TW201303890A - 用於壓水式反應器之緊急爐芯冷卻系統 - Google Patents

用於壓水式反應器之緊急爐芯冷卻系統 Download PDF

Info

Publication number
TW201303890A
TW201303890A TW101109329A TW101109329A TW201303890A TW 201303890 A TW201303890 A TW 201303890A TW 101109329 A TW101109329 A TW 101109329A TW 101109329 A TW101109329 A TW 101109329A TW 201303890 A TW201303890 A TW 201303890A
Authority
TW
Taiwan
Prior art keywords
pwr
water
condenser
pressure
steam
Prior art date
Application number
TW101109329A
Other languages
English (en)
Inventor
John D Malloy
Original Assignee
Babcock & Wilcox Nuclear Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock & Wilcox Nuclear Energy Inc filed Critical Babcock & Wilcox Nuclear Energy Inc
Publication of TW201303890A publication Critical patent/TW201303890A/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/004Pressure suppression
    • G21C9/012Pressure suppression by thermal accumulation or by steam condensation, e.g. ice condensers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/02Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
    • G21C9/033Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency by an absorbent fluid
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • G21D3/06Safety arrangements responsive to faults within the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一種壓水式核子反應器(PWR)具有一裝有蒸汽泡之內部的加壓器體積且被一圍阻體結構所包圍。一冷凝器被設置在該圍阻體結構內且被可操作地連接至一設置在該圍阻體結構外的外部散熱器。一閥組件可操作地將該PWR與該冷凝器相連接以回應一異常操作訊號,使得在將熱排至該外部散熱器的同時該冷凝器將來自蒸汽泡的蒸汽予以冷凝並將被該被冷凝出來的水送回至該PWR。一驟冷槽(quench tank)裝盛帶有被溶解的中子吸收劑(neutron poison)的水。一帶閥的槽加壓路徑將蒸汽泡擇性地連接至該驟冷槽以加壓該驟冷槽,及一帶閥的可溶性吸收劑輸送路徑將該驟冷槽選擇性地連接至該PWR,使得處於來自該蒸汽泡的壓力下的該驟冷槽將帶有溶解的中子吸收劑的水排入到該PWR中。

