WO2015040705A1 - Semiconductor device and semiconductor device manufacturing method - Google Patents

Semiconductor device and semiconductor device manufacturing method Download PDF

Info

Publication number
WO2015040705A1
WO2015040705A1 PCT/JP2013/075192 JP2013075192W WO2015040705A1 WO 2015040705 A1 WO2015040705 A1 WO 2015040705A1 JP 2013075192 W JP2013075192 W JP 2013075192W WO 2015040705 A1 WO2015040705 A1 WO 2015040705A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
gate
insulating film
fin
columnar
Prior art date
Application number
PCT/JP2013/075192
Other languages
French (fr)
Japanese (ja)
Inventor
舛岡 富士雄
広記 中村
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
舛岡 富士雄
広記 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 舛岡 富士雄, 広記 中村 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2013/075192 priority Critical patent/WO2015040705A1/en
Publication of WO2015040705A1 publication Critical patent/WO2015040705A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • H10B63/34Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • phase change memories have been developed (see, for example, Patent Document 1).
  • the phase change memory stores information by recording the change in resistance of the information storage element of the memory cell.
  • chalcogenide glass Ge 2 Sb 2 in contact with the heater.
  • Te 5 chalcogenide glass melts at high temperature (high current) and cools at high speed (stops current), it becomes amorphous (reset operation), while it melts at relatively low temperature (low current) and slows down. And crystallize (set [Set] operation).
  • a reset current flows as much as 200 ⁇ A.
  • a bipolar transistor or a diode selection element can be used (see, for example, Patent Document 1).
  • the diode Since the diode is a two-terminal element, when one source line is selected to select a memory cell, the current of all the memory cells connected to the source line flows through the one source line. Therefore, the IR drop that is a voltage drop of the IR (current, resistance) product in the resistance of the source line becomes large.
  • a bipolar transistor is a three-terminal element, but since a current flows through the gate, it is difficult to connect many transistors to the word line.
  • SGT Surrounding Gate Transistor
  • a source, a gate, and a drain are arranged in a direction perpendicular to a substrate and a gate electrode surrounds a columnar semiconductor layer
  • SGT can flow a larger amount of current than a double gate transistor per unit gate width (see, for example, Patent Document 2).
  • the SGT has a structure in which the gate electrode surrounds the columnar semiconductor layer, the gate line width per unit area can be increased, so that a larger amount of current can flow.
  • the present invention has been made in view of the above-described problems, and provides a structure and a manufacturing method of a memory having a memory element in which a large amount of current can flow through a selection transistor and resistance is changed. For the purpose.
  • a semiconductor device includes: A first columnar semiconductor layer; A gate insulating film formed around the first columnar semiconductor layer; A gate electrode formed around the gate insulating film; A gate wiring connected to the gate electrode; A first diffusion layer formed on the first columnar semiconductor layer; A second diffusion layer formed below the first columnar semiconductor layer; A storage element having a variable resistance formed on the first diffusion layer. It is characterized by that.
  • the first columnar semiconductor layer is formed on the fin-shaped semiconductor layer,
  • the gate electrode and the gate wiring are made of metal,
  • the gate wiring extends in a direction orthogonal to the fin-like semiconductor layer,
  • the second diffusion layer is formed in the fin-like semiconductor layer. It is preferable.
  • the second diffusion layer is preferably formed on the semiconductor substrate in addition to the fin-like semiconductor layer.
  • the line width outside the gate electrode is equal to the line width of the gate wiring, and the line width of the first columnar semiconductor layer in a direction orthogonal to the fin-shaped semiconductor layer is orthogonal to the fin-shaped semiconductor layer.
  • the line width of the fin-like semiconductor layer in the direction is preferably equal.
  • the gate insulating film is formed between the second columnar semiconductor layer and the contact electrode.
  • the line width of the second columnar semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer is preferably equal to the line width of the fin-shaped semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer.
  • the gate insulating film is formed around the contact electrode and the contact wiring.
  • the line width outside the contact electrode is equal to the line width of the contact wiring.
  • the first columnar semiconductor layer is formed on a semiconductor substrate,
  • the gate electrode and the gate wiring are made of metal,
  • the second diffusion layer is formed on the semiconductor substrate; It is preferable.
  • the line width outside the gate electrode is preferably equal to the line width of the gate wiring.
  • the gate insulating film is formed between the second columnar semiconductor layer and the contact electrode.
  • the gate insulating film is formed around the contact electrode and the contact wiring.
  • the line width outside the contact electrode is equal to the line width of the contact wiring.
  • a method for manufacturing a semiconductor device includes: Forming a fin-like semiconductor layer extending in one direction on a semiconductor substrate, and forming a first insulating film around the fin-like semiconductor layer; After the first step, a second insulating film is formed around the fin-like semiconductor layer, and first polysilicon is deposited and planarized on the second insulating film to form a gate wiring, a first wiring Forming a columnar semiconductor layer, a second columnar semiconductor layer, and a second resist for forming a contact wiring so as to extend in a direction orthogonal to a direction in which the fin-shaped semiconductor layer extends; By etching polysilicon, the second insulating film, and the fin-like semiconductor layer, a first columnar semiconductor layer, a first dummy gate derived from the first polysilicon, and a second A second step of forming the columnar semiconductor layer and a second dummy gate derived from the first polysilicon; After the second step, a fourth insulating
  • a second polysilicon is deposited around the fourth insulating film and etched to form the first dummy gate, the first columnar semiconductor layer, the second dummy gate, and the second columnar shape.
  • a second diffusion layer is formed in an upper portion of the fin-shaped semiconductor layer, a lower portion of the first columnar semiconductor layer, and a lower portion of the second columnar semiconductor layer, and the third dummy gate and the fourth
  • a fifth insulating film is formed around the dummy gate and etched to remain in a sidewall shape, thereby forming a sidewall made of the fifth insulating film, on the second diffusion layer.
  • a fourth step of forming a compound layer comprising a metal and a semiconductor After the fourth step, a first interlayer insulating film is deposited and planarized, and the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are formed. An upper portion is exposed, and the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are removed, and the second insulating film and the fourth insulating film are removed. And a gate insulating film is formed around the first columnar semiconductor layer, around the second columnar semiconductor layer, and inside the fifth insulating film, and is formed on the second columnar semiconductor layer.
  • a fifth step of forming a gate electrode and a gate wiring forms the contact electrode and the contact wires around the second columnar semiconductor layer, After the fifth step, a second interlayer insulating film is deposited and planarized, the upper portion of the first columnar semiconductor layer is exposed, and the resistance changes on the upper portion of the first columnar semiconductor layer.
  • a sixth step of forming It is characterized by that.
  • a third insulating film is formed on the first polysilicon.
  • a third resist is formed. It is preferable that an upper portion of the first columnar semiconductor layer is exposed by forming and etching back, and a first diffusion layer is formed on the upper portion of the first columnar semiconductor layer.
  • (A) is a plan view of a semiconductor device according to an embodiment of the present invention, (b) is a sectional view taken along line XX ′ of (a), and (c) is a YY line of (a). It is sectional drawing in a line.
  • (A) is a plan view of a semiconductor device according to an embodiment of the present invention, (b) is a sectional view taken along line XX ′ of (a), and (c) is a YY line of (a). It is sectional drawing in a line.
  • (A) is a plan view of a semiconductor device according to an embodiment of the present invention
  • (b) is a sectional view taken along line XX ′ of (a)
  • (c) is a YY line of (a). It is sectional drawing in a line.
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention,
  • (b) is sectional drawing in the XX 'line
  • (c) is It is sectional drawing in the YY 'line of (a).
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • (A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line
  • FIG. 1 shows a structure of a semiconductor device according to an embodiment of the present invention.
  • the memory cells which are the semiconductor devices of this embodiment are arranged in a 1 ⁇ 1 matrix, a 1 ⁇ 3 column, a 2 ⁇ 1 column, and a 2 ⁇ 3 column in a 3 ⁇ 2 matrix cell array, respectively.
  • Contact devices having contact electrodes and contact wirings for connecting source lines to each other are arranged in one row and two columns and two rows and two columns, respectively, in a 3 ⁇ 2 matrix cell array.
  • the memory cells located in two rows and one column include a fin-like silicon layer 104 formed so as to extend in the left-right direction on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like silicon layer 104, A first columnar silicon layer 129 formed on the fin-like silicon layer 104.
  • the line width of the first columnar silicon layer 129 in the direction perpendicular to the fin-like silicon layer 104 is equal to the line width of the fin-like silicon layer 104 in the direction perpendicular to the fin-like silicon layer 104.
  • the memory cells located in two rows and one column further include a gate insulating film 162 formed around the first columnar silicon layer 129, a gate electrode 168a made of metal formed around the gate insulating film 162, And a gate wiring 168b made of metal connected to the gate electrode 168a.
  • the gate insulating film 162 is formed around and below the bottom of the gate electrode 168a and the gate wiring 168b.
  • the gate wiring 168b extends in a direction orthogonal to the fin-like silicon layer 104, and the line width outside the gate electrode 168a is equal to the line width of the gate wiring 168b.
  • the memory cells located in two rows and one column are further formed in the first diffusion layer 302 formed above the first columnar silicon layer 129 and in the fin-shaped silicon layer 104 below the first columnar silicon layer 129.
  • a second diffusion layer 143a formed on the first diffusion layer 302 and a memory element 181a having a variable resistance.
  • a high-resistance element heater 179a is formed between the memory element 181a whose resistance changes and the first columnar silicon layer 129.
  • the memory element 181a whose resistance is changed is preferably made of a phase change film such as chalcogenide glass (GST: Ge 2 Sb 2 Te 5 ).
  • the heater 179a is preferably made of, for example, titanium nitride.
  • the memory cells located in two rows and three columns include a fin-like silicon layer 104 formed so as to extend in the left-right direction on the semiconductor substrate 101, and a first insulating film 106 formed around the fin-like silicon layer 104. And a first columnar silicon layer 131 formed on the fin-like silicon layer 104.
  • the line width of the first columnar silicon layer 131 in the direction perpendicular to the fin-like silicon layer 104 is equal to the line width of the fin-like silicon layer 104 in the direction perpendicular to the fin-like silicon layer 104.
  • the memory cells located in two rows and three columns further include a gate insulating film 163 formed around the first columnar silicon layer 131, and a gate electrode 170a made of metal formed around the gate insulating film 163. And a gate wiring 170b made of metal connected to the gate electrode 170a.
  • the gate insulating film 163 is formed around and under the gate electrode 170a and the gate wiring 170b.
  • the gate wiring 170b extends in a direction orthogonal to the fin-like silicon layer 104, and the line width outside the gate electrode 170a is equal to the line width of the gate wiring 170b.
  • the memory cells located in two rows and three columns are further provided with a first diffusion layer 304 formed above the first columnar silicon layer 131 and a fin-shaped silicon layer 104 below the first columnar silicon layer 131.
  • a second diffusion layer 143a formed and a memory element 182a formed on the first diffusion layer 304 and having a variable resistance are included.
  • a high-resistance element heater 180 a is formed between the memory element 182 a whose resistance changes and the first columnar silicon layer 131.
  • the memory element 181a whose resistance changes is connected to the memory element 182a whose resistance changes by a bit line 187.
  • the memory cells located in one row and one column include a fin-like silicon layer 105 formed on the semiconductor substrate 101 so as to extend in the left-right direction, a first insulating film 106 formed around the fin-like silicon layer 105, and a fin And a first columnar silicon layer 132 formed on the silicon layer 105.
  • the line width of the first columnar silicon layer 132 in the direction perpendicular to the fin-like silicon layer 105 is equal to the line width of the fin-like silicon layer 105 in the direction perpendicular to the fin-like silicon layer 105.
  • the memory cells located in one row and one column further include a gate insulating film 162 formed around the first columnar silicon layer 132, a gate electrode 168a made of metal formed around the gate insulating film 162, and a gate. And a gate wiring 168b made of metal connected to the electrode 168a.
  • the gate insulating film 162 is formed around and below the bottom of the gate electrode 168a and the gate wiring 168b.
  • the gate wiring 168b extends in a direction orthogonal to the fin-like silicon layer 105, and the line width outside the gate electrode 168a is equal to the line width of the gate wiring 168b.
  • the memory cells located in one row and one column are further formed under the first columnar silicon layer 132 in the fin-like silicon layer 105 and the first diffusion layer 305 formed on the first columnar silicon layer 132.
  • the second diffusion layer 143b and the memory element 181b formed on the first diffusion layer 305 and having a variable resistance.
  • a high-resistance element heater 179b is formed between the memory element 181b whose resistance changes and the first columnar silicon layer 132.
  • the memory cells located in one row and three columns include a fin-like silicon layer 105 formed on the semiconductor substrate 101 so as to extend in the left-right direction, a first insulating film 106 formed around the fin-like silicon layer 105, And a first columnar silicon layer 134 formed on the fin-shaped silicon layer 105.
  • the line width of the first columnar silicon layer 134 in the direction perpendicular to the fin-like silicon layer 105 is equal to the line width of the fin-like silicon layer 105 in the direction perpendicular to the fin-like silicon layer 105.
  • the memory cells located in one row and three columns further include a gate insulating film 163 formed around the first columnar silicon layer 134, a gate electrode 170a made of metal formed around the gate insulating film 163, and And a gate wiring 170b made of metal connected to the gate electrode 170a.
  • the gate insulating film 163 is formed around and under the gate electrode 170a and the gate wiring 170b.
  • the gate wiring 170b extends in a direction orthogonal to the fin-like silicon layer 105, and the line width outside the gate electrode 170a is equal to the line width of the gate wiring 170b.
  • the memory cells located in one row and three columns are further formed on the first columnar silicon layer 134 below the first columnar silicon layer 134 and the first diffusion layer 307 formed on the first columnar silicon layer 134.
  • the second diffusion layer 143b formed and the memory element 182b formed on the first diffusion layer 307 and having a variable resistance.
  • a high-resistance element heater 180b is formed between the memory element 182b whose resistance changes and the first columnar silicon layer 134.
  • the memory element 181b whose resistance changes is connected to the memory element 182b whose resistance changes by a bit line 188.
  • the SGT can pass a larger amount of current per unit gate width than a double gate transistor. Furthermore, since the SGT has a structure in which the gate electrode surrounds the columnar semiconductor layer, the gate line width per unit area can be increased, so that a larger amount of current can flow. Accordingly, since the SGT can flow a large reset current, the phase change films such as the memory elements 181a and 181b whose resistance changes can be melted at a high temperature (high current). In addition, since the SGT subthreshold swing (the gate voltage necessary for the drain-source current of the MOSFET operating in the weak inversion region to change by an order of magnitude) can achieve an ideal value, the off-current can be reduced. The phase change films such as the memory elements 181a and 181b whose resistance changes can be cooled at high speed (the current is stopped).
  • the semiconductor device includes the gate electrodes 168a and 170a and the gate wirings 168b and 170b formed around and below the gate electrodes 168a and 170a and the gate wirings 168b and 170b. Since the gate electrodes 168a and 170a, which are metal gates, are formed by the gate last to be formed, both the metal gate process and the high temperature process can be achieved.
  • the gate insulating films 162 and 163 are formed around and below the bottom of the gate electrodes 168a and 170a and the gate wirings 168b and 170b.
  • the gate electrodes 168a and 170a and the gate wirings 168b and 170b are made of metal.
  • the gate wirings 168 b and 170 b extend in a direction orthogonal to the fin-like silicon layers 104 and 105.
  • the second diffusion layers 143a and 143b are formed in the fin-like silicon layers 104 and 105.
  • the line width outside the gate electrodes 168a and 170a is equal to the line width of the gate wirings 168b and 170b, and the line widths of the first columnar silicon layers 129, 131, 132, and 134 are the fin-shaped silicon layers 104 and 105.
  • the fin-shaped silicon layers 104 and 105, the first columnar silicon layers 129, 131, 132, and 134, the gate electrodes 168a and 170a, and the gate wiring 168b 170b are formed by self-alignment using two masks. Thereby, according to this embodiment, the number of processes required for manufacturing a semiconductor device can be reduced.
  • the contact device located in two rows and two columns includes a fin-like silicon layer 104 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like silicon layer 104, and a fin-like silicon layer 104. And a second columnar silicon layer 130 formed thereon.
  • the line width of the second columnar silicon layer 130 in the direction perpendicular to the fin-like silicon layer 104 is equal to the line width of the fin-like silicon layer 104 in the direction perpendicular to the fin-like silicon layer 104.
  • the contact device located in two rows and two columns further includes a metal contact electrode 169a formed around the second columnar silicon layer 130, and between the second columnar silicon layer 130 and the contact electrode 169a.
  • the gate insulating film 165 formed and the contact electrode 169a are connected to the fin-like silicon layer 104 and extend in a direction orthogonal to the metal contact wiring 169b, and are formed around the contact electrode 169a and the contact wiring 169b.
  • the gate insulating film 164 is provided.
  • the line width outside the contact electrode 169a is equal to the line width of the contact wiring 169b.
  • a second diffusion layer 143 a is formed below the fin-like silicon layer 104 and the second columnar silicon layer 130.
  • the contact electrode 169a is electrically connected to the second diffusion layer 143a.
  • a contact device located in one row and two columns includes a fin-like silicon layer 105 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like silicon layer 105, and the fin-like silicon layer 105. And a second columnar silicon layer 133 formed on the substrate.
  • the line width of the second columnar silicon layer 133 in the direction perpendicular to the fin-like silicon layer 105 is equal to the line width of the fin-like silicon layer 105 in the direction perpendicular to the fin-like silicon layer 105.
  • the contact device located in one row and two columns is further formed between a contact electrode 169a made of metal formed around the second columnar silicon layer 133, and between the second columnar silicon layer 133 and the contact electrode 169a.
  • An insulating film 164 is provided.
  • the line width outside the contact electrode 169a is equal to the line width of the contact wiring 169b.
  • a second diffusion layer 143 b is formed below the fin-like silicon layer 105 and the second columnar silicon layer 133.
  • the contact electrode 169a is electrically connected to the second diffusion layer 143b.
  • the contact wiring 169b extending in parallel to the gate wirings 168b and 170b connected to the second diffusion layers 143a and 143b is provided.
  • the second diffusion layers 143a and 143b are connected to each other, and the resistance of the source line can be lowered.
  • a large reset current can flow through the source line.
  • Such contact wirings 169b extending in parallel with the gate wirings 168b and 170b include, for example, the memory cells 2, 4, 8, 16, 32, and 64 arranged in a line along the direction in which the bit lines 187 and 188 extend. It is preferable to arrange one for each of the numbers.
  • the structure formed of the second columnar silicon layers 130 and 133, the contact electrode 169a formed around the second columnar silicon layers 130 and 133, and the contact wiring 169b is the contact electrode 169a.
  • all source lines including the second diffusion layers 143a and 143b extending in parallel with the gate wirings 168b and 170b are connected to the contact wiring 169b. Thereby, the number of processes required for manufacturing the semiconductor device is reduced.
  • the second diffusion layer 143 c is formed to a deeper position of the semiconductor substrate 101 and is formed in the fin-like silicon layers 104 and 105 than the second diffusion layers 143 a and 143 b shown in FIG. 1.
  • 1 shows a semiconductor device having a structure in which connection similar to that of the second diffusion layers 143a and 143b shown in FIG. 1 is performed. With such a structure, the source resistance can be further reduced.
  • the semiconductor device 3 does not include the fin-like silicon layer 105 shown in FIG. 2 and the first insulating film 106 formed around the fin-like silicon layer 105, and the second diffusion layer is directly formed on the semiconductor substrate 101.
  • the semiconductor device having a structure in which 143d is formed is shown. With such a structure, the source resistance can be further reduced.
  • the semiconductor substrate 101 is a silicon substrate, but may be a substrate made of other materials as long as it is a semiconductor.
  • first resists 102 and 103 for forming fin-like silicon layers 104 and 105 are formed on a silicon substrate 101.
  • the silicon substrate 101 is etched to form the fin-like silicon layers 104 and 105.
  • the fin-like silicon layers 104 and 105 are formed using a resist as a mask, but a hard mask such as an oxide film or a nitride film may be used instead of the resist.
  • a first insulating film 106 is deposited around the fin-like silicon layers 104 and 105.
  • an oxide film formed by high-density plasma or an oxide film formed by low-pressure CVD (Chemical Vapor Deposition) can be used.
  • the first insulating film 106 is etched back to expose the upper portions of the fin-like silicon layers 104 and 105.
  • the first step of this embodiment in which the fin-like silicon layers 104 and 105 are formed on the semiconductor substrate 101 and the first insulating film 106 is formed around the fin-like silicon layers 104 and 105 is shown. .
  • the second step of the embodiment of the present invention will be described.
  • the second insulating films 107 and 108 are formed around the fin-like silicon layers 104 and 105, and the first polysilicon 109 is formed on the second insulating films 107 and 108.
  • second resists 111 and 112 for forming gate wirings 168b and 170b, first columnar silicon layers 129, 131, 132, and 134, second columnar silicon layers 130 and 133, and contact wirings 169b, 113 is formed so as to extend in a direction orthogonal to the direction in which the fin-like silicon layers 104 and 105 extend.
  • the first polysilicon 109, the second insulating films 107 and 108, and the fin-like silicon layers 104 and 105 are etched, thereby 1 columnar silicon layers 129, 131, 132, 134, first dummy gates 117, 119 derived from the first polysilicon 109, second columnar silicon layers 130, 133, and the first polysilicon 109 And a second dummy gate 118 derived from the above.
  • second insulating films 107 and 108 are formed around the fin-like silicon layers 104 and 105 extending in the left-right direction on the semiconductor substrate 101.
  • the second insulating films 107 and 108 are preferably oxide films.
  • a first polysilicon 109 is deposited on the second insulating films 107 and 108 and planarized.
  • a third insulating film 110 is formed on the first polysilicon 109.
  • the third insulating film 110 is preferably a nitride film.
  • the gate wirings 168b, 170b, the first columnar silicon layers 129, 131, 132, 134, the second columnar silicon layers 130, 133, and the contact wiring 169b for forming the first wirings are formed.
  • Two resists 111, 112, and 113 are formed so as to extend in a direction orthogonal to the direction in which the fin-like silicon layers 104 and 105 extend.
  • the third insulating film 110 is separated into a plurality of portions, and third insulating films 114, 115, and 116 are formed on the first dummy gates 117 and 119 and the second dummy gate 118.
  • the second insulating films 107 and 108 are separated into a plurality of portions, and the first dummy gates 117 and 119, the second dummy gate 118, and the first columnar silicon layers 129, 131, 132, and 134 are formed.
  • second insulating films 107 and 108 are formed. Note that when the second resists 111, 112, and 113 are removed during the etching, the third insulating films 114, 115, and 116 function as a hard mask. On the other hand, if the second resists 111, 112, and 113 are not removed during the etching, the third insulating films 114, 115, and 116 need not be used as a mask.
  • the second resists 111, 112, and 113 are removed.
  • the second insulating films 107 and 108 are formed around the fin-like silicon layers 104 and 105, and the first polysilicon 109 is deposited on the second insulating films 107 and 108. Flatten with.
  • second resists 111 and 112 for forming gate wirings 168b and 170b, first columnar silicon layers 129, 131, 132, and 134, second columnar silicon layers 130 and 133, and contact wirings 169b, 113 is formed so as to extend in a direction orthogonal to the direction in which the fin-like silicon layers 104 and 105 extend.
  • the first polysilicon 109, the second insulating films 107 and 108, and the fin-like silicon layers 104 and 105 are etched, thereby 1 columnar silicon layers 129, 131, 132, 134, first dummy gates 117, 119 derived from the first polysilicon 109, second columnar silicon layers 130, 133, and the first polysilicon 109
  • the second step of forming the second dummy gate 118 derived from the above is shown.
  • the third step of the embodiment of the present invention will be described.
  • the first columnar silicon layers 129, 131, 132, 134, the second columnar silicon layers 130, 133, the first dummy gates 117, 119, and the second dummy gate A fourth insulating film 135 is formed around 118.
  • a second polysilicon 136 is deposited and etched around the fourth insulating film 135, and the second polysilicon 136 is removed from the first dummy gates 117 and 119 and the first columnar silicon layer 129.
  • Gate 138 is formed.
  • the first columnar silicon layers 129, 131, 132, 134, the second columnar silicon layers 130, 133, the first dummy gates 117, 119, and the second dummy gate 118 are formed.
  • a fourth insulating film 135 is formed around the periphery.
  • the fourth insulating film 135 is preferably an oxide film.
  • a third resist 301 is formed and etched back to expose the upper portions of the first columnar silicon layers 129, 131, 132, and 134. At this time, the upper portions of the second columnar silicon layers 130 and 133 may be exposed.
  • impurities are introduced to form first diffusion layers 302, 304, 305, 307 on top of the first columnar silicon layers 129, 131, 132, 134.
  • the first diffusion layers 303 and 306 may be formed on the second columnar silicon layers 130 and 133.
  • the impurity to be introduced is an n-type diffusion layer, it is preferable to introduce arsenic or phosphorus.
  • the impurity to be introduced is a p-type diffusion layer, it is preferable to introduce boron.
  • the third resist 301 is removed.
  • a second polysilicon 136 is deposited around the fourth insulating film 135.
  • the second polysilicon 136 is changed into the first dummy gates 117, 119, the first columnar silicon layers 129, 131, 132,
  • the third dummy gates 137 and 139 and the fourth dummy gate 138 are formed by remaining on the sidewalls of the first and second dummy gates 118 and 133 and 133.
  • the fourth insulating film 135 may be separated into a plurality of portions, and the fourth insulating films 140, 141, 142 may be formed.
  • the first columnar silicon layers 129, 131, 132, and 134, the second columnar silicon layers 130 and 133, the first dummy gates 117 and 119, and the second dummy gate 118 are formed.
  • a fourth insulating film 135 is formed around the periphery.
  • a second polysilicon 136 is deposited and etched around the fourth insulating film 135, and the second polysilicon 136 is removed from the first dummy gates 117 and 119 and the first columnar silicon layer 129.
  • a third step of forming the gate 138 is shown.
  • the fourth step of the embodiment of the present invention will be described.
  • second diffusion layers 143a and 143b are formed.
  • a fifth insulating film 144 is formed around the third dummy gates 137 and 139 and the fourth dummy gate 138 and etched to remain in a sidewall shape, and the fifth insulating film 144 is left.
  • Side walls 145, 146, and 147 derived from the above are formed.
  • compound layers 148, 149, 150, 151, 152, 153, 154, and 155 made of a metal and a semiconductor are formed on the second diffusion layers 143a and 143b.
  • the second diffusion layer 143a is formed below the first columnar silicon layers 129, 131, 132, and 134 and below the second columnar silicon layers 130 and 133. , 143b.
  • the impurity to be introduced forms the n-type diffusion layer, it is preferable to introduce arsenic or phosphorus.
  • the impurity to be introduced forms a p-type diffusion layer, it is preferable to introduce boron.
  • Such a diffusion layer may be formed after forming sidewalls 145, 146, and 147 derived from a fifth insulating film 144 described later.
  • a fifth insulating film 144 is formed around the third dummy gates 137 and 139 and the fourth dummy gate 138.
  • the fifth insulating film 144 is preferably a nitride film.
  • the fifth insulating film 144 is etched to remain in a sidewall shape.
  • sidewalls 145, 146, and 147 are formed from the fifth insulating film 144.
  • compound layers 148, 149, 150, 151, 152, 153, 154, and 155 made of metal and semiconductor are formed on the second diffusion layers 143a and 143b.
  • compound layers 156, 158, and 157 made of metal and semiconductor are also formed on the upper portions of the third dummy gates 137 and 139 and the upper portion of the fourth dummy gate 138, respectively.
  • the second diffusion layer 143a is formed on the upper portions of the fin-shaped silicon layers 104 and 105, the lower portions of the first columnar silicon layers 129, 131, 132, and 134, and the lower portions of the second columnar silicon layers 130 and 133. , 143b.
  • a fifth insulating film 144 is formed around the third dummy gates 137 and 139 and the fourth dummy gate 138 and etched to remain in a sidewall shape, so that the fifth insulating film Side walls 145, 146 and 147 derived from 144 are formed.
  • a fourth step of forming compound layers 148, 149, 150, 151, 152, 153, 154, 155 made of metal and semiconductor on the second diffusion layers 143a, 143b is shown.
  • the fifth step of the embodiment of the present invention will be described.
  • the first interlayer insulating film 159 is deposited and planarized, and the first dummy gates 117 and 119, the second dummy gate 118, and the third dummy gates 137 and 139 are formed.
  • the fourth dummy gate 138 are exposed, and the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gate 138 are removed. To do.
  • the second insulating films 123, 124, 125, 126, 127, 128 and the fourth insulating films 140, 141, 142 are removed, and the gate insulating film 160 is replaced with the first columnar silicon layers 129, 131, It is formed around 132 and 134, around the second columnar silicon layers 130 and 133, and inside the fifth insulating film 144.
  • a fourth resist 161 for removing the gate insulating film 160 around the bottom of the second columnar silicon layers 130 and 133 is formed, and the gate insulating film around the bottom of the second columnar silicon layers 130 and 133 is formed.
  • gate electrodes 168a and 170a and gate wirings 168b and 170b are formed around the first columnar silicon layers 129, 131, 132, and 134. Thereafter, contact electrodes 169 a and contact wirings 169 b are formed around the second columnar silicon layers 130 and 133.
  • a first interlayer insulating film 159 is deposited.
  • a contact stopper film may be used.
  • the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gates are performed.
  • the upper portions of the dummy gates 138 are exposed.
  • the compound layers 156, 158, and 157 made of metal and semiconductor existing on the upper portions of the third dummy gates 137 and 139 and the upper portion of the fourth dummy gate 138 are removed.
  • the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gate 138 are removed.
  • the second insulating films 123, 124, 125, 126, 127, 128 and the fourth insulating films 140, 141, 142 are removed.
  • a gate insulating film 160 is formed inside the walls 145, 146, and 147.
  • a fourth resist 161 for removing the gate insulating film 160 around the bottoms of the second columnar silicon layers 130 and 133 is formed.
  • the gate insulating film 160 around the bottom of the second columnar silicon layers 130 and 133 is removed using the fourth resist 161 as a mask.
  • the gate insulating film 160 is separated into a plurality of portions, and gate insulating films 162, 163, 164, 165, and 166 are formed. Note that the gate insulating films 164, 165, and 166 may be removed by isotropic etching.
  • a metal layer 167 is deposited.
  • the metal layers 167 are etched back to form gate electrodes 168a, 170a and gate wirings 168b, 170b around the first columnar silicon layers 129, 131, 132, 134. Then, the contact electrode 169a and the contact wiring 169b are formed around the second columnar silicon layers 130 and 133.
  • the first interlayer insulating film 159 is deposited and planarized, and the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and The upper portions of the fourth dummy gates 138 are exposed, and the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gate 138 are removed.
  • the second insulating films 123, 124, 125, 126, 127, 128 and the fourth insulating films 140, 141, 142 are removed, and the gate insulating film 160 is replaced with the first columnar silicon layers 129, 131, 132 and 134, around the second columnar silicon layers 130 and 133, and inside the sidewalls 145, 146 and 147 derived from the fifth insulating film 144.
  • a fourth resist 161 for removing the gate insulating film 160 around the bottom of the second columnar silicon layers 130 and 133 is formed, and the gate insulating film around the bottom of the second columnar silicon layers 130 and 133 is formed.
  • the sixth step of the embodiment of the present invention will be described.
  • the second interlayer insulating film 171 is deposited and flattened to expose the upper portions of the first columnar silicon layers 129, 131, 132, 134, and the first columnar silicon layer Storage elements 181 a, 181 b, 182 a, and 182 b whose resistance is changed are formed on the upper portions of 129, 131, 132, and 134.
  • a second interlayer insulating film 171 is deposited.
  • the second interlayer insulating film 171 is etched back, so that the upper portions of the first columnar silicon layers 129, 131, 132, and 134 and the second columnar silicon layers 130 and 133 are etched. Expose the top of.
  • a metal layer 175 and a film 176 whose resistance changes are deposited.
  • a fifth resist is formed so that the upper portions of the first columnar silicon layers 129, 131, 132, and 134 are connected to the metal layer 175 along the direction orthogonal to the bit lines. 177, 178 are formed.
  • the metal layer 175 and the film 176 whose resistance changes are etched.
  • the metal layer 175 is separated from the film 176 whose resistance changes, and becomes metal lines 179 and 180 and wirings 181 and 182 of the film whose resistance changes, respectively.
  • a third interlayer insulating film 183 is deposited and etched back to expose the upper portions of the wirings 181 and 182 of the film whose resistance changes.
  • a metal layer 184 is deposited.
  • sixth resists 185 and 186 for forming bit lines are formed.
  • the sixth resists 185 and 186 extend in a direction orthogonal to the metal lines 179 and 180 and the wirings 181 and 182 of the film whose resistance changes, so that the first columnar silicon layers 129, 131, 132, It is preferable that the upper part of 134 and the metal wires 179 and 180 are connected to each other.
  • bit lines 187 and 188 are formed by etching the metal layer 184, the metal lines 179 and 180, and the wirings 181 and 182 of the film whose resistance changes.
  • the metal lines 179 and 180 and the wirings 181 and 182 of the film whose resistance changes are separated, and the high resistance heaters 179a, 179b, 180a and 180b, and the storage elements 181a, 181b and 182a whose resistance changes. , 182b.
  • the second interlayer insulating film 171 is deposited and planarized, and the upper portions of the first columnar silicon layers 129, 131, 132, and 134 are exposed, and the first columnar silicon layer 129,
  • a sixth step of forming memory elements 181a, 181b, 182a, and 182b whose resistances change on the upper portions of 131, 132, and 134 is shown.
  • the manufacturing process for forming the structure of the semiconductor device according to the embodiment of the present invention is shown. According to the present embodiment, since the structures of all the semiconductor devices are formed using a linear resist, fine processing is facilitated.
  • SGT can pass a larger amount of current per unit gate width than a double gate transistor. Further, since the SGT has a structure in which the gate electrode surrounds the columnar semiconductor layer, the gate line width per unit area can be increased, and a larger amount of current can flow. Therefore, a large reset current can be passed, and phase change films such as the memory elements 181a and 181b whose resistance changes can be melted at a high temperature (high current). In addition, since the SGT subthreshold swing can realize an ideal value, the off-current can be reduced, so that the phase change film can be cooled at high speed (the current is stopped).
  • the gate electrodes 168a and 170a and the gate wiring 168b are made of metal, the cooling when heated can be accelerated.
  • the gate electrodes 168a and 170a and the gate wirings 168b and 170b formed around and under the bottoms of the gate wirings 168b and 170b are provided so that the gate electrode which is a metal gate by the gate last forming the metal gate after the heat treatment process. Since 168a and 170a are formed, the metal gate process and the high temperature process can be made compatible.
  • Gate electrodes 168a, 170a and gate wirings 168b, 170b, and gate wirings 168b, 170b formed at the bottom and bottom of the gate electrodes 168a, 170a, and the gate wirings 168b, 170b are made of metal.
  • the second diffusion layers 143a and 143b are formed in the fin-like silicon layers 104 and 105, and the line width outside the gate electrodes 168a and 170a is as follows. Since the line widths of the first columnar silicon layers 129, 131, 132, and 134 are equal to the line widths of the fin-like silicon layers 104 and 105, the line widths of the gate wirings 168b and 170b are equal to each other.
  • the second diffusion layers 143a and 143b are provided by having the contact wiring 169b extending in parallel with the gate wirings 168b and 170b connected to the second diffusion layers 143a and 143b. Are connected to each other, and the resistance of the source line can be lowered. As a result, a large reset current can flow through the source line.
  • the contact wiring extending in parallel with the gate wirings 168b and 170b is, for example, one of the memory cells 2, 4, 8, 16, 32, and 64 arranged in a line along the direction in which the bit lines 187 and 188 extend. It is preferable to arrange one for each number.
  • the second columnar silicon layers 130 and 133, the contact electrodes 169 a formed around the second columnar silicon layers 130 and 133, and the contact wiring 169 b are formed.
  • the structure is the same as the transistor structure of the memory cell located in one row and one column except that the contact electrode 169a is electrically connected to the second diffusion layers 143a and 143b. Further, all source lines including the second diffusion layers 143a and 143b extending in parallel with the gate wirings 168b and 170b are connected to the contact wiring 169b. Thereby, the number of processes required for manufacturing the semiconductor device can be reduced.
  • Second columnar silicon layer 131 First columnar silicon layer 132. First columnar silicon layer 133. Second columnar silicon layer 134. First columnar silicon layer 135. Fourth insulating film 136. Second polysilicon 137. Third dummy gate 138. Fourth dummy gate 139. Third dummy gate 140. Fourth insulating film 141. Fourth insulating film 142. Fourth insulating film 143a. Second diffusion layer 143b. Second diffusion layer 143c. Second diffusion layer 143d. Second diffusion layer 144. Fifth insulating film 145. Side wall 146. Sidewall 147. Sidewall 148. Compound layer 149 made of metal and semiconductor. Compound layer made of metal and semiconductor 150. Compound layer 151 made of metal and semiconductor 151.
  • Compound layer made of metal and semiconductor 152 Compound layer 153 composed of metal and semiconductor. Compound layer made of metal and semiconductor 154. Compound layer 155 composed of metal and semiconductor. Compound layer made of metal and semiconductor 156. Compound layer made of metal and semiconductor 157. Compound layer made of metal and semiconductor 158. Compound layer 159 made of metal and semiconductor.
  • First interlayer insulating film 160 Gate insulating film 161. Fourth resist 162. Gate insulating film 163. Gate insulating film 164. Gate insulating film 165. Gate insulating film 166. Gate insulating film 167. Metal layer 168a. Gate electrode 168b. Gate wiring 169a. Contact electrode 169b. Contact wiring 170a. Gate electrode 170b. Gate wiring 171.

