TW201246418A - A die detection method for 3D die stacking - Google Patents

A die detection method for 3D die stacking Download PDF

Info

Publication number
TW201246418A
TW201246418A TW100116247A TW100116247A TW201246418A TW 201246418 A TW201246418 A TW 201246418A TW 100116247 A TW100116247 A TW 100116247A TW 100116247 A TW100116247 A TW 100116247A TW 201246418 A TW201246418 A TW 201246418A
Authority
TW
Taiwan
Prior art keywords
die
detection
angle
line
module
Prior art date
Application number
TW100116247A
Other languages
Chinese (zh)
Other versions
TWI420614B (en
Inventor
Po-Cheng Hsueh
Original Assignee
Po-Cheng Hsueh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Po-Cheng Hsueh filed Critical Po-Cheng Hsueh
Priority to TW100116247A priority Critical patent/TWI420614B/en
Publication of TW201246418A publication Critical patent/TW201246418A/en
Application granted granted Critical
Publication of TWI420614B publication Critical patent/TWI420614B/en

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Wire Bonding (AREA)

Abstract

The invention provides a die detection method for 3D die stacking is suitable, which a control module is used to control a die detection module or a circuit board to detect a connection point of 3D die stacking with a plurality of detected layers which located on the circuit board. Also, each connection point connect with the circuit board. The method includes which the rotation of the die detection module or the circuit board is to limited the distance between the die detection module and each detected layer among the focus of die detection module. Hence, refocusing the die detection module is unnecessarily to reduce the detection time. The detection cost of 3D die stacking can be reduced greatly.

