, 126, 127, 128 and the fourth insulating films 140, 141, 142 are removed.
  • the gate insulating film 160 is formed around the first columnar silicon layers 129, 131, 132, 134, around the second columnar silicon layers 130, 133, and the fifth insulating film 145, 146 and 147 are formed inside.
  • a fourth resist 161 for removing the gate insulating film 160 around the bottom of the second columnar silicon layers 130 and 133 is formed.
  • the gate insulating film 160 around the bottom of the second columnar silicon layers 130 and 133 is removed.
  • the gate insulating films are separated to form gate insulating films 162, 163, 164, 165, 166.
  • the gate insulating films 164, 165, and 166 may be removed by isotropic etching.
  • the fourth resist 161 is removed.
  • metal 167 is deposited.
  • the metal 167 is etched back to form gate electrodes 168a, 170a and gate wirings 168b, 170b around the first columnar silicon layers 129, 131, 132, 134, and the second columnar silicon layers 129, 131, 132, 134 are formed.
  • the contact electrode 169a and the contact wiring 169b are formed around the columnar silicon layers 130 and 133.
  • an interlayer insulating film is deposited and planarized, and an upper portion of the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate is formed.
  • the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are removed, and the second insulating film and the fourth insulating film are removed.
  • a gate insulating film is formed around the first columnar semiconductor layer, around the second columnar semiconductor layer, and inside the fifth insulating film; and around the bottom of the second columnar semiconductor layer.
  • a fourth resist for removing the gate insulating film is formed, the gate insulating film around the bottom of the second columnar semiconductor layer is removed, a metal is deposited, etch back is performed, and the first columnar semiconductor is formed.
  • a second interlayer insulating film is deposited, a contact hole is formed, a second metal and a nitride film are deposited, and the second metal and the nitride film on the second interlayer insulating film are removed.
  • a columnar nitride film layer, a bottom electrode surrounding the columnar nitride film layer and the columnar nitride film layer are formed inside the contact hole, and the second interlayer insulating film is etched back, The upper portion of the lower electrode surrounding the columnar nitride film layer is exposed, the upper portion of the lower electrode surrounding the exposed columnar nitride film layer is removed, and the resistance changes so as to surround the columnar nitride film layer and connect to the lower electrode.
  • a second interlayer insulating film 171 is deposited.
  • a fifth resist 172 for forming contact holes is formed.
  • contact holes 174, 175, 176, 177 are formed.
  • the second metal 178 is deposited.
  • the second metal 178 is preferably titanium nitride.
  • a nitride film 179 is deposited.
  • the nitride film 179 is etched back, and the nitride film 179 on the second interlayer insulating film 171 is removed. At this time, columnar nitride film layers 180, 181, 182 and 183 are formed.
  • the second metal 178 on the second interlayer insulating film 171 is removed.
  • the lower electrodes 184, 185, 186, and 187 surrounding the columnar nitride layer bottoms 180, 181, 182, and 183 and the columnar nitride layers 180, 181, 182, and 183 are formed.
  • the second interlayer insulating film 171 is etched back to expose the upper portions of the lower electrodes 184, 185, 186, and 187 surrounding the columnar nitride film layers 180, 181, 182, and 183.
  • the second interlayer insulating film 171 is etched back to expose the upper portions of the lower electrodes 184, 185, 186, and 187 surrounding the columnar nitride film layers 180, 181, 182, and 183. If the upper portions of the lower electrodes 184, 185, 186, and 187 are exposed after the step of FIG. 43, this step is unnecessary.
  • a film 188 having a variable resistance is deposited so as to surround the columnar nitride film layers 180, 181, 182, and 183, and to connect to the lower electrodes 184, 185, 186, and 187.
  • the film 188 whose resistance is changed is preferably a phase change film such as chalcogenide glass (GST: Ge2Sb2Te5).
  • the film 188 whose resistance is changed is etched and left in the form of sidewalls on the columnar nitride film layers 180, 181, 182, and 183.
  • the film 188 whose resistance is changed is separated into films 189, 190, 191 and 192 whose resistance is changed.
  • the films 193, 194, 195, and 196 whose resistance changes may be left on the upper sidewalls of the lower electrodes 184, 185, 186, and 187.
  • a reset gate insulating film 197 is deposited, and a metal 198 to be a reset gate is deposited.
  • the reset gate insulating film 197 is preferably a nitride film.
  • the metal 198 is preferably titanium nitride.
  • the metal 198 is etched back.
  • a nitride film 199 is deposited.
  • sixth resists 200 and 201 for forming a reset gate are formed.
  • the nitride film 199 is etched.
  • the nitride film 199 is separated to become nitride films 199a and 199b.
  • the metal 198 is etched using the sixth resists 200 and 201 and the nitride films 199a and 199b as masks to form reset gates 198a and 198b.
  • the sixth resists 200 and 201 are removed.
  • a third interlayer insulating film 202 is deposited.
  • the third interlayer insulating film 202 is flattened, and the upper portions of the films 189, 190, 191, and 192 whose resistance changes are exposed.
  • metal 203 is deposited.
  • seventh resists 204 and 205 are formed to form bit lines.
  • the metal 203 is etched to form bit lines 203a and 203b.
  • the seventh resists 204 and 205 are removed.
  • the second interlayer insulating film is deposited, the contact hole is formed, the second metal and the nitride film are deposited, and the second metal and the nitride film on the second interlayer insulating film are removed.
  • a columnar nitride film layer, a bottom electrode surrounding the columnar nitride film layer and the columnar nitride film layer are formed inside the contact hole, and the second interlayer insulating film is etched back, The upper portion of the lower electrode surrounding the columnar nitride film layer is exposed, the upper portion of the lower electrode surrounding the exposed columnar nitride film layer is removed, and the resistance changes so as to surround the columnar nitride film layer and connect to the lower electrode.
  • Second columnar silicon layer 131 First columnar silicon layer 132. First columnar silicon layer 133. Second columnar silicon layer 134. First columnar silicon layer 135. Fourth insulating film 136. Second polysilicon 137. Third dummy gate 138. Fourth dummy gate 139. Third dummy gate 140. Fourth insulating film 141. Fourth insulating film 142. Fourth insulating film 143a. Second diffusion layer 143b. Second diffusion layer 143c. Second diffusion layer 143d. Second diffusion layer 144. Fifth insulating film 145. Side wall 146. Sidewall 147. Sidewall 148. Compound of metal and semiconductor 149. Compound of metal and semiconductor 150. Compound of metal and semiconductor 151. Compound of metal and semiconductor 152.
  • Compound of metal and semiconductor 153 Compound of metal and semiconductor 154. Compound of metal and semiconductor 155. Compound of metal and semiconductor 156. Compound of metal and semiconductor 157. Compound of metal and semiconductor 158. Compound of metal and semiconductor 159. Interlayer insulating film 160. Gate insulating film 161. Fourth resist 162. Gate insulating film 163. Gate insulating film 164. Gate insulating film 165. Gate insulating film 166. Gate insulating film 167. Metal 168a. Gate electrode 168b. Gate wiring 169a. Contact electrode 169b. Contact wiring 170a. Gate electrode 170b. Gate wiring 171. Second interlayer insulating film 172. Fifth resist 174. Contact hole 175. Contact hole 176. Contact hole 177.

Abstract

This storage device has: a columnar insulating material layer (180); a film (189), which is formed around an upper portion of the columnar insulating material layer, and in which resistance changes; a lower electrode (184), which is formed around a lower portion of the columnar insulating material layer, and which is connected to the variable resistance film; a reset gate insulating film (197) that surrounds the variable resistance film; and a reset gate (198a) that surrounds the reset gate insulating film. Consequently, a structure of the storage device, which is capable performing resetting using the reset gate, and which has reduced cross sectional areas of the variable resistance film and the lower electrode, said cross sectional areas being in the direction in which a current flows, and a method for manufacturing the storage device are provided.