Abstract

This semiconductor device has: first columnar semiconductor layers (129, 131, 132, 134); a gate insulating film (162) that is formed around the first columnar semiconductor layers; gate electrodes (168a, 170a) that are formed around the gate insulating film; gate wiring lines (168b, 170b) that are connected to the gate electrodes; first diffusion layers (302, 304, 305, 307) that are formed as upper portions of the first columnar semiconductor layers; second diffusion layers (143a, 143b) that are formed as lower portions of the first columnar semiconductor layers; and storage elements (181a, 181b, 182a, 182b), which are formed on the first diffusion layers, and in which resistance values vary.

Description

半導体装置、及び半導体装置の製造方法Semiconductor device and manufacturing method of semiconductor device
 本発明は半導体装置、及び半導体装置の製造方法に関する。 The present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
 近年、相変化メモリが開発されている(例えば、特許文献1を参照)。相変化メモリは、メモリセルの情報記憶素子の抵抗の変化を記録することにより、情報を記憶する。 In recent years, phase change memories have been developed (see, for example, Patent Document 1). The phase change memory stores information by recording the change in resistance of the information storage element of the memory cell.
 相変化メモリは、セルトランジスタをオンすることによってビット線とソース線との間に電流を流すと、高抵抗素子のヒーターで熱が発生し、このヒーターに接するカルコゲナイドガラス(GST:GeSbTe)を融解させることで、状態を遷移させるメカニズムを利用している。カルコゲナイドガラスは、高温(高電流)で融解するとともに高速で冷却する(電流を停止する)とアモルファス状態(リセット[Reset]動作)になる一方、比較的低い高温(低電流)で融解するとともに低速で冷却する(電流を徐々に減らす)と結晶化する(セット[Set]動作)。これにより読み出し時、ビット線―ソース線間に大量の電流が流れる場合(低抵抗=結晶状態)と、少量の電流が流れる場合(高抵抗=アモルファス)とで、2値情報(「0」、「1」)の判断がなされる(例えば、特許文献1を参照)。 In a phase change memory, when a current is passed between a bit line and a source line by turning on a cell transistor, heat is generated by a heater of a high resistance element, and chalcogenide glass (GST: Ge 2 Sb 2 in contact with the heater). By melting Te 5 ), a mechanism for changing the state is used. When chalcogenide glass melts at high temperature (high current) and cools at high speed (stops current), it becomes amorphous (reset operation), while it melts at relatively low temperature (low current) and slows down. And crystallize (set [Set] operation). Thus, at the time of reading, binary information (“0”, “0”, when a large amount of current flows between the bit line and the source line (low resistance = crystalline state) and when a small amount of current flows (high resistance = amorphous)). “1”) is determined (see, for example, Patent Document 1).
 この場合、例えばリセット電流が200μAと非常に多く流れる。このように、大量のリセット電流をセルトランジスタに流すためには、メモリセルサイズを相当に大きくする必要がある。このように大量の電流を流すためには、バイポーラトランジスタやダイオードの選択素子を用いることができる(例えば、特許文献1を参照)。 In this case, for example, a reset current flows as much as 200 μA. Thus, in order to flow a large amount of reset current to the cell transistor, it is necessary to considerably increase the memory cell size. In order to flow a large amount of current in this manner, a bipolar transistor or a diode selection element can be used (see, for example, Patent Document 1).
 ダイオードは二端子素子であるため、メモリセルを選択するために一本のソース線を選択すると、そのソース線に接続された全てのメモリセルの電流が一本のソース線に流れるようになる。したがって、ソース線の抵抗におけるIR(電流、抵抗)積の電圧降下であるIRドロップが大きくなってしまう。 Since the diode is a two-terminal element, when one source line is selected to select a memory cell, the current of all the memory cells connected to the source line flows through the one source line. Therefore, the IR drop that is a voltage drop of the IR (current, resistance) product in the resistance of the source line becomes large.
 一方、バイポーラトランジスタは三端子素子であるが、ゲートに電流が流れるので、ワード線に多くのトランジスタを接続することが難しい。 On the other hand, a bipolar transistor is a three-terminal element, but since a current flows through the gate, it is difficult to connect many transistors to the word line.
 基板に対して垂直方向にソース、ゲート、ドレインが配置され、ゲート電極が柱状半導体層を取り囲む構造のSurrounding Gate Transistor(以下、「SGT」という。)が提案されている。SGTは、単位ゲート幅当たり、ダブルゲートトランジスタよりも大量の電流を流すことができる(例えば、特許文献2を参照)。さらに、SGTは、ゲート電極が柱状半導体層を取り囲む構造を有していることから、単位面積当たりのゲート線幅を大きくすることができるので、さらに大量の電流を流すことができる。 A Surrounding Gate Transistor (hereinafter referred to as “SGT”) having a structure in which a source, a gate, and a drain are arranged in a direction perpendicular to a substrate and a gate electrode surrounds a columnar semiconductor layer has been proposed. SGT can flow a larger amount of current than a double gate transistor per unit gate width (see, for example, Patent Document 2). Furthermore, since the SGT has a structure in which the gate electrode surrounds the columnar semiconductor layer, the gate line width per unit area can be increased, so that a larger amount of current can flow.
 また、相変化メモリにおいては、リセット電流が大きいため、ソース線の抵抗を下げることが必要となる。 Also, in the phase change memory, since the reset current is large, it is necessary to reduce the resistance of the source line.
特開2012-204404号公報JP 2012-204404 A 特開2004-356314号公報JP 2004-356314 A
 本発明は、上述した問題点に鑑みてなされたものであり、選択トランジスタに大量の電流を流すことが可能であり、かつ、抵抗が変化する記憶素子を有するメモリの構造及び製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and provides a structure and a manufacturing method of a memory having a memory element in which a large amount of current can flow through a selection transistor and resistance is changed. For the purpose.
 本発明の第1の観点に係る半導体装置は、
 第1の柱状半導体層と、
 前記第1の柱状半導体層の周囲に形成されたゲート絶縁膜と、
 前記ゲート絶縁膜の周囲に形成されたゲート電極と、
 前記ゲート電極に接続されたゲート配線と、
 前記第1の柱状半導体層の上部に形成された第1の拡散層と、
 前記第1の柱状半導体層の下部に形成された第2の拡散層と、
 前記第1の拡散層上に形成された、抵抗が変化する記憶素子と、を有する、
 ことを特徴とする。
A semiconductor device according to a first aspect of the present invention includes:
A first columnar semiconductor layer;
A gate insulating film formed around the first columnar semiconductor layer;
A gate electrode formed around the gate insulating film;
A gate wiring connected to the gate electrode;
A first diffusion layer formed on the first columnar semiconductor layer;
A second diffusion layer formed below the first columnar semiconductor layer;
A storage element having a variable resistance formed on the first diffusion layer.
It is characterized by that.
 半導体基板上に一方向に延びるように形成されたフィン状半導体層と、
 前記フィン状半導体層の周囲に形成された第1の絶縁膜と、をさらに有し、
 前記ゲート絶縁膜は、前記ゲート電極及び前記ゲート配線の周囲及び底下に形成されており、
 前記第1の柱状半導体層は、前記フィン状半導体層上に形成されており、
 前記ゲート電極及び前記ゲート配線は金属からなり、
 前記ゲート配線は、前記フィン状半導体層に直交する方向に延在しており、
 前記第2の拡散層は、前記フィン状半導体層に形成されている、
 ことが好ましい。
A fin-like semiconductor layer formed on a semiconductor substrate so as to extend in one direction;
A first insulating film formed around the fin-like semiconductor layer, and
The gate insulating film is formed around and under the gate electrode and the gate wiring,
The first columnar semiconductor layer is formed on the fin-shaped semiconductor layer,
The gate electrode and the gate wiring are made of metal,
The gate wiring extends in a direction orthogonal to the fin-like semiconductor layer,
The second diffusion layer is formed in the fin-like semiconductor layer.
It is preferable.
 前記第2の拡散層は、前記フィン状半導体層に加えて、さらに前記半導体基板にも形成されている、ことが好ましい。 The second diffusion layer is preferably formed on the semiconductor substrate in addition to the fin-like semiconductor layer.
 前記第2の拡散層に接続されている前記ゲート配線に平行に延びるコンタクト配線をさらに有する、ことが好ましい。 It is preferable to further include a contact wiring extending in parallel with the gate wiring connected to the second diffusion layer.
 前記半導体基板上に形成された前記フィン状半導体層と、
 前記フィン状半導体層の周囲に形成された前記第1の絶縁膜と、
 前記フィン状半導体層上に形成された第2の柱状半導体層と、
 前記第2の柱状半導体層の周囲に形成されるとともに金属からなるコンタクト電極と、
 前記コンタクト電極に接続された前記フィン状半導体層に直交する方向に延在するとともに金属からなる前記コンタクト配線と、
 前記フィン状半導体層において前記第2の柱状半導体層の下部に形成された前記第2の拡散層と、を有し、
 前記コンタクト電極は、前記第2の拡散層と接続されている、
 ことが好ましい。
The fin-like semiconductor layer formed on the semiconductor substrate;
The first insulating film formed around the fin-like semiconductor layer;
A second columnar semiconductor layer formed on the fin-like semiconductor layer;
A contact electrode formed around the second columnar semiconductor layer and made of metal;
The contact wiring made of metal and extending in a direction orthogonal to the fin-like semiconductor layer connected to the contact electrode;
The second diffusion layer formed below the second columnar semiconductor layer in the fin-like semiconductor layer,
The contact electrode is connected to the second diffusion layer;
It is preferable.
 前記ゲート電極の外側の線幅は、前記ゲート配線の線幅と等しく、前記フィン状半導体層に直交する方向での前記第1の柱状半導体層の線幅は、前記フィン状半導体層に直交する方向での前記フィン状半導体層の線幅と等しい、ことが好ましい。 The line width outside the gate electrode is equal to the line width of the gate wiring, and the line width of the first columnar semiconductor layer in a direction orthogonal to the fin-shaped semiconductor layer is orthogonal to the fin-shaped semiconductor layer. The line width of the fin-like semiconductor layer in the direction is preferably equal.
 前記ゲート絶縁膜には、前記第2の柱状半導体層と前記コンタクト電極との間に形成されているものが存在する、ことが好ましい。 It is preferable that the gate insulating film is formed between the second columnar semiconductor layer and the contact electrode.
 前記フィン状半導体層に直交する方向での前記第2の柱状半導体層の線幅は、前記フィン状半導体層に直交する方向での前記フィン状半導体層の線幅と等しい、ことが好ましい。 The line width of the second columnar semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer is preferably equal to the line width of the fin-shaped semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer.
 前記ゲート絶縁膜には、前記コンタクト電極及び前記コンタクト配線の周囲に形成されているものが存在する、ことが好ましい。 It is preferable that the gate insulating film is formed around the contact electrode and the contact wiring.
 前記コンタクト電極の外側の線幅は、前記コンタクト配線の線幅と等しい、ことが好ましい。 It is preferable that the line width outside the contact electrode is equal to the line width of the contact wiring.
 前記第1の柱状半導体層は、半導体基板上に形成され、
 前記ゲート電極及び前記ゲート配線は金属からなり、
 前記第2の拡散層は、前記半導体基板上に形成されている、
 ことが好ましい。
The first columnar semiconductor layer is formed on a semiconductor substrate,
The gate electrode and the gate wiring are made of metal,
The second diffusion layer is formed on the semiconductor substrate;
It is preferable.
 前記第2の拡散層に接続されている前記ゲート配線に平行に延びるコンタクト配線をさらに有する、ことが好ましい。 It is preferable to further include a contact wiring extending in parallel with the gate wiring connected to the second diffusion layer.
 前記半導体基板上に形成された第2の柱状半導体層と、
 前記第2の柱状半導体層の周囲に形成されるとともに金属からなるコンタクト電極と、
 前記コンタクト電極に接続されたコンタクト配線と、を有し、
 前記第2の拡散層は、前記第2の柱状半導体層の下部に形成され、
 前記コンタクト電極は、前記第2の拡散層と接続されている、
 ことが好ましい。
A second columnar semiconductor layer formed on the semiconductor substrate;
A contact electrode formed around the second columnar semiconductor layer and made of metal;
Contact wiring connected to the contact electrode,
The second diffusion layer is formed below the second columnar semiconductor layer,
The contact electrode is connected to the second diffusion layer;
It is preferable.
 前記ゲート電極の外側の線幅は、前記ゲート配線の線幅と等しい、ことが好ましい。 The line width outside the gate electrode is preferably equal to the line width of the gate wiring.
 前記ゲート絶縁膜には、前記第2の柱状半導体層と前記コンタクト電極との間に形成されているものが存在する、ことが好ましい。 It is preferable that the gate insulating film is formed between the second columnar semiconductor layer and the contact electrode.
 前記ゲート絶縁膜には、前記コンタクト電極及び前記コンタクト配線の周囲に形成されているものが存在する、ことが好ましい。 It is preferable that the gate insulating film is formed around the contact electrode and the contact wiring.
 前記コンタクト電極の外側の線幅は、前記コンタクト配線の線幅と等しい、ことが好ましい。 It is preferable that the line width outside the contact electrode is equal to the line width of the contact wiring.
 本発明の第2の観点に係る半導体装置の製造方法は、
 半導体基板上に一方向に延びるフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程と、
 前記第1工程の後、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜上に第1のポリシリコンを堆積するとともに平坦化し、ゲート配線、第1の柱状半導体層、第2の柱状半導体層、及びコンタクト配線を形成するための第2のレジストを、前記フィン状半導体層が延びる方向と直交する方向に延在するように形成し、前記第1のポリシリコンと、前記第2の絶縁膜と、前記フィン状半導体層とをエッチングすることにより、第1の柱状半導体層と、前記第1のポリシリコンに由来する第1のダミーゲートと、第2の柱状半導体層と、前記第1のポリシリコンに由来する第2のダミーゲートとを形成する第2工程と、
 前記第2工程の後、前記第1の柱状半導体層と、前記第2の柱状半導体層と、前記第1のダミーゲートと、前記第2のダミーゲートとの周囲に第4の絶縁膜を形成し、
 前記第4の絶縁膜の周囲に第2のポリシリコンを堆積するとともにエッチングを行い、前記第1のダミーゲート、前記第1の柱状半導体層、前記第2のダミーゲート、及び前記第2の柱状半導体層の側壁に残存させることで、第3のダミーゲートと第4のダミーゲートとを形成する第3工程と、
 前記フィン状半導体層の上部と、前記第1の柱状半導体層の下部と、前記第2の柱状半導体層の下部とに第2の拡散層を形成し、前記第3のダミーゲートと前記第4のダミーゲートとの周囲に、第5の絶縁膜を形成するとともにエッチングすることでサイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記第2の拡散層上に金属と半導体とからなる化合物層を形成する第4工程と、
 前記第4の工程の後、第1の層間絶縁膜を堆積するとともに平坦化し、前記第1のダミーゲート、前記第2のダミーゲート、前記第3のダミーゲート、及び前記第4のダミーゲートの上部を露出させ、前記第1のダミーゲート、前記第2のダミーゲート、前記第3のダミーゲート、及び前記第4のダミーゲートを除去し、前記第2の絶縁膜及び前記第4の絶縁膜を除去し、ゲート絶縁膜を、前記第1の柱状半導体層の周囲、前記第2の柱状半導体層の周囲、及び前記第5の絶縁膜の内側に形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去するための第4のレジストを形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去し、金属層を堆積するとともにエッチバックを行うことで、前記第1の柱状半導体層の周囲にゲート電極及びゲート配線を形成し、前記第2の柱状半導体層の周囲にコンタクト電極及びコンタクト配線を形成する第5工程と、
 前記第5工程の後、第2の層間絶縁膜を堆積するとともに平坦化し、前記第1の柱状半導体層の上部を露出させ、前記第1の柱状半導体層の上部に、抵抗が変化する記憶素子を形成する第6工程と、を有する、
 ことを特徴とする。
A method for manufacturing a semiconductor device according to a second aspect of the present invention includes:
Forming a fin-like semiconductor layer extending in one direction on a semiconductor substrate, and forming a first insulating film around the fin-like semiconductor layer;
After the first step, a second insulating film is formed around the fin-like semiconductor layer, and first polysilicon is deposited and planarized on the second insulating film to form a gate wiring, a first wiring Forming a columnar semiconductor layer, a second columnar semiconductor layer, and a second resist for forming a contact wiring so as to extend in a direction orthogonal to a direction in which the fin-shaped semiconductor layer extends; By etching polysilicon, the second insulating film, and the fin-like semiconductor layer, a first columnar semiconductor layer, a first dummy gate derived from the first polysilicon, and a second A second step of forming the columnar semiconductor layer and a second dummy gate derived from the first polysilicon;
After the second step, a fourth insulating film is formed around the first columnar semiconductor layer, the second columnar semiconductor layer, the first dummy gate, and the second dummy gate. And
A second polysilicon is deposited around the fourth insulating film and etched to form the first dummy gate, the first columnar semiconductor layer, the second dummy gate, and the second columnar shape. A third step of forming a third dummy gate and a fourth dummy gate by remaining on the sidewall of the semiconductor layer;
A second diffusion layer is formed in an upper portion of the fin-shaped semiconductor layer, a lower portion of the first columnar semiconductor layer, and a lower portion of the second columnar semiconductor layer, and the third dummy gate and the fourth A fifth insulating film is formed around the dummy gate and etched to remain in a sidewall shape, thereby forming a sidewall made of the fifth insulating film, on the second diffusion layer. A fourth step of forming a compound layer comprising a metal and a semiconductor;
After the fourth step, a first interlayer insulating film is deposited and planarized, and the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are formed. An upper portion is exposed, and the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are removed, and the second insulating film and the fourth insulating film are removed. And a gate insulating film is formed around the first columnar semiconductor layer, around the second columnar semiconductor layer, and inside the fifth insulating film, and is formed on the second columnar semiconductor layer. Forming a fourth resist for removing the gate insulating film around the bottom, removing the gate insulating film around the bottom of the second columnar semiconductor layer, depositing a metal layer and performing etch back; Around the first columnar semiconductor layer A fifth step of forming a gate electrode and a gate wiring, forms the contact electrode and the contact wires around the second columnar semiconductor layer,
After the fifth step, a second interlayer insulating film is deposited and planarized, the upper portion of the first columnar semiconductor layer is exposed, and the resistance changes on the upper portion of the first columnar semiconductor layer. A sixth step of forming
It is characterized by that.