Description

用於壓水式反應器之緊急爐芯冷卻系統
下文係有關於核子反應器領域、電力產生領域、核子安全領域、及相關領域。
核子反應器使用一反應器爐芯,其包含大量的可裂變物質,譬如含有二氧化鈾(UO2)的物質,其富含於可裂變的235U同位素中。主冷卻水,譬如輕水(H2O)或重水(D2O)或其混合物,流經該反應器爐芯以擷取熱,用來在加熱次級冷卻水時使用以產生蒸汽或用於其它有用的目的。對於電力產生而言,該蒸汽被用來驅動發電機渦輪。在熱核反應器中,該主冷卻水亦用作為將中子熱化(thermalize)的中子減速劑,其可加強可裂變材料的反應度。各式反應度控制機制(譬如,機械操作式的控制棒、具可溶性中子吸收劑(neutron poison)的主冷卻水的化學處理等等)被用來調節反應度及所產生的熱。在壓水式反應器(PWR)中,該主冷卻水在一容納了反應器爐芯的密封式壓力槽中被保持在一超熱態。在該PWR中,該主冷卻水的壓力及溫度係受到控制。
為了要從該PWR或其它核子反應器中擷取動力,次級冷卻水被流入,用以與該主冷卻水熱交流。一蒸汽產生器裝置被適當地用於此熱交換。在此蒸汽產生器中,熱(即,能量)透過該主冷卻水的中介而從該反應器爐芯被交 換至該次級冷卻水。此熱將該次級冷卻水從液態水轉變成蒸汽。該蒸汽典型地被流入到一渦輪機或其它可實際運用該蒸汽動力的動力轉換設備中。從另一角度來看,該蒸汽產生器亦作為該主冷卻水的散熱器。
該蒸汽產生器通常可被設置在該壓力槽的外部,或該壓力槽的內部。一具有內部蒸汽產生器的PWR有時被稱為一體式PWR,它的一示範性例子被例示於由Thome等人提申之“Integral Helical Coil Pressurized Water Nuclear Reactor”中,其在2010年12月16日被公開為美國專利公開案第2010/0316181 A1號,該案藉由此參照而被併於本文中。此公開案揭露一種使用螺旋形蒸汽產生器配管的蒸汽產生器;然而,其它包括筆直(如,垂直)的旋管形式的蒸汽產生器配管亦是習知的。此公開案亦揭露一種整合式PWR,在該PWR中控制棒驅動機制(CRDM)亦是在該壓力容器內部;然而,外部CRDM的設計亦是習知的。內部CRDM設計的一些示範性例子包括:2010年12月16日公開之由Stambaugh等人提申之名稱為“Control Rod Drive Mechanism for Nuclear Reactor”的美國專利公開案第2010/0316177A1號,該案內容藉由此參照而被併於本文中;及2010年12月16日公開之由Stambaugh等人提申之名稱為“Control Rod Drive Mechanism for Nuclear Reactor”的國際專利公開案第WO 2010/144563A1號,該案內容藉由此參照而被併於本文中。
在正常的PWR操作期間,該主冷卻水被低溫冷卻(subcooled)且是在高溫及高壓下。例如,一個擬想的整合式PWR被設計來在該主冷卻水處在高於300℃的溫度及在約200psia的壓力下操作。這些高溫高壓的條件是由該放射性核子反應器爐芯所發出的熱來予以維持。在各式異常的事件情況中,此放射性會快速地升高,可能會導致主冷卻水壓力及溫度之快速且不受控制的升高。例如,在“散熱減少事件”中,在該蒸汽產生器中之該次級冷卻水流故障,導致該次級冷卻水所提供的散熱作用減少,控制棒系統被破解(compromised),使得控制棒無法“急停(scram)”,亦即,被釋放以落入到該反應器爐芯中,以提供快速停機。雖然急停故障不會造成立即的爐芯加熱,但此安全系統的喪失典型地需要將該反應器立即停機。在冷卻水減少意外事故(LOCA)中,壓力容器破裂會讓一些主冷卻水在壓力下從該壓力容器被釋出。該被釋出的冷卻水通常被膨脹成該壓力容器外的蒸汽。一LOCA會引致無數潛在的安全性問題,譬如可能的輻射性外泄、熱蒸汽的釋出、等等。該反應器降壓時之冷卻水的減少會造成留在該反應器容器內用來冷卻爐芯的冷卻水不足的情況。所造成的核燃料損害結果會造成包含在該核燃料中的可裂變產物被釋出。
有鑑於這些問題,一種PWR典型地具有一外部圍阻體結構,用來限制LOCA中任何主冷卻水的釋出。該PWR亦典型地具有一相關連的緊急爐芯冷卻系統(ECCS), 其被設計來藉由促成反應器爐芯的急速冷卻、抑制任何伴隨而來的壓力升高、及重新捕捉任何被釋出的主卻水蒸汽來回應異常情況。該ECCS應在故障安全(failsafe)方式下操作。然而,設計該ECCS來在潛在的異常情況(譬如,散熱的減少、急停故障,或LOCA)的範圍內提供故障安全操作是很困難的。
本文揭示的改良可提供許多好處,其對於熟習此技藝者而言在閱讀下文後將變得很明顯。
在本發明的一個態樣中,一種設備包含:一壓水式反應器(PWR)其包括一包含一核子反應器爐芯與主冷卻水的壓力容器。該壓力容器界定一包含蒸汽泡的內部加壓器體積且具有至少一蒸汽壓控制裝置。一圍阻體結構包圍該PWR。一外部散熱器被設置在該圍阻體結構外。一冷凝器被設置在該圍阻體結構內且被可操作地與該外部散熱器連接。一包含一或多個閥的閥組件可操作地將該PWR與該冷凝器相連接以回應一異常操作訊號,使得在將熱排至該外部散熱器的同時該冷凝器將來自蒸汽泡的蒸汽予以冷凝並將被該被冷凝出來的水送回至該PWR。
在本發明的另一態樣中,一種方法包含:操作一設置在一圍阻體結構內的PWR,該PWR包括一壓力容器,其包含核子反應器爐芯及主冷卻水及一內部壓力調節蒸汽泡;及實施緊急爐芯冷卻處理以回應異常操作訊號,該緊急 爐芯冷卻處理包括將一設置在該圍阻體結構內的冷凝器與該PWR可操作地相連接,用以在將熱排至一設置在該圍阻體結構外的外部散熱器的同時將來自於該蒸汽泡的蒸汽冷凝並將被冷凝的水回送至該PWR。在一些此種方法中,該冷凝器的入口在操作期間與該蒸汽泡相連接,且此一回應異常操作訊號的操作性連接包含將該冷凝器的出口與該PWR相連接,用以將該被冷凝的水回送至該PWR。在一些此種方法中,在該操作性連接及回應該壓力容器內的壓力降低至一壓力門檻值以下之後,該冷凝器的出口與一噴液器(sparger)相連接,其將水排入到一設置在該圍阻體結構內部的儲水槽內。
在本發明的另一態樣中,一種方法包含:操作一設置在一圍阻體結構內的PWR,該PWR包括一壓力容器,其包含核子反應器爐芯及主冷卻水壓力容器及一內部壓力調節蒸汽泡;及實施緊急爐芯冷卻處理,該緊急爐芯冷卻處理包括將一裝盛帶有被溶解的中子吸收劑(neutron poison)的水的驟冷槽可操作地與該PWR相連接,使得該蒸汽泡加壓該驟冷槽,用以將帶有該被溶解的中子吸收劑的水排入到該PWR內。在一些此種方法中,該被溶解的中子吸收劑包含一可溶解的硼化合物。在一些此種方法中,該操作包含操作該PWR,該PWR包括該包含核子反應器爐芯及主冷卻水的壓力容器,其中該主冷卻水並不包含被溶解的中子吸收劑。
在本發明的另一態樣中,一種設備包含:一PWR,其 包括一包含一核子反應器爐芯、主冷卻水、及一壓力調節蒸汽泡的壓力容器;一驟冷槽,其包含帶有被溶解的中子吸收劑的水、一帶閥的槽加壓路徑,其將蒸汽泡擇性地連接至該驟冷槽以加壓該驟冷槽;及一帶閥的可溶性吸收劑輸送路徑,其將該驟冷槽選擇性地連接至該PWR,使得處於來自該蒸汽泡的壓力下的該驟冷槽將帶有溶解的中子吸收劑的水排入到該PWR中。
在本發明的另一態樣中,一種設備包含:一PWR,其包括一包含一核子反應器爐芯與主冷卻水的壓力容器,該壓力容器界定一內部加壓器體積,其包含蒸汽泡且具有至少一蒸汽壓控制裝置;一圍阻體結構,其包圍該PWR;一外部散熱器,其被設置在該圍阻體結構外;至少一冷凝器,其被設置在該圍阻體結構內且被可操作地與該外部散熱器連接;及一包含一或多個閥的閥組件,該閥組件被建構來(1)藉由將該至少一冷凝器與該PWR可操作地相連接,用以將來自該蒸汽泡的蒸汽冷凝並將被冷凝的水回送至該PWR以回應散熱減低事件,及(2)藉由將該至少一冷凝器與該PWR可操作地相連接,用以將來自該蒸汽泡的蒸汽冷凝並將被冷凝的水回送至該PWR以回應冷卻水減少意外事件(LOCA)。
參考圖1,一示範性的壓水式反應器(PWR)10的示範性核子反應器包括一壓力容器12,其在此示範性實施例 中是一概成圓筒形的垂直安裝的容器。該PWR之在該壓力容器12內的被選取的構件以虛線(亦即,點線)被圖形地顯示。一核子反應器爐芯14被設置在該壓力容器12的下部內。該核子反應器爐芯14包括在一適當的矩陣材料中之大量的可裂變材料,譬如含有二氧化鈾(UO2)的物質,其富含於可裂變的235U同位素中。在一典型的配置中,該可裂變的材料被配置成“核燃料棒”,該等核燃料棒被配置在一爐芯吊籃中。該壓力容器12包含在主低溫冷卻(subcooled)狀態的冷卻水(典型地為輕水,亦即,H2O,但重水,亦即,D2O亦可被使用)。