Description

記憶装置、及び記憶装置の製造方法Storage device and storage device manufacturing method
 本発明は記憶装置、及び記憶装置の製造方法に関する。 The present invention relates to a storage device and a method for manufacturing the storage device.
 近年、相変化メモリが開発されている(例えば、特許文献1を参照)。相変化メモリは、メモリセルの情報記憶素子の抵抗を変化記録することにより、情報を記憶する。 In recent years, phase change memories have been developed (see, for example, Patent Document 1). The phase change memory stores information by changing and recording the resistance of the information storage element of the memory cell.
 セルトランジスタをオンすることによりビット線とソース線間に電流を流すと、高抵抗素子のヒーターで熱が発生し、このヒーターに接するカルコゲナイドガラス(GST:Ge2Sb2Te5)を融解し、状態を遷移させるメカニズムである。高温(高電流)で融解し高速で冷やす(電流を止める)とアモルファス状態(Reset動作)になり、比較的低い高温(低電流)で融解しゆっくり冷やす(電流を徐々に減らす)と結晶化する(Set動作)。これにより読み出し時、ビット線―ソース線間に流れる電流が多い(低抵抗=結晶状態)場合と、少ない場合(高抵抗=アモルファス)で、0、1情報の判断をする(例えば、特許文献1を参照)。 When a current is passed between the bit line and the source line by turning on the cell transistor, heat is generated by the heater of the high resistance element, and the chalcogenide glass (GST: Ge2Sb2Te5) in contact with the heater is melted to change the state. It is. When it melts at high temperature (high current) and cools at high speed (stops current), it becomes amorphous (Reset operation), and when it melts at relatively low temperature (low current) and cools slowly (current is gradually reduced), it crystallizes. (Set operation). As a result, 0 or 1 information is judged when the current flowing between the bit line and the source line is large (low resistance = crystalline state) and when the current is small (high resistance = amorphous) (for example, Patent Document 1). See).
 この場合、例えばReset電流が200uAと非常に多い。この様にReset電流を大きく、この電流をセルトランジスタに流すためには、メモリセルサイズが非常に大きくなる。大きな電流を流すためには、バイポーラトランジスタやダイオードの選択素子を用いることができる(例えば、特許文献1を参照)。 In this case, for example, the Reset current is very large at 200 uA. In this way, in order to increase the Reset current and flow this current through the cell transistor, the memory cell size becomes very large. In order to flow a large current, a selection element such as a bipolar transistor or a diode can be used (see, for example, Patent Document 1).
 ダイオードは二端子素子であるので、メモリセルを選択するためには、一本のソース線を選択すると一本のソース線に接続された全てのメモリセルの電流が一本のソース線に流れることとなる。従って、ソース線の抵抗でのIRドロップが大きくなる。 Since the diode is a two-terminal element, in order to select a memory cell, when one source line is selected, the current of all the memory cells connected to one source line flows to one source line. It becomes. Therefore, the IR drop at the resistance of the source line becomes large.
 一方、バイポーラトランジスタは三端子素子であるが、ゲートに電流が流れるので、ワード線に多くのトランジスタを接続することが難しい。 On the other hand, a bipolar transistor is a three-terminal element, but since a current flows through the gate, it is difficult to connect many transistors to the word line.
 GST膜、ヒーター素子の電流が流れる方向の断面積を小さくすると、Reset電流、Read電流を小さくすることができる。従来では、平面トランジスタのゲートの側壁にヒーター素子を形成し、ゲートの上部にGST膜を形成することで、GST膜、ヒーター素子の電流が流れる方向の断面積を小さくしてきた。この方法では、平面トランジスタによるセルストリングが必要となる(例えば、特許文献1を参照)。 If the cross-sectional area in the direction in which the current of the GST film and the heater element flows is reduced, the Reset current and the Read current can be reduced. Conventionally, the heater element is formed on the side wall of the gate of the planar transistor, and the GST film is formed on the gate, thereby reducing the cross-sectional area of the GST film and the heater element in the direction in which the current flows. In this method, a cell string using a planar transistor is required (for example, see Patent Document 1).
 基板に対してソース、ゲート、ドレインが垂直方向に配置され、ゲート電極が柱状半導体層を取り囲む構造のSurrounding Gate Transistor(以下、「SGT」という。)が提案されている。(例えば、特許文献2を参照)。基板に対してソース、ゲート、ドレインが垂直方向に配置されているため、小さいセル面積を実現することができる。 A Surrounding Gate Transistor (hereinafter referred to as “SGT”) having a structure in which a source, a gate, and a drain are arranged in a vertical direction with respect to a substrate and a gate electrode surrounds a columnar semiconductor layer has been proposed. (For example, see Patent Document 2). Since the source, gate, and drain are arranged in the vertical direction with respect to the substrate, a small cell area can be realized.
特開2012-204404号公報JP 2012-204404 A 特開2004-356314号公報JP 2004-356314 A
 そこで、リセットゲートを用いてリセットを行うことができ、抵抗が変化する膜、下部電極の電流が流れる方向の断面積を小さくすることができる記憶装置の構造及び製造方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a structure and a manufacturing method of a memory device that can be reset by using a reset gate and can reduce a cross-sectional area in a direction in which a current flowing through a film whose resistance changes and a lower electrode flows. To do.
 本発明の記憶装置は、柱状絶縁体層と、前記柱状絶縁体層の上部の周囲に形成された抵抗が変化する膜と、前記柱状絶縁体層の下部の周囲に形成され、前記抵抗が変化する膜と接続する下部電極と、前記抵抗が変化する膜を取り囲むリセットゲート絶縁膜と、前記リセットゲート絶縁膜を取り囲むリセットゲートと、を有することを特徴とする。 The memory device according to the present invention includes a columnar insulator layer, a film formed around the upper portion of the columnar insulator layer, and a resistance changing portion, and is formed around the lower portion of the columnar insulator layer. And a reset gate insulating film that surrounds the film whose resistance is changed, and a reset gate that surrounds the reset gate insulating film.
 また、前記柱状絶縁体層は窒化膜からなり、前記柱状絶縁体層の下にさらに下部電極を有することを特徴とする。 The columnar insulator layer is made of a nitride film, and further has a lower electrode under the columnar insulator layer.
 また、前記リセットゲートは、窒化チタンからなることを特徴とする。 The reset gate is made of titanium nitride.
 また、前記リセットゲート絶縁膜は、窒化膜からなることを特徴とする。 Further, the reset gate insulating film is made of a nitride film.
 また、前記下部電極は、窒化チタンからなることを特徴とする。 Further, the lower electrode is made of titanium nitride.
 また、前記リセットゲートに電流を流すことにより、前記抵抗が変化する膜のリセットを行うことを特徴とする。 Further, the film in which the resistance changes is reset by passing a current through the reset gate.
 また、第1の柱状半導体層と、前記第1の柱状半導体層の周囲に形成されたゲート絶縁膜と、前記ゲート絶縁膜の周囲に形成されたゲート電極と、前記ゲート電極に接続されたゲート配線と、前記第1の柱状半導体層の上部に形成された第1の拡散層と、前記第1の柱状半導体層の下部に形成された前記第2の拡散層と、前記第1の拡散層上に形成された前記記憶装置と、を有することを特徴とする。 A first columnar semiconductor layer; a gate insulating film formed around the first columnar semiconductor layer; a gate electrode formed around the gate insulating film; and a gate connected to the gate electrode. Wiring, a first diffusion layer formed above the first columnar semiconductor layer, the second diffusion layer formed below the first columnar semiconductor layer, and the first diffusion layer And the storage device formed above.
 また、半導体基板上に形成されたフィン状半導体層と、前記フィン状半導体層の周囲に形成された第1の絶縁膜と、前記フィン状半導体層上に形成された前記第1の柱状半導体層と、を有し、前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記ゲート絶縁膜と、を有し、前記ゲート電極は金属であって、前記ゲート配線は金属であって、前記ゲート配線は前記フィン状半導体層に直交する方向に延在するのであって、前記第2の拡散層は前記フィン状半導体層に更に形成されることを特徴とする。 A fin-like semiconductor layer formed on the semiconductor substrate; a first insulating film formed around the fin-like semiconductor layer; and the first columnar semiconductor layer formed on the fin-like semiconductor layer. The gate electrode and the gate insulating film formed on the periphery and bottom of the gate wiring, wherein the gate electrode is a metal, and the gate wiring is a metal, The gate wiring extends in a direction orthogonal to the fin-like semiconductor layer, and the second diffusion layer is further formed in the fin-like semiconductor layer.
 また、前記第2の拡散層は前記半導体基板に更に形成されることを特徴とする。 Further, the second diffusion layer is further formed on the semiconductor substrate.
 また、前記第2の拡散層に接続される前記ゲート配線に平行なコンタクト配線を有することを特徴とする。 Further, it is characterized in that a contact wiring parallel to the gate wiring connected to the second diffusion layer is provided.
 また、前記半導体基板上に形成された前記フィン状半導体層と、前記フィン状半導体層の周囲に形成された前記第1の絶縁膜と、前記フィン状半導体層上に形成された第2の柱状半導体層と、前記第2の柱状半導体層の周囲に形成された金属からなるコンタクト電極と、前記コンタクト電極に接続された前記フィン状半導体層に直交する方向に延在する金属からなる前記コンタクト配線と、前記フィン状半導体層と前記第2の柱状半導体層の下部に形成された前記第2の拡散層と、前記コンタクト電極は前記第2の拡散層と接続するのであって、を有することを特徴とする。 Further, the fin-like semiconductor layer formed on the semiconductor substrate, the first insulating film formed around the fin-like semiconductor layer, and a second columnar shape formed on the fin-like semiconductor layer A semiconductor layer; a contact electrode made of metal formed around the second columnar semiconductor layer; and the contact wiring made of metal extending in a direction perpendicular to the fin-like semiconductor layer connected to the contact electrode The fin-like semiconductor layer, the second diffusion layer formed under the second columnar semiconductor layer, and the contact electrode is connected to the second diffusion layer, and Features.
 また、前記ゲート電極の外側の幅と前記ゲート配線の幅は同じであって、前記フィン状半導体層に直交する方向の前記第1の柱状半導体層の幅は前記フィン状半導体層に直交する方向の前記フィン状半導体層の幅と同じであることを特徴とする。 Further, the width outside the gate electrode is the same as the width of the gate wiring, and the width of the first columnar semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer is orthogonal to the fin-shaped semiconductor layer. It is the same as the width of the fin-like semiconductor layer.
 また、前記第2の柱状半導体層と前記コンタクト電極との間に形成された前記ゲート絶縁膜を有することを特徴とする。 The gate insulating film is formed between the second columnar semiconductor layer and the contact electrode.
 また、前記フィン状半導体層に直交する方向の前記第2の柱状半導体層の幅は前記フィン状半導体層に直交する方向の前記フィン状半導体層の幅と同じであることを特徴とする。 The width of the second columnar semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer is the same as the width of the fin-shaped semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer.
 また、前記コンタクト電極と前記コンタクト配線の周囲に形成された前記ゲート絶縁膜を有することを特徴とする。 The gate insulating film is formed around the contact electrode and the contact wiring.
 また、前記コンタクト電極の外側の幅と前記コンタクト配線の幅は同じであることを特徴とする。 Further, the outer width of the contact electrode and the width of the contact wiring are the same.
 また、半導体基板上に形成された前記第1の柱状半導体層と、を有し、前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記ゲート絶縁膜と、を有し、前記ゲート電極は金属であって、前記ゲート配線は金属であって、前記第2の拡散層は前記半導体基板に更に形成されることを特徴とする。 A first columnar semiconductor layer formed on a semiconductor substrate, the gate electrode and the gate insulating film formed on the periphery and bottom of the gate wiring, and the gate electrode Is a metal, the gate wiring is a metal, and the second diffusion layer is further formed on the semiconductor substrate.
 また、本発明の記憶装置の製造方法は、基板上に、第2の層間絶縁膜を堆積し、コンタクト孔を形成し、第2の金属と窒化膜を堆積し、前記第2の層間絶縁膜上の前記第2の金属と窒化膜とを除去することで、前記コンタクト孔内部に、柱状窒化膜層と、前記柱状窒化膜層底部と前記柱状窒化膜層とを取り囲む下部電極を形成し、前記第2の層間絶縁膜をエッチバックし、前記柱状窒化膜層を取り囲む前記下部電極上部を露出し、露出した前記柱状窒化膜層を取り囲む前記下部電極上部を除去し、前記柱状窒化膜層を取り囲み前記下部電極に接続するように抵抗が変化する膜を堆積し、前記抵抗が変化する膜をエッチングし、前記柱状窒化膜層上部にサイドウォール状に残存させ、前記抵抗が変化する膜を取り囲むようリセットゲート絶縁膜を形成し、リセットゲートを形成する第6工程を有することを特徴とする。 In the method for manufacturing a memory device of the present invention, a second interlayer insulating film is deposited on a substrate, a contact hole is formed, a second metal and a nitride film are deposited, and the second interlayer insulating film is formed. By removing the second metal and the nitride film on the upper side, a columnar nitride film layer, and a bottom electrode surrounding the columnar nitride film layer bottom and the columnar nitride film layer are formed inside the contact hole, Etching back the second interlayer insulating film, exposing the upper part of the lower electrode surrounding the columnar nitride film layer, removing the upper part of the lower electrode surrounding the exposed columnar nitride film layer, and removing the columnar nitride film layer A film with varying resistance is deposited so as to be connected to the lower electrode, the film with varying resistance is etched, and left on the columnar nitride film layer in a sidewall shape to surround the film with varying resistance. Reset gate insulation Forming a, and having a sixth step of forming a reset gate.
 また、半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程と、前記第1工程の後、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、ゲート配線と第1の柱状半導体層と第2の柱状半導体層とコンタクト配線を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、第1の柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートと第2の柱状半導体層と前記第1のポリシリコンによる第2のダミーゲートを形成する第2工程と、前記第2工程の後、前記第1の柱状半導体層と前記第2の柱状半導体層と前記第1のダミーゲートと前記第2のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記第1の柱状半導体層と前記第2のダミーゲートと前記第2の柱状半導体層の側壁に残存させ、第3のダミーゲートと第4のダミーゲートを形成する第3工程と、前記フィン状半導体層上部と前記第1の柱状半導体層下部と前記第2の柱状半導体層下部に第2の拡散層を形成し、前記第3のダミーゲートと前記第4のダミーゲートとの周囲に、第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程と、前記第4の工程の後、層間絶縁膜を堆積し平坦化し、前記第1のダミーゲートと前記第2のダミーゲートと前記第3のダミーゲートと前記第4のダミーゲートとの上部を露出し、前記第1のダミーゲートと前記第2のダミーゲートと前記第3のダミーゲートと前記第4のダミーゲートとを除去し、前記第2の絶縁膜と前記第4の絶縁膜を除去し、ゲート絶縁膜を前記第1の柱状半導体層の周囲と前記第2の柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去するための第4のレジストを形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去し、金属を堆積し、エッチバックを行い、前記第1の柱状半導体層の周囲にゲート電極及びゲート配線を形成し、前記第2の柱状半導体層の周囲にコンタクト電極及びコンタクト配線を形成する第5工程と、前記第5工程の後、前記第6工程と、を有することを特徴とする。 Also, a first step of forming a fin-like semiconductor layer on the semiconductor substrate and forming a first insulating film around the fin-like semiconductor layer; and after the first step, around the fin-like semiconductor layer A second insulating film is formed, and first polysilicon is deposited and planarized on the second insulating film to form a gate wiring, a first columnar semiconductor layer, a second columnar semiconductor layer, and a contact wiring. Forming a second resist in a direction perpendicular to the direction of the fin-like semiconductor layer, and etching the first polysilicon, the second insulating film, and the fin-like semiconductor layer. A second step of forming a first columnar semiconductor layer, a first dummy gate made of the first polysilicon, a second columnar semiconductor layer, and a second dummy gate made of the first polysilicon; After two steps, the first pillar A fourth insulating film is formed around the semiconductor layer, the second columnar semiconductor layer, the first dummy gate, and the second dummy gate, and a second polysilicon is formed around the fourth insulating film. And the third dummy gate is left on the side walls of the first dummy gate, the first columnar semiconductor layer, the second dummy gate, and the second columnar semiconductor layer by etching. And a third step of forming a fourth dummy gate, forming a second diffusion layer above the fin-like semiconductor layer, below the first columnar semiconductor layer, and below the second columnar semiconductor layer, and A fifth insulating film is formed around the dummy gate 3 and the fourth dummy gate, etched, and left in a sidewall shape to form a sidewall made of the fifth insulating film; A metal on the second diffusion layer; After the fourth step of forming a conductor compound, and after the fourth step, an interlayer insulating film is deposited and planarized, and the first dummy gate, the second dummy gate, the third dummy gate, An upper portion of the fourth dummy gate is exposed, the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are removed, and the second insulating film And the fourth insulating film is removed, and a gate insulating film is formed around the first columnar semiconductor layer, around the second columnar semiconductor layer, and inside the fifth insulating film, Forming a fourth resist for removing the gate insulating film around the bottom of the columnar semiconductor layer, removing the gate insulating film around the bottom of the second columnar semiconductor layer, depositing metal, and etching back; And a gate electrode around the first columnar semiconductor layer And a fifth step of forming a gate wiring and forming a contact electrode and a contact wiring around the second columnar semiconductor layer, and a sixth step after the fifth step. .
 また、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化後、前記第1のポリシリコン上に第3の絶縁膜を形成することをさらに含むことを特徴とする。 The method further includes depositing a first polysilicon on the second insulating film and planarizing the first polysilicon, and then forming a third insulating film on the first polysilicon.