 前記第2の絶縁膜上に第1のポリシリコンを堆積するとともに平坦化した後、前記第1のポリシリコン上に第3の絶縁膜を形成する、ことが好ましい。 Preferably, after depositing and planarizing the first polysilicon on the second insulating film, a third insulating film is formed on the first polysilicon.
 前記第1の柱状半導体層と前記第1のダミーゲートと、前記第2の柱状半導体層と、前記第2のダミーゲートとの周囲に第4の絶縁膜を形成した後、第3のレジストを形成するとともにエッチバックを行うことで、前記第1の柱状半導体層の上部を露出させ、前記第1の柱状半導体層の上部に第1の拡散層を形成する、ことが好ましい。 After forming a fourth insulating film around the first columnar semiconductor layer, the first dummy gate, the second columnar semiconductor layer, and the second dummy gate, a third resist is formed. It is preferable that an upper portion of the first columnar semiconductor layer is exposed by forming and etching back, and a first diffusion layer is formed on the upper portion of the first columnar semiconductor layer.
 本発明によれば、選択トランジスタに大量の電流を流すことができ、かつ、抵抗が変化する記憶素子を有するメモリの構造を提供することができる。 According to the present invention, it is possible to provide a memory structure having a memory element in which a large amount of current can flow through the selection transistor and the resistance changes.
(a)は本発明の実施形態に係る半導体装置の平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a plan view of a semiconductor device according to an embodiment of the present invention, (b) is a sectional view taken along line XX ′ of (a), and (c) is a YY line of (a). It is sectional drawing in a line. (a)は本発明の実施形態に係る半導体装置の平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a plan view of a semiconductor device according to an embodiment of the present invention, (b) is a sectional view taken along line XX ′ of (a), and (c) is a YY line of (a). It is sectional drawing in a line. (a)は本発明の実施形態に係る半導体装置の平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a plan view of a semiconductor device according to an embodiment of the present invention, (b) is a sectional view taken along line XX ′ of (a), and (c) is a YY line of (a). It is sectional drawing in a line. (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a). (a)は本発明の実施形態に係る半導体装置の製造方法を説明するための平面図であり、(b)は(a)のX-X’線での断面図であり、(c)は(a)のY-Y’線での断面図である。(A) is a top view for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (b) is sectional drawing in the XX 'line | wire of (a), (c) is It is sectional drawing in the YY 'line of (a).
 図1に、本発明の実施形態に係る半導体装置の構造を示す。
 図1に示されるように、本実施形態の半導体装置であるメモリセルは、3×2のマトリクス状のセル配列において、一行一列、一行三列、二行一列、及び二行三列にそれぞれ配置されている。ソース線を相互に接続するためのコンタクト電極及びコンタクト配線を有するコンタクト装置は、3×2のマトリクス状のセル配列において、一行二列及び二行二列にそれぞれ配置されている。
FIG. 1 shows a structure of a semiconductor device according to an embodiment of the present invention.
As shown in FIG. 1, the memory cells which are the semiconductor devices of this embodiment are arranged in a 1 × 1 matrix, a 1 × 3 column, a 2 × 1 column, and a 2 × 3 column in a 3 × 2 matrix cell array, respectively. Has been. Contact devices having contact electrodes and contact wirings for connecting source lines to each other are arranged in one row and two columns and two rows and two columns, respectively, in a 3 × 2 matrix cell array.
 二行一列に位置するメモリセルは、半導体基板101上で左右方向に延びるように形成されたフィン状シリコン層104と、フィン状シリコン層104の周囲に形成された第1の絶縁膜106と、フィン状シリコン層104上に形成された第1の柱状シリコン層129とを有する。フィン状シリコン層104に直交する方向での第1の柱状シリコン層129の線幅は、フィン状シリコン層104に直交する方向でのフィン状シリコン層104の線幅と等しい。 The memory cells located in two rows and one column include a fin-like silicon layer 104 formed so as to extend in the left-right direction on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like silicon layer 104, A first columnar silicon layer 129 formed on the fin-like silicon layer 104. The line width of the first columnar silicon layer 129 in the direction perpendicular to the fin-like silicon layer 104 is equal to the line width of the fin-like silicon layer 104 in the direction perpendicular to the fin-like silicon layer 104.
 二行一列に位置するメモリセルは、さらに、第1の柱状シリコン層129の周囲に形成されたゲート絶縁膜162と、ゲート絶縁膜162の周囲に形成された、金属からなるゲート電極168aと、ゲート電極168aに接続された、金属からなるゲート配線168bとを有する。ゲート絶縁膜162は、ゲート電極168a及びゲート配線168bの周囲及び底下に形成されている。ゲート配線168bは、フィン状シリコン層104に直交する方向に延在しており、ゲート電極168aの外側の線幅は、ゲート配線168bの線幅と等しい。 The memory cells located in two rows and one column further include a gate insulating film 162 formed around the first columnar silicon layer 129, a gate electrode 168a made of metal formed around the gate insulating film 162, And a gate wiring 168b made of metal connected to the gate electrode 168a. The gate insulating film 162 is formed around and below the bottom of the gate electrode 168a and the gate wiring 168b. The gate wiring 168b extends in a direction orthogonal to the fin-like silicon layer 104, and the line width outside the gate electrode 168a is equal to the line width of the gate wiring 168b.
 二行一列に位置するメモリセルは、さらに、第1の柱状シリコン層129の上部に形成された第1の拡散層302と、フィン状シリコン層104において第1の柱状シリコン層129の下部に形成された第2の拡散層143aと、第1の拡散層302上に形成された抵抗が変化する記憶素子181aと、を有する。抵抗が変化する記憶素子181aと第1の柱状シリコン層129との間には、高抵抗素子のヒーター179aが形成されている。 The memory cells located in two rows and one column are further formed in the first diffusion layer 302 formed above the first columnar silicon layer 129 and in the fin-shaped silicon layer 104 below the first columnar silicon layer 129. A second diffusion layer 143a formed on the first diffusion layer 302 and a memory element 181a having a variable resistance. A high-resistance element heater 179a is formed between the memory element 181a whose resistance changes and the first columnar silicon layer 129.
 抵抗が変化する記憶素子181aは、例えば、カルコゲナイドガラス(GST:GeSbTe)等の相変化膜からなることが好ましい。また、ヒーター179aは、例えば、窒化チタンからなることが好ましい。 The memory element 181a whose resistance is changed is preferably made of a phase change film such as chalcogenide glass (GST: Ge 2 Sb 2 Te 5 ). The heater 179a is preferably made of, for example, titanium nitride.
 二行三列に位置するメモリセルは、半導体基板101上で左右方向に延びるように形成されたフィン状シリコン層104と、フィン状シリコン層104の周囲に形成された第1の絶縁膜106と、フィン状シリコン層104上に形成された第1の柱状シリコン層131とを有する。フィン状シリコン層104に直交する方向での第1の柱状シリコン層131の線幅は、フィン状シリコン層104に直交する方向でのフィン状シリコン層104の線幅と等しい。 The memory cells located in two rows and three columns include a fin-like silicon layer 104 formed so as to extend in the left-right direction on the semiconductor substrate 101, and a first insulating film 106 formed around the fin-like silicon layer 104. And a first columnar silicon layer 131 formed on the fin-like silicon layer 104. The line width of the first columnar silicon layer 131 in the direction perpendicular to the fin-like silicon layer 104 is equal to the line width of the fin-like silicon layer 104 in the direction perpendicular to the fin-like silicon layer 104.
 二行三列に位置するメモリセルは、さらに、第1の柱状シリコン層131の周囲に形成されたゲート絶縁膜163と、ゲート絶縁膜163の周囲に形成された、金属からなるゲート電極170aと、ゲート電極170aに接続された、金属からなるゲート配線170bとを有する。ゲート絶縁膜163は、ゲート電極170a及びゲート配線170bの周囲及び底下に形成されている。ゲート配線170bは、フィン状シリコン層104に直交する方向に延在しており、ゲート電極170aの外側の線幅は、ゲート配線170bの線幅と等しい。 The memory cells located in two rows and three columns further include a gate insulating film 163 formed around the first columnar silicon layer 131, and a gate electrode 170a made of metal formed around the gate insulating film 163. And a gate wiring 170b made of metal connected to the gate electrode 170a. The gate insulating film 163 is formed around and under the gate electrode 170a and the gate wiring 170b. The gate wiring 170b extends in a direction orthogonal to the fin-like silicon layer 104, and the line width outside the gate electrode 170a is equal to the line width of the gate wiring 170b.
 二行三列に位置するメモリセルは、さらに、第1の柱状シリコン層131の上部に形成された第1の拡散層304と、フィン状シリコン層104において第1の柱状シリコン層131の下部に形成された第2の拡散層143aと、第1の拡散層304上に形成された、抵抗が変化する記憶素子182aとを有する。抵抗が変化する記憶素子182aと第1の柱状シリコン層131との間には、高抵抗素子のヒーター180aが形成されている。 The memory cells located in two rows and three columns are further provided with a first diffusion layer 304 formed above the first columnar silicon layer 131 and a fin-shaped silicon layer 104 below the first columnar silicon layer 131. A second diffusion layer 143a formed and a memory element 182a formed on the first diffusion layer 304 and having a variable resistance are included. A high-resistance element heater 180 a is formed between the memory element 182 a whose resistance changes and the first columnar silicon layer 131.
 抵抗が変化する記憶素子181aは、ビット線187によって、抵抗が変化する記憶素子182aと接続されている。 The memory element 181a whose resistance changes is connected to the memory element 182a whose resistance changes by a bit line 187.
 一行一列に位置するメモリセルは、半導体基板101上で左右方向に延びるように形成されたフィン状シリコン層105と、フィン状シリコン層105の周囲に形成された第1の絶縁膜106と、フィン状シリコン層105上に形成された第1の柱状シリコン層132とを有する。フィン状シリコン層105に直交する方向での第1の柱状シリコン層132の線幅は、フィン状シリコン層105に直交する方向でのフィン状シリコン層105の線幅と等しい。 The memory cells located in one row and one column include a fin-like silicon layer 105 formed on the semiconductor substrate 101 so as to extend in the left-right direction, a first insulating film 106 formed around the fin-like silicon layer 105, and a fin And a first columnar silicon layer 132 formed on the silicon layer 105. The line width of the first columnar silicon layer 132 in the direction perpendicular to the fin-like silicon layer 105 is equal to the line width of the fin-like silicon layer 105 in the direction perpendicular to the fin-like silicon layer 105.
 一行一列に位置するメモリセルは、さらに、第1の柱状シリコン層132の周囲に形成されたゲート絶縁膜162と、ゲート絶縁膜162の周囲に形成された、金属からなるゲート電極168aと、ゲート電極168aに接続された、金属からなるゲート配線168bとを有する。ゲート絶縁膜162は、ゲート電極168a及びゲート配線168bの周囲及び底下に形成されている。ゲート配線168bは、フィン状シリコン層105に直交する方向に延在しており、ゲート電極168aの外側の線幅は、ゲート配線168bの線幅と等しい。 The memory cells located in one row and one column further include a gate insulating film 162 formed around the first columnar silicon layer 132, a gate electrode 168a made of metal formed around the gate insulating film 162, and a gate. And a gate wiring 168b made of metal connected to the electrode 168a. The gate insulating film 162 is formed around and below the bottom of the gate electrode 168a and the gate wiring 168b. The gate wiring 168b extends in a direction orthogonal to the fin-like silicon layer 105, and the line width outside the gate electrode 168a is equal to the line width of the gate wiring 168b.
 一行一列に位置するメモリセルは、さらに、第1の柱状シリコン層132の上部に形成された第1の拡散層305と、フィン状シリコン層105において第1の柱状シリコン層132の下部に形成された第2の拡散層143bと、第1の拡散層305上に形成された抵抗が変化する記憶素子181bと、を有する。抵抗が変化する記憶素子181bと第1の柱状シリコン層132との間には、高抵抗素子のヒーター179bが形成されている。 The memory cells located in one row and one column are further formed under the first columnar silicon layer 132 in the fin-like silicon layer 105 and the first diffusion layer 305 formed on the first columnar silicon layer 132. The second diffusion layer 143b and the memory element 181b formed on the first diffusion layer 305 and having a variable resistance. A high-resistance element heater 179b is formed between the memory element 181b whose resistance changes and the first columnar silicon layer 132.
 一行三列に位置するメモリセルは、半導体基板101上で左右方向に延びるように形成されたフィン状シリコン層105と、フィン状シリコン層105の周囲に形成された第1の絶縁膜106と、フィン状シリコン層105上に形成された第1の柱状シリコン層134とを有する。フィン状シリコン層105に直交する方向での第1の柱状シリコン層134の線幅は、フィン状シリコン層105に直交する方向でのフィン状シリコン層105の線幅と等しい。 The memory cells located in one row and three columns include a fin-like silicon layer 105 formed on the semiconductor substrate 101 so as to extend in the left-right direction, a first insulating film 106 formed around the fin-like silicon layer 105, And a first columnar silicon layer 134 formed on the fin-shaped silicon layer 105. The line width of the first columnar silicon layer 134 in the direction perpendicular to the fin-like silicon layer 105 is equal to the line width of the fin-like silicon layer 105 in the direction perpendicular to the fin-like silicon layer 105.
 一行三列に位置するメモリセルは、さらに、第1の柱状シリコン層134の周囲に形成されたゲート絶縁膜163と、ゲート絶縁膜163の周囲に形成された、金属からなるゲート電極170aと、ゲート電極170aに接続された、金属からなるゲート配線170bとを有する。ゲート絶縁膜163は、ゲート電極170a及びゲート配線170bの周囲及び底下に形成されている。ゲート配線170bは、フィン状シリコン層105に直交する方向に延在しており、ゲート電極170aの外側の線幅は、ゲート配線170bの線幅と等しい。 The memory cells located in one row and three columns further include a gate insulating film 163 formed around the first columnar silicon layer 134, a gate electrode 170a made of metal formed around the gate insulating film 163, and And a gate wiring 170b made of metal connected to the gate electrode 170a. The gate insulating film 163 is formed around and under the gate electrode 170a and the gate wiring 170b. The gate wiring 170b extends in a direction orthogonal to the fin-like silicon layer 105, and the line width outside the gate electrode 170a is equal to the line width of the gate wiring 170b.
 一行三列に位置するメモリセルは、さらに、第1の柱状シリコン層134の上部に形成された第1の拡散層307と、フィン状シリコン層105において第1の柱状シリコン層134の下部に形成された第2の拡散層143bと、第1の拡散層307上に形成された抵抗が変化する記憶素子182bとを有する。抵抗が変化する記憶素子182bと第1の柱状シリコン層134との間には、高抵抗素子のヒーター180bが形成されている。 The memory cells located in one row and three columns are further formed on the first columnar silicon layer 134 below the first columnar silicon layer 134 and the first diffusion layer 307 formed on the first columnar silicon layer 134. The second diffusion layer 143b formed and the memory element 182b formed on the first diffusion layer 307 and having a variable resistance. A high-resistance element heater 180b is formed between the memory element 182b whose resistance changes and the first columnar silicon layer 134.
 抵抗が変化する記憶素子181bは、ビット線188によって、抵抗が変化する記憶素子182bと接続されている。 The memory element 181b whose resistance changes is connected to the memory element 182b whose resistance changes by a bit line 188.
 SGTは、単位ゲート幅当たり、ダブルゲートトランジスタよりも大量の電流を流すことができる。さらに、SGTは、ゲート電極が柱状半導体層を取り囲む構造を有していることから、単位面積当たりのゲート線幅を大きくすることができるので、さらに大量の電流を流すことができる。これにより、SGTは、大きなリセット電流を流すことができるため、抵抗が変化する記憶素子181a、181b等の相変化膜を高温(高電流)で融解することができる。また、SGTのサブスレッショルドスイング(弱反転領域で動作するMOSFETのドレインソース間電流が一桁変化するのに必要なゲート電圧)は、理想値を実現できることから、オフ電流を小さくすることができるので、抵抗が変化する記憶素子181a、181b等の相変化膜を高速で冷却する(電流を停止する)ことができる。 SGT can pass a larger amount of current per unit gate width than a double gate transistor. Furthermore, since the SGT has a structure in which the gate electrode surrounds the columnar semiconductor layer, the gate line width per unit area can be increased, so that a larger amount of current can flow. Accordingly, since the SGT can flow a large reset current, the phase change films such as the memory elements 181a and 181b whose resistance changes can be melted at a high temperature (high current). In addition, since the SGT subthreshold swing (the gate voltage necessary for the drain-source current of the MOSFET operating in the weak inversion region to change by an order of magnitude) can achieve an ideal value, the off-current can be reduced. The phase change films such as the memory elements 181a and 181b whose resistance changes can be cooled at high speed (the current is stopped).
 また、ゲート電極168a、170aは金属からなり、ゲート配線168b、170bも金属からなるので、その放熱効果によって、大きなリセット電流によって加熱された部位の冷却を早めることができる。また、半導体装置が、ゲート電極168a、170aと、ゲート電極168a、170a及びゲート配線168b、170bの周囲及び底下に形成されたゲート配線168b、170bと、を有することで、熱処理工程後に金属ゲートを形成するゲートラストによって金属ゲートであるゲート電極168a、170aが形成されるので、金属ゲートプロセスと高温プロセスとを両立させることができる。 Further, since the gate electrodes 168a and 170a are made of metal, and the gate wirings 168b and 170b are also made of metal, the heat radiation effect can accelerate the cooling of the portion heated by a large reset current. In addition, the semiconductor device includes the gate electrodes 168a and 170a and the gate wirings 168b and 170b formed around and below the gate electrodes 168a and 170a and the gate wirings 168b and 170b. Since the gate electrodes 168a and 170a, which are metal gates, are formed by the gate last to be formed, both the metal gate process and the high temperature process can be achieved.