一控制棒系統16被安裝在該核子反應器爐芯14上方且包括控制棒驅動機制(CRDM)單元及控制棒引導結構,其被建構來精確地且可控制地將控制棒插入該核子反應器爐芯14內或從該核子反應器爐芯14取出。該示範性的控制棒系統16使用被設置在該壓力容器12內部的內部CRDM單元。適合的內部CRDM設計的一些示範性例子包括:2010年12月16日公開之由Stambaugh等人提申之名稱為“Control Rod Drive Mechanism for Nuclear Reactor”的美國專利公開案第2010/0316177A1號,該案內容藉由此參照而被併於本文中;及2010年12月16日公開之由Stambaugh等人提申之名稱為“Control Rod Drive Mechanism for Nuclear Reactor”的國際專利公開案第WO 2010/144563A1號,該案內容藉由此參照而被併於本文中。通常,該等控制棒包含中子吸收材料,且反應度可藉由 抽出控制棒而提高或藉由插入控制棒而被降低。俗稱的“灰色”控制棒是可連續調整的,用以提供反應度之遞增式控制。俗稱的“停機”控制棒被設計成可在緊急事件中儘可能快地插入到該反應器爐芯內,用以將核反應停止。各式的混合式控制棒設計亦為習知。例如,一灰色控制棒可包括一用來在緊急時釋出該控制棒,使得控制棒落入到該反應器爐芯14內藉以實施停機控制棒的功能。
該示範性PWR 10是一體式PWR且包括一被設置在該壓力容器12內的內部蒸汽產生器18。在該示範性構造中,一圓筒形升流管(riser)20,其被同軸地設置在該圓筒形壓力容器12內。該升流管20包圍該控制棒系統16並向上延伸,使得被操作中的核子反應器爐芯14加熱的主冷卻水向上升高穿過該圓筒形升流管20朝向該壓力容器的頂部,其在該壓力容器頂部處排放、倒轉流動方向並向下流經一界定在該圓筒形升流管20與該壓力容器12的圓筒形壁之間的外環形空間。此循環可以是由該核子反應器爐芯加熱及後續的主冷卻水冷卻所驅動之自然循環,或該循環可受到主冷卻水幫浦(未示出)的幫助或驅動。該示範性的蒸汽產生器18是一環形蒸汽產生器,其被設置在由該圓筒形升流管20與該壓力容器12的圓筒形壁所界定的該外環形空間內。垂直地,該示範性蒸汽產生器18的下端與該控制棒系統16部分地重疊,且該蒸汽產生器18向上延伸至接近該圓筒形升流管20的頂部處。該蒸汽產生器提供用於向下流動的主冷卻水及向上流的次級冷卻水 之獨立但緊鄰的流路。該次級冷卻水在進給水入口22處進入、向上流經該蒸汽產生器18,其在該蒸汽產生器處被緊鄰之向下流動的主冷卻水加熱以轉變成蒸汽,且該蒸汽在一蒸汽出口24處排出。
圖1沒有例示出該蒸汽產生器的細部結構。典型地,該蒸汽產生器包含蒸汽產生管及一包含該等管子的周圍體積(或“外殼”),因而提供兩個緊鄰的流路,它們係彼此流體地隔離。在一些實施例中,該種冷卻水向下流經該等蒸汽產生管(亦即“管側”),而該次級冷卻水則向上流經該周圍體積(亦即,“殼側”)。在其它實施例中,該主冷卻水向下流經該周圍體積(殼側),而該次級冷卻水則向上流經該等蒸汽產生管(管側)。再者兩種配置中,該等蒸汽產生管可具有各式的形狀,譬如垂直的直管(有時被稱為直管單通式蒸汽產生器或“OTSG”),環繞該圓筒形升流管20的螺旋管(例如,它的一些實施例被描述在Thome等人提申之名稱為“Integral Helical Coil Pressurized Water Nuclear Reactor”中,其在2010年12月16日被公開為美國專利公開案第2010/0316181 A1號,該案藉由此參照而被併於本文中),等等。
在圖1中將被注意到的是,該示範性PWR 10具有位在下部,亦即靠近該蒸汽產生器18的底部,的蒸汽出口24。然而,該次級冷卻水在它向上流經該等蒸汽產生器18時被轉變成蒸汽,使得最熱的蒸汽被預期將出現在靠近該蒸汽產生器18的頂部。該蒸汽出口24如所例示地設置在 低下的位置反應出一環形蒸汽夾套(未示出)的存在,其被設置在該蒸汽產生器18與該壓力容器12的圓筒形壁之間。此蒸汽夾套式設計是非必要的,但具有一提供更高溫的外表面來保持溫度穩定度的好處。在另一實施例中,該蒸汽夾套被省略該蒸汽出口被設置在或靠近該蒸汽產生器18的頂部。
該示範性PWR 10是一體式的PWR,其包括一設置在該壓力容器12內部的蒸汽產生器18。在其它實施例中,該PWR並不是一體式的PWR;而是該蒸汽產生器被設置在外部。在這些實施例中,該進給水入口22及蒸汽出口24被高壓容器穿透孔所取代,其讓該主冷卻水流出該壓力容器、流通該外部蒸汽產生器、並回到該壓力容器。又,該等被擬想的一體式PWR設計可將該蒸汽產生器設置在該壓力容器內的不同位置,譬如部分地包圍該反應器爐芯,或被設置在該圓筒形升流管內,等等。
該壓力容器12界定一密封的體積,其在該PWR可操作時,包含在低溫冷卻狀態的主冷卻水。為此,該PWR包括一內部加壓器體積30,其被設置在該壓力容器12的頂部。該內部加壓器體積30包含一蒸汽泡體積,它的壓力控制著在該壓力容器12內的主冷卻水的壓力。至少一蒸汽壓控制裝置被設置來提整或控制在該內部加壓器體積30內的蒸汽泡的壓力。舉例而言,該蒸汽壓控制裝置或諸裝置可包括一加熱器32(如,一或多個電阻式加熱器),其將蒸汽加熱以提高壓力,及/或一噴液器34其將冷卻水 或蒸汽注入到該蒸汽泡中以降低壓力。一擋板36將該內部加壓器體積30與該壓力容器12的密封體積的其它部分隔開來。舉例而言,在一些實施例中,在該壓力容器12的密封體積內的主冷卻水的壓力是在約2000psia的壓力及約300℃的溫度(在流入該核子反應器爐芯14之前的冷腳腿(cold leg))至320℃(在從該核子反應器爐芯14排出後的熱腿)。這些只是示範性的低溫冷卻條件及其它操作壓力及溫度之不同的範圍亦可被使用。
繼續參考圖1,該PWR 10被設置在一圍阻體結構40內,其在此示範性例子中包含混凝土、鋼、鋼強化的混凝土、或其它結構。該圍阻體結構40是要用來在一冷卻水減少事件(LOCA)中限制任何從該PWR 10中釋出的主冷卻水。在一些實施例中,該圍阻體結構40可以部分或完全是在地底下。在此示範性的實施例中,至少該圍阻體結構40的洪水井(flood well)42部分被埋設,且該PWR 10之包含該核子反應器爐芯14的下部則位在此洪水井42內。
圖1亦圖形地顯示一緊急爐芯冷卻系統(ECCS),其被建構來解決各式異常操作狀況,譬如像是LOCA、散熱減低事件、或急停故障。該ECCS包括一設置在該圍阻體結構40內的儲水槽50。該儲水槽50有時亦被稱為燃料抽換(refueling)儲水槽(因為它可非必要地在該PWR 10的燃料抽換期間被用作為補稱主冷卻水的來源)或作為反應器儲水槽。該儲水槽50在本文中亦用簡稱“RWST” 50來表示。
參考圖1及進一步參考圖2,該ECCS亦包括一閥組件,其包含用來將該RWST 50及該ECCS的各式構件選擇性地彼此連接及/或與該PWR 10選擇性地連接的閥及配管。圖1顯示該示範性ECCS實施例的示意圖,其強調與該PWR 10的連接。圖2顯示圖1的ECCS的更細部的示意圖,其顯示出一些可非必要地被包括的額外特徵。應被瞭解的是,圖1及圖2兩者為了例示較佳實施例的目的而顯示ECCS的示意圖,且應被瞭解的是,進一步額外的特徵或替代性特徵亦可根據特定設計的實施情況、可應用的政府法規等等而被包括。
在描述該等示範性ECCS實施例時,下列的術語被使用在本文中。“通常是打開的”或“通常是關閉的”等用語係指閥或其它元件為了其所打算的目的在該PWR 10的正常操作期間的正常情況或狀態(例如,在核能電廠的例子中,為了其所打算的產生電力的目的)。“異常操作訊號”一詞係指一感測器或其它裝置所產生之顯示出該PWR操作的某些度量或面向已偏離正常的PWR操作範圍之外的訊號。舉例而言,一異常操作訊號可包含低反應器水位訊號、或一異常操作訊號可包含高反應器壓力訊號。低反應器水位訊號可表示一LOCA,而高反應器壓力訊號可表示一LOCA或減少散熱事件。典型地,一異常操作訊號(或此等訊號的組合)將自動地啟動聲音的、視覺的、或其它警報,用以將該偏差通知反應器操作人員,及/或該 ECCS將啟動一自動化的反應。在某些例子中及在一些實施例中,反應器操作人員能夠超控(override)或取消一自動化的ECCS反應。在某些例子中及在一些實施例中,對於一異常操作訊號或此等訊號的組合的ECCS反應可被反應器操作員手動地初始化。
為了能夠自動地啟動警報及/或自動化的ECCS反應,ECCS控制電路54被設置。在圖1及2中,該ECCS控制電路54被圖形地顯示;然而,應被理解的是,該ECCS控制電路54包括適當的電子元件、類比及/或數位電路、數位處理器或數位控制積體電路(IC)晶片,等等,以及適合的感測器裝置,用以偵測異常情況、產生相應的異常操作訊號、啟動視覺的及/或聲音的警報、及實施ECCS操作,譬如像是打開閥、關閉閥等等,用以實施適當的緊急爐芯冷卻操作以回應被偵測到異常狀況。可被使用的感測器包括:壓力感測器,用來偵測異常地高的反應器壓力並產生該高反應器壓力訊號;一水位感測器,用來偵測在該壓力容器12內之主冷卻水的低反應器水位並產生該低反應器水位訊號;一爐芯內溫度感測器,用來偵測該核子反應器爐芯14的一異常地高的溫度,等等。
非必要地,該ECCS控制電路54可包括電腦、微控制器、或被程式化或以其它方式被建構以處理接收到的異常操作訊號並產生適當的警報及/或促使ECCS實施一適當的自動化反應的其它數位式處理裝置形式的處理能力。在一些實施例中,該ECCS控制電路54可在決定一適當的 回應方面作出一些推測,例如,低反應器水位訊號與低反應器壓力訊號的組合可被推測為代表一LOCA,而高反應器壓力訊號可被推測為減少散熱事件。在一自動化的ECCS反應被提供的實施例中,該ECCS控制電路54適當地包括用來促使被選取的閥打開或關閉的致動線路。該等致動線路典型地為電線或其它電導體,但其它類型的致動,譬如氣動式線路,亦可被使用。