 また、前記第1の柱状半導体層と前記第1のダミーゲートと前記第2の柱状半導体層と前記第2のダミーゲートの周囲に第4の絶縁膜を形成後、第3のレジストを形成し、エッチバックを行い、前記第1の柱状半導体層上部を露出し、前記第1の柱状半導体層上部に第1の拡散層を形成することを特徴とする。 In addition, after forming a fourth insulating film around the first columnar semiconductor layer, the first dummy gate, the second columnar semiconductor layer, and the second dummy gate, a third resist is formed. Etchback is performed to expose the upper portion of the first columnar semiconductor layer, and a first diffusion layer is formed on the upper portion of the first columnar semiconductor layer.
 本発明によれば、リセットゲートを用いてリセットを行うことができ、抵抗が変化する膜、下部電極の電流が流れる方向の断面積を小さくすることができる記憶装置の構造及び製造方法を提供することができる。 According to the present invention, there are provided a structure and a manufacturing method of a memory device that can be reset by using a reset gate and that can reduce a cross-sectional area of a film in which resistance changes and a current flowing through a lower electrode. be able to.
 柱状絶縁体層と、前記柱状絶縁体層の上部の周囲に形成された抵抗が変化する膜と、前記柱状絶縁体層の下部の周囲に形成され、前記抵抗が変化する膜と接続する下部電極と、前記抵抗が変化する膜を取り囲むリセットゲート絶縁膜と、前記リセットゲート絶縁膜を取り囲むリセットゲートと、を有することにより、リセットゲートに電流を流すことで、ヒーターであるリセットゲートで熱が発生し、このヒーターに接する抵抗が変化する膜であるカルコゲナイドガラス(GST:Ge2Sb2Te5)を融解し、状態を遷移させることができる。 A columnar insulator layer, a film formed around the upper portion of the columnar insulator layer and having a variable resistance, and a lower electrode formed around the columnar insulator layer and connected to the film having the variable resistance. And a reset gate insulating film that surrounds the film whose resistance changes and a reset gate that surrounds the reset gate insulating film, so that a current flows through the reset gate, so that heat is generated in the reset gate that is a heater. Then, chalcogenide glass (GST: Ge2Sb2Te5), which is a film that changes resistance in contact with the heater, can be melted to change the state.
 リセットゲートが、抵抗が変化する膜を取り囲む構造のため、抵抗が変化する膜が熱しやすい。 Since the reset gate surrounds the film whose resistance changes, the film whose resistance changes easily heats.
 リセットゲートに電流を流すことでリセットを行うため、選択素子に大電流を流す必要はなく、選択素子は、セット動作用の低電流を流すことができればよい。 Since reset is performed by flowing a current through the reset gate, it is not necessary to flow a large current through the selection element, and the selection element only needs to be able to flow a low current for the set operation.
 柱状絶縁体層と、前記柱状絶縁体層の上部の周囲に形成された抵抗が変化する膜と、前記柱状絶縁体層の下部の周囲に形成され、前記抵抗が変化する膜と接続する下部電極と、を有することにより、抵抗が変化する膜である相変化膜、下部電極であるヒーター素子の電流が流れる方向の断面積を小さくすることができる。 A columnar insulator layer, a film formed around the upper portion of the columnar insulator layer and having a variable resistance, and a lower electrode formed around the columnar insulator layer and connected to the film having the variable resistance. The cross-sectional area in the direction in which the current flows through the phase change film, which is a film whose resistance changes, and the heater element, which is a lower electrode, can be reduced.
 また、前記柱状絶縁体層は窒化膜とすることにより、相変化膜の冷却を早めることができる。また、前記柱状絶縁体層の下にさらに下部電極を有することにより、下部電極と選択トランジスタとの接触抵抗を低減することができる。 Further, the columnar insulator layer is made of a nitride film, so that the cooling of the phase change film can be accelerated. Further, by further providing a lower electrode under the columnar insulator layer, the contact resistance between the lower electrode and the select transistor can be reduced.
 また、前記ゲート電極は金属であって、前記ゲート配線は金属であるので、冷却を早めることができる。また、前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記ゲート絶縁膜と、を有することにより、ゲートラストによって、金属ゲートが形成されるので、金属ゲートプロセスと高温プロセスを両立させることができる。 Further, since the gate electrode is made of metal and the gate wiring is made of metal, the cooling can be accelerated. Also, since the metal gate is formed by the gate last by having the gate electrode and the gate insulating film formed on the periphery and the bottom of the gate wiring, it is possible to achieve both the metal gate process and the high temperature process. Can do.
 また、半導体基板上に形成されたフィン状半導体層と、前記フィン状半導体層の周囲に形成された第1の絶縁膜と、前記フィン状半導体層上に形成された前記第1の柱状半導体層と、を有し、前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記ゲート絶縁膜と、を有し、前記ゲート電極は金属であって、前記ゲート配線は金属であって、前記ゲート配線は前記フィン状半導体層に直交する方向に延在するのであって、前記第2の拡散層は前記フィン状半導体層に更に形成され、前記ゲート電極の外側の幅と前記ゲート配線の幅は同じであって、前記第1の柱状半導体層の幅は前記フィン状半導体層の幅と同じであることを特徴とすることにより、本半導体装置のフィン状半導体層と、柱状半導体層と、ゲート電極と、ゲート配線が、二枚のマスクにより、自己整合で形成されるので、工程数を削減することができる。 A fin-like semiconductor layer formed on the semiconductor substrate; a first insulating film formed around the fin-like semiconductor layer; and the first columnar semiconductor layer formed on the fin-like semiconductor layer. The gate electrode and the gate insulating film formed on the periphery and bottom of the gate wiring, wherein the gate electrode is a metal, and the gate wiring is a metal, The gate wiring extends in a direction perpendicular to the fin-shaped semiconductor layer, and the second diffusion layer is further formed on the fin-shaped semiconductor layer, and the width outside the gate electrode and the width of the gate wiring And the width of the first columnar semiconductor layer is the same as the width of the fin-shaped semiconductor layer, whereby the fin-shaped semiconductor layer of the semiconductor device, the columnar semiconductor layer, Gate electrode and gate arrangement But the two masks, since it is formed in self-alignment, it is possible to reduce the number of steps.
 また、前記第2の拡散層に接続される前記ゲート配線に平行なコンタクト配線を有することにより、ソース線の抵抗を下げることができ、セット時の電流によるソース電圧の増加を抑制することができる。前記ゲート配線に平行なコンタクト配線は、例えば、ビット線方向に一列に配置されたメモリセル2個毎、4個毎、8個毎、16個毎、32個毎、64個毎に一本配置することが好ましい。 In addition, by having a contact wiring parallel to the gate wiring connected to the second diffusion layer, the resistance of the source line can be lowered, and an increase in the source voltage due to a current at the time of setting can be suppressed. . For example, one contact wiring parallel to the gate wiring is arranged for every two memory cells arranged in a line in the bit line direction, every four, every eight, every sixteen, every thirty-two, every 64. It is preferable to do.
 また、第2の柱状半導体層と第2の柱状半導体層周囲に形成されるコンタクト電極とコンタクト配線とで形成される構造は、コンタクト電極が前記第2の拡散層と接続すること以外はトランジスタ構造と同じ構造であり、ゲート配線に平行な方向の全てのソース線はコンタクト配線に接続されることになるため、工程数を削減することができる。 The structure formed by the second columnar semiconductor layer, the contact electrode formed around the second columnar semiconductor layer, and the contact wiring is a transistor structure except that the contact electrode is connected to the second diffusion layer. Since all the source lines in the direction parallel to the gate wiring are connected to the contact wiring, the number of processes can be reduced.
(a)は本発明に係る記憶装置の鳥瞰図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a bird's-eye view of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (a)は本発明に係る記憶装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。(A) is a top view which concerns on the manufacturing method of the memory | storage device based on this invention. FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
 以下に記憶装置の構造を図1に示す。 The structure of the storage device is shown in FIG.
 柱状絶縁体層505と、前記柱状絶縁体層505の上部の周囲に形成された抵抗が変化する膜501と、前記柱状絶縁体層505の下部の周囲に形成され、前記抵抗が変化する膜501と接続する下部電極504と、前記抵抗が変化する膜501を取り囲むリセットゲート絶縁膜502と、前記リセットゲート絶縁膜502を取り囲むリセットゲート503と、を有する。 A columnar insulator layer 505, a film 501 with a variable resistance formed around the top of the columnar insulator layer 505, and a film 501 with a variable resistance formed around the bottom of the columnar insulator layer 505. A reset gate insulating film 502 surrounding the film 501 whose resistance changes, and a reset gate 503 surrounding the reset gate insulating film 502.
 抵抗が変化する膜501は、カルコゲナイドガラス(GST:Ge2Sb2Te5)であることが好ましい。 The film 501 whose resistance changes is preferably chalcogenide glass (GST: Ge2Sb2Te5).
 前記リセットゲート503は、電流が流れて発熱する材料であればよい。窒化チタンであることが好ましい。 The reset gate 503 may be any material that generates heat when a current flows. Titanium nitride is preferred.
 前記リセットゲート絶縁膜502は、熱伝導性がよい絶縁膜であればよい。窒化膜であることが好ましい。 The reset gate insulating film 502 may be an insulating film having good thermal conductivity. A nitride film is preferred.
 前記下部電極504は、電流が流れて発熱する材料であればよい。窒化チタンであることが好ましい。 The lower electrode 504 may be any material that generates heat when a current flows. Titanium nitride is preferred.
 前記リセットゲート503に電流を流すことにより、ヒーターであるリセットゲート503で熱が発生し、このヒーターに接する抵抗が変化する膜501を融解し、状態を遷移させることができる。 By passing a current through the reset gate 503, heat is generated in the reset gate 503, which is a heater, and the film 501 whose resistance is in contact with the heater is melted to change the state.
 図2は本発明の記憶装置であるメモリセルを一行一列目と、一行三列目、二行一列目と、二行三列目に配置し、ソース線を相互に接続するためにコンタクト電極、コンタクト配線を有するコンタクト装置を一行二列目と二行二列目に配置している。 FIG. 2 shows a memory cell which is a memory device of the present invention arranged in a first row, a first column, a first row, a third column, a second row, a first column, and a second row, a third column, Contact devices having contact wiring are arranged in the first row, second column, and second row, second column.
 二行一列目のメモリセルは、半導体基板101上に形成されたフィン状半導体層104と、前記フィン状半導体層104の周囲に形成された第1の絶縁膜106と、前記フィン状半導体層104上に形成された前記第1の柱状半導体層129と、前記フィン状半導体層104に直交する方向の前記第1の柱状半導体層129の幅は前記フィン状半導体層104に直交する方向の前記フィン状半導体層104の幅と同じであって、第1の柱状半導体層129と、前記第1の柱状半導体層129の周囲に形成されたゲート絶縁膜162と、前記ゲート絶縁膜162の周囲に形成された金属からなるゲート電極168aと、前記ゲート電極168aに接続された金属からなるゲート配線168bと、前記ゲート電極168aと前記ゲート配線168bの周囲と底部に形成された前記ゲート絶縁膜162と、前記ゲート配線168bは前記フィン状半導体層104に直交する方向に延在するのであって、前記ゲート電極168aの外側の幅と前記ゲート配線168bの幅は同じであって、前記第1の柱状半導体層129の上部に形成された第1の拡散層302と、前記第1の柱状半導体層129の下部に形成された前記第2の拡散層143aと、前記第2の拡散層143aは前記フィン状半導体層104に更に形成されている。 The memory cell in the second row and the first column includes a fin-like semiconductor layer 104 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like semiconductor layer 104, and the fin-like semiconductor layer 104. The first columnar semiconductor layer 129 formed thereon and the width of the first columnar semiconductor layer 129 in the direction orthogonal to the fin-shaped semiconductor layer 104 are the fins in the direction orthogonal to the fin-shaped semiconductor layer 104. The first columnar semiconductor layer 129, the gate insulating film 162 formed around the first columnar semiconductor layer 129, and the gate insulating film 162. A gate electrode 168a made of the formed metal, a gate wiring 168b made of a metal connected to the gate electrode 168a, and the gate electrode 168a and the gate wiring 16 The gate insulating film 162 and the gate wiring 168b formed on the periphery and bottom of the gate b extend in a direction orthogonal to the fin-like semiconductor layer 104, and the width outside the gate electrode 168a and the gate The wiring 168b has the same width, and the first diffusion layer 302 formed above the first columnar semiconductor layer 129 and the second diffusion layer formed below the first columnar semiconductor layer 129. The diffusion layer 143 a and the second diffusion layer 143 a are further formed on the fin-like semiconductor layer 104.
 前記第1の拡散層302上に窒化膜からなる柱状絶縁体層180と、前記柱状絶縁体層180の上部の周囲に形成された抵抗が変化する膜189と、前記柱状絶縁体層180の下部の周囲に形成され、前記抵抗が変化する膜189と接続する下部電極184と、前記抵抗が変化する膜189を取り囲むリセットゲート絶縁膜197と、前記リセットゲート絶縁膜197を取り囲むリセットゲート198aと、を有する。また、前記柱状絶縁体層180の下にさらに下部電極184を有する。 A columnar insulator layer 180 made of a nitride film on the first diffusion layer 302, a film 189 having a variable resistance formed around the upper portion of the columnar insulator layer 180, and a lower portion of the columnar insulator layer 180 A lower electrode 184 that is connected to the film 189 that changes resistance, a reset gate insulating film 197 that surrounds the film 189 that changes resistance, a reset gate 198a that surrounds the reset gate insulating film 197, Have Further, a lower electrode 184 is further provided under the columnar insulator layer 180.
 抵抗が変化する膜189は、例えば、カルコゲナイドガラス(GST:Ge2Sb2Te5)といった相変化膜が好ましい。また、ヒーター素子である下部電極184は、例えば、窒化チタンが好ましい。 The film 189 whose resistance changes is preferably a phase change film such as chalcogenide glass (GST: Ge2Sb2Te5). The lower electrode 184 that is a heater element is preferably titanium nitride, for example.
 二行三列目のメモリセルは、半導体基板101上に形成されたフィン状半導体層104と、前記フィン状半導体層104の周囲に形成された第1の絶縁膜106と、前記フィン状半導体層104上に形成された前記第1の柱状半導体層131と、前記フィン状半導体層104に直交する方向の前記第1の柱状半導体層131の幅は前記フィン状半導体層104に直交する方向の前記フィン状半導体層104の幅と同じであって、第1の柱状半導体層131と、前記第1の柱状半導体層131の周囲に形成されたゲート絶縁膜163と、前記ゲート絶縁膜163の周囲に形成された金属からなるゲート電極170aと、前記ゲート電極170aに接続された金属からなるゲート配線170bと、前記ゲート電極170aと前記ゲート配線170bの周囲と底部に形成された前記ゲート絶縁膜163と、前記ゲート配線170bは前記フィン状半導体層104に直交する方向に延在するのであって、前記ゲート電極170aの外側の幅と前記ゲート配線170bの幅は同じであって、前記第1の柱状半導体層131の上部に形成された第1の拡散層304と、前記第1の柱状半導体層131の下部に形成された前記第2の拡散層143aと、前記第2の拡散層143aは前記フィン状半導体層104に更に形成されている。 The memory cell in the second row and the third column includes a fin-like semiconductor layer 104 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like semiconductor layer 104, and the fin-like semiconductor layer. The width of the first columnar semiconductor layer 131 formed on the first columnar semiconductor layer 131 and the direction of the first columnar semiconductor layer 131 perpendicular to the fin-shaped semiconductor layer 104 is the width of the first columnar semiconductor layer 131 perpendicular to the fin-shaped semiconductor layer 104. The width of the fin-shaped semiconductor layer 104 is the same as that of the first columnar semiconductor layer 131, the gate insulating film 163 formed around the first columnar semiconductor layer 131, and the gate insulating film 163. The formed gate electrode 170a made of metal, the gate wiring 170b made of metal connected to the gate electrode 170a, the gate electrode 170a and the gate wiring 17 The gate insulating film 163 and the gate wiring 170b formed on the periphery and the bottom of b extend in a direction perpendicular to the fin-like semiconductor layer 104, and the width outside the gate electrode 170a and the gate The wiring 170b has the same width, and the first diffusion layer 304 formed above the first columnar semiconductor layer 131 and the second diffusion layer 304 formed below the first columnar semiconductor layer 131. The diffusion layer 143 a and the second diffusion layer 143 a are further formed on the fin-like semiconductor layer 104.
 前記第1の拡散層304上に窒化膜からなる柱状絶縁体層181と、前記柱状絶縁体層181の上部の周囲に形成された抵抗が変化する膜190と、前記柱状絶縁体層190の下部の周囲に形成され、前記抵抗が変化する膜190と接続する下部電極185と、前記抵抗が変化する膜190を取り囲むリセットゲート絶縁膜197と、前記リセットゲート絶縁膜197を取り囲むリセットゲート198bと、を有する。また、前記柱状絶縁体層181の下にさらに下部電極185を有する。 A columnar insulator layer 181 made of a nitride film on the first diffusion layer 304, a film 190 having a variable resistance formed around the upper portion of the columnar insulator layer 181, and a lower portion of the columnar insulator layer 190 A lower electrode 185 that is connected to the film 190 that changes the resistance, a reset gate insulating film 197 that surrounds the film 190 that changes the resistance, and a reset gate 198b that surrounds the reset gate insulating film 197, Have Further, a lower electrode 185 is further provided under the columnar insulator layer 181.
 抵抗が変化する膜189と、抵抗が変化する膜190は、ビット線203aにより接続される。 The film 189 whose resistance changes and the film 190 whose resistance changes are connected by a bit line 203a.