 ゲート絶縁膜162、163は、ゲート電極168a、170a及びゲート配線168b、170bの周囲及び底下に形成されている。ゲート電極168a、170a、及び、ゲート配線168b、170bは金属からなる。ゲート配線168b、170bは、フィン状シリコン層104、105に直交する方向に延在している。第2の拡散層143a、143bは、フィン状シリコン層104、105に形成されている。ゲート電極168a、170aの外側の線幅は、ゲート配線168b、170bの線幅と等しく、かつ、第1の柱状シリコン層129、131、132、134の線幅は、フィン状シリコン層104、105の線幅と等しいことにより、本実施形態の半導体装置では、フィン状シリコン層104、105と、第1の柱状シリコン層129、131、132、134と、ゲート電極168a、170aと、ゲート配線168b、170bとが、二枚のマスクを用いた自己整合によって形成される。これにより、本実施形態によれば、半導体装置の製造に要する工程数を削減することができる。 The gate insulating films 162 and 163 are formed around and below the bottom of the gate electrodes 168a and 170a and the gate wirings 168b and 170b. The gate electrodes 168a and 170a and the gate wirings 168b and 170b are made of metal. The gate wirings 168 b and 170 b extend in a direction orthogonal to the fin-like silicon layers 104 and 105. The second diffusion layers 143a and 143b are formed in the fin-like silicon layers 104 and 105. The line width outside the gate electrodes 168a and 170a is equal to the line width of the gate wirings 168b and 170b, and the line widths of the first columnar silicon layers 129, 131, 132, and 134 are the fin-shaped silicon layers 104 and 105. In the semiconductor device of the present embodiment, the fin-shaped silicon layers 104 and 105, the first columnar silicon layers 129, 131, 132, and 134, the gate electrodes 168a and 170a, and the gate wiring 168b 170b are formed by self-alignment using two masks. Thereby, according to this embodiment, the number of processes required for manufacturing a semiconductor device can be reduced.
 二行二列に位置するコンタクト装置は、半導体基板101上に形成されたフィン状シリコン層104と、フィン状シリコン層104の周囲に形成された第1の絶縁膜106と、フィン状シリコン層104上に形成された第2の柱状シリコン層130とを有する。フィン状シリコン層104に直交する方向での第2の柱状シリコン層130の線幅は、フィン状シリコン層104に直交する方向でのフィン状シリコン層104の線幅と等しい。 The contact device located in two rows and two columns includes a fin-like silicon layer 104 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like silicon layer 104, and a fin-like silicon layer 104. And a second columnar silicon layer 130 formed thereon. The line width of the second columnar silicon layer 130 in the direction perpendicular to the fin-like silicon layer 104 is equal to the line width of the fin-like silicon layer 104 in the direction perpendicular to the fin-like silicon layer 104.
 二行二列に位置するコンタクト装置は、さらに、第2の柱状シリコン層130の周囲に形成された、金属からなるコンタクト電極169aと、第2の柱状シリコン層130とコンタクト電極169aとの間に形成されたゲート絶縁膜165と、コンタクト電極169aに接続され、フィン状シリコン層104に直交する方向に延在する、金属からなるコンタクト配線169bと、コンタクト電極169a及びコンタクト配線169bの周囲に形成されたゲート絶縁膜164を有する。コンタクト電極169aの外側の線幅は、コンタクト配線169bの線幅と等しい。フィン状シリコン層104及び第2の柱状シリコン層130の下部に第2の拡散層143aが形成されている。コンタクト電極169aは第2の拡散層143aと電気的に接続されている。 The contact device located in two rows and two columns further includes a metal contact electrode 169a formed around the second columnar silicon layer 130, and between the second columnar silicon layer 130 and the contact electrode 169a. The gate insulating film 165 formed and the contact electrode 169a are connected to the fin-like silicon layer 104 and extend in a direction orthogonal to the metal contact wiring 169b, and are formed around the contact electrode 169a and the contact wiring 169b. The gate insulating film 164 is provided. The line width outside the contact electrode 169a is equal to the line width of the contact wiring 169b. A second diffusion layer 143 a is formed below the fin-like silicon layer 104 and the second columnar silicon layer 130. The contact electrode 169a is electrically connected to the second diffusion layer 143a.
 一行二列に位置するコンタクト装置は、半導体基板101上に形成されたフィン状シリコン層105と、フィン状シリコン層105の周囲に形成された第1の絶縁膜106と、フィン状シリコン層105上に形成された第2の柱状シリコン層133とを有する。フィン状シリコン層105に直交する方向での第2の柱状シリコン層133の線幅は、フィン状シリコン層105に直交する方向でのフィン状シリコン層105の線幅と等しい。 A contact device located in one row and two columns includes a fin-like silicon layer 105 formed on the semiconductor substrate 101, a first insulating film 106 formed around the fin-like silicon layer 105, and the fin-like silicon layer 105. And a second columnar silicon layer 133 formed on the substrate. The line width of the second columnar silicon layer 133 in the direction perpendicular to the fin-like silicon layer 105 is equal to the line width of the fin-like silicon layer 105 in the direction perpendicular to the fin-like silicon layer 105.
 一行二列に位置するコンタクト装置は、さらに、第2の柱状シリコン層133の周囲に形成された金属からなるコンタクト電極169aと、第2の柱状シリコン層133とコンタクト電極169aとの間に形成されたゲート絶縁膜166と、コンタクト電極169aに接続され、フィン状シリコン層105に直交する方向に延在する、金属からなるコンタクト配線169bと、コンタクト電極169a及びコンタクト配線169bの周囲に形成されたゲート絶縁膜164を有する。コンタクト電極169aの外側の線幅は、コンタクト配線169bの線幅と等しい。フィン状シリコン層105及び第2の柱状シリコン層133の下部に第2の拡散層143bが形成されている。コンタクト電極169aは第2の拡散層143bと電気的に接続されている。 The contact device located in one row and two columns is further formed between a contact electrode 169a made of metal formed around the second columnar silicon layer 133, and between the second columnar silicon layer 133 and the contact electrode 169a. A gate insulating film 166, a contact wiring 169b made of metal, connected to the contact electrode 169a and extending in a direction perpendicular to the fin-like silicon layer 105, and a gate formed around the contact electrode 169a and the contact wiring 169b. An insulating film 164 is provided. The line width outside the contact electrode 169a is equal to the line width of the contact wiring 169b. A second diffusion layer 143 b is formed below the fin-like silicon layer 105 and the second columnar silicon layer 133. The contact electrode 169a is electrically connected to the second diffusion layer 143b.
 本実施形態では、第2の拡散層143a、143bに接続されるゲート配線168b、170bに平行に延びるコンタクト配線169bを有する。これにより、第2の拡散層143a、143bが相互に接続され、ソース線の抵抗を下げることができる。この結果、ソース線に大きなリセット電流を流すことができる。このようなゲート配線168b、170bに平行に延びるコンタクト配線169bは、例えば、ビット線187、188が延びる方向に沿って一列に配置されたメモリセル2、4、8、16、32、及び64個のいずれかの個数毎に一本ずつ配置することが好ましい。 In this embodiment, the contact wiring 169b extending in parallel to the gate wirings 168b and 170b connected to the second diffusion layers 143a and 143b is provided. Thereby, the second diffusion layers 143a and 143b are connected to each other, and the resistance of the source line can be lowered. As a result, a large reset current can flow through the source line. Such contact wirings 169b extending in parallel with the gate wirings 168b and 170b include, for example, the memory cells 2, 4, 8, 16, 32, and 64 arranged in a line along the direction in which the bit lines 187 and 188 extend. It is preferable to arrange one for each of the numbers.
 本実施形態では、第2の柱状シリコン層130、133と、第2の柱状シリコン層130、133の周囲に形成されるコンタクト電極169aと、コンタクト配線169bとから形成される構造は、コンタクト電極169aが第2の拡散層143a、143bと電気的に接続される点以外は、一行一列等に位置するメモリセルのトランジスタ構造と同じ構造である。また、ゲート配線168b、170bに平行に延びる、第2の拡散層143a、143bからなる全てのソース線は、コンタクト配線169bに接続される。これにより、半導体装置の製造に要する工程数が削減される。 In the present embodiment, the structure formed of the second columnar silicon layers 130 and 133, the contact electrode 169a formed around the second columnar silicon layers 130 and 133, and the contact wiring 169b is the contact electrode 169a. Is the same structure as the transistor structure of the memory cell located in one row and one column, except that is electrically connected to the second diffusion layers 143a and 143b. Further, all source lines including the second diffusion layers 143a and 143b extending in parallel with the gate wirings 168b and 170b are connected to the contact wiring 169b. Thereby, the number of processes required for manufacturing the semiconductor device is reduced.
 図2は、図1に示す第2の拡散層143a、143bと比較して、第2の拡散層143cが半導体基板101のさらに深い位置まで形成されるとともにフィン状シリコン層104、105に形成されており、図1に示す第2の拡散層143a、143bと同様な接続を行った構造の半導体装置を示す。このような構造とすることで、ソース抵抗をさらに低減することができる。 2, the second diffusion layer 143 c is formed to a deeper position of the semiconductor substrate 101 and is formed in the fin-like silicon layers 104 and 105 than the second diffusion layers 143 a and 143 b shown in FIG. 1. 1 shows a semiconductor device having a structure in which connection similar to that of the second diffusion layers 143a and 143b shown in FIG. 1 is performed. With such a structure, the source resistance can be further reduced.
 図3は、図2に示すフィン状シリコン層105と、フィン状シリコン層105の周囲に形成された第1の絶縁膜106とが存在せず、半導体基板101に直接的に第2の拡散層143dが形成された構造の半導体装置を示す。このような構造とすることで、ソース抵抗をさらに低減することができる。 3 does not include the fin-like silicon layer 105 shown in FIG. 2 and the first insulating film 106 formed around the fin-like silicon layer 105, and the second diffusion layer is directly formed on the semiconductor substrate 101. The semiconductor device having a structure in which 143d is formed is shown. With such a structure, the source resistance can be further reduced.
 以下に、図4~図44を参照しながら、本発明の実施形態に係る半導体装置の構造を形成するための製造工程について説明する。 Hereinafter, a manufacturing process for forming the structure of the semiconductor device according to the embodiment of the present invention will be described with reference to FIGS.
 以下、半導体基板101上にフィン状シリコン層104、105を形成し、フィン状シリコン層104、105の周囲に第1の絶縁膜106を形成する、本実施形態の第1工程について説明する。本実施形態では、半導体基板101はシリコン基板としたが、半導体であればその他の材料からなる基板であってもよい。 Hereinafter, the first process of this embodiment in which the fin-like silicon layers 104 and 105 are formed on the semiconductor substrate 101 and the first insulating film 106 is formed around the fin-like silicon layers 104 and 105 will be described. In the present embodiment, the semiconductor substrate 101 is a silicon substrate, but may be a substrate made of other materials as long as it is a semiconductor.
 まず、図4に示すように、シリコン基板101上にフィン状シリコン層104、105を形成するための第1のレジスト102、103を形成する。 First, as shown in FIG. 4, first resists 102 and 103 for forming fin-like silicon layers 104 and 105 are formed on a silicon substrate 101.
 次に、図5に示すように、シリコン基板101をエッチングすることで、フィン状シリコン層104、105を形成する。ここでは、レジストをマスクとしてフィン状シリコン層104、105を形成したが、レジストに代えて酸化膜や窒化膜といったハードマスクを用いてもよい。 Next, as shown in FIG. 5, the silicon substrate 101 is etched to form the fin-like silicon layers 104 and 105. Here, the fin-like silicon layers 104 and 105 are formed using a resist as a mask, but a hard mask such as an oxide film or a nitride film may be used instead of the resist.
 次に、図6に示すように、第1のレジスト102、103を除去する。 Next, as shown in FIG. 6, the first resists 102 and 103 are removed.
 次に、図7に示すように、フィン状シリコン層104、105の周囲に第1の絶縁膜106を堆積する。第1の絶縁膜106には、高密度プラズマによる酸化膜や低圧CVD(Chemical Vapor Deposition)による酸化膜を用いることができる。 Next, as shown in FIG. 7, a first insulating film 106 is deposited around the fin-like silicon layers 104 and 105. As the first insulating film 106, an oxide film formed by high-density plasma or an oxide film formed by low-pressure CVD (Chemical Vapor Deposition) can be used.
 次に、図8に示すように、第1の絶縁膜106をエッチバックすることで、フィン状シリコン層104、105の上部を露出させる。 Next, as shown in FIG. 8, the first insulating film 106 is etched back to expose the upper portions of the fin-like silicon layers 104 and 105.
 以上により、半導体基板101上にフィン状シリコン層104、105を形成し、フィン状シリコン層104、105の周囲に第1の絶縁膜106を形成する、本実施形態の第1工程が示された。 As described above, the first step of this embodiment in which the fin-like silicon layers 104 and 105 are formed on the semiconductor substrate 101 and the first insulating film 106 is formed around the fin-like silicon layers 104 and 105 is shown. .
 以下、本発明の実施形態の第2工程について説明する。第2工程では、第1工程の後、フィン状シリコン層104、105の周囲に第2の絶縁膜107、108を形成し、第2の絶縁膜107、108上に第1のポリシリコン109を堆積するとともに平坦化する。続いて、ゲート配線168b、170b、第1の柱状シリコン層129、131、132、134、第2の柱状シリコン層130、133、及びコンタクト配線169bを形成するための第2のレジスト111、112、113を、フィン状シリコン層104、105が延びる方向に直交する方向に延在するように形成する。続いて、第2のレジスト111、112、113をマスクとして用い、第1のポリシリコン109と、第2の絶縁膜107、108と、フィン状シリコン層104、105とをエッチングすることで、第1の柱状シリコン層129、131、132、134と、第1のポリシリコン109に由来する第1のダミーゲート117、119と、第2の柱状シリコン層130、133と、第1のポリシリコン109に由来する第2のダミーゲート118と、を形成する。 Hereinafter, the second step of the embodiment of the present invention will be described. In the second step, after the first step, the second insulating films 107 and 108 are formed around the fin-like silicon layers 104 and 105, and the first polysilicon 109 is formed on the second insulating films 107 and 108. Deposit and flatten. Subsequently, second resists 111 and 112 for forming gate wirings 168b and 170b, first columnar silicon layers 129, 131, 132, and 134, second columnar silicon layers 130 and 133, and contact wirings 169b, 113 is formed so as to extend in a direction orthogonal to the direction in which the fin-like silicon layers 104 and 105 extend. Subsequently, by using the second resists 111, 112, and 113 as a mask, the first polysilicon 109, the second insulating films 107 and 108, and the fin-like silicon layers 104 and 105 are etched, thereby 1 columnar silicon layers 129, 131, 132, 134, first dummy gates 117, 119 derived from the first polysilicon 109, second columnar silicon layers 130, 133, and the first polysilicon 109 And a second dummy gate 118 derived from the above.
 まず、図9に示すように、半導体基板101上で左右方向に延びるフィン状シリコン層104、105の周囲に第2の絶縁膜107、108を形成する。第2の絶縁膜107、108は、酸化膜であることが好ましい。 First, as shown in FIG. 9, second insulating films 107 and 108 are formed around the fin-like silicon layers 104 and 105 extending in the left-right direction on the semiconductor substrate 101. The second insulating films 107 and 108 are preferably oxide films.
 次に、図10に示すように、第2の絶縁膜107、108上に第1のポリシリコン109を堆積するとともに平坦化する。 Next, as shown in FIG. 10, a first polysilicon 109 is deposited on the second insulating films 107 and 108 and planarized.
 次に、図11に示すように、第1のポリシリコン109上に第3の絶縁膜110を形成する。第3の絶縁膜110は、窒化膜が好ましい。 Next, as shown in FIG. 11, a third insulating film 110 is formed on the first polysilicon 109. The third insulating film 110 is preferably a nitride film.
 次に、図12に示すように、ゲート配線168b、170b、第1の柱状シリコン層129、131、132、134、第2の柱状シリコン層130、133、及びコンタクト配線169bを形成するための第2のレジスト111、112、113を、フィン状シリコン層104、105が延びる方向に直交する方向に延在するように形成する。 Next, as shown in FIG. 12, the gate wirings 168b, 170b, the first columnar silicon layers 129, 131, 132, 134, the second columnar silicon layers 130, 133, and the contact wiring 169b for forming the first wirings are formed. Two resists 111, 112, and 113 are formed so as to extend in a direction orthogonal to the direction in which the fin-like silicon layers 104 and 105 extend.
 次に、図13に示すように、第2のレジスト111、112、113をマスクとして用い、第3の絶縁膜110と、第1のポリシリコン109と、第2の絶縁膜107、108と、フィン状シリコン層104、105とをエッチングすることにより、第1の柱状シリコン層129、131、132、134と、第1のポリシリコン109に由来する第1のダミーゲート117、119と、第2の柱状シリコン層130、133と、第1のポリシリコン109に由来する第2のダミーゲート118とを形成する。ここでは、第3の絶縁膜110が複数の部位に分離され、第1のダミーゲート117、119と、第2のダミーゲート118との上に第3の絶縁膜114、115、116が形成される。また、第2の絶縁膜107、108は複数の部位に分離され、第1のダミーゲート117、119、第2のダミーゲート118と、第1の柱状シリコン層129、131、132、134との間に、第2の絶縁膜107、108が形成される。なお、第2のレジスト111、112、113がエッチングを行っている間に除去された場合には、第3の絶縁膜114、115、116がハードマスクとして機能する。一方、第2のレジスト111、112、113がエッチングを行っている間に除去されなかった場合には、第3の絶縁膜114、115、116をマスクとして使用する必要はない。 Next, as shown in FIG. 13, using the second resists 111, 112, and 113 as a mask, the third insulating film 110, the first polysilicon 109, the second insulating films 107 and 108, By etching the fin-like silicon layers 104 and 105, the first columnar silicon layers 129, 131, 132, and 134, the first dummy gates 117 and 119 derived from the first polysilicon 109, and the second Columnar silicon layers 130 and 133 and a second dummy gate 118 derived from the first polysilicon 109 are formed. Here, the third insulating film 110 is separated into a plurality of portions, and third insulating films 114, 115, and 116 are formed on the first dummy gates 117 and 119 and the second dummy gate 118. The In addition, the second insulating films 107 and 108 are separated into a plurality of portions, and the first dummy gates 117 and 119, the second dummy gate 118, and the first columnar silicon layers 129, 131, 132, and 134 are formed. In the meantime, second insulating films 107 and 108 are formed. Note that when the second resists 111, 112, and 113 are removed during the etching, the third insulating films 114, 115, and 116 function as a hard mask. On the other hand, if the second resists 111, 112, and 113 are not removed during the etching, the third insulating films 114, 115, and 116 need not be used as a mask.
 次に、図14に示すように、第2のレジスト111、112、113を除去する。 Next, as shown in FIG. 14, the second resists 111, 112, and 113 are removed.
 以上により、第1工程の後、フィン状シリコン層104、105の周囲に第2の絶縁膜107、108を形成し、第2の絶縁膜107、108上に第1のポリシリコン109を堆積するとともに平坦化する。続いて、ゲート配線168b、170b、第1の柱状シリコン層129、131、132、134、第2の柱状シリコン層130、133、及びコンタクト配線169bを形成するための第2のレジスト111、112、113を、フィン状シリコン層104、105が延びる方向に直交する方向に延在するように形成する。続いて、第2のレジスト111、112、113をマスクとして用い、第1のポリシリコン109と、第2の絶縁膜107、108と、フィン状シリコン層104、105とをエッチングすることで、第1の柱状シリコン層129、131、132、134と、第1のポリシリコン109に由来する第1のダミーゲート117、119と、第2の柱状シリコン層130、133と、第1のポリシリコン109に由来する第2のダミーゲート118とを形成する第2工程が示された。 As described above, after the first step, the second insulating films 107 and 108 are formed around the fin-like silicon layers 104 and 105, and the first polysilicon 109 is deposited on the second insulating films 107 and 108. Flatten with. Subsequently, second resists 111 and 112 for forming gate wirings 168b and 170b, first columnar silicon layers 129, 131, 132, and 134, second columnar silicon layers 130 and 133, and contact wirings 169b, 113 is formed so as to extend in a direction orthogonal to the direction in which the fin-like silicon layers 104 and 105 extend. Subsequently, by using the second resists 111, 112, and 113 as a mask, the first polysilicon 109, the second insulating films 107 and 108, and the fin-like silicon layers 104 and 105 are etched, thereby 1 columnar silicon layers 129, 131, 132, 134, first dummy gates 117, 119 derived from the first polysilicon 109, second columnar silicon layers 130, 133, and the first polysilicon 109 The second step of forming the second dummy gate 118 derived from the above is shown.