Description

201246418 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種晶粒檢測方法,特別是指一種應 用於一立體佈局晶粒之檢測方法。 【先前技術】 隨著半導體封裝製程的演進,系統級立體封裝技術( System on 3D package, So3D)已普遍被應用於如行動電 話等行動式電子裝置的晶粒封裝流程上。 舉例來說,參閱圖1,一以平面方式佈局之晶粒1具有 六個電路元件A〜F,當電連接不同電路元件時可能會產生 較長的連接路徑(如圖1中電路元件D上的P1點電連接至 電路元件C上的P2點之連接路徑),而參閱圖2,當該晶 粒1改以立體方式佈局成一第一待檢測層11與一第二待檢 測層12時,其中’該第一待檢測層11具有電路元件A、B 、D、E ’且該第二待檢測層12具有電路元件c、F,電路 元件D上的P1點電連接至電路元件C上的P2點之連接路 徑就可以有效縮短,因此,目前最常見的系統級立體封裝 技術,就是在單一晶粒尺寸封裝(Chip size package, CSP )上運用一晶粒堆疊(Die stacking)技術,以有效提供—以 晶粒尺寸為首要考量的相關晶粒封裝技術上,例如:行動 式電子產Π0 (如·行動電0舌、數位攝影機、或是數位相機 等消費性點子產品)的相關晶粒封裝檢測。 然而,該先別技術卻存在著一個相當嚴重的缺點,參 閱圖3,假設一設置於一基板1上之立體佈局晶粒2具有四 201246418 個待檢測層C1~C4,且每一待檢測層C1〜C4的面積皆不相 同,其中該等待檢測層C1〜C4分別具有一與該基板1連接 之接點w1〜w4。 當該立體佈局之晶粒2進行該等接點w1〜W4之檢測時 ,一晶粒檢測模組9必須在二直線L1、L2上分別移動至不 同的位置點S1〜S4以檢測每一待檢測層C1~C4上與該基板 1之接點w1〜w4是否有效連接,由於每一接點w1〜w4位置 相對於該晶粒檢測模組9之距離d1〜d4皆不盡相同,因此 ,該晶粒檢測模組9每移動到一位置點w1〜w4時,必須針 對不同的距離d1〜d4進行對焦,以有效檢測對應之接點 w1~w4,如:當該晶粒檢測模組9檢測完接點w1後,欲進 行接點w2之檢測時,該晶粒檢測模組9需由位置點S1移 動至位置點S2,同時由於待接點w2與該晶粒檢測模組9 之距離d2大於該接點w1與該晶粒檢測模組9之距離d1, 因此,該晶粒檢測模組9在檢測該接點w2之前,必須重新 對焦以有效取得該接點w2的清晰影像,才可得到正確的檢 測結果,以現今產業界中應用晶粒堆疊(Die stacking)技術 之晶粒的待檢測層之數量,幾乎都是介於8〜32層,未來隨 著技術之演進甚至不排除會增加至64層以上,因此,在先 前技術中,每檢測一待檢測層時,該晶粒檢測模組9都需 要重新對焦以取得清晰之檢測影像,無疑地一定會大幅增 加該立體佈局之晶粒2的檢測時間,而檢測成本亦會隨著 大幅增加。 所以,如何有效降低立體佈局之晶粒的檢測時間與檢 201246418 測成本,是系統級立體封裝技術So3D是否可以成為新的晶 粒封裝檢測主流技術的關鍵因素之一。 【發明內容】 因此,本發明之目的,即在提供一種立體佈局晶粒之 檢測方法,適用於組配一控制模組控制一晶粒檢測模組, 以檢測一配置於該基板上且具有多數個待檢測層之立體佈 局晶粒之多數個接點,其包含以下步驟: 組配該控制模組,以偵測一通過該等接點之第一假想 直線; 組配該控制模組,以得到一第一角度,且該第一角度 為該第一假想直線與一該等待檢測層之法線相交之一銳角 之餘角; 組配該控制模組,以控制該晶粒檢測模組轉動該第一 角度,使該晶粒檢測模組與該第一假想直線垂直;及 組配該控制模組,以控制該晶粒檢測模組於一第二直 線上移動至每一檢測點,以檢測每一檢測點所對應之接點 〇 本發明之另一目的,即在提供一種立體佈局晶粒之檢 測方法,適用於組配一控制模組控制一晶粒檢測模組與一 基板,以檢測一配置於該基板上且具有多數個待檢測層之 立體佈局晶粒之多數個接點,其包含以下步驟: 組配該控制模組,以偵測一通過該等接點之第一假想 直線; 組配該控制模組,以得到一第二角度,且該第二角度 201246418 為該第一假想直線與一該等待檢測層之法線相交之一銳角 之餘角; 組配該控制模組,以控制該基板轉動該第二角度,使 該晶粒檢測模組與該第一假想直線垂直;及 組配該控制模組,以控制該晶粒檢測模組於一第二直 線上移動至每一檢測點,以檢測每一檢測點所對應之接點 0 本發明之另一目的,即在提供一種立體佈局晶粒之檢 測方法,適用於組配一控制模組控制一晶粒檢測模組及一 基板,以檢測一配置於該基板上且具有多數個待檢測層之 立體佈局晶粒與一導線電連接之導通點,且每一導通點分 別電連接於一導線且該導線與該基板電連接,其包含以下 步驟: 組配該控制模組,以設定一平行於該導線之第三直線 f 組配該控制模組,以得到一第二角度,且該第二角度 為第三假想直線與該等待檢測層之法線相交之一銳角之餘 角; 組配該控制模組,以控制該基板轉動該第二角度,使 該晶粒檢測模組與該第一假想直線垂直;及 組配該控制模組以控制一晶粒檢測模組於一第二直線 上移動至每一檢測點,以檢測每一檢測點所對應之接點。 本發明之另一目的,即在提供一種9. 一種立體 佈局晶粒之檢測方法,適用於組配一控制模組控制一晶粒 201246418 檢測模組,以檢測一配置於該基板上且具有多數個待檢測 層之立體佈局晶粒與一導線電連接之導通點,且每一導通 點分別電連接於一導線且該導線與該基板電連接,其包含 以下步驟: 組配該控制模組,以設定一平行於該導線之第三直線 9 組配該控制模組,以得到一第一角度,且該第一角度 為第三假想直線與該等待檢測層之法線相交之一銳角之餘 角; 組配該控制模組,以控制該晶粒檢測模組轉動該第二 角度,使該晶粒檢測模組與該第一假想直線垂直;及 組配該控制模組以控制一晶粒檢測模組於一第二直線 上移動至每一檢測點,以檢測每一檢測點所對應之接點。 