 一行一列目のメモリセルは、半導体基板101上に形成されたフィン状半導体層105と、前記フィン状半導体層105の周囲に形成された第1の絶縁膜106と、前記フィン状半導体層105上に形成された前記第1の柱状半導体層132と、前記フィン状半導体層105に直交する方向の前記第1の柱状半導体層132の幅は前記フィン状半導体層105に直交する方向の前記フィン状半導体層105の幅と同じであって、第1の柱状半導体層132と、前記第1の柱状半導体層132の周囲に形成されたゲート絶縁膜162と、前記ゲート絶縁膜162の周囲に形成された金属からなるゲート電極168aと、前記ゲート電極168aに接続された金属からなるゲート配線168bと、前記ゲート電極168aと前記ゲート配線168bの周囲と底部に形成された前記ゲート絶縁膜162と、前記ゲート配線168bは前記フィン状半導体層105に直交する方向に延在するのであって、前記ゲート電極168aの外側の幅と前記ゲート配線168bの幅は同じであって、前記第1の柱状半導体層132の上部に形成された第1の拡散層305と、前記第1の柱状半導体層132の下部に形成された前記第2の拡散層143bと、前記第2の拡散層143bは前記フィン状半導体層105に更に形成されている。 The memory cell in the first row and the first column includes a fin-like semiconductor layer 105 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like semiconductor layer 105, and the fin-like semiconductor layer 105. The width of the first columnar semiconductor layer 132 formed in the direction perpendicular to the fin-shaped semiconductor layer 105 and the width of the first columnar semiconductor layer 132 in the direction orthogonal to the fin-shaped semiconductor layer 105 are The width of the semiconductor layer 105 is the same, and the first columnar semiconductor layer 132, the gate insulating film 162 formed around the first columnar semiconductor layer 132, and the gate insulating film 162 are formed. A gate electrode 168a made of a metal, a gate wiring 168b made of a metal connected to the gate electrode 168a, a gate electrode 168a and the gate wiring 16 The gate insulating film 162 and the gate wiring 168b formed on the periphery and the bottom of b extend in a direction perpendicular to the fin-like semiconductor layer 105, and the width outside the gate electrode 168a and the gate The wiring 168b has the same width, and the first diffusion layer 305 formed above the first columnar semiconductor layer 132 and the second diffusion layer 305 formed below the first columnar semiconductor layer 132. The diffusion layer 143 b and the second diffusion layer 143 b are further formed on the fin-like semiconductor layer 105.
 前記第1の拡散層305上に窒化膜からなる柱状絶縁体層182と、前記柱状絶縁体層182の上部の周囲に形成された抵抗が変化する膜191と、前記柱状絶縁体層191の下部の周囲に形成され、前記抵抗が変化する膜191と接続する下部電極186と、前記抵抗が変化する膜191を取り囲むリセットゲート絶縁膜197と、前記リセットゲート絶縁膜197を取り囲むリセットゲート198aと、を有する。また、前記柱状絶縁体層182の下にさらに下部電極186を有する。 A columnar insulator layer 182 made of a nitride film on the first diffusion layer 305, a film 191 having a variable resistance formed around the upper portion of the columnar insulator layer 182, and a lower portion of the columnar insulator layer 191 A lower electrode 186 that is connected to the film 191 that changes resistance, a reset gate insulating film 197 that surrounds the film 191 that changes resistance, a reset gate 198a that surrounds the reset gate insulating film 197, Have Further, a lower electrode 186 is further provided under the columnar insulator layer 182.
 一行三列目のメモリセルは、半導体基板101上に形成されたフィン状半導体層105と、前記フィン状半導体層105の周囲に形成された第1の絶縁膜106と、前記フィン状半導体層105上に形成された前記第1の柱状半導体層134と、前記フィン状半導体層105に直交する方向の前記第1の柱状半導体層134の幅は前記フィン状半導体層105に直交する方向の前記フィン状半導体層105の幅と同じであって、第1の柱状半導体層134と、前記第1の柱状半導体層134の周囲に形成されたゲート絶縁膜163と、前記ゲート絶縁膜163の周囲に形成された金属からなるゲート電極170aと、前記ゲート電極170aに接続された金属からなるゲート配線170bと、前記ゲート電極170aと前記ゲート配線170bの周囲と底部に形成された前記ゲート絶縁膜163と、前記ゲート配線170bは前記フィン状半導体層105に直交する方向に延在するのであって、前記ゲート電極170aの外側の幅と前記ゲート配線170bの幅は同じであって、前記第1の柱状半導体層134の上部に形成された第1の拡散層307と、前記第1の柱状半導体層134の下部に形成された前記第2の拡散層143bと、前記第2の拡散層143bは前記フィン状半導体層105に更に形成されている。 The memory cell in the first row and the third column includes a fin-like semiconductor layer 105 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like semiconductor layer 105, and the fin-like semiconductor layer 105. The width of the first columnar semiconductor layer 134 formed above and the direction of the first columnar semiconductor layer 134 in the direction orthogonal to the fin-shaped semiconductor layer 105 is the fin in the direction orthogonal to the fin-shaped semiconductor layer 105. The first columnar semiconductor layer 134, the gate insulating film 163 formed around the first columnar semiconductor layer 134, and the gate insulating film 163. A gate electrode 170a made of the formed metal, a gate wiring 170b made of a metal connected to the gate electrode 170a, the gate electrode 170a and the gate wiring 17 The gate insulating film 163 and the gate wiring 170b formed on the periphery and the bottom of b extend in a direction orthogonal to the fin-like semiconductor layer 105, and the width outside the gate electrode 170a and the gate The width of the wiring 170b is the same, and the first diffusion layer 307 formed above the first columnar semiconductor layer 134 and the second diffusion layer 307 formed below the first columnar semiconductor layer 134. The diffusion layer 143 b and the second diffusion layer 143 b are further formed on the fin-like semiconductor layer 105.
 前記第1の拡散層307上に窒化膜からなる柱状絶縁体層183と、前記柱状絶縁体層183の上部の周囲に形成された抵抗が変化する膜192と、前記柱状絶縁体層192の下部の周囲に形成され、前記抵抗が変化する膜192と接続する下部電極187と、前記抵抗が変化する膜192を取り囲むリセットゲート絶縁膜197と、前記リセットゲート絶縁膜197を取り囲むリセットゲート198bと、を有する。また、前記柱状絶縁体層183の下にさらに下部電極187を有する。 A columnar insulator layer 183 made of a nitride film on the first diffusion layer 307, a film 192 having a variable resistance formed around the upper portion of the columnar insulator layer 183, and a lower portion of the columnar insulator layer 192 A lower electrode 187 that is connected to the film 192 that changes resistance, a reset gate insulating film 197 that surrounds the film 192 that changes resistance, a reset gate 198b that surrounds the reset gate insulating film 197, Have Further, a lower electrode 187 is further provided under the columnar insulator layer 183.
 抵抗が変化する膜191と、抵抗が変化する膜192は、ビット線203bにより接続される。 The film 191 whose resistance changes and the film 192 whose resistance changes are connected by a bit line 203b.
 柱状絶縁体層180、181、182、183と、前記柱状絶縁体層180、181、182、183の上部の周囲に形成された抵抗が変化する膜189、190、191、192と、前記柱状絶縁体層180、181、182、183の下部の周囲に形成され、前記抵抗が変化する膜189、190、191、192と接続する下部電極184、185、186、187と、を有することにより、抵抗が変化する膜である相変化膜、下部電極であるヒーター素子の電流が流れる方向の断面積を小さくすることができる。 Columnar insulator layers 180, 181, 182 and 183, films 189, 190, 191 and 192 with varying resistance formed around the columnar insulator layers 180, 181, 182, and 183, and the columnar insulators By having lower electrodes 184, 185, 186, 187 formed around the body layers 180, 181, 182, 183 and connected to the films 189, 190, 191, 192 whose resistance changes, resistance It is possible to reduce the cross-sectional area in the direction in which the current flows in the phase change film that is a film in which the current changes and the heater element that is the lower electrode.
 また、前記柱状絶縁体層180、181、182、183は窒化膜とすることにより、抵抗が変化する膜である相変化膜の冷却を早めることができる。また、前記柱状絶縁体層180、181、182、183の下にさらに下部電極184、185、186、187を有することにより、下部電極184、185、186、187と選択トランジスタとの接触抵抗を低減することができる。 Further, the columnar insulator layers 180, 181, 182, and 183 are made of nitride films, so that the cooling of the phase change film, which is a film whose resistance changes, can be accelerated. Further, by having lower electrodes 184, 185, 186, and 187 under the columnar insulator layers 180, 181, 182, and 183, the contact resistance between the lower electrodes 184, 185, 186, and 187 and the select transistor is reduced. can do.
 また、前記ゲート電極168a、170aは金属であって、前記ゲート配線168b、170bは金属であるので、冷却を早めることができる。また、前記ゲート電極168a、170aと前記ゲート配線の周囲と底部に形成された前記ゲート絶縁膜168b、170bと、を有することにより、ゲートラストによって、金属ゲートが形成されるので、金属ゲートプロセスと高温プロセスを両立させることができる。 Further, since the gate electrodes 168a and 170a are made of metal and the gate wirings 168b and 170b are made of metal, the cooling can be accelerated. In addition, since the gate electrodes 168a and 170a and the gate insulating films 168b and 170b formed on the periphery and the bottom of the gate wiring are provided, a metal gate is formed by gate last. A high temperature process can be made compatible.
 また、前記ゲート電極168a、170aと前記ゲート配線168b、170bの周囲と底部に形成された前記ゲート絶縁膜162、163と、を有し、前記ゲート電極168a、170aは金属であって、前記ゲート配線168b、170bは金属であって、前記ゲート配線168b、170bは前記フィン状半導体層104、105に直交する方向に延在するのであって、前記第2の拡散層143a、143bは前記フィン状半導体層104、105に更に形成され、前記ゲート電極168a、170aの外側の幅と前記ゲート配線168b、170bの幅は同じであって、前記第1の柱状半導体層129、131、132、134の幅は前記フィン状半導体層104、105の幅と同じであることを特徴とすることにより、本半導体装置のフィン状半導体層104、105と、第1の柱状半導体層129、131、132、134と、ゲート電極168a、170aと、ゲート配線168b、170bが、二枚のマスクにより、自己整合で形成されるので、工程数を削減することができる。 In addition, the gate electrodes 168a and 170a and the gate insulating films 162 and 163 formed around and at the bottom of the gate wirings 168b and 170b, the gate electrodes 168a and 170a being a metal, The wirings 168b and 170b are metal, the gate wirings 168b and 170b extend in a direction perpendicular to the fin-like semiconductor layers 104 and 105, and the second diffusion layers 143a and 143b are the fin-like shapes. Further formed on the semiconductor layers 104 and 105, the outer widths of the gate electrodes 168a and 170a and the widths of the gate wirings 168b and 170b are the same, and the first columnar semiconductor layers 129, 131, 132, and 134 are formed. The width is the same as the width of the fin-like semiconductor layers 104 and 105, whereby the present semiconductor The fin-shaped semiconductor layers 104 and 105, the first columnar semiconductor layers 129, 131, 132, and 134, the gate electrodes 168a and 170a, and the gate wirings 168b and 170b are formed in a self-aligned manner using two masks. Thus, the number of processes can be reduced.
 二行二列目のコンタクト装置は、前記半導体基板101上に形成された前記フィン状半導体層104と、前記フィン状半導体層104の周囲に形成された前記第1の絶縁膜106と、前記フィン状半導体層104上に形成された第2の柱状半導体層130と、前記フィン状半導体層104に直交する方向の前記第2の柱状半導体層130の幅は前記フィン状半導体層104に直交する方向の前記フィン状半導体層104の幅と同じであって、前記第2の柱状半導体層130の周囲に形成された金属からなるコンタクト電極169aと、前記第2の柱状半導体層130と前記コンタクト電極169aとの間に形成された前記ゲート絶縁膜165を有し、前記コンタクト電極169aに接続された前記フィン状半導体層104に直交する方向に延在する金属からなる前記コンタクト配線169bと、前記コンタクト電極169aと前記コンタクト配線169bの周囲に形成された前記ゲート絶縁膜164を有し、前記コンタクト電極169aの外側の幅と前記コンタクト配線169bの幅は同じであって、前記フィン状半導体層104と前記第2の柱状半導体層130の下部に形成された前記第2の拡散層143aと、前記コンタクト電極169aは前記第2の拡散層143aと接続するのであって、を有する。 The contact device in the second row and the second column includes the fin-like semiconductor layer 104 formed on the semiconductor substrate 101, the first insulating film 106 formed around the fin-like semiconductor layer 104, and the fin The width of the second columnar semiconductor layer 130 formed on the semiconductor layer 104 and the direction of the second columnar semiconductor layer 130 perpendicular to the fin-shaped semiconductor layer 104 is perpendicular to the fin-shaped semiconductor layer 104. A contact electrode 169a made of a metal having the same width as that of the fin-shaped semiconductor layer 104 and formed around the second columnar semiconductor layer 130, and the second columnar semiconductor layer 130 and the contact electrode 169a. In the direction perpendicular to the fin-like semiconductor layer 104 connected to the contact electrode 169a. The contact wiring 169b made of an existing metal, and the gate insulating film 164 formed around the contact electrode 169a and the contact wiring 169b. Are the same, the second diffusion layer 143a formed under the fin-like semiconductor layer 104 and the second columnar semiconductor layer 130, and the contact electrode 169a connected to the second diffusion layer 143a. It has and has.
 一行二列目のコンタクト装置は、前記半導体基板101上に形成された前記フィン状半導体層105と、前記フィン状半導体層105の周囲に形成された前記第1の絶縁膜106と、前記フィン状半導体層105上に形成された第2の柱状半導体層133と、前記フィン状半導体層105に直交する方向の前記第2の柱状半導体層133の幅は前記フィン状半導体層105に直交する方向の前記フィン状半導体層105の幅と同じであって、前記第2の柱状半導体層133の周囲に形成された金属からなるコンタクト電極169aと、前記第2の柱状半導体層133と前記コンタクト電極169aとの間に形成された前記ゲート絶縁膜166を有し、前記コンタクト電極169aに接続された前記フィン状半導体層105に直交する方向に延在する金属からなる前記コンタクト配線169bと、前記コンタクト電極169aと前記コンタクト配線169bの周囲に形成された前記ゲート絶縁膜164を有し、前記コンタクト電極169aの外側の幅と前記コンタクト配線169bの幅は同じであって、前記フィン状半導体層105と前記第2の柱状半導体層133の下部に形成された前記第2の拡散層143bと、前記コンタクト電極169aは前記第2の拡散層143bと接続するのであって、を有する。 The contact device in the first row and the second column includes the fin-shaped semiconductor layer 105 formed on the semiconductor substrate 101, the first insulating film 106 formed around the fin-shaped semiconductor layer 105, and the fin-shaped semiconductor device. The second columnar semiconductor layer 133 formed on the semiconductor layer 105 and the width of the second columnar semiconductor layer 133 in the direction orthogonal to the fin-shaped semiconductor layer 105 are in the direction orthogonal to the fin-shaped semiconductor layer 105. A contact electrode 169a having the same width as the fin-like semiconductor layer 105 and formed around the second columnar semiconductor layer 133; the second columnar semiconductor layer 133; and the contact electrode 169a. In the direction perpendicular to the fin-like semiconductor layer 105 connected to the contact electrode 169a The contact wiring 169b made of an existing metal, and the gate insulating film 164 formed around the contact electrode 169a and the contact wiring 169b, and the width outside the contact electrode 169a and the width of the contact wiring 169b Are the same, the second diffusion layer 143b formed below the fin-shaped semiconductor layer 105 and the second columnar semiconductor layer 133, and the contact electrode 169a connected to the second diffusion layer 143b. It has and has.
 また、前記第2の拡散層143a、143bに接続される前記ゲート配線168b、170bに平行なコンタクト配線169bを有することにより、第2の拡散層143a、143bを相互に接続することでソース線の抵抗を下げることができ、セット時の電流によるソース電圧の増加を抑制することができる。前記ゲート配線168b、170bに平行なコンタクト配線169bは、例えば、ビット線187、188方向に一列に配置されたメモリセル2個毎、4個毎、8個毎、16個毎、32個毎、64個毎に一本配置することが好ましい。 Further, by having the contact wiring 169b parallel to the gate wirings 168b and 170b connected to the second diffusion layers 143a and 143b, the second diffusion layers 143a and 143b are connected to each other, thereby The resistance can be lowered, and an increase in the source voltage due to the current during setting can be suppressed. The contact wiring 169b parallel to the gate wirings 168b and 170b is, for example, every two memory cells arranged in a line in the direction of the bit lines 187 and 188, every four, every eight, every sixteen, every thirty-two, It is preferable to arrange one for every 64 pieces.
 また、第2の柱状半導体層130、133と第2の柱状半導体層130、133周囲に形成されるコンタクト電極169aとコンタクト配線169bとで形成される構造は、コンタクト電極169aが前記第2の拡散層143a、143bと接続すること以外はトランジスタ構造と同じ構造であり、ゲート配線168b、170bに平行な方向の第2の拡散層143a、143bからなる全てのソース線はコンタクト配線169bに接続されることになるため、工程数を削減することができる。 Further, in the structure formed by the second columnar semiconductor layers 130 and 133, the contact electrode 169a formed around the second columnar semiconductor layers 130 and 133, and the contact wiring 169b, the contact electrode 169a has the second diffusion. The transistor structure is the same as that of the transistor structure except that it is connected to the layers 143a and 143b. All source lines including the second diffusion layers 143a and 143b in the direction parallel to the gate wirings 168b and 170b are connected to the contact wiring 169b. Therefore, the number of steps can be reduced.
 図3は、半導体基板101深くまで第2の拡散層143cを形成し、図2の第2の拡散層143a、143bを接続した構造である。本構造とすることでさらにソース抵抗を削減することができる。 3 shows a structure in which the second diffusion layer 143c is formed deeply into the semiconductor substrate 101, and the second diffusion layers 143a and 143b in FIG. 2 are connected. With this structure, the source resistance can be further reduced.
 図4は、図3の前記フィン状半導体層105と、前記フィン状半導体層105の周囲に形成された前記第1の絶縁膜106を省き、半導体基板101上に第2の拡散層143dを形成した構造である。本構造とすることでさらにソース抵抗を削減することができる。 4 omits the fin-like semiconductor layer 105 of FIG. 3 and the first insulating film 106 formed around the fin-like semiconductor layer 105, and forms a second diffusion layer 143d on the semiconductor substrate 101. In FIG. This is the structure. With this structure, the source resistance can be further reduced.
 以下に、本発明の実施形態に係る記憶装置の構造を形成するための製造工程を、図5~図60を参照して説明する。 Hereinafter, a manufacturing process for forming the structure of the memory device according to the embodiment of the present invention will be described with reference to FIGS.
 まず、半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程を示す。本実施例では、シリコン基板としたが、半導体であればよい。 First, a first step of forming a fin-like semiconductor layer on a semiconductor substrate and forming a first insulating film around the fin-like semiconductor layer is shown. In this embodiment, a silicon substrate is used, but any semiconductor may be used.
 図5に示すように、シリコン基板101上にフィン状シリコン層を形成するための第1のレジスト102、103を形成する。 As shown in FIG. 5, first resists 102 and 103 for forming a fin-like silicon layer are formed on a silicon substrate 101.
 図6に示すように、シリコン基板101をエッチングし、フィン状シリコン層104、105を形成する。今回はレジストをマスクとしてフィン状シリコン層を形成したが、酸化膜や窒化膜といったハードマスクを用いてもよい。 As shown in FIG. 6, the silicon substrate 101 is etched to form fin-like silicon layers 104 and 105. Although the fin-like silicon layer is formed using a resist as a mask this time, a hard mask such as an oxide film or a nitride film may be used.