 以下、本発明の実施形態の第3工程について説明する。第3工程では、第2工程の後、第1の柱状シリコン層129、131、132、134、第2の柱状シリコン層130、133、第1のダミーゲート117、119、及び第2のダミーゲート118の周囲に第4の絶縁膜135を形成する。続いて、第4の絶縁膜135の周囲に第2のポリシリコン136を堆積するとともにエッチングし、第2のポリシリコン136を、第1のダミーゲート117、119と、第1の柱状シリコン層129、131、132、134と、第2のダミーゲート118と、第2の柱状シリコン層130、133とのそれぞれの側壁に残存させることで、第3のダミーゲート137、139と、第4のダミーゲート138とを形成する。 Hereinafter, the third step of the embodiment of the present invention will be described. In the third step, after the second step, the first columnar silicon layers 129, 131, 132, 134, the second columnar silicon layers 130, 133, the first dummy gates 117, 119, and the second dummy gate A fourth insulating film 135 is formed around 118. Subsequently, a second polysilicon 136 is deposited and etched around the fourth insulating film 135, and the second polysilicon 136 is removed from the first dummy gates 117 and 119 and the first columnar silicon layer 129. , 131, 132, 134, the second dummy gate 118, and the second columnar silicon layers 130, 133 are left on the respective side walls, so that the third dummy gates 137, 139, and the fourth dummy gates are left. Gate 138 is formed.
 まず、図15に示すように、第1の柱状シリコン層129、131、132、134、第2の柱状シリコン層130、133、第1のダミーゲート117、119、及び第2のダミーゲート118の周囲に第4の絶縁膜135を形成する。第4の絶縁膜135は、酸化膜であることが好ましい。続いて、第3のレジスト301を形成するとともにエッチバックを行うことで、第1の柱状シリコン層129、131、132、134の上部を露出させる。このとき、第2の柱状シリコン層130、133の上部を露出させてもよい。 First, as shown in FIG. 15, the first columnar silicon layers 129, 131, 132, 134, the second columnar silicon layers 130, 133, the first dummy gates 117, 119, and the second dummy gate 118 are formed. A fourth insulating film 135 is formed around the periphery. The fourth insulating film 135 is preferably an oxide film. Subsequently, a third resist 301 is formed and etched back to expose the upper portions of the first columnar silicon layers 129, 131, 132, and 134. At this time, the upper portions of the second columnar silicon layers 130 and 133 may be exposed.
 次に、図16に示すように、不純物を導入し、第1の柱状シリコン層129、131、132、134の上部に第1の拡散層302、304、305、307を形成する。また、第2の柱状シリコン層130、133の上部に第1の拡散層303、306を形成してもよい。導入される不純物がn型拡散層のときは、砒素やリンを導入することが好ましい。一方、導入される不純物がp型拡散層のときは、ボロンを導入することが好ましい。 Next, as shown in FIG. 16, impurities are introduced to form first diffusion layers 302, 304, 305, 307 on top of the first columnar silicon layers 129, 131, 132, 134. Alternatively, the first diffusion layers 303 and 306 may be formed on the second columnar silicon layers 130 and 133. When the impurity to be introduced is an n-type diffusion layer, it is preferable to introduce arsenic or phosphorus. On the other hand, when the impurity to be introduced is a p-type diffusion layer, it is preferable to introduce boron.
 次に、図17に示すように、第3のレジスト301を除去する。 Next, as shown in FIG. 17, the third resist 301 is removed.
 次に、図18に示すように、第4の絶縁膜135の周囲に第2のポリシリコン136を堆積する。 Next, as shown in FIG. 18, a second polysilicon 136 is deposited around the fourth insulating film 135.
 次に、図19に示すように、第2のポリシリコン136をエッチングすることで、第2のポリシリコン136を第1のダミーゲート117、119、第1の柱状シリコン層129、131、132、134、第2のダミーゲート118、及び第2の柱状シリコン層130、133の側壁に残存させることで、第3のダミーゲート137、139と第4のダミーゲート138とを形成する。このとき、第4の絶縁膜135が複数の部位に分離され、第4の絶縁膜140、141、142が形成されてもよい。 Next, as shown in FIG. 19, by etching the second polysilicon 136, the second polysilicon 136 is changed into the first dummy gates 117, 119, the first columnar silicon layers 129, 131, 132, The third dummy gates 137 and 139 and the fourth dummy gate 138 are formed by remaining on the sidewalls of the first and second dummy gates 118 and 133 and 133. At this time, the fourth insulating film 135 may be separated into a plurality of portions, and the fourth insulating films 140, 141, 142 may be formed.
 以上により、第2工程の後、第1の柱状シリコン層129、131、132、134、第2の柱状シリコン層130、133、第1のダミーゲート117、119、及び第2のダミーゲート118の周囲に第4の絶縁膜135を形成する。続いて、第4の絶縁膜135の周囲に第2のポリシリコン136を堆積するとともにエッチングし、第2のポリシリコン136を、第1のダミーゲート117、119と、第1の柱状シリコン層129、131、132、134と、第2のダミーゲート118と、第2の柱状シリコン層130、133とのそれぞれの側壁に残存させることで、第3のダミーゲート137、139と、第4のダミーゲート138とを形成する第3工程が示された。 As described above, after the second step, the first columnar silicon layers 129, 131, 132, and 134, the second columnar silicon layers 130 and 133, the first dummy gates 117 and 119, and the second dummy gate 118 are formed. A fourth insulating film 135 is formed around the periphery. Subsequently, a second polysilicon 136 is deposited and etched around the fourth insulating film 135, and the second polysilicon 136 is removed from the first dummy gates 117 and 119 and the first columnar silicon layer 129. , 131, 132, 134, the second dummy gate 118, and the second columnar silicon layers 130, 133 are left on the respective side walls, so that the third dummy gates 137, 139, and the fourth dummy gates are left. A third step of forming the gate 138 is shown.
 以下、本発明の実施形態の第4工程について説明する。第4工程では、第3工程の後、フィン状シリコン層104、105の上部と、第1の柱状シリコン層129、131、132、134の下部と、第2の柱状シリコン層130、133の下部とに第2の拡散層143a、143bを形成する。続いて、第3のダミーゲート137、139と第4のダミーゲート138との周囲に、第5の絶縁膜144を形成するとともにエッチングすることでサイドウォール状に残存させ、第5の絶縁膜144に由来するサイドウォール145、146、147を形成する。さらに第2の拡散層143a、143b上に、金属と半導体とからなる化合物層148、149、150、151、152、153、154、155を形成する。 Hereinafter, the fourth step of the embodiment of the present invention will be described. In the fourth step, after the third step, the upper portions of the fin-like silicon layers 104 and 105, the lower portions of the first columnar silicon layers 129, 131, 132, and 134, and the lower portions of the second columnar silicon layers 130 and 133, respectively. Then, second diffusion layers 143a and 143b are formed. Subsequently, a fifth insulating film 144 is formed around the third dummy gates 137 and 139 and the fourth dummy gate 138 and etched to remain in a sidewall shape, and the fifth insulating film 144 is left. Side walls 145, 146, and 147 derived from the above are formed. Further, compound layers 148, 149, 150, 151, 152, 153, 154, and 155 made of a metal and a semiconductor are formed on the second diffusion layers 143a and 143b.
 まず、図20に示すように、不純物を導入し、第1の柱状シリコン層129、131、132、134の下部と第2の柱状シリコン層130、133の下部とに、第2の拡散層143a、143bを形成する。ここで、導入する不純物がn型拡散層を形成するときは、砒素やリンを導入することが好ましい。一方、導入する不純物がp型拡散層を形成するときは、ボロンを導入することが好ましい。このような拡散層の形成は、後述する第5の絶縁膜144に由来するサイドウォール145、146、147を形成した後に行ってもよい。 First, as shown in FIG. 20, impurities are introduced, and the second diffusion layer 143a is formed below the first columnar silicon layers 129, 131, 132, and 134 and below the second columnar silicon layers 130 and 133. , 143b. Here, when the impurity to be introduced forms the n-type diffusion layer, it is preferable to introduce arsenic or phosphorus. On the other hand, when the impurity to be introduced forms a p-type diffusion layer, it is preferable to introduce boron. Such a diffusion layer may be formed after forming sidewalls 145, 146, and 147 derived from a fifth insulating film 144 described later.
 次に、図21に示すように、第3のダミーゲート137、139と、第4のダミーゲート138との周囲に、第5の絶縁膜144を形成する。第5の絶縁膜144は、窒化膜であることが好ましい。 Next, as shown in FIG. 21, a fifth insulating film 144 is formed around the third dummy gates 137 and 139 and the fourth dummy gate 138. The fifth insulating film 144 is preferably a nitride film.
 次に、図22に示すように、第5の絶縁膜144をエッチングすることで、サイドウォール状に残存させる。これにより、第5の絶縁膜144からサイドウォール145、146、147を形成する。 Next, as shown in FIG. 22, the fifth insulating film 144 is etched to remain in a sidewall shape. Thus, sidewalls 145, 146, and 147 are formed from the fifth insulating film 144.
 次に、図23に示すように、第2の拡散層143a、143b上に、金属と半導体とからなる化合物層148、149、150、151、152、153、154、155を形成する。このとき、第3のダミーゲート137、139の上部と、第4のダミーゲート138の上部とにも、金属と半導体とからなる化合物層156、158、157が形成される。 Next, as shown in FIG. 23, compound layers 148, 149, 150, 151, 152, 153, 154, and 155 made of metal and semiconductor are formed on the second diffusion layers 143a and 143b. At this time, compound layers 156, 158, and 157 made of metal and semiconductor are also formed on the upper portions of the third dummy gates 137 and 139 and the upper portion of the fourth dummy gate 138, respectively.
 以上により、フィン状シリコン層104、105の上部と、第1の柱状シリコン層129、131、132、134の下部と、第2の柱状シリコン層130、133の下部とに第2の拡散層143a、143bを形成する。続いて、第3のダミーゲート137、139と第4のダミーゲート138との周囲に、第5の絶縁膜144を形成するとともにエッチングすることで、サイドウォール状に残存させ、第5の絶縁膜144に由来するサイドウォール145、146、147を形成する。さらに第2の拡散層143a、143b上に、金属と半導体とからなる化合物層148、149、150、151、152、153、154、155を形成する第4工程が示された。 As described above, the second diffusion layer 143a is formed on the upper portions of the fin-shaped silicon layers 104 and 105, the lower portions of the first columnar silicon layers 129, 131, 132, and 134, and the lower portions of the second columnar silicon layers 130 and 133. , 143b. Subsequently, a fifth insulating film 144 is formed around the third dummy gates 137 and 139 and the fourth dummy gate 138 and etched to remain in a sidewall shape, so that the fifth insulating film Side walls 145, 146 and 147 derived from 144 are formed. Further, a fourth step of forming compound layers 148, 149, 150, 151, 152, 153, 154, 155 made of metal and semiconductor on the second diffusion layers 143a, 143b is shown.
 以下、本発明の実施形態の第5工程について説明する。第5工程では、第4の工程の後、第1の層間絶縁膜159を堆積するとともに平坦化し、第1のダミーゲート117、119、第2のダミーゲート118、第3のダミーゲート137、139、及び第4のダミーゲート138のそれぞれの上部を露出させ、第1のダミーゲート117、119、第2のダミーゲート118、第3のダミーゲート137、139、及び第4のダミーゲート138を除去する。続いて、第2の絶縁膜123、124、125、126、127、128と第4の絶縁膜140、141、142とを除去し、ゲート絶縁膜160を第1の柱状シリコン層129、131、132、134の周囲と、第2の柱状シリコン層130、133の周囲と、第5の絶縁膜144の内側とに形成する。続いて、第2の柱状シリコン層130、133の底部周辺のゲート絶縁膜160を除去するための第4のレジスト161を形成し、第2の柱状シリコン層130、133の底部周辺のゲート絶縁膜160を除去し、金属層167を堆積するとともにエッチバックを行うことで、第1の柱状シリコン層129、131、132、134の周囲にゲート電極168a、170a及びゲート配線168b、170bを形成する。その後、第2の柱状シリコン層130、133の周囲にコンタクト電極169a及びコンタクト配線169bを形成する。 Hereinafter, the fifth step of the embodiment of the present invention will be described. In the fifth step, after the fourth step, the first interlayer insulating film 159 is deposited and planarized, and the first dummy gates 117 and 119, the second dummy gate 118, and the third dummy gates 137 and 139 are formed. And the fourth dummy gate 138 are exposed, and the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gate 138 are removed. To do. Subsequently, the second insulating films 123, 124, 125, 126, 127, 128 and the fourth insulating films 140, 141, 142 are removed, and the gate insulating film 160 is replaced with the first columnar silicon layers 129, 131, It is formed around 132 and 134, around the second columnar silicon layers 130 and 133, and inside the fifth insulating film 144. Subsequently, a fourth resist 161 for removing the gate insulating film 160 around the bottom of the second columnar silicon layers 130 and 133 is formed, and the gate insulating film around the bottom of the second columnar silicon layers 130 and 133 is formed. 160 is removed, and a metal layer 167 is deposited and etched back, whereby gate electrodes 168a and 170a and gate wirings 168b and 170b are formed around the first columnar silicon layers 129, 131, 132, and 134. Thereafter, contact electrodes 169 a and contact wirings 169 b are formed around the second columnar silicon layers 130 and 133.
 まず、図24に示すように、第1の層間絶縁膜159を堆積する。ここでは、コンタクトストッパ膜を用いてもよい。 First, as shown in FIG. 24, a first interlayer insulating film 159 is deposited. Here, a contact stopper film may be used.
 次に、図25に示すように、化学機械研磨(CMP)を行うことで、第1のダミーゲート117、119、第2のダミーゲート118、第3のダミーゲート137、139、及び第4のダミーゲート138のそれぞれの上部を露出させる。このとき、第3のダミーゲート137、139の上部及び第4のダミーゲート138の上部に存在する金属と半導体とからなる化合物層156、158、157を除去する。 Next, as shown in FIG. 25, by performing chemical mechanical polishing (CMP), the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gates are performed. The upper portions of the dummy gates 138 are exposed. At this time, the compound layers 156, 158, and 157 made of metal and semiconductor existing on the upper portions of the third dummy gates 137 and 139 and the upper portion of the fourth dummy gate 138 are removed.
 次に、図26に示すように、第1のダミーゲート117、119、第2のダミーゲート118、第3のダミーゲート137、139、及び第4のダミーゲート138を除去する。 Next, as shown in FIG. 26, the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gate 138 are removed.
 次に、図27に示すように、第2の絶縁膜123、124、125、126、127、128と、第4の絶縁膜140、141、142とを除去する。 Next, as shown in FIG. 27, the second insulating films 123, 124, 125, 126, 127, 128 and the fourth insulating films 140, 141, 142 are removed.
 次に、図28に示すように、第1の柱状シリコン層129、131、132、134の周囲と、第2の柱状シリコン層130、133の周囲と、第5の絶縁膜144に由来するサイドウォール145、146、147の内側とに、ゲート絶縁膜160を形成する。 Next, as shown in FIG. 28, the periphery of the first columnar silicon layers 129, 131, 132, 134, the periphery of the second columnar silicon layers 130, 133, and the side derived from the fifth insulating film 144. A gate insulating film 160 is formed inside the walls 145, 146, and 147.
 次に、図29に示すように、第2の柱状シリコン層130、133の底部周辺のゲート絶縁膜160を除去するための第4のレジスト161を形成する。 Next, as shown in FIG. 29, a fourth resist 161 for removing the gate insulating film 160 around the bottoms of the second columnar silicon layers 130 and 133 is formed.
 次に、図30に示すように、第4のレジスト161をマスクとして用い、第2の柱状シリコン層130、133の底部周辺のゲート絶縁膜160を除去する。このとき、ゲート絶縁膜160は複数の部位に分離され、ゲート絶縁膜162、163、164、165、166が形成される。なお、ゲート絶縁膜164、165、166は、等方性エッチングによって除去してもよい。 Next, as shown in FIG. 30, the gate insulating film 160 around the bottom of the second columnar silicon layers 130 and 133 is removed using the fourth resist 161 as a mask. At this time, the gate insulating film 160 is separated into a plurality of portions, and gate insulating films 162, 163, 164, 165, and 166 are formed. Note that the gate insulating films 164, 165, and 166 may be removed by isotropic etching.
 次に、図31に示すように、第4のレジスト161を除去する。 Next, as shown in FIG. 31, the fourth resist 161 is removed.
 次に、図32に示すように、金属層167を堆積する。 Next, as shown in FIG. 32, a metal layer 167 is deposited.
 次に、図33に示すように、金属層167のエッチバックを行うことで、第1の柱状シリコン層129、131、132、134の周囲にゲート電極168a、170a及びゲート配線168b、170bを形成し、第2の柱状シリコン層130、133の周囲にコンタクト電極169a及びコンタクト配線169bを形成する。 Next, as shown in FIG. 33, the metal layers 167 are etched back to form gate electrodes 168a, 170a and gate wirings 168b, 170b around the first columnar silicon layers 129, 131, 132, 134. Then, the contact electrode 169a and the contact wiring 169b are formed around the second columnar silicon layers 130 and 133.
 以上により、第4の工程の後、第1の層間絶縁膜159を堆積するとともに平坦化し、第1のダミーゲート117、119、第2のダミーゲート118、第3のダミーゲート137、139、及び第4のダミーゲート138のそれぞれの上部を露出させ、第1のダミーゲート117、119、第2のダミーゲート118、第3のダミーゲート137、139、及び第4のダミーゲート138を除去する。続いて、第2の絶縁膜123、124、125、126、127、128と第4の絶縁膜140、141、142とを除去し、ゲート絶縁膜160を第1の柱状シリコン層129、131、132、134の周囲と第2の柱状シリコン層130、133の周囲と第5の絶縁膜144に由来するサイドウォール145、146、147の内側に形成する。続いて、第2の柱状シリコン層130、133の底部周辺のゲート絶縁膜160を除去するための第4のレジスト161を形成し、第2の柱状シリコン層130、133の底部周辺のゲート絶縁膜160を除去し、金属層167を堆積するとともにエッチバックを行うことで、第1の柱状シリコン層129、131、132、134の周囲にゲート電極168a、170a及びゲート配線168b、170bを形成する。その後、第2の柱状シリコン層130、133の周囲にコンタクト電極169a及びコンタクト配線169bを形成する第5工程が示された。 As described above, after the fourth step, the first interlayer insulating film 159 is deposited and planarized, and the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and The upper portions of the fourth dummy gates 138 are exposed, and the first dummy gates 117 and 119, the second dummy gate 118, the third dummy gates 137 and 139, and the fourth dummy gate 138 are removed. Subsequently, the second insulating films 123, 124, 125, 126, 127, 128 and the fourth insulating films 140, 141, 142 are removed, and the gate insulating film 160 is replaced with the first columnar silicon layers 129, 131, 132 and 134, around the second columnar silicon layers 130 and 133, and inside the sidewalls 145, 146 and 147 derived from the fifth insulating film 144. Subsequently, a fourth resist 161 for removing the gate insulating film 160 around the bottom of the second columnar silicon layers 130 and 133 is formed, and the gate insulating film around the bottom of the second columnar silicon layers 130 and 133 is formed. 160 is removed, and a metal layer 167 is deposited and etched back, whereby gate electrodes 168a and 170a and gate wirings 168b and 170b are formed around the first columnar silicon layers 129, 131, 132, and 134. Thereafter, the fifth step of forming the contact electrode 169a and the contact wiring 169b around the second columnar silicon layers 130 and 133 is shown.