於是,本發明之功效在於適當轉動該晶粒檢測模組或 是基板,使得該晶粒檢測模組與每一接點或是每一導通點 之間的距離介於該晶粒檢測模組織成像焦距之間,因此, 該晶粒檢測模組檢測每一接點或是每一導通點時不需要重 新對焦,所以可以大幅減少檢測時間,進而得以大幅降低 立體佈局晶粒之檢測時間,並有效降低檢測成本。 【實施方式】 有關本發明之相關申請專利特色與技術內容,在以下 配合參考圖式之三個較佳實施例的詳細說明中,將可清楚 的呈現。 第一較佳實施例 201246418 聯合參閱圖4、5,本較佳實施例適用於組配一控制模 組(圖未示)控制一晶粒檢測模組9或是一基板6,使其轉 動以檢測一配置於該基板6上且具有多數個待檢測層 C1〜C4之立體佈局晶粒4之多數個接點t1〜t4,每一接點分 別是對應之待檢測層與該基板6電連接之處,其包含以下 步驟: 步驟51是組配該控制模組,以偵測一通過該等待檢測 層C1〜C4之接點t1〜t4之第一假想直線T ; 步驟52是組配該控制模組,以得到一第一角度α,而 該第一角度α之計算方式如下: 該第一假想直線Τ與一該等待檢測層C1~C4之法線Μ 相交之一銳角Θ,然後該銳角Θ之餘角即為該第一角度《 ; 步驟53是組配該控制模組,以控制該晶粒檢測模組9 轉動該第一角度《,直到與該第一假想直線Τ垂直,同時, 該晶粒檢測模組9可移動地在一與該第一假想直線Τ平行 之第二假想直線L1上移動(也就是該晶粒檢測模組9介於 二平行線L1、L2之間平行移動),且該第一假想直線Τ與 該第二假想直線L1之距離介於該晶粒檢測模組9之一成像 焦距F内; 步驟54是組配該控制模組,以控制該晶粒檢測模組9 在該第二假想直線L1上移動至一檢測點S1,以檢測對應 之待檢測層C1,值得說明的是,該等檢測點S1〜S4分別對 應為該等接點t1〜t4且每一檢測點至對應接點之距離d1〜d4 皆相等於該第一假想直線T與該第二假想直線L1之距離; 9 201246418 步驟55是組配該控制模組,以判斷每一待檢測層是否 皆已完成檢測,若是,則結束晶粒接點檢測流程,若否, 執行步驟56 ;及 步驟56是組配該控制模組以控制該晶粒檢測模組9由 目前的檢測點(如:S1)移動至次一個檢測點(如:S2), 以檢測對應之待檢測層之接點(如:t2 ),並回到步驟55。 由上可知,由於每一個檢測點S1〜S4與對應之接點 t1〜t4之距離皆相同,或是其誤差範圍不超過該晶粒檢測模 組9之成像焦距F外,因此,該晶粒檢測模組9檢測每一 接點時不需要重新進行對焦即可有效取得每一接點的清晰 影像’因此可以降低晶粒之測試時間及測試成本。 第二較佳實施例 聯合參閱圖6、7,本較佳實施例與第一較佳實施例最 大的不同點在於,在第一較佳實施例中,該控制模組是控 制a亥晶粒檢測模組9轉動該第一角度^,而在本較佳實施例 中,該控制模組是控制該基板6轉動一第一角度ρ 〇 步驟51是組配該控制模組,以偵測—通過該等待檢測 層C1〜C4之接點t1〜t4之一第一假想直線τ ; 步驟52’是組配該控制模組,以得到一第二角度々,而 該第二角度P之計算方式如下: 該第一假想直線T與一該等待檢測層C1~C4之法線Μ 相交之一銳角Θ ’然後該銳角Θ之餘角即為該第二角度# ; 步驟53’是組配該控制模組,以控制該基板6轉動該第 二角度Ρ,直到該晶粒檢測模組9與該第一假想直線Τ垂直 10 201246418 ,同時,該晶粒檢測模組9可移動地在一與該第一假想直 線T平行之第二假想直線L1上移動(也就是該晶粒檢測模 組9介於二平行線L1、L2之間平行移動),且該第一假想 直線T與該第二假想直線L1之距離介於該晶粒檢測模組9 之一成像焦距F内; 步驟54是組配該控制模組,以控制該晶粒檢測模組9 在該第二假想直線L1上移動至一檢測點S1,以檢測對應 之待檢測層C1,值得說明的是,該等檢測點S1〜S4分別對 應為該等接點t1~t4且每一檢測點至對應接點之距離d1〜d4 皆相等於該第一假想直線T與該第二假想直線L1之距離; 步驟55是組配該控制模組,以判斷每一待檢測層是否 皆已完成檢測,若是,則結束晶粒接點檢測流程,若否, 執行步驟56 ;及 步驟56是組配該控制模組以控制該晶粒檢測模組9由 目前的檢測點(如:S1)移動至次一個檢測點(如:S2), 以檢測對應之待檢測層之接點(如:t2),並回到步驟55。 第三較佳實施例 參閱圖8,本較佳實施例與第一、二較佳實施例最大的 不同點在於,當該控制模組無法偵測到一通過該等待檢測 層C1〜C4之接點t1〜t4之一第一假想直線T時(也就是無 法得到一第一假想直線T使得其剛好與每一待檢測層之接 點t1〜t4),該控制模組根據一與該基板6電連接之導線,Η 並設定一平行於該導線之第三假想直線,且每一待檢測層 C1〜C4之接點Π〜t4分別與該導線Η電連接於一導通點 11 201246418 w1〜w4,因此,相似於該第一較佳實施例,該控制模組可 控制該晶粒檢測模組9轉動該第一角度《,且該第一角度α 即為該第一假想直線Τ與該等待檢測層C1〜C4之法線Μ相 交之一銳角Θ,然後取該銳角Θ之餘角即為該第一角度α, 所以,該晶粒檢測模組9可移動地在一與該第一假想直線Τ 平行之第二假想直線L1移動(也就是該晶粒檢測模組9介 於二平行線L1、L2之間平行移動),以檢測每一個導通點 w1〜w4,此外,該第一假想直線Τ與該第二假想直線L1之 距離介於該晶粒檢測模組9之一成像焦距F內。 同理,相似於該第二較佳實施例,該控制模組可控制 該基板6轉動該第二角度;0,且該第二角度p即為該第一假 想直線T與該等待檢測層C1〜C4之法線Μ相交之一銳角Θ ,然後取該銳角Θ之餘角即為該第二角度A,所以,該晶粒 檢測模組9可移動地在一與該第一假想直線T平行之第二 假想直線L1上移動,以檢測每一個導通點w1〜W4,此外, 該第一假想直線T與該第二假想直線L1之距離介於該晶粒 檢測模組9之一成像焦距F内。 綜合上述,本發明之特色在於利用適當地轉動該晶粒 檢測模組或是該基板,使得該晶粒檢測模組與每一接點或 是導通點之間的距離介於其成像焦距內,因此,該晶粒檢 測模組檢測每一接點或是導通點時不需要重複對焦,所以 可以大幅減少立體佈局之晶粒之檢測時間,進而得以大幅 降低立體佈局之晶粒的檢測成本,故可以達成本發明之目 的。 