 図7に示すように、第1のレジスト102、103を除去する。 As shown in FIG. 7, the first resists 102 and 103 are removed.
 図8に示すように、フィン状シリコン層104、105の周囲に第1の絶縁膜106を堆積する。第1の絶縁膜として高密度プラズマによる酸化膜や低圧CVD(Chemical Vapor Deposition)による酸化膜を用いてもよい。 As shown in FIG. 8, a first insulating film 106 is deposited around the fin-like silicon layers 104 and 105. An oxide film formed by high-density plasma or an oxide film formed by low-pressure CVD (Chemical Vapor Deposition) may be used as the first insulating film.
 図9に示すように、第1の絶縁膜106をエッチバックし、フィン状シリコン層104、105の上部を露出する。 As shown in FIG. 9, the first insulating film 106 is etched back, and the upper portions of the fin-like silicon layers 104 and 105 are exposed.
 以上により半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程が示された。 Thus, the first step of forming the fin-like semiconductor layer on the semiconductor substrate and forming the first insulating film around the fin-like semiconductor layer is shown.
 次に、前記第1工程の後、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、ゲート配線と第1の柱状半導体層と第2の柱状半導体層とコンタクト配線を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、第1の柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートと第2の柱状半導体層と前記第1のポリシリコンによる第2のダミーゲートを形成する第2工程を示す。 Next, after the first step, a second insulating film is formed around the fin-like semiconductor layer, and first polysilicon is deposited and planarized on the second insulating film, and gate wiring and Forming a second resist for forming a first columnar semiconductor layer, a second columnar semiconductor layer, and a contact wiring in a direction perpendicular to the direction of the fin-shaped semiconductor layer; And the second insulating film and the fin-shaped semiconductor layer are etched, thereby the first columnar semiconductor layer, the first polysilicon first dummy gate, the second columnar semiconductor layer, and the first columnar semiconductor layer. The 2nd process of forming the 2nd dummy gate by polysilicon is shown.
 図10に示すように、前記フィン状シリコン層104、105の周囲に第2の絶縁膜107、108を形成する。第2の絶縁膜107、108は、酸化膜が好ましい。 As shown in FIG. 10, second insulating films 107 and 108 are formed around the fin-like silicon layers 104 and 105. The second insulating films 107 and 108 are preferably oxide films.
 図11に示すように、前記第2の絶縁膜107、108の上に第1のポリシリコン109を堆積し平坦化する。 As shown in FIG. 11, a first polysilicon 109 is deposited on the second insulating films 107 and 108 and planarized.
 図12に示すように、前記第1のポリシリコン109上に第3の絶縁膜110を形成する。第3の絶縁膜110は、窒化膜が好ましい。 As shown in FIG. 12, a third insulating film 110 is formed on the first polysilicon 109. The third insulating film 110 is preferably a nitride film.
 図13に示すように、ゲート配線168b、170bと第1の柱状半導体層129、131、132、134と第2の柱状半導体層130、133とコンタクト配線169bを形成するための第2のレジスト111、112、113を、前記フィン状シリコン層104、105の方向に対して垂直の方向に形成する。 As shown in FIG. 13, the second resist 111 for forming the gate wirings 168b and 170b, the first columnar semiconductor layers 129, 131, 132, and 134, the second columnar semiconductor layers 130 and 133, and the contact wiring 169b. , 112 and 113 are formed in a direction perpendicular to the direction of the fin-like silicon layers 104 and 105.
 図14に示すように、前記第3の絶縁膜110と前記第1のポリシリコン109と前記第2の絶縁膜107、108と前記フィン状シリコン層104、105をエッチングすることにより、第1の柱状シリコン層129、131、132、134と前記第1のポリシリコンによる第1のダミーゲート117、119と第2の柱状シリコン層130、133と前記第1のポリシリコンによる第2のダミーゲート118を形成する。このとき、第3の絶縁膜110は、分離され、第3の絶縁膜114、115、116となる。また、第2の絶縁膜107、108は分離され、第2の絶縁膜123、124、125、126、127、128となる。このとき、第2のレジスト111、112、113がエッチング中に除去された場合、第3の絶縁膜114、115、116がハードマスクとして機能する。第2のレジストがエッチング中に除去されないとき、第3の絶縁膜を使用しなくてもよい。 As shown in FIG. 14, by etching the third insulating film 110, the first polysilicon 109, the second insulating films 107 and 108, and the fin-like silicon layers 104 and 105, a first Columnar silicon layers 129, 131, 132, 134, first dummy gates 117, 119 made of the first polysilicon, second columnar silicon layers 130, 133, and a second dummy gate 118 made of the first polysilicon. Form. At this time, the third insulating film 110 is separated and becomes third insulating films 114, 115, and 116. Further, the second insulating films 107 and 108 are separated to become second insulating films 123, 124, 125, 126, 127, and 128. At this time, if the second resists 111, 112, and 113 are removed during etching, the third insulating films 114, 115, and 116 function as a hard mask. When the second resist is not removed during etching, the third insulating film may not be used.
 図15に示すように、第2のレジスト114、115、116を除去する。 As shown in FIG. 15, the second resists 114, 115, and 116 are removed.
 以上により、前記第1工程の後、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、ゲート配線と第1の柱状半導体層と第2の柱状半導体層とコンタクト配線を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、第1の柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートと第2の柱状半導体層と前記第1のポリシリコンによる第2のダミーゲートを形成する第2工程が示された。 As described above, after the first step, the second insulating film is formed around the fin-like semiconductor layer, and the first polysilicon is deposited and planarized on the second insulating film. Forming a second resist for forming a first columnar semiconductor layer, a second columnar semiconductor layer, and a contact wiring in a direction perpendicular to the direction of the fin-shaped semiconductor layer; And the second insulating film and the fin-shaped semiconductor layer are etched, thereby the first columnar semiconductor layer, the first polysilicon first dummy gate, the second columnar semiconductor layer, and the first columnar semiconductor layer. A second step of forming a second dummy gate of polysilicon has been shown.
 次に、前記第2工程の後、前記第1の柱状半導体層と前記第2の柱状半導体層と前記第1のダミーゲートと前記第2のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記第1の柱状半導体層と前記第2のダミーゲートと前記第2の柱状半導体層の側壁に残存させ、第3のダミーゲートと第4のダミーゲートを形成する第3工程を示す。 Next, after the second step, a fourth insulating film is formed around the first columnar semiconductor layer, the second columnar semiconductor layer, the first dummy gate, and the second dummy gate. Then, a second polysilicon is deposited around the fourth insulating film and etched, whereby the first dummy gate, the first columnar semiconductor layer, the second dummy gate, and the second dummy gate are etched. A third step of forming the third dummy gate and the fourth dummy gate by remaining on the side wall of the columnar semiconductor layer is shown.
 図16に示すように、前記第1の柱状シリコン層129、131、132、134と前記第2の柱状シリコン層130、133と前記第1のダミーゲート117、119と前記第2のダミーゲート118の周囲に第4の絶縁膜135を形成する。第4の絶縁膜135は、酸化膜が好ましい。第3のレジスト301を形成し、エッチバックを行い、前記第1の柱状シリコン層129、131、132、134上部を露出する。このとき、第2の柱状シリコン層130、133上部を露出してもよい。 As shown in FIG. 16, the first columnar silicon layers 129, 131, 132, 134, the second columnar silicon layers 130, 133, the first dummy gates 117, 119, and the second dummy gate 118. A fourth insulating film 135 is formed around the substrate. The fourth insulating film 135 is preferably an oxide film. A third resist 301 is formed and etched back to expose the upper portions of the first columnar silicon layers 129, 131, 132, and 134. At this time, the upper portions of the second columnar silicon layers 130 and 133 may be exposed.
 図17に示すように、不純物を導入し、前記第1の柱状シリコン層129、131、132、134上部に第1の拡散層302、304、305、307を形成する。また、第2の柱状シリコン層130、133上部に第1の拡散層303、306を形成してもよい。n型拡散層のときは、砒素やリンを導入することが好ましい。p型拡散層のときは、ボロンを導入することが好ましい。 As shown in FIG. 17, impurities are introduced to form first diffusion layers 302, 304, 305, 307 on the first columnar silicon layers 129, 131, 132, 134. Further, the first diffusion layers 303 and 306 may be formed on the second columnar silicon layers 130 and 133. In the case of an n-type diffusion layer, it is preferable to introduce arsenic or phosphorus. In the case of a p-type diffusion layer, it is preferable to introduce boron.
 図18に示すように、第3のレジスト301を除去する。 As shown in FIG. 18, the third resist 301 is removed.
 図19に示すように、前記第4の絶縁膜135の周囲に第2のポリシリコン136を堆積する。 As shown in FIG. 19, a second polysilicon 136 is deposited around the fourth insulating film 135.
 図20に示すように、第2のポリシリコン136をエッチングをすることにより、前記第1のダミーゲート117、119と前記第1の柱状シリコン層129、131、132、134と前記第2のダミーゲート118と前記第2の柱状シリコン層130、133の側壁に残存させ、第3のダミーゲート137、139と第4のダミーゲート138を形成する。このとき、第4の絶縁膜135は分離され、第4の絶縁膜140、141、142となってもよい。 As shown in FIG. 20, by etching the second polysilicon 136, the first dummy gates 117, 119, the first columnar silicon layers 129, 131, 132, 134, and the second dummy Third dummy gates 137 and 139 and a fourth dummy gate 138 are formed by remaining on the side walls of the gate 118 and the second columnar silicon layers 130 and 133. At this time, the fourth insulating film 135 may be separated to form fourth insulating films 140, 141, and 142.
 以上により、前記第2工程の後、前記第1の柱状半導体層と前記第2の柱状半導体層と前記第1のダミーゲートと前記第2のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記第1の柱状半導体層と前記第2のダミーゲートと前記第2の柱状半導体層の側壁に残存させ、第3のダミーゲートと第4のダミーゲートを形成する第3工程が示された。 As described above, after the second step, a fourth insulating film is formed around the first columnar semiconductor layer, the second columnar semiconductor layer, the first dummy gate, and the second dummy gate. Then, a second polysilicon is deposited around the fourth insulating film and etched, whereby the first dummy gate, the first columnar semiconductor layer, the second dummy gate, and the second dummy gate are etched. The third step of forming the third dummy gate and the fourth dummy gate by remaining on the side wall of the columnar semiconductor layer is shown.
 次に、前記フィン状半導体層上部と前記第1の柱状半導体層下部と前記第2の柱状半導体層下部に第2の拡散層を形成し、前記第3のダミーゲートと前記第4のダミーゲートとの周囲に、第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程を示す。 Next, a second diffusion layer is formed in the upper part of the fin-like semiconductor layer, the lower part of the first columnar semiconductor layer, and the lower part of the second columnar semiconductor layer, and the third dummy gate and the fourth dummy gate are formed. A fifth insulating film is formed around the substrate, etched, and left in a sidewall shape to form a sidewall made of the fifth insulating film, and a metal and a semiconductor are formed on the second diffusion layer. The 4th process of forming the compound of is shown.
 図21に示すように、不純物を導入し、前記第1の柱状シリコン層129、131、132、134下部と前記第2の柱状シリコン層130、133下部に第2の拡散層143a、143bを形成する。n型拡散層のときは、砒素やリンを導入することが好ましい。p型拡散層のときは、ボロンを導入することが好ましい。拡散層形成は、後述の第5の絶縁膜からなるサイドウォール形成後に行ってもよい。 As shown in FIG. 21, impurities are introduced to form second diffusion layers 143a and 143b under the first columnar silicon layers 129, 131, 132, and 134 and under the second columnar silicon layers 130 and 133, respectively. To do. In the case of an n-type diffusion layer, it is preferable to introduce arsenic or phosphorus. In the case of a p-type diffusion layer, it is preferable to introduce boron. The diffusion layer may be formed after forming a sidewall made of a fifth insulating film described later.
 図22に示すように、前記第3のダミーゲート137、139と前記第4のダミーゲート138との周囲に、第5の絶縁膜144を形成する。第5の絶縁膜144は、窒化膜が好ましい。 As shown in FIG. 22, a fifth insulating film 144 is formed around the third dummy gates 137 and 139 and the fourth dummy gate 138. The fifth insulating film 144 is preferably a nitride film.
 図23に示すように、第5の絶縁膜144をエッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォール145、146、147を形成する。 As shown in FIG. 23, the fifth insulating film 144 is etched to remain in a sidewall shape, and sidewalls 145, 146, and 147 made of the fifth insulating film are formed.
 図24に示すように、前記第2の拡散層143a、143b上に金属と半導体の化合物148、149、150、151、152、153、154、155を形成する。このとき、第3のダミーゲート137、139上部、第4のダミーゲート138上部にも金属と半導体の化合物156、158、157が形成される。 24, metal and semiconductor compounds 148, 149, 150, 151, 152, 153, 154, and 155 are formed on the second diffusion layers 143a and 143b. At this time, metal and semiconductor compounds 156, 158, and 157 are also formed on the third dummy gates 137 and 139 and on the fourth dummy gate 138, respectively.
 以上により、前記フィン状半導体層上部と前記第1の柱状半導体層下部と前記第2の柱状半導体層下部に第2の拡散層を形成し、前記第3のダミーゲートと前記第4のダミーゲートとの周囲に、第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程が示された。 As described above, a second diffusion layer is formed in the upper part of the fin-shaped semiconductor layer, the lower part of the first columnar semiconductor layer, and the lower part of the second columnar semiconductor layer, and the third dummy gate and the fourth dummy gate are formed. A fifth insulating film is formed around the substrate, etched, and left in a sidewall shape to form a sidewall made of the fifth insulating film, and a metal and a semiconductor are formed on the second diffusion layer. A fourth step of forming the compound was shown.
 次に、前記第4の工程の後、層間絶縁膜を堆積し平坦化し、前記第1のダミーゲートと前記第2のダミーゲートと前記第3のダミーゲートと前記第4のダミーゲートとの上部を露出し、前記第1のダミーゲートと前記第2のダミーゲートと前記第3のダミーゲートと前記第4のダミーゲートとを除去し、前記第2の絶縁膜と前記第4の絶縁膜を除去し、ゲート絶縁膜を前記第1の柱状半導体層の周囲と前記第2の柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去するための第4のレジストを形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去し、金属を堆積し、エッチバックを行い、前記第1の柱状半導体層の周囲にゲート電極及びゲート配線を形成し、前記第2の柱状半導体層の周囲にコンタクト電極及びコンタクト配線を形成する第5工程を示す。 Next, after the fourth step, an interlayer insulating film is deposited and planarized, and an upper portion of the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate is formed. The first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are removed, and the second insulating film and the fourth insulating film are removed. A gate insulating film is formed around the first columnar semiconductor layer, around the second columnar semiconductor layer, and inside the fifth insulating film; and around the bottom of the second columnar semiconductor layer. A fourth resist for removing the gate insulating film is formed, the gate insulating film around the bottom of the second columnar semiconductor layer is removed, a metal is deposited, etch back is performed, and the first columnar semiconductor is formed. Form the gate electrode and gate wiring around the layer Around the second columnar semiconductor layer showing a fifth step of forming the contact electrode and the contact wiring.
 図25に示すように、層間絶縁膜159を堆積する。コンタクトストッパ膜を用いてもよい。 As shown in FIG. 25, an interlayer insulating film 159 is deposited. A contact stopper film may be used.
 図26に示すように、化学機械研磨し、前記第1のダミーゲート117、119と前記第2のダミーゲート118と前記第3のダミーゲート137、139と前記第4のダミーゲート138との上部を露出する。このとき、第3のダミーゲート137、139上部、第4のダミーゲート138上部の金属と半導体の化合物156、158、157を除去する。 As shown in FIG. 26, chemical mechanical polishing is performed, and upper portions of the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gate 138 are formed. To expose. At this time, the metal and semiconductor compounds 156, 158, and 157 above the third dummy gates 137 and 139 and the fourth dummy gate 138 are removed.
 図27に示すように、前記第1のダミーゲート117、119と前記第2のダミーゲート118と前記第3のダミーゲート137、139と前記第4のダミーゲート138とを除去する。 As shown in FIG. 27, the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gate 138 are removed.
 図28に示すように、前記第2の絶縁膜123、124、125、126、127、128と前記第4の絶縁膜140、141、142を除去する。 As shown in FIG. 28, the second insulating films 123, 124, 125, 126, 127, 128 and the fourth insulating films 140, 141, 142 are removed.
 図29に示すように、ゲート絶縁膜160を前記第1の柱状シリコン層129、131、132、134の周囲と前記第2の柱状シリコン層130、133の周囲と前記第5の絶縁膜145、146、147の内側に形成する。 As shown in FIG. 29, the gate insulating film 160 is formed around the first columnar silicon layers 129, 131, 132, 134, around the second columnar silicon layers 130, 133, and the fifth insulating film 145, 146 and 147 are formed inside.
 図30に示すように、前記第2の柱状シリコン層130、133の底部周辺のゲート絶縁膜160を除去するための第4のレジスト161を形成する。 As shown in FIG. 30, a fourth resist 161 for removing the gate insulating film 160 around the bottom of the second columnar silicon layers 130 and 133 is formed.
 図31に示すように、前記第2の柱状シリコン層130、133の底部周辺のゲート絶縁膜160を除去する。ゲート絶縁膜は分離され、ゲート絶縁膜162、163、164、165、166となる。また、等方性エッチングにより、ゲート絶縁膜164、165、166を除去してもよい。 As shown in FIG. 31, the gate insulating film 160 around the bottom of the second columnar silicon layers 130 and 133 is removed. The gate insulating films are separated to form gate insulating films 162, 163, 164, 165, 166. Alternatively, the gate insulating films 164, 165, and 166 may be removed by isotropic etching.