 以下、本発明の実施形態の第6工程について説明する。第6工程では、第5工程の後、第2の層間絶縁膜171を堆積するとともに平坦化し、第1の柱状シリコン層129、131、132、134の上部を露出させ、第1の柱状シリコン層129、131、132、134の上部に、抵抗が変化する記憶素子181a、181b、182a、182bを形成する。 Hereinafter, the sixth step of the embodiment of the present invention will be described. In the sixth step, after the fifth step, the second interlayer insulating film 171 is deposited and flattened to expose the upper portions of the first columnar silicon layers 129, 131, 132, 134, and the first columnar silicon layer Storage elements 181 a, 181 b, 182 a, and 182 b whose resistance is changed are formed on the upper portions of 129, 131, 132, and 134.
 まず、図34に示すように、第2の層間絶縁膜171を堆積する。 First, as shown in FIG. 34, a second interlayer insulating film 171 is deposited.
 次に、図35に示すように、第2の層間絶縁膜171をエッチバックすることで、第1の柱状シリコン層129、131、132、134の上部と、第2の柱状シリコン層130、133の上部とを露出させる。 Next, as shown in FIG. 35, the second interlayer insulating film 171 is etched back, so that the upper portions of the first columnar silicon layers 129, 131, 132, and 134 and the second columnar silicon layers 130 and 133 are etched. Expose the top of.
 次に、図36に示すように、金属層175と、抵抗が変化する膜176とを堆積する。 Next, as shown in FIG. 36, a metal layer 175 and a film 176 whose resistance changes are deposited.
 次に、図37に示すように、ビット線に直交する方向に沿って、第1の柱状シリコン層129、131、132、134の上部が、金属層175に接続されるように第5のレジスト177、178を形成する。 Next, as shown in FIG. 37, a fifth resist is formed so that the upper portions of the first columnar silicon layers 129, 131, 132, and 134 are connected to the metal layer 175 along the direction orthogonal to the bit lines. 177, 178 are formed.
 次に、図38に示すように、金属層175と、抵抗が変化する膜176とをエッチングする。金属層175は、抵抗が変化する膜176と分離され、それぞれ、金属線179、180と、抵抗が変化する膜の配線181、182となる。 Next, as shown in FIG. 38, the metal layer 175 and the film 176 whose resistance changes are etched. The metal layer 175 is separated from the film 176 whose resistance changes, and becomes metal lines 179 and 180 and wirings 181 and 182 of the film whose resistance changes, respectively.
 次に、図39に示すように、第5のレジスト177、178を除去する。 Next, as shown in FIG. 39, the fifth resists 177 and 178 are removed.
 次に、図40に示すように、第3の層間絶縁膜183を堆積するとともにエッチバックすることで、抵抗が変化する膜の配線181、182の上部を露出させる。 Next, as shown in FIG. 40, a third interlayer insulating film 183 is deposited and etched back to expose the upper portions of the wirings 181 and 182 of the film whose resistance changes.
 次に、図41に示すように、金属層184を堆積する。 Next, as shown in FIG. 41, a metal layer 184 is deposited.
 次に、図42に示すように、ビット線を形成するための第6のレジスト185、186を形成する。第6のレジスト185、186は、金属線179、180と、抵抗が変化する膜の配線181、182とに直交する方向に延在することで、第1の柱状シリコン層129、131、132、134の上部と、金属線179、180とが互いに接続されるように形成されることが好ましい。 Next, as shown in FIG. 42, sixth resists 185 and 186 for forming bit lines are formed. The sixth resists 185 and 186 extend in a direction orthogonal to the metal lines 179 and 180 and the wirings 181 and 182 of the film whose resistance changes, so that the first columnar silicon layers 129, 131, 132, It is preferable that the upper part of 134 and the metal wires 179 and 180 are connected to each other.
 次に、図43に示すように、金属層184と、金属線179、180と、抵抗が変化する膜の配線181、182とをエッチングすることで、ビット線187、188を形成する。このとき、金属線179、180、及び、抵抗が変化する膜の配線181、182が分離され、高抵抗素子のヒーター179a、179b、180a、180bと、抵抗が変化する記憶素子181a、181b、182a、182bと、が形成される。 Next, as shown in FIG. 43, bit lines 187 and 188 are formed by etching the metal layer 184, the metal lines 179 and 180, and the wirings 181 and 182 of the film whose resistance changes. At this time, the metal lines 179 and 180 and the wirings 181 and 182 of the film whose resistance changes are separated, and the high resistance heaters 179a, 179b, 180a and 180b, and the storage elements 181a, 181b and 182a whose resistance changes. , 182b.
 次に、図44に示すように、第6のレジスト185、186を除去する。 Next, as shown in FIG. 44, the sixth resists 185 and 186 are removed.
 以上により、第5工程の後、第2の層間絶縁膜171を堆積するとともに平坦化し、第1の柱状シリコン層129、131、132、134の上部を露出させ、第1の柱状シリコン層129、131、132、134の上部に、抵抗が変化する記憶素子181a、181b、182a、182bを形成する第6工程が示された。 As described above, after the fifth step, the second interlayer insulating film 171 is deposited and planarized, and the upper portions of the first columnar silicon layers 129, 131, 132, and 134 are exposed, and the first columnar silicon layer 129, A sixth step of forming memory elements 181a, 181b, 182a, and 182b whose resistances change on the upper portions of 131, 132, and 134 is shown.
 以上により、本発明の実施形態に係る半導体装置の構造を形成するための製造工程が示された。本実施形態によれば、全ての半導体装置の構造が、直線状のレジストを用いて形成されるため、微細加工が容易となる。 As described above, the manufacturing process for forming the structure of the semiconductor device according to the embodiment of the present invention is shown. According to the present embodiment, since the structures of all the semiconductor devices are formed using a linear resist, fine processing is facilitated.
 SGTは、単位ゲート幅当たり、ダブルゲートトランジスタよりも大量の電流を流すことができる。さらに、SGTは、ゲート電極が柱状半導体層を取り囲む構造であるから、単位面積当たりのゲート線幅を大きくすることができ、さらに大量の電流を流すことができる。したがって、大きなリセット電流を流すことができ、抵抗が変化する記憶素子181a、181b等の相変化膜を高温(高電流)で融解することができる。また、SGTのサブスレッショルドスイングは、理想値を実現できるため、オフ電流を小さくすることができるので、相変化膜を高速で冷却する(電流を停止する)ことができる。 SGT can pass a larger amount of current per unit gate width than a double gate transistor. Further, since the SGT has a structure in which the gate electrode surrounds the columnar semiconductor layer, the gate line width per unit area can be increased, and a larger amount of current can flow. Therefore, a large reset current can be passed, and phase change films such as the memory elements 181a and 181b whose resistance changes can be melted at a high temperature (high current). In addition, since the SGT subthreshold swing can realize an ideal value, the off-current can be reduced, so that the phase change film can be cooled at high speed (the current is stopped).
 上記実施形態に係る半導体装置によれば、ゲート電極168a、170a及びゲート配線168bは金属であるので、加熱された場合の冷却を早めることができる。また、ゲート電極168a、170aと、ゲート配線168b、170bの周囲及び底下に形成されたゲート配線168b、170bとを有することにより、熱処理工程後に金属ゲートを形成するゲートラストによって金属ゲートであるゲート電極168a、170aが形成されるので、金属ゲートプロセスと高温プロセスとを両立させることができる。 According to the semiconductor device according to the above embodiment, since the gate electrodes 168a and 170a and the gate wiring 168b are made of metal, the cooling when heated can be accelerated. In addition, the gate electrodes 168a and 170a and the gate wirings 168b and 170b formed around and under the bottoms of the gate wirings 168b and 170b are provided so that the gate electrode which is a metal gate by the gate last forming the metal gate after the heat treatment process. Since 168a and 170a are formed, the metal gate process and the high temperature process can be made compatible.
 また、上記実施形態に係る半導体装置によれば、半導体基板101上に形成されたフィン状シリコン層104、105と、フィン状シリコン層104、105の周囲に形成された第1の絶縁膜106と、フィン状シリコン層104、105上に形成された第1の柱状シリコン層129、131、132、134と、を有する。ゲート電極168a、170a及びゲート配線168b、170bの周囲及び底下に形成されたゲート配線168b、170bと、を有し、ゲート電極168a、170a及びゲート配線168b、170bは金属からなり、ゲート配線168aはフィン状シリコン層104、105に直交する方向に延在しており、第2の拡散層143a、143bはフィン状シリコン層104、105に形成され、ゲート電極168a、170aの外側の線幅は、ゲート配線168b、170bの線幅と等しく、第1の柱状シリコン層129、131、132、134の線幅は、フィン状シリコン層104、105の線幅と等しいことにより、上記実施形態の半導体装置のフィン状シリコン層104、105と、第1の柱状シリコン層129、131、132、134と、ゲート電極168a、170aと、ゲート配線168b、170bとが、二枚のマスクを用いた自己整合で形成されるので、半導体装置の製造に要する工程数を削減することができる。 Further, according to the semiconductor device according to the embodiment, the fin-like silicon layers 104 and 105 formed on the semiconductor substrate 101, and the first insulating film 106 formed around the fin-like silicon layers 104 and 105, , And first columnar silicon layers 129, 131, 132, and 134 formed on the fin-like silicon layers 104 and 105, respectively. Gate electrodes 168a, 170a and gate wirings 168b, 170b, and gate wirings 168b, 170b formed at the bottom and bottom of the gate electrodes 168a, 170a, and the gate wirings 168b, 170b are made of metal. The second diffusion layers 143a and 143b are formed in the fin-like silicon layers 104 and 105, and the line width outside the gate electrodes 168a and 170a is as follows. Since the line widths of the first columnar silicon layers 129, 131, 132, and 134 are equal to the line widths of the fin-like silicon layers 104 and 105, the line widths of the gate wirings 168b and 170b are equal to each other. Fin-shaped silicon layers 104 and 105 and first columnar silicon layers 129, 131, 1 And 2,134, gate electrodes 168a, and 170a, the gate wiring 168b, and a 170b, since it is formed in self-alignment using the two masks, it is possible to reduce the number of steps required for manufacturing the semiconductor device.
 また、上記実施形態に係る半導体装置によれば、第2の拡散層143a、143bに接続されるゲート配線168b、170bに平行に延びるコンタクト配線169bを有することにより、第2の拡散層143a、143bが相互に接続され、ソース線の抵抗を下げることができる。この結果、ソース線に大きなリセット電流を流すことができる。ゲート配線168b、170bに平行に延びるコンタクト配線は、例えば、ビット線187、188が延びる方向に沿って一列に配置されたメモリセル2、4、8、16、32、及び64個のいずれかの個数毎に一本ずつ配置することが好ましい。 Further, according to the semiconductor device according to the above embodiment, the second diffusion layers 143a and 143b are provided by having the contact wiring 169b extending in parallel with the gate wirings 168b and 170b connected to the second diffusion layers 143a and 143b. Are connected to each other, and the resistance of the source line can be lowered. As a result, a large reset current can flow through the source line. The contact wiring extending in parallel with the gate wirings 168b and 170b is, for example, one of the memory cells 2, 4, 8, 16, 32, and 64 arranged in a line along the direction in which the bit lines 187 and 188 extend. It is preferable to arrange one for each number.
 また、上記実施形態に係る半導体装置によれば、第2の柱状シリコン層130、133と第2の柱状シリコン層130、133の周囲に形成されるコンタクト電極169aとコンタクト配線169bとから形成される構造は、コンタクト電極169aが第2の拡散層143a、143bと電気的に接続される点以外は、一行一列等に位置するメモリセルのトランジスタ構造と同じ構造である。また、ゲート配線168b、170bに平行に延びる、第2の拡散層143a、143bからなる全てのソース線は、コンタクト配線169bに接続される。これにより、半導体装置の製造に要する工程数を削減することができる。 Further, according to the semiconductor device according to the embodiment, the second columnar silicon layers 130 and 133, the contact electrodes 169 a formed around the second columnar silicon layers 130 and 133, and the contact wiring 169 b are formed. The structure is the same as the transistor structure of the memory cell located in one row and one column except that the contact electrode 169a is electrically connected to the second diffusion layers 143a and 143b. Further, all source lines including the second diffusion layers 143a and 143b extending in parallel with the gate wirings 168b and 170b are connected to the contact wiring 169b. Thereby, the number of processes required for manufacturing the semiconductor device can be reduced.
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining an example of the present invention, and does not limit the scope of the present invention.
 例えば、上記実施形態において、p型(p型を含む。)とn型(n型を含む。)とをそれぞれ反対の導電型とした半導体装置の製造方法、及び、それにより得られる半導体装置も当然に本発明の技術的範囲に含まれる。 For example, in the above-described embodiment, a method of manufacturing a semiconductor device in which p-type (including p + type) and n-type (including n + type) have opposite conductivity types, and a semiconductor obtained thereby An apparatus is naturally included in the technical scope of the present invention.
101.シリコン基板
102.第1のレジスト
103.第1のレジスト
104.フィン状シリコン層
105.フィン状シリコン層
106.第1の絶縁膜
107.第2の絶縁膜
108.第2の絶縁膜
109.第1のポリシリコン
110.第3の絶縁膜
111.第2のレジスト
112.第2のレジスト
113.第2のレジスト
114.第3の絶縁膜
115.第3の絶縁膜
116.第3の絶縁膜
117.第1のダミーゲート
118.第2のダミーゲート
119.第1のダミーゲート
123.第2の絶縁膜
124.第2の絶縁膜
125.第2の絶縁膜
126.第2の絶縁膜
127.第2の絶縁膜
128.第2の絶縁膜
129.第1の柱状シリコン層
130.第2の柱状シリコン層
131.第1の柱状シリコン層
132.第1の柱状シリコン層
133.第2の柱状シリコン層
134.第1の柱状シリコン層
135.第4の絶縁膜
136.第2のポリシリコン
137.第3のダミーゲート
138.第4のダミーゲート
139.第3のダミーゲート
140.第4の絶縁膜
141.第4の絶縁膜
142.第4の絶縁膜
143a.第2の拡散層
143b.第2の拡散層
143c.第2の拡散層
143d.第2の拡散層
144.第5の絶縁膜
145.サイドウォール
146.サイドウォール
147.サイドウォール
148.金属と半導体とからなる化合物層
149.金属と半導体とからなる化合物層
150.金属と半導体とからなる化合物層
151.金属と半導体とからなる化合物層
152.金属と半導体とからなる化合物層
153.金属と半導体とからなる化合物層
154.金属と半導体とからなる化合物層
155.金属と半導体とからなる化合物層
156.金属と半導体とからなる化合物層
157.金属と半導体とからなる化合物層
158.金属と半導体とからなる化合物層
159.第1の層間絶縁膜
160.ゲート絶縁膜
161.第4のレジスト
162.ゲート絶縁膜
163.ゲート絶縁膜
164.ゲート絶縁膜
165.ゲート絶縁膜
166.ゲート絶縁膜
167.金属層
168a.ゲート電極
168b.ゲート配線
169a.コンタクト電極
169b.コンタクト配線
170a.ゲート電極
170b.ゲート配線
171.第2の層間絶縁膜
175.金属層
176.抵抗が変化する膜
177.第5のレジスト
178.第5のレジスト
179.金属線
179a.高抵抗素子のヒーター
179b.高抵抗素子のヒーター
180.金属線
180a.高抵抗素子のヒーター
180b.高抵抗素子のヒーター
181.抵抗が変化する膜の配線
181a.抵抗が変化する記憶素子
181b.抵抗が変化する記憶素子
182.抵抗が変化する膜の配線
182a.抵抗が変化する記憶素子
182b.抵抗が変化する記憶素子
183.第3の層間絶縁膜
184.金属層
185.第6のレジスト
186.第6のレジスト
301.第3のレジスト
302.第1の拡散層
303.第1の拡散層
304.第1の拡散層
305.第1の拡散層
306.第1の拡散層
307.第1の拡散層
101. Silicon substrate 102. First resist 103. First resist 104. Fin-like silicon layer 105. Fin-like silicon layer 106. First insulating film 107. Second insulating film 108. Second insulating film 109. First polysilicon 110. Third insulating film 111. Second resist 112. Second resist 113. Second resist 114. Third insulating film 115. Third insulating film 116. Third insulating film 117. First dummy gate 118. Second dummy gate 119. First dummy gate 123. Second insulating film 124. Second insulating film 125. Second insulating film 126. Second insulating film 127. Second insulating film 128. Second insulating film 129. First columnar silicon layer 130. Second columnar silicon layer 131. First columnar silicon layer 132. First columnar silicon layer 133. Second columnar silicon layer 134. First columnar silicon layer 135. Fourth insulating film 136. Second polysilicon 137. Third dummy gate 138. Fourth dummy gate 139. Third dummy gate 140. Fourth insulating film 141. Fourth insulating film 142. Fourth insulating film 143a. Second diffusion layer 143b. Second diffusion layer 143c. Second diffusion layer 143d. Second diffusion layer 144. Fifth insulating film 145. Side wall 146. Sidewall 147. Sidewall 148. Compound layer 149 made of metal and semiconductor. Compound layer made of metal and semiconductor 150. Compound layer 151 made of metal and semiconductor 151. Compound layer made of metal and semiconductor 152. Compound layer 153 composed of metal and semiconductor. Compound layer made of metal and semiconductor 154. Compound layer 155 composed of metal and semiconductor. Compound layer made of metal and semiconductor 156. Compound layer made of metal and semiconductor 157. Compound layer made of metal and semiconductor 158. Compound layer 159 made of metal and semiconductor. First interlayer insulating film 160. Gate insulating film 161. Fourth resist 162. Gate insulating film 163. Gate insulating film 164. Gate insulating film 165. Gate insulating film 166. Gate insulating film 167. Metal layer 168a. Gate electrode 168b. Gate wiring 169a. Contact electrode 169b. Contact wiring 170a. Gate electrode 170b. Gate wiring 171. Second interlayer insulating film 175. Metal layer 176. Membrane with variable resistance 177. Fifth resist 178. Fifth resist 179. Metal wire 179a. High resistance element heater 179b. High resistance element heater 180. Metal wire 180a. High resistance element heater 180b. High resistance element heater 181. Wiring 181a of the film whose resistance changes The memory element 181b. A memory element 182 whose resistance changes. Wiring 182a of the film whose resistance changes A memory element 182b whose resistance changes. A memory element 183 having a variable resistance. Third interlayer insulating film 184. Metal layer 185. Sixth resist 186. Sixth resist 301. Third resist 302. First diffusion layer 303. First diffusion layer 304. First diffusion layer 305. First diffusion layer 306. First diffusion layer 307. First diffusion layer