某些將被該ECCS補救的異常事件類型意謂著該PWR 10內的壓力升高。例如,一減少散熱事件(例如,減少饋給水流入到該蒸汽產生器18的饋給水入口22所造成者)將會產生熱,其將會升高在該PWR 10內部的壓力。相類似地,一LOCA典型地將導致加熱及壓力升高。在該PWR 10內的一不受控制的或過大的壓力升高會造成問題,因為這會危及該壓力容器12的密封完整性且會導致主冷卻水以高壓形式逸逃。
為了要控制該PWR 10內的壓力升高,一冷凝器60被設置在該圍阻體結構40內。該冷凝器60被設計來在高壓下操作。該閥系統包括一蒸器管路62,其將該PWR 10的內部加壓器體積30內的蒸汽泡與該高壓冷凝器60的冷凝器入口64相連接。一在該壓力容器12內的蒸汽通氣孔容器穿孔66被適當地設置,用來將該蒸汽管路62與該內部加壓器體積30內的蒸汽泡相連接。該冷凝器60亦具有冷凝器出口68,被冷卻的蒸汽、被冷凝的水、或一被冷卻的蒸汽/水混合物從該出口流出。為了要提供故障安全( failsafe)操作,該冷凝器60適當地是一被動式熱交換器,其將熱從在該冷凝器入口64處被允許進入的蒸汽處排至一設置在該圍阻體結構40外的外部散熱器70。
該冷凝器60適當地是一“單次通過(once-through)”式設計,其具有被一外殼(細部未被示出)包圍的管子。在一適當的實施例中,來自該PWR 10的內部加壓器體積30的蒸汽流動於該管側及來自於該外部散熱器70的水則流動於該殼側;然而,蒸汽流動於殼側及來自於該外部散熱器70的水流動於管側之相反的配置亦可被使用。在任何一種情形中,來自於該外部散熱器70的液體水經由第一管子72流入冷凝器60中,來自該蒸汽的熱在冷凝器處被傳遞至來自於該外部散熱器70的較冷的水,造成水被沸騰或汽化。來自該外部散熱器70的水(其現在變成為蒸汽相或蒸汽/水混合相)經由一第二管子74流回到該外部散熱器70。來自該外部散熱器70在管子72,74內的該水/蒸汽流被重力及介於流進來的水與流出去的蒸汽或混合的蒸汽/水之間的密度差所驅動。在該例示的實施例中,管子72,74在該外部散熱器側具有開口端,其與在該外部散熱器70內的水成流體聯通,使得來自該外部散熱器70的水流入到該第一管子72及從該第二管子74排出的該水/蒸器混合物流入到該外部散熱器70。然而,在另一實施例中,管子72,74的開口端被設置在該外部散熱器70內的熱交換器管接頭(未示出)取代,其形成一閉式循環路徑,在該路徑內,來自該第二管子74的蒸汽/ 水混合物冷凝回成水(就像以前一樣將熱排至該外部散熱器70中)且該被冷凝的水流回到該第一管子72中。
該外部散熱器70適當地為一設置在該圍阻體結構40外的一片水(a body of water),譬如一天然的或人工水池、湖泊、水塘或類此者。此一外部散熱器70有時亦被稱為“終極”散熱器。在一些實施例中,該外部散熱器70係設在反應器維修建築物內或其它結構或包體內。該外部散熱器70的水的體積應足以提供該高壓冷凝器60一段延長的操作時間。例如,在一些被實施的實施例中,該外部散熱器70被設計成具有足以讓該冷凝器60連續操作72小時的水量。如圖2所圖形地例示的,該外部散熱器70可非必要地包括額外的特徵,譬如一用來連接其它水源(例如,提供補充水至該外部散熱器70以進一步延長該冷凝器60的操作時間)的儲備(provision)76,及/或一用來釋出任何蒸汽的通氣孔78,該蒸汽是由該冷凝器60排入到該終極散熱器70的熱所產生的。應指出的是,如果該外部散熱器70是開放式一片水或具有足夠的外露表面積的話,則該通氣孔78可被適當地省略掉。
該冷凝器60被該蒸汽管62連接至該壓力容器12內的蒸汽通氣容器穿孔66,該容器穿孔在一些適當的實施例中是一3英吋(7.6公分)的穿孔,但其它尺寸的穿孔亦可被使用。如圖2中所示,一高壓通氣孔80亦被非必要地與該蒸汽管62連接以釋放任何超過該冷凝器60的設計壓力極限的壓力。一隔離閥V1提供在維修或修理期間將 該冷凝器60與該容器穿孔66分隔開的能力。在一些實施例中,該隔離閥V1通常是打開的,且在ECCS期間保持打開以回應一異常事件。藉由該隔離閥V1通常是打開的,該冷凝器60在該PWR的正常操作期間是在高壓力下。
然而,一與該冷凝器60的出口68連接至的閥V2則通常是關閉的。當一ECCS需要該冷凝器60操作時,該閥V2會打開以允許從該內部加壓器體積30內的蒸汽泡流經該冷凝器60並允許被冷凝的水流經該被打開的閥V2並進入到該反應器冷卻水庫存補充管路82,其將冷卻水饋給至該壓力容器12的容器穿孔84內。這完成了該流路並允許該被冷凝的水流回到該PWR內,如圖1所示,在一些實施例中,一氣體收集器(gas trap)86被設置來收集從該冷凝器出口68離開的氣態氮(N2)或氣態氧(O2),用以防止這些氣體進入到該壓力容器12內。
如圖2所示,止回閥V3可被設置在該反應器冷卻水庫存補充管路82上(或,更常地與閥V2串聯)以防止該主冷卻水從該壓力容器12回流至該閥組件中。該等閥V2,V3亦可如圖2所示地具有重複性(redundancy),及閥V2如圖2所示亦包括一通常是打開的隔離閥。如在圖2中進一步示出的,該反應器冷卻水庫存補充管路82及該容器穿孔84亦作為該壓力容器12的一用於反應器冷卻水庫存供應管路88的入口,該供應管路88可在該PWR的正常操作期間被用來提供補充水。雖然該單一容器穿孔84結合該閥組件構件V2,V3提供了具有這些多種功能的入 口,但兩個或更多個分離的容器穿孔亦可被設置,及/或多個其它的容器穿孔可為了一給定的功能而被設置。
該冷凝器60可被用來回應不同類型的異常事件,譬如LOCA或散熱減低事件。在一適當的方式中,該ECCS控制電路54將閥V2打開以開始該冷凝器60的操作,用以回應一低反應器水位訊號、一高反器壓力訊號、或一低反應器水位訊號和一高反器壓力訊號的組合。該低反應器水位訊號(不論是否伴隨有低反器壓力訊號)顯示一LOCA,而一未伴隨有低反應器水位訊號的高反器壓力訊號顯示一不是LOCA的異常事件,譬如散熱減低事件。因此,同一冷凝器60被用來回應一LOCA或散熱降低事件。
一散熱減低事件或其它不是一LOCA的異常事件是用一未伴隨低反應器水位訊號的高反應器壓力訊號來顯示。在此一情形中,主要的顧慮是該壓力容器12的過壓情況。為此,打開閥V2以啟動冷凝器60的操作被認為是一足夠的立即反應。
然而,在一LOCA的情形中,主冷卻水從該壓力容器12中被損失掉,可能造成反應器爐芯14的外露。因此,一LOCA反應包含了打開閥V2以開始該冷凝器60的操作及亦迅速地開始一冷卻水被加入到該壓力容器12的狀態。為了要達成後者,儘可能快地降低該壓力容器12內的壓力是所想要的,使得補充水可從該PWST 50被流入到該壓力容器12內。
當在該入口64處進入的蒸汽很熱時,該冷凝器60有效率的操作,在該入口64處的蒸汽典型地相當於在高壓下的蒸汽。對於此熱的蒸汽而言,介於該蒸汽和從該外部散熱器70流入到該冷凝器60內的水之間的溫度差是很大的,這導致熱有效地排到該外部散熱器70。然而,隨著壓力降低(典型地對應於較冷的蒸汽),該冷凝器60的效率亦會降低,且該壓力降低約為該時間的指數函數,帶著一很長的低壓“尾巴(tail)”。此一緩慢的晚期(late-stage)降壓在回應一LOCA上是不利的,因為它延緩了達到補充水流從該RWST 50流入到該壓力容器12內的狀態。
因此,當回應一LOCA時,該冷凝器60的操作類似於回應一散熱減低事件或非LOCA事件,直到該壓力容器12內的壓力至低於一預定的壓力門檻值為止。當該壓力門檻值被釋放,一低壓通氣閥V4被打開以連接該冷凝器出口68及一噴液器90以排放至該RWST 50中。如圖2中所示,該低壓通氣閥V4可以是一包含兩個其它路徑的複合閥或次組件,每一路徑包含串聯地設置的一空氣作動的閥(重新打開)其後接著一爆開閥(非重新打開)。包括該低壓通氣閥V4及噴液器90的該通氣路徑被作成可將該反應器充分地降壓的大小以允許該補充水開始從該RWST 50流出。在該示範性的配置中,包括該低壓通氣閥V4及噴液器90的該通氣路徑與包含閥V2,V3、反應器冷卻水庫存補充管路82、及容器穿孔84的冷凝回返路徑並聯地 配置,因此在該噴液器90加速降壓的同時,該冷凝器60持續地操作。
一旦該反應器被該噴液器90的動作充分地降壓,一閥V5被打開以允許水從該RWST 50流入到該反應器冷卻水庫存補充管路82及該容器穿孔84,用以提供補充水來補償在LOCA中損失的主冷卻水。如圖2中所示,該閥V5可具有重複性,且亦可包括一通常是打開的隔離閥。在一適當的實施例中,該閥V5包括並聯的爆開閥,其和該低壓通氣閥V4及噴液器90同時被致動。如圖2中進一步顯示的,該閥V5可與一止回閥V6(其再次地如圖2所示可包含重複性)被串聯地設置,用以防止主冷卻水從該壓力容器12流入RWST 50。當該反應器壓力低於在該圍阻體結構40內的壓力和該RWST 50內的水位提供的重力頭(gravity head)的總和時,水開始經由閥V5,V6、反應器冷卻水庫存補充管路82、及容器穿孔84從RWST 50流至該壓力容器12。為此,該RWST 50較佳地被設置在該圍阻體結構40內的一高的位置。