 図32に示すように、第4のレジスト161を除去する。 As shown in FIG. 32, the fourth resist 161 is removed.
 図33に示すように、金属167を堆積する。 As shown in FIG. 33, metal 167 is deposited.
 図34に示すように、金属167のエッチバックを行い、前記第1の柱状シリコン層129、131、132、134の周囲にゲート電極168a、170a及びゲート配線168b、170bを形成し、前記第2の柱状シリコン層130、133の周囲にコンタクト電極169a及びコンタクト配線169bを形成する。 As shown in FIG. 34, the metal 167 is etched back to form gate electrodes 168a, 170a and gate wirings 168b, 170b around the first columnar silicon layers 129, 131, 132, 134, and the second columnar silicon layers 129, 131, 132, 134 are formed. The contact electrode 169a and the contact wiring 169b are formed around the columnar silicon layers 130 and 133.
 以上により、前記第4の工程の後、層間絶縁膜を堆積し平坦化し、前記第1のダミーゲートと前記第2のダミーゲートと前記第3のダミーゲートと前記第4のダミーゲートとの上部を露出し、前記第1のダミーゲートと前記第2のダミーゲートと前記第3のダミーゲートと前記第4のダミーゲートとを除去し、前記第2の絶縁膜と前記第4の絶縁膜を除去し、ゲート絶縁膜を前記第1の柱状半導体層の周囲と前記第2の柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去するための第4のレジストを形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去し、金属を堆積し、エッチバックを行い、前記第1の柱状半導体層の周囲にゲート電極及びゲート配線を形成し、前記第2の柱状半導体層の周囲にコンタクト電極及びコンタクト配線を形成する第5工程が示された。 As described above, after the fourth step, an interlayer insulating film is deposited and planarized, and an upper portion of the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate is formed. The first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are removed, and the second insulating film and the fourth insulating film are removed. A gate insulating film is formed around the first columnar semiconductor layer, around the second columnar semiconductor layer, and inside the fifth insulating film; and around the bottom of the second columnar semiconductor layer. A fourth resist for removing the gate insulating film is formed, the gate insulating film around the bottom of the second columnar semiconductor layer is removed, a metal is deposited, etch back is performed, and the first columnar semiconductor is formed. Form gate electrode and gate wiring around the layer Fifth step of forming the contact electrode and the contact wires around the second columnar semiconductor layer was demonstrated.
 次に、第2の層間絶縁膜を堆積し、コンタクト孔を形成し、第2の金属と窒化膜を堆積し、前記第2の層間絶縁膜上の前記第2の金属と窒化膜とを除去することで、前記コンタクト孔内部に、柱状窒化膜層と、前記柱状窒化膜層底部と前記柱状窒化膜層とを取り囲む下部電極を形成し、前記第2の層間絶縁膜をエッチバックし、前記柱状窒化膜層を取り囲む前記下部電極上部を露出し、露出した前記柱状窒化膜層を取り囲む前記下部電極上部を除去し、前記柱状窒化膜層を取り囲み前記下部電極に接続するように抵抗が変化する膜を堆積し、前記抵抗が変化する膜をエッチングし、前記柱状窒化膜層上部にサイドウォール状に残存させ、 前記抵抗が変化する膜を取り囲むようリセットゲート絶縁膜を形成し、リセットゲートを形成する第6工程を示す。 Next, a second interlayer insulating film is deposited, a contact hole is formed, a second metal and a nitride film are deposited, and the second metal and the nitride film on the second interlayer insulating film are removed. Thus, a columnar nitride film layer, a bottom electrode surrounding the columnar nitride film layer and the columnar nitride film layer are formed inside the contact hole, and the second interlayer insulating film is etched back, The upper portion of the lower electrode surrounding the columnar nitride film layer is exposed, the upper portion of the lower electrode surrounding the exposed columnar nitride film layer is removed, and the resistance changes so as to surround the columnar nitride film layer and connect to the lower electrode. Deposit a film, etch the film with varying resistance, leave it in a sidewall shape on the columnar nitride film layer, form a reset gate insulating film to surround the film with varying resistance, and form a reset gate First It shows a step.
 図35に示すように、第2の層間絶縁膜171を堆積する。 As shown in FIG. 35, a second interlayer insulating film 171 is deposited.
 図36に示すように、コンタクト孔を形成するための第5のレジスト172を形成する。 As shown in FIG. 36, a fifth resist 172 for forming contact holes is formed.
 図37に示すように、コンタクト孔174、175、176、177を形成する。 As shown in FIG. 37, contact holes 174, 175, 176, 177 are formed.
 図38に示すように、第5のレジスト172を剥離する。 38, the fifth resist 172 is peeled off.
 図39に示すように、第2の金属178を堆積する。第2の金属178は、窒化チタンが好ましい。 As shown in FIG. 39, a second metal 178 is deposited. The second metal 178 is preferably titanium nitride.
 図40に示すように、窒化膜179を堆積する。 As shown in FIG. 40, a nitride film 179 is deposited.
 図41に示すように、窒化膜179をエッチバックし、第2の層間絶縁膜171上の窒化膜179を除去する。このとき、柱状窒化膜層180、181、182、183が形成される。 As shown in FIG. 41, the nitride film 179 is etched back, and the nitride film 179 on the second interlayer insulating film 171 is removed. At this time, columnar nitride film layers 180, 181, 182 and 183 are formed.
 図42に示すように、第2の層間絶縁膜171上の第2の金属178を除去する。前記柱状窒化膜層底部180、181、182、183と前記柱状窒化膜層180、181、182、183とを取り囲む下部電極184、185、186、187となる。 42, the second metal 178 on the second interlayer insulating film 171 is removed. The lower electrodes 184, 185, 186, and 187 surrounding the columnar nitride layer bottoms 180, 181, 182, and 183 and the columnar nitride layers 180, 181, 182, and 183 are formed.
 図43に示すように、第2の層間絶縁膜171をエッチバックし、柱状窒化膜層180、181、182、183を取り囲む下部電極184、185、186、187上部を露出する。 43, the second interlayer insulating film 171 is etched back to expose the upper portions of the lower electrodes 184, 185, 186, and 187 surrounding the columnar nitride film layers 180, 181, 182, and 183.
 図44に示すように、露出した柱状窒化膜層180、181、182、183を取り囲む下部電極184、185、186、187上部を除去する。 44, the upper portions of the lower electrodes 184, 185, 186, and 187 surrounding the exposed columnar nitride film layers 180, 181, 182, and 183 are removed.
 図45に示すように、第2の層間絶縁膜171をエッチバックし、柱状窒化膜層180、181、182、183を取り囲む下部電極184、185、186、187上部を露出する。図43工程の後、下部電極184、185、186、187上部が露出していれば、この工程は不要である。 As shown in FIG. 45, the second interlayer insulating film 171 is etched back to expose the upper portions of the lower electrodes 184, 185, 186, and 187 surrounding the columnar nitride film layers 180, 181, 182, and 183. If the upper portions of the lower electrodes 184, 185, 186, and 187 are exposed after the step of FIG. 43, this step is unnecessary.
 図46に示すように、柱状窒化膜層180、181、182、183を取り囲み前記下部電極184、185、186、187に接続するように抵抗が変化する膜188を堆積する。抵抗が変化する膜188は、カルコゲナイドガラス(GST:Ge2Sb2Te5)といった相変化膜が好ましい。 As shown in FIG. 46, a film 188 having a variable resistance is deposited so as to surround the columnar nitride film layers 180, 181, 182, and 183, and to connect to the lower electrodes 184, 185, 186, and 187. The film 188 whose resistance is changed is preferably a phase change film such as chalcogenide glass (GST: Ge2Sb2Te5).
 図47に示すように、抵抗が変化する膜188をエッチングし、柱状窒化膜層180、181、182、183上部にサイドウォール状に残存させる。抵抗が変化する膜188は、分離され、抵抗が変化する膜189、190、191、192となる。また、下部電極184、185、186、187上部側壁に、抵抗が変化する膜193、194、195、196として残存してもよい。 As shown in FIG. 47, the film 188 whose resistance is changed is etched and left in the form of sidewalls on the columnar nitride film layers 180, 181, 182, and 183. The film 188 whose resistance is changed is separated into films 189, 190, 191 and 192 whose resistance is changed. Further, the films 193, 194, 195, and 196 whose resistance changes may be left on the upper sidewalls of the lower electrodes 184, 185, 186, and 187.
 図48に示すように、リセットゲート絶縁膜197を堆積し、リセットゲートとなる金属198を堆積する。リセットゲート絶縁膜197は窒化膜が好ましい。また、金属198は、窒化チタンが好ましい。 As shown in FIG. 48, a reset gate insulating film 197 is deposited, and a metal 198 to be a reset gate is deposited. The reset gate insulating film 197 is preferably a nitride film. The metal 198 is preferably titanium nitride.
 図49に示すように、金属198をエッチバックする。 As shown in FIG. 49, the metal 198 is etched back.
 図50に示すように、窒化膜199を堆積する。 50, a nitride film 199 is deposited.
 図51に示すように、リセットゲートを形成するための第6のレジスト200、201を形成する。 As shown in FIG. 51, sixth resists 200 and 201 for forming a reset gate are formed.
 図52に示すように、窒化膜199をエッチングする。窒化膜199は分離され、窒化膜199a、199bとなる。 As shown in FIG. 52, the nitride film 199 is etched. The nitride film 199 is separated to become nitride films 199a and 199b.
 図53に示すように、第6のレジスト200、201と窒化膜199a、199bをマスクとして金属198をエッチングし、リセットゲート198a、198bを形成する。 As shown in FIG. 53, the metal 198 is etched using the sixth resists 200 and 201 and the nitride films 199a and 199b as masks to form reset gates 198a and 198b.
 図54に示すように、第6のレジスト200、201を除去する。 As shown in FIG. 54, the sixth resists 200 and 201 are removed.
 図55に示すように、第3の層間絶縁膜202を堆積する。 As shown in FIG. 55, a third interlayer insulating film 202 is deposited.
 図56に示すように、第3の層間絶縁膜202を平坦化し、抵抗が変化する膜189、190、191、192上部を露出する。 As shown in FIG. 56, the third interlayer insulating film 202 is flattened, and the upper portions of the films 189, 190, 191, and 192 whose resistance changes are exposed.
 図57に示すように、金属203を堆積する。 As shown in FIG. 57, metal 203 is deposited.
 図58に示すように、ビット線を形成するため第7のレジスト204、205を形成する。 As shown in FIG. 58, seventh resists 204 and 205 are formed to form bit lines.
 図59に示すように、金属203をエッチングし、ビット線203a、203bを形成する。 As shown in FIG. 59, the metal 203 is etched to form bit lines 203a and 203b.
 図60に示すように、第7のレジスト204、205を除去する。 As shown in FIG. 60, the seventh resists 204 and 205 are removed.
 以上により、第2の層間絶縁膜を堆積し、コンタクト孔を形成し、第2の金属と窒化膜を堆積し、前記第2の層間絶縁膜上の前記第2の金属と窒化膜とを除去することで、前記コンタクト孔内部に、柱状窒化膜層と、前記柱状窒化膜層底部と前記柱状窒化膜層とを取り囲む下部電極を形成し、前記第2の層間絶縁膜をエッチバックし、前記柱状窒化膜層を取り囲む前記下部電極上部を露出し、露出した前記柱状窒化膜層を取り囲む前記下部電極上部を除去し、前記柱状窒化膜層を取り囲み前記下部電極に接続するように抵抗が変化する膜を堆積し、前記抵抗が変化する膜をエッチングし、前記柱状窒化膜層上部にサイドウォール状に残存させ、前記抵抗が変化する膜を取り囲むようリセットゲート絶縁膜を形成し、リセットゲートを形成する第6工程が示された。 As described above, the second interlayer insulating film is deposited, the contact hole is formed, the second metal and the nitride film are deposited, and the second metal and the nitride film on the second interlayer insulating film are removed. Thus, a columnar nitride film layer, a bottom electrode surrounding the columnar nitride film layer and the columnar nitride film layer are formed inside the contact hole, and the second interlayer insulating film is etched back, The upper portion of the lower electrode surrounding the columnar nitride film layer is exposed, the upper portion of the lower electrode surrounding the exposed columnar nitride film layer is removed, and the resistance changes so as to surround the columnar nitride film layer and connect to the lower electrode. Deposit a film, etch the film with varying resistance, leave it in a sidewall shape on the columnar nitride film layer, form a reset gate insulating film to surround the film with varying resistance, and form a reset gate You Sixth step is illustrated.
 以上により、本発明の実施形態に係る半導体装置の構造を形成するための製造工程が示された。 As described above, the manufacturing process for forming the structure of the semiconductor device according to the embodiment of the present invention is shown.
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining an example of the present invention, and does not limit the scope of the present invention.
 例えば、上記実施例において、p型(p型を含む。)とn型(n型を含む。)とをそれぞれ反対の導電型とした半導体装置の製造方法、及び、それにより得られる半導体装置も当然に本発明の技術的範囲に含まれる。 For example, in the above embodiment, a method of manufacturing a semiconductor device in which p-type (including p + -type) and n-type (including n + -type) are opposite in conductivity type, and semiconductor obtained thereby An apparatus is naturally included in the technical scope of the present invention.
101.シリコン基板
102.第1のレジスト
103.第1のレジスト
104.フィン状シリコン層
105.フィン状シリコン層
106.第1の絶縁膜
107.第2の絶縁膜
108.第2の絶縁膜
109.第1のポリシリコン
110.第3の絶縁膜
111.第2のレジスト
112.第2のレジスト
113.第2のレジスト
114.第3の絶縁膜
115.第3の絶縁膜
116.第3の絶縁膜
117.第1のダミーゲート
118.第2のダミーゲート
119.第1のダミーゲート
123.第2の絶縁膜
124.第2の絶縁膜
125.第2の絶縁膜
126.第2の絶縁膜
127.第2の絶縁膜
128.第2の絶縁膜
129.第1の柱状シリコン層
130.第2の柱状シリコン層
131.第1の柱状シリコン層
132.第1の柱状シリコン層
133.第2の柱状シリコン層
134.第1の柱状シリコン層
135.第4の絶縁膜
136.第2のポリシリコン
137.第3のダミーゲート
138.第4のダミーゲート
139.第3のダミーゲート
140.第4の絶縁膜
141.第4の絶縁膜
142.第4の絶縁膜
143a.第2の拡散層
143b.第2の拡散層
143c.第2の拡散層
143d.第2の拡散層
144.第5の絶縁膜
145.サイドウォール
146.サイドウォール
147.サイドウォール
148.金属と半導体の化合物
149.金属と半導体の化合物
150.金属と半導体の化合物
151.金属と半導体の化合物
152.金属と半導体の化合物
153.金属と半導体の化合物
154.金属と半導体の化合物
155.金属と半導体の化合物
156.金属と半導体の化合物
157.金属と半導体の化合物
158.金属と半導体の化合物
159.層間絶縁膜
160.ゲート絶縁膜
161.第4のレジスト
162.ゲート絶縁膜
163.ゲート絶縁膜
164.ゲート絶縁膜
165.ゲート絶縁膜
166.ゲート絶縁膜
167.金属
168a.ゲート電極
168b.ゲート配線
169a.コンタクト電極
169b.コンタクト配線
170a.ゲート電極
170b.ゲート配線
171.第2の層間絶縁膜
172.第5のレジスト
174.コンタクト孔
175.コンタクト孔
176.コンタクト孔
177.コンタクト孔
178.第2の金属
179.窒化膜
180.柱状窒化膜層
181.柱状窒化膜層
182.柱状窒化膜層
183.柱状窒化膜層
184.下部電極
185.下部電極
186.下部電極
187.下部電極
188.抵抗が変化する膜
189.抵抗が変化する膜
190.抵抗が変化する膜
191.抵抗が変化する膜
192.抵抗が変化する膜
193.抵抗が変化する膜
194.抵抗が変化する膜
195.抵抗が変化する膜
196.抵抗が変化する膜
197.リセットゲート絶縁膜
198.金属
198a.リセットゲート
198b.リセットゲート
199.窒化膜
199a.窒化膜
199b.窒化膜
200.第6のレジスト
201.第6のレジスト
202.第3の層間絶縁膜
203.金属
204.第7のレジスト
205.第7のレジスト
301.第3のレジスト
302.第1の拡散層
303.第1の拡散層
304.第1の拡散層
305.第1の拡散層
306.第1の拡散層
307.第1の拡散層
501.抵抗が変化する膜
502.リセットゲート絶縁膜
503.リセットゲート
504.下部電極
505.柱状絶縁体層
101. Silicon substrate 102. First resist 103. First resist 104. Fin-like silicon layer 105. Fin-like silicon layer 106. First insulating film 107. Second insulating film 108. Second insulating film 109. First polysilicon 110. Third insulating film 111. Second resist 112. Second resist 113. Second resist 114. Third insulating film 115. Third insulating film 116. Third insulating film 117. First dummy gate 118. Second dummy gate 119. First dummy gate 123. Second insulating film 124. Second insulating film 125. Second insulating film 126. Second insulating film 127. Second insulating film 128. Second insulating film 129. First columnar silicon layer 130. Second columnar silicon layer 131. First columnar silicon layer 132. First columnar silicon layer 133. Second columnar silicon layer 134. First columnar silicon layer 135. Fourth insulating film 136. Second polysilicon 137. Third dummy gate 138. Fourth dummy gate 139. Third dummy gate 140. Fourth insulating film 141. Fourth insulating film 142. Fourth insulating film 143a. Second diffusion layer 143b. Second diffusion layer 143c. Second diffusion layer 143d. Second diffusion layer 144. Fifth insulating film 145. Side wall 146. Sidewall 147. Sidewall 148. Compound of metal and semiconductor 149. Compound of metal and semiconductor 150. Compound of metal and semiconductor 151. Compound of metal and semiconductor 152. Compound of metal and semiconductor 153. Compound of metal and semiconductor 154. Compound of metal and semiconductor 155. Compound of metal and semiconductor 156. Compound of metal and semiconductor 157. Compound of metal and semiconductor 158. Compound of metal and semiconductor 159. Interlayer insulating film 160. Gate insulating film 161. Fourth resist 162. Gate insulating film 163. Gate insulating film 164. Gate insulating film 165. Gate insulating film 166. Gate insulating film 167. Metal 168a. Gate electrode 168b. Gate wiring 169a. Contact electrode 169b. Contact wiring 170a. Gate electrode 170b. Gate wiring 171. Second interlayer insulating film 172. Fifth resist 174. Contact hole 175. Contact hole 176. Contact hole 177. Contact hole 178. Second metal 179. Nitride film 180. Columnar nitride layer 181. Columnar nitride layer 182. Columnar nitride layer 183. Columnar nitride layer 184. Lower electrode 185. Lower electrode 186. Lower electrode 187. Lower electrode 188. Membrane with variable resistance 189. Membrane with variable resistance 190. Membrane 191 where resistance changes. Membrane 192 whose resistance changes. Membrane 193 whose resistance changes Membrane 194 where resistance changes. Membrane with variable resistance 195. Membrane with variable resistance 196. Membrane with variable resistance 197. Reset gate insulating film 198. Metal 198a. Reset gate 198b. Reset gate 199. Nitride film 199a. Nitride film 199b. Nitride film 200. Sixth resist 201. Sixth resist 202. Third interlayer insulating film 203. Metal 204. Seventh resist 205. Seventh resist 301. Third resist 302. First diffusion layer 303. First diffusion layer 304. First diffusion layer 305. First diffusion layer 306. First diffusion layer 307. First diffusion layer 501. Membrane with variable resistance 502. Reset gate insulating film 503. Reset gate 504. Lower electrode 505. Columnar insulator layer