Claims (20)

  1.  第1の柱状半導体層と、
     前記第1の柱状半導体層の周囲に形成されたゲート絶縁膜と、
     前記ゲート絶縁膜の周囲に形成されたゲート電極と、
     前記ゲート電極に接続されたゲート配線と、
     前記第1の柱状半導体層の上部に形成された第1の拡散層と、
     前記第1の柱状半導体層の下部に形成された第2の拡散層と、
     前記第1の拡散層上に形成された、抵抗が変化する記憶素子と、を有する、
     ことを特徴とする半導体装置。
    A first columnar semiconductor layer;
    A gate insulating film formed around the first columnar semiconductor layer;
    A gate electrode formed around the gate insulating film;
    A gate wiring connected to the gate electrode;
    A first diffusion layer formed on the first columnar semiconductor layer;
    A second diffusion layer formed below the first columnar semiconductor layer;
    A storage element having a variable resistance formed on the first diffusion layer.
    A semiconductor device.
  2.  半導体基板上に一方向に延びるように形成されたフィン状半導体層と、
     前記フィン状半導体層の周囲に形成された第1の絶縁膜と、をさらに有し、
     前記ゲート絶縁膜は、前記ゲート電極及び前記ゲート配線の周囲及び底下に形成されており、
     前記第1の柱状半導体層は、前記フィン状半導体層上に形成されており、
     前記ゲート電極及び前記ゲート配線は金属からなり、
     前記ゲート配線は、前記フィン状半導体層に直交する方向に延在しており、
     前記第2の拡散層は、前記フィン状半導体層に形成されている、
     ことを特徴とする請求項1に記載の半導体装置。
    A fin-like semiconductor layer formed on a semiconductor substrate so as to extend in one direction;
    A first insulating film formed around the fin-like semiconductor layer, and
    The gate insulating film is formed around and under the gate electrode and the gate wiring,
    The first columnar semiconductor layer is formed on the fin-shaped semiconductor layer,
    The gate electrode and the gate wiring are made of metal,
    The gate wiring extends in a direction orthogonal to the fin-like semiconductor layer,
    The second diffusion layer is formed in the fin-like semiconductor layer.
    The semiconductor device according to claim 1.
  3.  前記第2の拡散層は、前記フィン状半導体層に加えて、さらに前記半導体基板にも形成されている、ことを特徴とする請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the second diffusion layer is formed on the semiconductor substrate in addition to the fin-like semiconductor layer.
  4.  前記第2の拡散層に接続されている前記ゲート配線に平行に延びるコンタクト配線をさらに有する、ことを特徴とする請求項2又は3に記載の半導体装置。 4. The semiconductor device according to claim 2, further comprising a contact wiring extending in parallel with the gate wiring connected to the second diffusion layer.
  5.  前記半導体基板上に形成された前記フィン状半導体層と、
     前記フィン状半導体層の周囲に形成された前記第1の絶縁膜と、
     前記フィン状半導体層上に形成された第2の柱状半導体層と、
     前記第2の柱状半導体層の周囲に形成されるとともに金属からなるコンタクト電極と、
     前記コンタクト電極に接続された前記フィン状半導体層に直交する方向に延在するとともに金属からなる前記コンタクト配線と、
     前記フィン状半導体層において前記第2の柱状半導体層の下部に形成された前記第2の拡散層と、を有し、
     前記コンタクト電極は、前記第2の拡散層と接続されている、
     ことを特徴とする請求項4に記載の半導体装置。
    The fin-like semiconductor layer formed on the semiconductor substrate;
    The first insulating film formed around the fin-like semiconductor layer;
    A second columnar semiconductor layer formed on the fin-like semiconductor layer;
    A contact electrode formed around the second columnar semiconductor layer and made of metal;
    The contact wiring made of metal and extending in a direction orthogonal to the fin-like semiconductor layer connected to the contact electrode;
    The second diffusion layer formed below the second columnar semiconductor layer in the fin-like semiconductor layer,
    The contact electrode is connected to the second diffusion layer;
    The semiconductor device according to claim 4.
  6.  前記ゲート電極の外側の線幅は、前記ゲート配線の線幅と等しく、前記フィン状半導体層に直交する方向での前記第1の柱状半導体層の線幅は、前記フィン状半導体層に直交する方向での前記フィン状半導体層の線幅と等しい、ことを特徴とする請求項2乃至5のいずれか一項に記載の半導体装置。 The line width outside the gate electrode is equal to the line width of the gate wiring, and the line width of the first columnar semiconductor layer in a direction orthogonal to the fin-shaped semiconductor layer is orthogonal to the fin-shaped semiconductor layer. The semiconductor device according to claim 2, wherein the semiconductor device has a line width equal to a line width of the fin-like semiconductor layer in a direction.
  7.  前記ゲート絶縁膜には、前記第2の柱状半導体層と前記コンタクト電極との間に形成されているものが存在する、ことを特徴とする請求項5に記載の半導体装置。 6. The semiconductor device according to claim 5, wherein the gate insulating film is formed between the second columnar semiconductor layer and the contact electrode.
  8.  前記フィン状半導体層に直交する方向での前記第2の柱状半導体層の線幅は、前記フィン状半導体層に直交する方向での前記フィン状半導体層の線幅と等しい、ことを特徴とする請求項5に記載の半導体装置。 A line width of the second columnar semiconductor layer in a direction orthogonal to the fin-shaped semiconductor layer is equal to a line width of the fin-shaped semiconductor layer in a direction orthogonal to the fin-shaped semiconductor layer. The semiconductor device according to claim 5.
  9.  前記ゲート絶縁膜には、前記コンタクト電極及び前記コンタクト配線の周囲に形成されているものが存在する、ことを特徴とする請求項7に記載の半導体装置。 8. The semiconductor device according to claim 7, wherein the gate insulating film is formed around the contact electrode and the contact wiring.
  10.  前記コンタクト電極の外側の線幅は、前記コンタクト配線の線幅と等しい、ことを特徴とする請求項5に記載の半導体装置。 The semiconductor device according to claim 5, wherein a line width outside the contact electrode is equal to a line width of the contact wiring.
  11.  前記第1の柱状半導体層は、半導体基板上に形成され、
     前記ゲート電極及び前記ゲート配線は金属からなり、
     前記第2の拡散層は、前記半導体基板上に形成されている、
     ことを特徴とする請求項1に記載の半導体装置。
    The first columnar semiconductor layer is formed on a semiconductor substrate,
    The gate electrode and the gate wiring are made of metal,
    The second diffusion layer is formed on the semiconductor substrate;
    The semiconductor device according to claim 1.
  12.  前記第2の拡散層に接続されている前記ゲート配線に平行に延びるコンタクト配線をさらに有する、ことを特徴とする請求項11に記載の半導体装置。 The semiconductor device according to claim 11, further comprising a contact wiring extending in parallel with the gate wiring connected to the second diffusion layer.
  13.  前記半導体基板上に形成された第2の柱状半導体層と、
     前記第2の柱状半導体層の周囲に形成されるとともに金属からなるコンタクト電極と、
     前記コンタクト電極に接続されたコンタクト配線と、を有し、
     前記第2の拡散層は、前記第2の柱状半導体層の下部に形成され、
     前記コンタクト電極は、前記第2の拡散層と接続されている、
     ことを特徴とする請求項11又は12に記載の半導体装置。
    A second columnar semiconductor layer formed on the semiconductor substrate;
    A contact electrode formed around the second columnar semiconductor layer and made of metal;
    Contact wiring connected to the contact electrode,
    The second diffusion layer is formed below the second columnar semiconductor layer,
    The contact electrode is connected to the second diffusion layer;
    13. The semiconductor device according to claim 11 or 12,
  14.  前記ゲート電極の外側の線幅は、前記ゲート配線の線幅と等しい、ことを特徴とする請求項10乃至13のいずれか一項に記載の半導体装置。 14. The semiconductor device according to claim 10, wherein a line width outside the gate electrode is equal to a line width of the gate wiring.
  15.  前記ゲート絶縁膜には、前記第2の柱状半導体層と前記コンタクト電極との間に形成されているものが存在する、ことを特徴とする請求項13に記載の半導体装置。 14. The semiconductor device according to claim 13, wherein the gate insulating film is formed between the second columnar semiconductor layer and the contact electrode.
  16.  前記ゲート絶縁膜には、前記コンタクト電極及び前記コンタクト配線の周囲に形成されているものが存在する、ことを特徴とする請求項15に記載の半導体装置。 16. The semiconductor device according to claim 15, wherein the gate insulating film is formed around the contact electrode and the contact wiring.
  17.  前記コンタクト電極の外側の線幅は、前記コンタクト配線の線幅と等しい、ことを特徴とする請求項13に記載の半導体装置。 14. The semiconductor device according to claim 13, wherein a line width outside the contact electrode is equal to a line width of the contact wiring.
  18.  半導体基板上に一方向に延びるフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程と、
     前記第1工程の後、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜上に第1のポリシリコンを堆積するとともに平坦化し、ゲート配線、第1の柱状半導体層、第2の柱状半導体層、及びコンタクト配線を形成するための第2のレジストを、前記フィン状半導体層が延びる方向と直交する方向に延在するように形成し、前記第1のポリシリコンと、前記第2の絶縁膜と、前記フィン状半導体層とをエッチングすることにより、第1の柱状半導体層と、前記第1のポリシリコンに由来する第1のダミーゲートと、第2の柱状半導体層と、前記第1のポリシリコンに由来する第2のダミーゲートとを形成する第2工程と、
     前記第2工程の後、前記第1の柱状半導体層と、前記第2の柱状半導体層と、前記第1のダミーゲートと、前記第2のダミーゲートとの周囲に第4の絶縁膜を形成し、
     前記第4の絶縁膜の周囲に第2のポリシリコンを堆積するとともにエッチングを行い、前記第1のダミーゲート、前記第1の柱状半導体層、前記第2のダミーゲート、及び前記第2の柱状半導体層の側壁に残存させることで、第3のダミーゲートと第4のダミーゲートとを形成する第3工程と、
     前記フィン状半導体層の上部と、前記第1の柱状半導体層の下部と、前記第2の柱状半導体層の下部とに第2の拡散層を形成し、前記第3のダミーゲートと前記第4のダミーゲートとの周囲に、第5の絶縁膜を形成するとともにエッチングすることでサイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記第2の拡散層上に金属と半導体とからなる化合物層を形成する第4工程と、
     前記第4の工程の後、第1の層間絶縁膜を堆積するとともに平坦化し、前記第1のダミーゲート、前記第2のダミーゲート、前記第3のダミーゲート、及び前記第4のダミーゲートの上部を露出させ、前記第1のダミーゲート、前記第2のダミーゲート、前記第3のダミーゲート、及び前記第4のダミーゲートを除去し、前記第2の絶縁膜及び前記第4の絶縁膜を除去し、ゲート絶縁膜を、前記第1の柱状半導体層の周囲、前記第2の柱状半導体層の周囲、及び前記第5の絶縁膜の内側に形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去するための第4のレジストを形成し、前記第2の柱状半導体層の底部周辺のゲート絶縁膜を除去し、金属層を堆積するとともにエッチバックを行うことで、前記第1の柱状半導体層の周囲にゲート電極及びゲート配線を形成し、前記第2の柱状半導体層の周囲にコンタクト電極及びコンタクト配線を形成する第5工程と、
     前記第5工程の後、第2の層間絶縁膜を堆積するとともに平坦化し、前記第1の柱状半導体層の上部を露出させ、前記第1の柱状半導体層の上部に、抵抗が変化する記憶素子を形成する第6工程と、を有する、
     ことを特徴とする半導体装置の製造方法。
    Forming a fin-like semiconductor layer extending in one direction on a semiconductor substrate, and forming a first insulating film around the fin-like semiconductor layer;
    After the first step, a second insulating film is formed around the fin-like semiconductor layer, and first polysilicon is deposited and planarized on the second insulating film to form a gate wiring, a first wiring Forming a columnar semiconductor layer, a second columnar semiconductor layer, and a second resist for forming a contact wiring so as to extend in a direction orthogonal to a direction in which the fin-shaped semiconductor layer extends; By etching polysilicon, the second insulating film, and the fin-like semiconductor layer, a first columnar semiconductor layer, a first dummy gate derived from the first polysilicon, and a second A second step of forming the columnar semiconductor layer and a second dummy gate derived from the first polysilicon;
    After the second step, a fourth insulating film is formed around the first columnar semiconductor layer, the second columnar semiconductor layer, the first dummy gate, and the second dummy gate. And
    A second polysilicon is deposited around the fourth insulating film and etched to form the first dummy gate, the first columnar semiconductor layer, the second dummy gate, and the second columnar shape. A third step of forming a third dummy gate and a fourth dummy gate by remaining on the sidewall of the semiconductor layer;
    A second diffusion layer is formed in an upper portion of the fin-shaped semiconductor layer, a lower portion of the first columnar semiconductor layer, and a lower portion of the second columnar semiconductor layer, and the third dummy gate and the fourth A fifth insulating film is formed around the dummy gate and etched to remain in a sidewall shape, thereby forming a sidewall made of the fifth insulating film, on the second diffusion layer. A fourth step of forming a compound layer comprising a metal and a semiconductor;
    After the fourth step, a first interlayer insulating film is deposited and planarized, and the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are formed. An upper portion is exposed, and the first dummy gate, the second dummy gate, the third dummy gate, and the fourth dummy gate are removed, and the second insulating film and the fourth insulating film are removed. And a gate insulating film is formed around the first columnar semiconductor layer, around the second columnar semiconductor layer, and inside the fifth insulating film, and is formed on the second columnar semiconductor layer. Forming a fourth resist for removing the gate insulating film around the bottom, removing the gate insulating film around the bottom of the second columnar semiconductor layer, depositing a metal layer and performing etch back; Around the first columnar semiconductor layer A fifth step of forming a gate electrode and a gate wiring, forms the contact electrode and the contact wires around the second columnar semiconductor layer,
    After the fifth step, a second interlayer insulating film is deposited and planarized, the upper portion of the first columnar semiconductor layer is exposed, and the resistance changes on the upper portion of the first columnar semiconductor layer. A sixth step of forming
    A method for manufacturing a semiconductor device.
  19.  前記第2の絶縁膜上に第1のポリシリコンを堆積するとともに平坦化した後、前記第1のポリシリコン上に第3の絶縁膜を形成する、ことを特徴とする請求項18に記載の半導体装置の製造方法。 The first insulating film is deposited on the second insulating film and planarized, and then a third insulating film is formed on the first polysilicon. A method for manufacturing a semiconductor device.
  20.  前記第1の柱状半導体層と前記第1のダミーゲートと、前記第2の柱状半導体層と、前記第2のダミーゲートとの周囲に第4の絶縁膜を形成した後、第3のレジストを形成するとともにエッチバックを行うことで、前記第1の柱状半導体層の上部を露出させ、前記第1の柱状半導体層の上部に第1の拡散層を形成する、ことを特徴とする請求項18に記載の半導体装置の製造方法。 After forming a fourth insulating film around the first columnar semiconductor layer, the first dummy gate, the second columnar semiconductor layer, and the second dummy gate, a third resist is formed. 19. The etching process is performed and etching back is performed to expose an upper part of the first columnar semiconductor layer, and a first diffusion layer is formed on the upper part of the first columnar semiconductor layer. The manufacturing method of the semiconductor device as described in 2.
PCT/JP2013/075192 2013-09-18 2013-09-18 Semiconductor device and semiconductor device manufacturing method WO2015040705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075192 WO2015040705A1 (en) 2013-09-18 2013-09-18 Semiconductor device and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075192 WO2015040705A1 (en) 2013-09-18 2013-09-18 Semiconductor device and semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
WO2015040705A1 true WO2015040705A1 (en) 2015-03-26