在一些LOCA中,該RWST 50的水容量可能不足以確保該反應器爐芯14保持被浸沒。例如,一由位在下凸緣或下垂直位置的管子破裂所造成的LOCA會讓大量的主冷卻水從該反應器穴室中被漏掉。在此等情況中,一外部水入口100經由閥V7提供額外的水。如圖2中所見,此額外的水入口應在該止回閥V6的上游處被饋入到該反應器冷卻水庫存補充管路82。如果該水入口100與一商用水 供應源或其它未經過濾的水的來源相連接的話,則該水入口100可包括一濾網或其它過濾器以確保微粒不會進入到該壓力容器12內。(類似地,一濾網或過濾器102可被設置來將從該RWST 50來的水流入到該反應器冷卻水庫存補充管路82之前將水予以清潔。)如圖2中所示,閥V7可具有重複性其亦可包括一通常是打開的隔離閥。雖然未示於圖2中,但進給至該水入口100的水供應源可以與在該PWR的正常操作期間提供補充水的反應器冷卻水庫存供應管88相同。
參考圖2,在一些實施例中,該噴液器90亦被用作為一用於第二管子74的通氣孔,該第二管子將蒸汽或水/蒸器混合物回送至該外部散熱器70。為此,該連接104被圖形地顯示於圖2中以指出一從該第二管子74至該噴液器90的連接。一閥V8被適當地建構,用以在該第二管子74內的壓力超過一通氣門檻值壓力時打開。該連接104及該閥V8應設置在該圍阻體結構40內部。
將被該ECCS補救的一些異常事件類型可以不必蒙受該PWR 10內壓力升高。例如,一急停故障會蒙受控制棒系統16的失效。在一種急停故障中,該控制棒無法適當地插入,這有時亦被稱為預期暫態未急停(ATWS)。急停故障亦可被早期地發現,例如藉由CRDM診斷偵測出一初期的問題。典型地,一急停故障不會產生立即的問題(譬如,壓力升高或溫度升高);然而,該急停故障將會危及對於其它類型的故障(如,LOCA或散熱減低事件)的 回應能力,因而典型地需要將反應器立即停機。
在一些PWR系統中,一反應度控制的輔助來源亦以一可溶解的吸收劑注入系統的形式被提供,用以將一被控制的數量的被溶解的可溶解中子吸收劑輸送至該主冷卻水中。例如,該可溶解的中子吸收劑可包含五硼酸鈉或另一可溶解的硼化合物。在此等系統中,該可溶解的吸收劑注入系統係在正常PWR操作期間被使用且在正常條件下,該主冷卻水包括一被控制數量的被溶解的硼化合物或其它被溶解的中子吸收劑。在此等PWR系統中,事先存在的可溶解的吸收劑注入系統亦可被用作為該ECCS的一部分。在此一系統中,一急停故障反應包括將高濃度的可溶解的中子吸收劑輸送至該主冷卻水中,用以抑制爐心的反應度。然而,在正常的PWR操作期間使用可溶解的吸收劑(譬如,硼化合物)有其缺點。例如,被溶解的硼酸是有腐蝕性的且會腐蝕一些鋼鐵的表面,可能會危及該壓力容器的密封完整性。
在圖1及2的示範性系統中,在正常的PWR操作期間在該壓力容器12內的主冷卻水並沒有包含被溶解的中子吸收劑,譬如硼化合物。然而,一包含可溶解的中子吸收劑的溶液的槽120被設置藉由將高濃度的可溶解的中子吸收劑輸送至該壓力容器12內的主冷卻水中以抑制爐芯反應度來回應一急停故障。在該示範性的實施例中,該驟冷槽120是一緊急硼槽120其包含高濃度的五硼酸鈉或其它硼化合物的溶液;然而,該驟冷槽大體上可包含其它種 類的可溶解的吸收劑的溶液。該緊急硼槽120在該PWR 10的正常操作期間沒有被使用,且不包括一被壓縮的氣態氮(N2)槽或其它專屬的壓力源。相反地,該硼槽120透過閥V10與該蒸汽管路62相連接,用以在一急停故障事故中提供加壓。該蒸汽管路62亦透過該通常是打開的閥V1與該高壓冷凝器60相連接,因此在加壓該緊急硼槽120時藉由加上該額外的閥V10就可使用。該緊急硼槽120亦與該反應器冷卻水庫存補充管路82相連接,該反應器冷卻水庫存補充管路82透過一閥V11饋給至該壓力容器12的容器穿孔84中。該緊急硼槽120與該反應器冷卻水庫存補充管路82的連接是位在該止回閥V3的上游,用以防止該主冷卻水從該壓力容器12回流至該硼槽120中。閥V10,V11可具有重複性及/或一通常是大開的隔離閥,如圖2所示。閥V10,V11通常是關閉的(亦即,在PWR 10的正常操作期間是關閉的)。在一些實施例中,閥V10,V11是一複合閥或次組件,其包括一手動的通常是打開的隔離閥其與兩個重複的(並聯的)路徑串聯,每一路徑包含一爆開閥(非可重新關閉),其被配置成與一止回閥串聯以防止回流。
當該ECCS控制電路54偵測到一急停故障時,閥V10,V11被手動地打開或被來自該ECCS控制電路54的自動控制訊號打開。因為一急停故障典型地並未伴隨著PWR尺度或參數立即偏離正常的操作範圍,所以閥V10,V11在一些實施例中為手動地操作的閥。打開閥V10可讓該內 部加壓器體積30內的蒸汽泡與該緊急硼槽120流體聯通以加壓該緊急硼槽120。該緊急硼槽120被適當地設置在該RWST 50上方。介於該被加壓的硼槽120與該壓力容器12內的主冷卻水之間的相對壓力頭(pressure head)允許硼溶液經由該反應器冷卻水庫存補充管路82及容器穿孔84流入到該壓力容器12內。如果該PWR 10使用主冷卻水幫浦來驅動該主冷卻水在該壓力容器12內的循環的話,這些幫浦應在該硼溶液注入期間被停止(類似地,在一LOCA的ECCS回應期間或其它意謂著進入該壓力容器12的被動流的ECCS回應期間,該等主冷卻水幫浦典型地是被關閉的)。在一適當的實施例中,該緊急硼槽120包含五硼酸鈉的水溶液,其具有在最糟的控制棒撤出該反應器爐芯14時足以將該PWR 10停機並在冷的條件下維持停機的濃度與體積。
圖1及2所示的ECCS是一示範性的例子。應被理解的是,不同等級的重複性可被加入到該ECCS中以確保故障安全操作。例如,在一些實施例中,兩個重複的緊急硼槽120被提供,每一者具有其本身的閥V10,V11。相類似地兩個高壓冷凝器60可被提供,每一者都具有其本身分開的相關聯的閥組,用以將重複性最大化。然而,應被理解的是,所揭露的構件或態樣的不同組合可被應用在不同的實施例中。例如,在省略掉該緊急硼槽120及閥V10,V11並提供用於急停故障之不同的回應機制的同時,冷凝器60可被提供來回應LOCA或散熱減低事件。相反地 ,該緊急硼槽120及閥V10,V11可被提供來回應急停故障,但結合不同的回應機制來回應LOCA或散熱減低事件。
又,雖然該該緊急硼槽120及閥V10,V11被描述在可溶解的硼化合物沒有在正常的PWR操作中被使用的一示範性實施例中,但使用該緊急硼槽120及閥V10,V11並結合一在正常的PWR操作期間使用硼來作為反應度控制的PWR亦可被實施。其它的此類結合及變化亦可被實施。
該等較佳實施例已被例示及描述。顯然地,修改及更替將會在其它人閱讀並理解上面的詳細說明之後發生。當所有這些修改及更替落在附屬的申請專利範圍或其等效物的範圍內時,本發明被解讀為包括所有這些修改及更替。
10‧‧‧壓水式反應器(PWR)
12‧‧‧壓力容器
14‧‧‧核子反應器爐芯
16‧‧‧控制棒系統
18‧‧‧蒸汽產生器
20‧‧‧升流管
22‧‧‧饋給水入口
24‧‧‧蒸汽出口
30‧‧‧內部加壓器體積
50‧‧‧儲水槽(RWST)
32‧‧‧加熱器
34‧‧‧噴液器
36‧‧‧擋板
40‧‧‧圍阻體結構
42‧‧‧洪水井
54‧‧‧ECCS控制電路
60‧‧‧冷凝器
62‧‧‧蒸汽管路
64‧‧‧冷凝器入口
66‧‧‧蒸汽通氣孔容器穿孔
70‧‧‧外部散熱器
72‧‧‧第一管子
74‧‧‧第二管子
76‧‧‧儲備
78‧‧‧通氣孔
80‧‧‧高壓通氣孔
V1‧‧‧隔離閥
V2‧‧‧閥
82‧‧‧反應器冷卻水庫存補充管路
84‧‧‧容器穿孔
86‧‧‧氣體收集器
V3‧‧‧止回閥
V4‧‧‧低壓通氣閥
90‧‧‧噴液器
V5‧‧‧閥
V6‧‧‧止回閥
V7‧‧‧閥
100‧‧‧水入口
102‧‧‧濾網(過濾器)
104‧‧‧連接
V8‧‧‧閥
120‧‧‧槽(緊急硼槽)
V11‧‧‧閥
本發明可以採用各式構件及構件配置的形式,及各式處理操作的處理操作的配置的形式。附圖只是用來例示較佳實施例且不應被解讀為是本發明的限制。
圖1圖形地顯示一示範性壓水式反應器(PWR)以及其相關聯的圍阻體結構及其相關聯的緊急爐芯冷卻系統(ECCS)的示意圖。
圖2圖形地顯示圖1的ECCS的一更細部的示意圖。
10‧‧‧壓水式反應器(PWR)
12‧‧‧壓力容器
14‧‧‧核子反應器爐芯
16‧‧‧控制棒系統
18‧‧‧蒸汽產生器
20‧‧‧升流管
22‧‧‧饋給水入口
24‧‧‧蒸汽出口
30‧‧‧內部加壓器體積
32‧‧‧加熱器
34‧‧‧噴液器
36‧‧‧擋板
40‧‧‧圍阻體結構
42‧‧‧洪水井
50‧‧‧儲水槽(RWST)
54‧‧‧ECCS控制電路
60‧‧‧冷凝器
62‧‧‧蒸汽管路
64‧‧‧冷凝器入口
66‧‧‧蒸汽通氣孔容器穿孔
68‧‧‧冷凝器出口
70‧‧‧外部散熱器
72‧‧‧第一管子
74‧‧‧第二管子
82‧‧‧反應器冷卻水庫存補充管路
84‧‧‧容器穿孔
86‧‧‧氣體收集器
90‧‧‧噴液器
100‧‧‧水入口
102‧‧‧濾網(過濾器)
120‧‧‧槽(緊急硼槽)
V1‧‧‧隔離閥
V2‧‧‧閥
V4‧‧‧低壓通氣閥
V5‧‧‧閥
V7‧‧‧閥
V10‧‧‧閥
V11‧‧‧閥