Claims (21)

  1.  柱状絶縁体層と、
     前記柱状絶縁体層の上部の周囲に形成された抵抗が変化する膜と、
     前記柱状絶縁体層の下部の周囲に形成され、前記抵抗が変化する膜と接続する下部電極と、
     前記抵抗が変化する膜を取り囲むリセットゲート絶縁膜と、
     前記リセットゲート絶縁膜を取り囲むリセットゲートと、
    を有することを特徴とする記憶装置。
    A columnar insulator layer;
    A film with varying resistance formed around the top of the columnar insulator layer;
    A lower electrode that is formed around the lower portion of the columnar insulator layer and is connected to the film that changes the resistance;
    A reset gate insulating film surrounding the resistance-changing film;
    A reset gate surrounding the reset gate insulating film;
    A storage device comprising:
  2.  前記柱状絶縁体層は窒化膜からなり、前記柱状絶縁体層の下にさらに下部電極を有することを特徴とする請求項1に記載の記憶装置。 2. The memory device according to claim 1, wherein the columnar insulator layer is made of a nitride film, and further has a lower electrode under the columnar insulator layer.
  3.  前記リセットゲートは、窒化チタンからなることを特徴とする請求項1に記載の記憶装置。 The storage device according to claim 1, wherein the reset gate is made of titanium nitride.
  4.  前記リセットゲート絶縁膜は、窒化膜からなることを特徴とする請求項1に記載の記憶装置。 The memory device according to claim 1, wherein the reset gate insulating film is made of a nitride film.
  5.  前記下部電極は、窒化チタンからなることを特徴とする請求項2に記載の記憶装置。 3. The storage device according to claim 2, wherein the lower electrode is made of titanium nitride.
  6.  前記リセットゲートに電流を流すことにより、前記抵抗が変化する膜のリセットを行うことを特徴とする請求項1に記載の記憶装置。 The memory device according to claim 1, wherein the film in which the resistance changes is reset by passing a current through the reset gate.
  7.  第1の柱状半導体層と、
     前記第1の柱状半導体層の周囲に形成されたゲート絶縁膜と、
     前記ゲート絶縁膜の周囲に形成されたゲート電極と、
     前記ゲート電極に接続されたゲート配線と、
     前記第1の柱状半導体層の上部に形成された第1の拡散層と、
     前記第1の柱状半導体層の下部に形成された前記第2の拡散層と、
     前記第1の拡散層上に形成された前記記憶装置と、
    を有することを特徴とする請求項2に記載の記憶装置。
    A first columnar semiconductor layer;
    A gate insulating film formed around the first columnar semiconductor layer;
    A gate electrode formed around the gate insulating film;
    A gate wiring connected to the gate electrode;
    A first diffusion layer formed on the first columnar semiconductor layer;
    The second diffusion layer formed below the first columnar semiconductor layer;
    The storage device formed on the first diffusion layer;
    The storage device according to claim 2, further comprising:
  8.  半導体基板上に形成されたフィン状半導体層と、
     前記フィン状半導体層の周囲に形成された第1の絶縁膜と、
     前記フィン状半導体層上に形成された前記第1の柱状半導体層と、
    を有し、
     前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記ゲート絶縁膜と、を有し、
     前記ゲート電極は金属であって、
     前記ゲート配線は金属であって、
     前記ゲート配線は前記フィン状半導体層に直交する方向に延在するのであって、
     前記第2の拡散層は前記フィン状半導体層に更に形成されることを特徴とする請求項7に記載の記憶装置。
    A fin-like semiconductor layer formed on a semiconductor substrate;
    A first insulating film formed around the fin-like semiconductor layer;
    The first columnar semiconductor layer formed on the fin-like semiconductor layer;
    Have
    The gate electrode and the gate insulating film formed on the periphery and bottom of the gate wiring, and
    The gate electrode is a metal;
    The gate wiring is metal,
    The gate wiring extends in a direction perpendicular to the fin-like semiconductor layer,
    The memory device according to claim 7, wherein the second diffusion layer is further formed on the fin-like semiconductor layer.
  9.  前記第2の拡散層は前記半導体基板に更に形成されることを特徴とする請求項8に記載の記憶装置。 9. The storage device according to claim 8, wherein the second diffusion layer is further formed on the semiconductor substrate.
  10.  前記第2の拡散層に接続される前記ゲート配線に平行なコンタクト配線を有することを特徴とする請求項8または9のいずれか一つに記載の記憶装置。 10. The storage device according to claim 8, further comprising a contact wiring parallel to the gate wiring connected to the second diffusion layer.
  11.  前記半導体基板上に形成された前記フィン状半導体層と、
     前記フィン状半導体層の周囲に形成された前記第1の絶縁膜と、
     前記フィン状半導体層上に形成された第2の柱状半導体層と、
     前記第2の柱状半導体層の周囲に形成された金属からなるコンタクト電極と、
     前記コンタクト電極に接続された前記フィン状半導体層に直交する方向に延在する金属からなる前記コンタクト配線と、
     前記フィン状半導体層と前記第2の柱状半導体層の下部に形成された前記第2の拡散層と、
     前記コンタクト電極は前記第2の拡散層と接続するのであって、
    を有することを特徴とする請求項10に記載の記憶装置。
    The fin-like semiconductor layer formed on the semiconductor substrate;
    The first insulating film formed around the fin-like semiconductor layer;
    A second columnar semiconductor layer formed on the fin-like semiconductor layer;
    A contact electrode made of metal formed around the second columnar semiconductor layer;
    The contact wiring made of a metal extending in a direction orthogonal to the fin-like semiconductor layer connected to the contact electrode;
    The fin-like semiconductor layer and the second diffusion layer formed below the second columnar semiconductor layer;
    The contact electrode is connected to the second diffusion layer;
    The storage device according to claim 10, further comprising:
  12.  前記ゲート電極の外側の幅と前記ゲート配線の幅は同じであって、
     前記フィン状半導体層に直交する方向の前記第1の柱状半導体層の幅は前記フィン状半導体層に直交する方向の前記フィン状半導体層の幅と同じであることを特徴とする請求項8、9、10、11のいずれか一つに記載の記憶装置。
    The outer width of the gate electrode and the width of the gate wiring are the same,
    9. The width of the first columnar semiconductor layer in a direction orthogonal to the fin-shaped semiconductor layer is the same as the width of the fin-shaped semiconductor layer in a direction orthogonal to the fin-shaped semiconductor layer. The storage device according to any one of 9, 10, and 11.
  13.  前記第2の柱状半導体層と前記コンタクト電極との間に形成された前記ゲート絶縁膜を有することを特徴とする請求項11に記載の記憶装置。 12. The memory device according to claim 11, further comprising the gate insulating film formed between the second columnar semiconductor layer and the contact electrode.
  14.  前記フィン状半導体層に直交する方向の前記第2の柱状半導体層の幅は前記フィン状半導体層に直交する方向の前記フィン状半導体層の幅と同じであることを特徴とする請求項11に記載の記憶装置。 The width of the second columnar semiconductor layer in a direction orthogonal to the fin-shaped semiconductor layer is the same as the width of the fin-shaped semiconductor layer in a direction orthogonal to the fin-shaped semiconductor layer. The storage device described.
  15.  前記コンタクト電極と前記コンタクト配線の周囲に形成された前記ゲート絶縁膜を有することを特徴とする請求項13に記載の記憶装置。 14. The memory device according to claim 13, further comprising the gate insulating film formed around the contact electrode and the contact wiring.
  16.  前記コンタクト電極の外側の幅と前記コンタクト配線の幅は同じであることを特徴とする請求項11に記載の記憶装置。 12. The storage device according to claim 11, wherein the outer width of the contact electrode and the width of the contact wiring are the same.
  17.  半導体基板上に形成された前記第1の柱状半導体層と、
    を有し、
     前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記ゲート絶縁膜と、を有し、
     前記ゲート電極は金属であって、
     前記ゲート配線は金属であって、
     前記第2の拡散層は前記半導体基板に更に形成されることを特徴とする請求項7に記載の記憶装置。
    The first columnar semiconductor layer formed on the semiconductor substrate;
    Have
    The gate electrode and the gate insulating film formed on the periphery and bottom of the gate wiring, and
    The gate electrode is a metal;
    The gate wiring is metal,
    The memory device according to claim 7, wherein the second diffusion layer is further formed on the semiconductor substrate.
  18.  基板上に、第2の層間絶縁膜を堆積し、コンタクト孔を形成し、第2の金属と窒化膜を堆積し、
     前記第2の層間絶縁膜上の前記第2の金属と窒化膜とを除去することで、前記コンタクト孔内部に、柱状窒化膜層と、前記柱状窒化膜層底部と前記柱状窒化膜層とを取り囲む下部電極を形成し、
     前記第2の層間絶縁膜をエッチバックし、前記柱状窒化膜層を取り囲む前記下部電極上部を露出し、
     露出した前記柱状窒化膜層を取り囲む前記下部電極上部を除去し、
     前記柱状窒化膜層を取り囲み前記下部電極に接続するように抵抗が変化する膜を堆積し、
     前記抵抗が変化する膜をエッチングし、前記柱状窒化膜層上部にサイドウォール状に残存させ、
     前記抵抗が変化する膜を取り囲むようリセットゲート絶縁膜を形成し、リセットゲートを形成する第6工程を有することを特徴とする記憶装置の製造方法。
    Depositing a second interlayer insulating film on the substrate, forming a contact hole, depositing a second metal and a nitride film;
    By removing the second metal and nitride film on the second interlayer insulating film, a columnar nitride film layer, a bottom of the columnar nitride film layer, and the columnar nitride film layer are formed inside the contact hole. Forming a surrounding lower electrode,
    Etch back the second interlayer insulating film to expose the upper part of the lower electrode surrounding the columnar nitride film layer;
    Removing the upper part of the lower electrode surrounding the exposed columnar nitride layer;
    Depositing a film of varying resistance so as to surround the columnar nitride layer and connect to the lower electrode;
    Etching the film with varying resistance, leaving the columnar nitride film layer on the side wall,
    A method of manufacturing a memory device, comprising: forming a reset gate insulating film so as to surround the film whose resistance changes, and forming a reset gate.
  19.  半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程と、
     前記第1工程の後、
     前記フィン状半導体層の周囲に第2の絶縁膜を形成し、
     前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、
    ゲート配線と第1の柱状半導体層と第2の柱状半導体層とコンタクト配線を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、
    前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、第1の柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートと第2の柱状半導体層と前記第1のポリシリコンによる第2のダミーゲートを形成する第2工程と、
     前記第2工程の後、前記第1の柱状半導体層と前記第2の柱状半導体層と前記第1のダミーゲートと前記第2のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記第1の柱状半導体層と前記第2のダミーゲートと前記第2の柱状半導体層の側壁に残存させ、第3のダミーゲートと第4のダミーゲートを形成する第3工程と、
    前記フィン状半導体層上部と前記第1の柱状半導体層下部と前記第2の柱状半導体層下部に第2の拡散層を形成し、前記第3のダミーゲートと前記第4のダミーゲートとの周囲に、第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程と、
     前記第4の工程の後、層間絶縁膜を堆積し平坦化し、前記第1のダミーゲートと前記第2のダミーゲートと前記第3のダミーゲートと前記第4のダミーゲートとの上部を露出し、前記第1のダミーゲートと前記第2のダミーゲートと前記第3のダミーゲートと前記第4のダミーゲートとを除去し、前記第2の絶縁膜と前記第4の絶縁膜を除去し、ゲート絶縁膜を前記第1の柱状半導体層の周囲と前記第2の柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去するための第4のレジストを形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去し、金属を堆積し、エッチバックを行い、前記第1の柱状半導体層の周囲にゲート電極及びゲート配線を形成し、前記第2の柱状半導体層の周囲にコンタクト電極及びコンタクト配線を形成する第5工程と、
     前記第5工程の後、
     前記第6工程と、
     を有することを特徴とする請求項18に記載の記憶装置の製造方法。
    Forming a fin-like semiconductor layer on a semiconductor substrate and forming a first insulating film around the fin-like semiconductor layer;
    After the first step,
    Forming a second insulating film around the fin-like semiconductor layer;
    Depositing and planarizing a first polysilicon layer on the second insulating film;
    Forming a second resist for forming a gate wiring, a first columnar semiconductor layer, a second columnar semiconductor layer, and a contact wiring in a direction perpendicular to the direction of the fin-shaped semiconductor layer;
    By etching the first polysilicon, the second insulating film, and the fin-like semiconductor layer, a first columnar semiconductor layer, a first dummy gate made of the first polysilicon, and a second columnar semiconductor are formed. A second step of forming a layer and a second dummy gate of the first polysilicon;
    After the second step, a fourth insulating film is formed around the first columnar semiconductor layer, the second columnar semiconductor layer, the first dummy gate, and the second dummy gate; The second dummy gate, the first columnar semiconductor layer, the second dummy gate, and the second columnar semiconductor are deposited and etched around the insulating film 4. A third step of forming a third dummy gate and a fourth dummy gate to be left on the side wall of the layer;
    A second diffusion layer is formed in the upper part of the fin-like semiconductor layer, the lower part of the first columnar semiconductor layer, and the lower part of the second columnar semiconductor layer, and the periphery of the third dummy gate and the fourth dummy gate Then, a fifth insulating film is formed, etched, and left in a sidewall shape to form a sidewall made of the fifth insulating film, and a metal and semiconductor compound is formed on the second diffusion layer. A fourth step of forming;
    After the fourth step, an interlayer insulating film is deposited and planarized to expose the upper portions of the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate. Removing the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate, removing the second insulating film and the fourth insulating film, A gate insulating film is formed around the first columnar semiconductor layer, around the second columnar semiconductor layer and inside the fifth insulating film, and around the bottom of the second columnar semiconductor layer. Forming a fourth resist to remove the metal, removing the gate insulating film around the bottom of the second columnar semiconductor layer, depositing metal, performing etch back, and surrounding the first columnar semiconductor layer Forming a gate electrode and a gate wiring on the second electrode; A fifth step of forming a contact electrode and the contact wires around Jo semiconductor layer,
    After the fifth step,
    The sixth step;
    The method for manufacturing a storage device according to claim 18, comprising:
  20.  前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化後、前記第1のポリシリコン上に第3の絶縁膜を形成することをさらに含むことを特徴とする請求項19に記載の記憶装置の製造方法。 21. The method according to claim 19, further comprising forming a third insulating film on the first polysilicon after depositing and planarizing the first polysilicon on the second insulating film. The manufacturing method of the memory | storage device of description.
  21.  前記第1の柱状半導体層と前記第1のダミーゲートと前記第2の柱状半導体層と前記第2のダミーゲートの周囲に第4の絶縁膜を形成後、第3のレジストを形成し、エッチバックを行い、前記第1の柱状半導体層上部を露出し、前記第1の柱状半導体層上部に第1の拡散層を形成することを特徴とする請求項19に記載の記憶装置の製造方法。 After forming a fourth insulating film around the first columnar semiconductor layer, the first dummy gate, the second columnar semiconductor layer, and the second dummy gate, a third resist is formed and etched. 20. The method of manufacturing a memory device according to claim 19, wherein a back surface is formed to expose an upper portion of the first columnar semiconductor layer, and a first diffusion layer is formed on the upper portion of the first columnar semiconductor layer.
PCT/JP2013/080719 2013-11-13 2013-11-13 Storage device and storage device manufacturing method WO2015071982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080719 WO2015071982A1 (en) 2013-11-13 2013-11-13 Storage device and storage device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080719 WO2015071982A1 (en) 2013-11-13 2013-11-13 Storage device and storage device manufacturing method