Family

ID=52688391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075192 WO2015040705A1 (en) 2013-09-18 2013-09-18 Semiconductor device and semiconductor device manufacturing method

Country Status (1)

Country Link
WO (1) WO2015040705A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260014A (en) * 2004-03-12 2005-09-22 Hitachi Ltd Semiconductor device
JP2009182318A (en) * 2008-01-29 2009-08-13 Unisantis Electronics Japan Ltd Semiconductor device and fabrication process thereof
JP2011199017A (en) * 2010-03-19 2011-10-06 Elpida Memory Inc Semiconductor device
WO2013038553A1 (en) * 2011-09-15 2013-03-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Method for producing semiconductor device, and semiconductor device
WO2013093988A1 (en) * 2011-12-19 2013-06-27 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Method for producing semiconductor device, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260014A (en) * 2004-03-12 2005-09-22 Hitachi Ltd Semiconductor device
JP2009182318A (en) * 2008-01-29 2009-08-13 Unisantis Electronics Japan Ltd Semiconductor device and fabrication process thereof
JP2011199017A (en) * 2010-03-19 2011-10-06 Elpida Memory Inc Semiconductor device
WO2013038553A1 (en) * 2011-09-15 2013-03-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Method for producing semiconductor device, and semiconductor device
WO2013093988A1 (en) * 2011-12-19 2013-06-27 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Method for producing semiconductor device, and semiconductor device

Similar Documents

Publication Publication Date Title
JP5670606B1 (en) Semiconductor device and manufacturing method of semiconductor device
US9252190B2 (en) Semiconductor device and method for producing semiconductor device
US9905755B2 (en) Semiconductor device and method for producing a semiconductor device
JP5658426B1 (en) Semiconductor device and method for manufacturing semiconductor device
JP5832057B1 (en) STORAGE DEVICE, SEMICONDUCTOR DEVICE, STORAGE DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP5838012B1 (en) Semiconductor device and manufacturing method of semiconductor device
US9293703B2 (en) Memory device, semiconductor device, method for producing memory device, and method for producing semiconductor device
WO2015049772A1 (en) Storage device and method for manufacturing storage device
JP6143830B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2015040705A1 (en) Semiconductor device and semiconductor device manufacturing method
JP5869092B2 (en) Semiconductor device
JP5869091B2 (en) Semiconductor device
WO2015071982A1 (en) Storage device and storage device manufacturing method
JP6190435B2 (en) Storage device and semiconductor device
JP6117327B2 (en) Storage device
JP5864713B2 (en) Semiconductor device
JP5984983B2 (en) Storage device
JP5894251B2 (en) Semiconductor device
JP2016171354A (en) Storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893929

Country of ref document: EP

Kind code of ref document: A1