Claims (27)

  1. 一種設備,包含:一壓水式反應器(PWR),其包括一包含一核子反應器爐芯與主冷卻水的壓力容器,該壓力容器界定一內部加壓器體積,其包含蒸汽泡且具有至少一蒸汽壓控制裝置;一圍阻體結構,其包圍該PWR;一外部散熱器,其被設置在該圍阻體結構外;一冷凝器,其被設置在該圍阻體結構內且可操作地與該外部散熱器連相接;及一包含一或多個閥的閥組件,該閥組件可操作地將該PWR與該冷凝器相連接以回應一異常操作訊號,使得在將熱排至該外部散熱器的同時,該冷凝器將來自蒸汽泡的蒸汽予以冷凝並將被該被冷凝出來的水送回至該PWR。
  2. 如申請專利範圍第1項之設備,其中該外部散熱器包含一設置在該圍阻體結構外的一水體(a body of water)。
  3. 如申請專利範圍第1項之設備,其中該閥組件包括:一帶閥的蒸器路徑,其將該內部加壓器體積與該冷凝器入口連接,用以將蒸汽從該蒸汽泡輸送至該冷凝器;及一帶閥的回返路徑,其將該冷凝器的一出口與該PWR連接,用以將該被冷凝出來的水輸送至該PWR;其中該帶閥的蒸汽路徑被建構成在該PWR的正常操作期間是打開的及該帶閥的回返路徑被建構成在該PWR 的正常操作期間是關閉的。
  4. 如申請專利範圍第3項之設備,其中該帶閥的回返路徑被建構成是打開的以回應一包含低反應器水位訊號的異常操作訊號且被建構成是打開的以回應一包含一高反應器壓力訊號的異常操作訊號。
  5. 如申請專利範圍第1項之設備,其中:該冷凝器包含多個冷凝器;及該閥組件被建構來將該PWR與該等多個冷凝器可操作地連接以回應一包含低反應器水位訊號的異常操作訊號且被建構來將該PWR與同樣該等多個冷凝器可操作地連接以回應一包含高反應器壓力訊號的異常操作訊號。
  6. 如申請專利範圍第1項之設備,其更包含:一被設置在該圍阻體結構內的驟冷槽,其包含帶有被溶解的中子吸收劑的水;一閥組件,其更包括:一帶閥的槽加壓路徑,其將該內部加壓器體積選擇性地連接至該驟冷槽以加壓該驟冷槽;及一帶閥的可溶性吸收劑輸送路徑,其將該驟冷槽選擇性地連接至該PWR,使得處於來自該內部加壓器體積的壓力下的該驟冷槽透過該帶閥的槽加壓路徑將帶有被溶解的中子吸收劑的水排入到該PWR中。
  7. 如申請專利範圍第6項之設備,其中該被溶解的中子吸收劑包含可溶解的硼化合物。
  8. 如申請專利範圍第6項之設備,其中該被溶解的中 子吸收劑包含五硼酸鈉。
  9. 如申請專利範圍第6項之設備,其中該帶閥的槽加壓路徑沒有和該內部加壓器體積以外的任何加壓源連接來加壓該驟冷槽。
  10. 如申請專利範圍第6項之設備,其中除了接受來自該驟冷槽的該被溶解的中子吸收劑之外,在該PWR的加壓容器內的該主冷卻水並不包含被溶解的中子吸收劑。
  11. 如申請專利範圍第1項之設備,其更包含:一儲水槽,其被設置在該圍阻體結構內;該閥組件進一步將該冷凝器的出口與一噴液器相連接,用以將水排放至該儲水槽內以回應(1)該異常操作訊號及(2)該壓力容器內的壓力降低至一門檻值之下。
  12. 一種方法,包含:操作一設置在一圍阻體結構內的壓水式反應器(PWR),該PWR包括一壓力容器,其包含核子反應器爐芯及主冷卻水及一內部壓力調節蒸汽泡;及實施緊急爐芯冷卻處理以回應異常操作訊號,該緊急爐芯冷卻處理包括將一設置在該圍阻體結構內的冷凝器與該PWR可操作地相連接,用以在將熱排至一設置在該圍阻體結構外的外部散熱器的同時將來自於該蒸汽泡的蒸汽冷凝並將被冷凝的水回送至該PWR。
  13. 如申請專利範圍第12項之方法,其中該冷凝器的入口在操作期間與該蒸汽泡相連接,且回應異常操作訊號的該操作性連接包含將該冷凝器的出口與該PWR相連接 ,用以將該被冷凝的水回送至該PWR。
  14. 如申請專利範圍第13項之方法,其中該緊急爐芯冷卻處理更包含:在該操作性連接及回應該壓力容器內的壓力降低至低於一壓力門檻值之後,將該冷凝器的出口與一噴液器相連接,其將水排入到一設置在該圍阻體結構內部的儲水槽內。
  15. 如申請專利範圍第12項之方法,其中該緊急爐芯冷卻處理被實施以回應(1)一低反應器水位訊號,(2)一高反應器壓力訊號,及(3)該低反應器水位訊號和該高反應器壓力訊號兩訊號,的任何一者。
  16. 一種方法,包含:操作一設置在一圍阻體結構內的壓水式反應器(PWR),該PWR包括一壓力容器,其包含核子反應器爐芯及主冷卻水及一內部壓力調節蒸汽泡;及實施緊急爐芯冷卻處理,該緊急爐芯冷卻處理包括將一裝盛了帶有被溶解的中子吸收劑(neutron poison)的水的驟冷槽可操作地與該PWR相連接,使得該蒸汽泡加壓該驟冷槽,用以將帶有該被溶解的中子吸收劑的水排入到該PWR內。
  17. 如申請專利範圍第16項之方法,其中該被溶解的中子吸收劑包含可溶解的硼化合物。
  18. 如申請專利範圍第17項之方法,其中該操作包含: 操作該PWR,該PWR包括該包含核子反應器爐芯及主冷卻水的壓力容器,其中該主冷卻水並不包含被溶解的可溶解的硼化合物。
  19. 如申請專利範圍第16項之方法,其中該被溶解的中子吸收劑包含五硼酸鈉。
  20. 如申請專利範圍第16項之方法,其中該操作包含:操作該PWR,該PWR包括該包含核子反應器爐芯及主冷卻水的壓力容器,其中該主冷卻水並不包含被溶解的中子吸收劑。
  21. 如申請專利範圍第16項之方法,其中該緊急爐芯冷卻處理的實施不包括將該驟冷槽與該蒸汽泡以外的任何加壓源連接。
  22. 一種設備,包含:一壓水式反應器(PWR),其包括一壓力容器,其包含一核子反應器爐芯、主冷卻水、及一壓力調節蒸汽泡;一驟冷槽,其包含帶有被溶解的中子吸收劑的水;一帶閥的槽加壓路徑,其將蒸汽泡選擇性地連接至該驟冷槽以加壓該驟冷槽;及一帶閥的可溶性吸收劑輸送路徑,其將該驟冷槽選擇性地連接至該PWR,使得處於來自該蒸汽泡的壓力下的該驟冷槽將帶有被溶解的中子吸收劑的水排入到該PWR中。
  23. 如申請專利範圍第22項之設備,其中在該PWR內 的該主冷卻水不包含從該驟冷槽排入到該PWR中之被溶解的中子吸收劑以外的被溶解的中子吸收劑。
  24. 一種設備,包含:一壓水式反應器(PWR),其包括一包含一核子反應器爐芯與主冷卻水的壓力容器,該壓力容器界定一內部加壓器體積,其包含蒸汽泡且具有至少一蒸汽壓控制裝置;一圍阻體結構,其包圍該PWR;一外部散熱器,其被設置在該圍阻體結構外;至少一冷凝器,其被設置在該圍阻體結構內且被可操作地與該外部散熱器連接;及一包含一或多個閥的閥組件,該閥組件被建構來(1)藉由將該至少一冷凝器與該PWR可操作地相連接,用以將來自該蒸汽泡的蒸汽冷凝並將該被冷凝的水回送至該PWR以回應散熱減低事件,及(2)藉由將該至少一冷凝器與該PWR可操作地相連接,用以將來自該蒸汽泡的蒸汽冷凝並將被冷凝的水回送至該PWR以回應冷卻水減少意外事件(LOCA)。
  25. 如申請專利範圍第24項之設備,其中該閥組件包括:一帶閥的蒸汽路徑,其將該內部加壓器體積與該至少一冷凝器的入口相連接,用以將蒸汽從該蒸汽泡輸送至該冷凝器;及一帶閥的回返路徑,其將該至少一冷凝器的出口與該PWR相連接,用以將該被冷凝的水回送至該PWR; 其中該帶閥的蒸汽路徑被建構成在該PWR的正常操作期間是打開的,及該帶閥的回返路徑被建構成在該PWR的正常操作期間是關閉的;及其中該帶閥的回返路徑被建構成在回應偵測到散熱減低事件或LOCA的任一者時是打開的。
  26. 如申請專利範圍第25項之設備,其中該帶閥的迴返路徑被建構成開口至一噴液器,其將水排入到一設置在該圍阻體結構內的儲水槽內以回應偵測到一LOCA及該壓力容器內的壓力降低至一門檻值壓力之下。
  27. 如申請專利範圍第24項之設備,其中該外部散熱器包含被設置在該圍阻體結構外的至少一水體且該至少一冷凝器與該外部散熱器的該操作性連接包含一開放式管連接,在該開放式管連接內來自該外部散熱器的水藉著自然循環流經該至少一冷凝器。
TW101109329A 2011-03-23 2012-03-19 用於壓水式反應器之緊急爐芯冷卻系統 TW201303890A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/069,657 US8638898B2 (en) 2011-03-23 2011-03-23 Emergency core cooling system for pressurized water reactor