Publications (1)

Publication Number Publication Date
WO2015071982A1 true WO2015071982A1 (en) 2015-05-21

Family

ID=53056951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080719 WO2015071982A1 (en) 2013-11-13 2013-11-13 Storage device and storage device manufacturing method

Country Status (1)

Country Link
WO (1) WO2015071982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599558A (en) * 2019-09-17 2021-04-02 铠侠股份有限公司 Semiconductor memory device with a plurality of memory cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096363A1 (en) * 2008-01-28 2009-08-06 Nec Corporation Resistance nonvolatile memory device and method for manufacturing same
JP2011199017A (en) * 2010-03-19 2011-10-06 Elpida Memory Inc Semiconductor device
JP2012186424A (en) * 2011-03-08 2012-09-27 Elpida Memory Inc Method of manufacturing semiconductor device
JP2012238348A (en) * 2011-05-10 2012-12-06 Hitachi Ltd Semiconductor storage device
WO2013038553A1 (en) * 2011-09-15 2013-03-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Method for producing semiconductor device, and semiconductor device
WO2013093988A1 (en) * 2011-12-19 2013-06-27 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Method for producing semiconductor device, and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096363A1 (en) * 2008-01-28 2009-08-06 Nec Corporation Resistance nonvolatile memory device and method for manufacturing same
JP2011199017A (en) * 2010-03-19 2011-10-06 Elpida Memory Inc Semiconductor device
JP2012186424A (en) * 2011-03-08 2012-09-27 Elpida Memory Inc Method of manufacturing semiconductor device
JP2012238348A (en) * 2011-05-10 2012-12-06 Hitachi Ltd Semiconductor storage device
WO2013038553A1 (en) * 2011-09-15 2013-03-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Method for producing semiconductor device, and semiconductor device
WO2013093988A1 (en) * 2011-12-19 2013-06-27 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Method for producing semiconductor device, and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599558A (en) * 2019-09-17 2021-04-02 铠侠股份有限公司 Semiconductor memory device with a plurality of memory cells
CN112599558B (en) * 2019-09-17 2024-03-19 铠侠股份有限公司 Semiconductor memory device with a memory cell having a memory cell with a memory cell having a memory cell

Similar Documents

Publication Publication Date Title
JP5670606B1 (en) Semiconductor device and manufacturing method of semiconductor device
JP5675003B1 (en) Semiconductor device and manufacturing method of semiconductor device
JP5838012B1 (en) Semiconductor device and manufacturing method of semiconductor device
JP5832057B1 (en) STORAGE DEVICE, SEMICONDUCTOR DEVICE, STORAGE DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP5658426B1 (en) Semiconductor device and method for manufacturing semiconductor device
JP5658425B1 (en) Semiconductor device and manufacturing method of semiconductor device
JP5707003B1 (en) STORAGE DEVICE, SEMICONDUCTOR DEVICE, STORAGE DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP6143830B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2015071982A1 (en) Storage device and storage device manufacturing method
WO2015049772A1 (en) Storage device and method for manufacturing storage device
JP6117327B2 (en) Storage device
JP6190435B2 (en) Storage device and semiconductor device
JP5864713B2 (en) Semiconductor device
JP5984983B2 (en) Storage device
JP5894251B2 (en) Semiconductor device
JP5869092B2 (en) Semiconductor device
JP2016171354A (en) Storage device
WO2015040705A1 (en) Semiconductor device and semiconductor device manufacturing method
JP5869091B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897619

Country of ref document: EP

Kind code of ref document: A1