Publications (1)

Publication Number Publication Date
TW201303890A true TW201303890A (zh) 2013-01-16

Family

ID=46859141

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101109329A TW201303890A (zh) 2011-03-23 2012-03-19 用於壓水式反應器之緊急爐芯冷卻系統

Country Status (9)

Country Link
US (1) US8638898B2 (zh)
EP (1) EP2689426B1 (zh)
JP (1) JP2014513280A (zh)
KR (1) KR20140037825A (zh)
CN (1) CN102693765A (zh)
AR (1) AR085531A1 (zh)
CA (1) CA2830903A1 (zh)
TW (1) TW201303890A (zh)
WO (1) WO2012129402A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI810737B (zh) * 2020-12-07 2023-08-01 美商西屋電器公司 高能核燃料、燃料總成、及更換燃料之方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985842B1 (fr) * 2012-01-18 2014-02-21 Technicatome Systeme pour evacuer la puissance residuelle d'un reacteur nucleaire a eau sous pression
FR2985845B1 (fr) 2012-01-18 2014-02-14 Dcns Module immerge de production d'energie electrique
FR2985843B1 (fr) * 2012-01-18 2014-03-14 Dcns Module de production d'energie electrique
US20140072090A1 (en) * 2012-09-13 2014-03-13 Ge-Hitachi Nuclear Energy Americas Llc Method and system for an alternate rpv energy removal path
CN103050157B (zh) * 2012-12-11 2015-07-29 中国核电工程有限公司 一种优化辅助给水系统给水隔离的装置
CN103871513B (zh) * 2012-12-13 2016-06-29 中国核动力研究设计院 整体模拟试验中反应堆压力容器分布式模拟结构
US11373768B2 (en) * 2013-03-12 2022-06-28 Bwxt Mpower, Inc. Refueling water storage tank (RWST) with tailored passive emergency core cooling (ECC) flow
EP2973595B1 (en) * 2013-03-15 2019-01-02 BWXT mPower, Inc. Passive techniques for long-term reactor cooling
CN105431908B (zh) 2013-03-15 2017-09-22 BWXT m动力股份有限公司 用于长期反应堆冷却的无源技术
JP6412099B2 (ja) 2013-03-15 2018-10-24 セラダイン,インコーポレイティド 原子炉を冷却する方法及び、多面体水素化ホウ素アニオン又はカルボランアニオンを含む原子炉
JP5853054B2 (ja) * 2013-06-19 2016-02-09 コリア アトミック エナジー リサーチ インスティチュート 原子炉格納構造物の冷却システム
EP3134902B1 (en) 2014-04-25 2021-03-31 Ceradyne Inc. Nuclear fuel storage pool including aqueous solution of polyhedral boron hydride anions or carborane anions and methods of using the same
US10529458B2 (en) * 2014-07-22 2020-01-07 Bwxt Mpower, Inc. Integral isolation valve systems for loss of coolant accident protection
CN105632571A (zh) * 2014-12-01 2016-06-01 上海核工程研究设计院 一种一体化反应堆设备
KR101588827B1 (ko) * 2015-02-06 2016-01-27 최일호 소형 원자력 발전소
US10706973B2 (en) 2017-05-02 2020-07-07 Ge-Hitachi Nuclear Energy Americas Llc Very simplified boiling water reactors for commercial electricity generation
RU2649408C1 (ru) * 2017-05-30 2018-04-03 Открытое акционерное общество "Научно-производственное объединение по исследованию и проектированию энергетического оборудования им. И.И. Ползунова" (ОАО "НПО ЦКТИ") Устройство аварийного охлаждения реакторной установки
US10867712B2 (en) 2017-06-28 2020-12-15 Ge-Hitachi Nuclear Energy Americas Llc Isolation condenser systems for nuclear reactor commercial electricity generation
CN107591213B (zh) * 2017-07-31 2023-05-23 清华大学天津高端装备研究院 一体化压水反应堆
CN107507652B (zh) * 2017-07-31 2023-05-23 清华大学天津高端装备研究院 一种一体化反应堆的堆芯结构及核反应堆
US11380451B2 (en) 2017-08-15 2022-07-05 Ge-Hitachi Nuclear Energy Americas Llc Depressurization and coolant injection systems for very simplified boiling water reactors
KR102044832B1 (ko) * 2018-01-04 2019-11-15 한국원자력연구원 안전주입 장치 및 이를 구비하는 원전
JP6505889B1 (ja) * 2018-02-28 2019-04-24 三菱重工業株式会社 原子炉の異常緩和設備及び制御棒の固着判定方法
RU186261U1 (ru) * 2018-07-23 2019-01-15 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (СПбГМТУ) Система пассивного отвода тепла реакторной установки
CN109190229B (zh) * 2018-08-24 2020-05-15 西安交通大学 一种核电厂钢制安全壳内蒸汽冷凝回流模拟方法
CN109243641B (zh) * 2018-10-18 2022-04-22 中国核动力研究设计院 用于压水堆失水事故的反应堆压力容器实验模拟体
CN109473185B (zh) * 2018-11-13 2022-07-29 中国核动力研究设计院 一种自动化学停堆系统的测试装置及其测试方法
RU2740786C1 (ru) * 2020-04-03 2021-01-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (СПбГМТУ) Система пассивного отвода тепла реакторной установки
CN111508620B (zh) * 2020-04-30 2023-03-24 中国核动力研究设计院 一种反应堆机动性自调节方法
CN111624297A (zh) * 2020-06-05 2020-09-04 上海交通大学 一种评估核电厂事故后化学效应的台架试验系统及方法
CN112037950B (zh) * 2020-09-24 2022-02-11 中国核动力研究设计院 一种燃料棒裂变产物释放模拟装置及其使用方法
US11984230B2 (en) * 2020-12-22 2024-05-14 Ge-Hitachi Nuclear Energy Americas Llc Dual-mode heat removal system that allows first direction natural circulation flow through a heat exchanger during nuclear reactor emergency cooling and allows opposite direction forced flow through the heat exchanger during decay heat removal
RU2761108C1 (ru) * 2021-03-10 2021-12-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (СПбГМТУ) Система пассивного отвода тепла реакторной установки
CN114582529B (zh) * 2022-02-16 2024-08-20 中国核动力研究设计院 基于大盘管蒸汽发生器的微型全自然循环压水反应堆系统
CN115376395B (zh) * 2022-08-05 2023-11-10 国家电投集团科学技术研究院有限公司 一种失水事故全过程模拟试验系统
WO2024112224A1 (ru) * 2022-11-23 2024-05-30 Акционерное Общество "Акмэ - Инжиниринг" Система пассивного отвода тепла через прямоточный парогенератор
WO2024112225A1 (ru) * 2022-11-23 2024-05-30 Акционерное Общество "Акмэ - Инжиниринг" Система пассивного отвода тепла через прямоточный парогенератор и способ ее заполнения
GB2625280A (en) 2022-12-12 2024-06-19 Moltex Energy Ltd Temperature activated passive shutdown device for a nuclear reactor

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2554180A1 (de) * 1975-12-02 1977-06-16 Kraftwerk Union Ag Kernreaktoranlage
FR2466841A1 (fr) * 1979-09-28 1981-04-10 Commissariat Energie Atomique Reacteur nucleaire dont les generateurs de vapeur sont equipes d'une capacite reserve
US4473528A (en) * 1980-04-21 1984-09-25 Nucledyne Engineering Corporation Passive containment system
JPS5837594A (ja) * 1981-08-31 1983-03-04 株式会社東芝 沸騰水形原子炉の給水スパ−ジヤ
US4584165A (en) * 1983-02-09 1986-04-22 General Electric Company Redundant reactivity control system
US4753771A (en) * 1986-02-07 1988-06-28 Westinghouse Electric Corp. Passive safety system for a pressurized water nuclear reactor
US4738818A (en) * 1986-09-29 1988-04-19 Westinghouse Electric Corp. Feedwater control in a PWR following reactor trip
US4832898A (en) * 1987-11-25 1989-05-23 Westinghouse Electric Corp. Variable delay reactor protection system
US4830815A (en) * 1988-04-25 1989-05-16 General Electric Company Isolation condenser with shutdown cooling system heat exchanger
GB8817394D0 (en) * 1988-07-21 1989-07-05 Rolls Royce & Ass Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors
JPH02253193A (ja) * 1989-03-28 1990-10-11 Toshiba Corp 蒸気凝縮装置のベントシステム
US5180543A (en) * 1989-06-26 1993-01-19 Westinghouse Electric Corp. Passive safety injection system using borated water
JP2991308B2 (ja) * 1990-04-03 1999-12-20 ウエスチングハウス・エレクトリック・コーポレイション 受動安全注入装置及び予備凝縮多孔分散装置
US5268943A (en) * 1992-06-24 1993-12-07 Westinghouse Electric Corp. Nuclear reactor with makeup water assist from residual heat removal system
US6269873B1 (en) 1994-10-05 2001-08-07 Commissariat A L'energie Atomique Method for controlling heat exchange in a nuclear reactor
JP3477271B2 (ja) * 1995-04-28 2003-12-10 三菱重工業株式会社 加圧水型原子炉の硼酸水注入設備
JP2001228280A (ja) * 2000-02-21 2001-08-24 Hitachi Ltd 原子炉
DE60127449T2 (de) * 2000-12-14 2008-02-14 Pebble Bed Modular Reactor (Proprietary) Ltd. Kühlsystem
US6795518B1 (en) 2001-03-09 2004-09-21 Westinghouse Electric Company Llc Integral PWR with diverse emergency cooling and method of operating same
FR2827997B1 (fr) * 2001-07-24 2005-10-07 Framatome Anp Procede et dispositif d'alimentation d'au moins un generateur de vapeur d'un reacteur nucleaire a eau sous pression pendant les periodes d'arret du reacteur
DE102005057249A1 (de) * 2005-11-29 2007-05-31 Framatome Anp Gmbh Einspeisesystem und zugehöriges Betriebsverfahren
US8687759B2 (en) * 2007-11-15 2014-04-01 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Internal dry containment vessel for a nuclear reactor
US8767905B2 (en) * 2008-03-07 2014-07-01 Babcock & Wilcox Technical Services Group, Inc. Combinatorial heterogeneous-homogeneous reactor
JP2010085282A (ja) * 2008-09-30 2010-04-15 Toshiba Corp 加圧水型原子力プラント

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI810737B (zh) * 2020-12-07 2023-08-01 美商西屋電器公司 高能核燃料、燃料總成、及更換燃料之方法

Also Published As

Publication number Publication date
JP2014513280A (ja) 2014-05-29
WO2012129402A8 (en) 2013-10-31
CA2830903A1 (en) 2012-09-27
CN102693765A (zh) 2012-09-26
EP2689426A4 (en) 2014-08-13
AR085531A1 (es) 2013-10-09
WO2012129402A1 (en) 2012-09-27
US8638898B2 (en) 2014-01-28
US20120243651A1 (en) 2012-09-27
EP2689426A1 (en) 2014-01-29
KR20140037825A (ko) 2014-03-27
EP2689426B1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
TW201303890A (zh) 用於壓水式反應器之緊急爐芯冷卻系統
KR101215323B1 (ko) 원자로를 포함하는 원자로 조립체, 원자로용 비상 냉각 시스템, 및 원자로의 비상 냉각 방법
US20240312651A1 (en) Passive emergency feedwater system
US6795518B1 (en) Integral PWR with diverse emergency cooling and method of operating same
US5102616A (en) Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors
US9728281B2 (en) Auxiliary condenser system for decay heat removal in a nuclear reactor
US9583221B2 (en) Integrated emergency core cooling system condenser for pressurized water reactor
US9779840B2 (en) PWR decay heat removal system in which steam from the pressurizer drives a turbine which drives a pump to inject water into the reactor pressure vessel
JPH0715507B2 (ja) 原子炉の受動的安全装置
JPH0666985A (ja) 加圧水型原子炉及び蒸気発生器の伝熱管の漏れの軽減方法
WO2015142407A2 (en) Passively initiated depressurization valve for light water reactors
KR20060020756A (ko) 다양한 비상냉각설비를 갖춘 일체형 가압 경수로 및 그운전방법
CN108447570B (zh) 船用反应堆及其二次侧非能动余热排出系统
KR20150132510A (ko) 장기간 반응기 냉각을 위한 수동형 기법
JPH04109197A (ja) 加圧水型原子炉の炉心崩壊熱除去装置
Song et al. A Simulation for PHTS Response in PHWR Severe SGTR Accident
Santamaura et al. ICONE15-10806 THE MANAGEMENT OF SEVERE ACCIDENTS IN MODERN PRESSURE TUBE REACTORS
Park et al. Evaluation of multiple steam generator tube rupture events for KNGR