12 201246418 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍內。 【圖式簡單說明】 圖1是一平面佈局晶粒之示意圖; 圖2是一立體佈局晶粒之示意圖; 圖3是一立體佈局晶粒與一晶粒檢測模組之側視示意 圖, 圖4是本發明之第一較佳實施例之流程圖; 圖5是該第一較佳實施例之示意圖; 圖6是本發明之第二較佳實施例之流程圖; 圖7是該第二較佳實施例之示意圖;及 圖8是本發明之第三較佳實施例之示意圖。 13 201246418 【主要元件符號說明】 基板 晶粒檢測模組 4........立體佈局晶粒 51〜56 _ •步驟 52’〜53’·步驟 14201246418 VI. Description of the Invention: [Technical Field] The present invention relates to a method of detecting a crystal grain, and more particularly to a method for detecting a grain applied to a three-dimensional layout. [Prior Art] With the evolution of the semiconductor packaging process, System on 3D package (So3D) has been widely applied to the die package process of mobile electronic devices such as mobile phones. For example, referring to FIG. 1, a die 1 laid out in a planar manner has six circuit elements A to F, which may generate a long connection path when electrically connecting different circuit components (such as circuit component D in FIG. 1). The P1 point is electrically connected to the connection path of the P2 point on the circuit component C), and referring to FIG. 2, when the die 1 is stereoscopically arranged into a first to-be-detected layer 11 and a second to-be-detected layer 12, Wherein the first to-be-detected layer 11 has circuit elements A, B, D, E' and the second to-be-detected layer 12 has circuit elements c, F, and the point P1 on the circuit element D is electrically connected to the circuit element C The connection path of the P2 point can be effectively shortened. Therefore, the most common system-level three-dimensional packaging technology is to use a die stacking technology on a single chip size package (CSP) to effectively Provides relevant die-packaging techniques based on die size, such as mobile die-based electronics (such as mobile phones, digital cameras, or consumer products such as digital cameras) Detection. However, this prior art has a rather serious disadvantage. Referring to FIG. 3, it is assumed that a three-dimensional layout die 2 disposed on a substrate 1 has four 201246418 layers to be inspected C1 to C4, and each layer to be detected The areas of C1 to C4 are different, and the waiting detection layers C1 to C4 respectively have a contact w1 to w4 connected to the substrate 1. When the die 2 of the three-dimensional layout performs the detection of the contacts w1 to W4, a die detecting module 9 must move to the different position points S1 to S4 on the two straight lines L1 and L2 to detect each waiting. Whether the contacts w1 to w4 of the detecting layer C1 to C4 are operatively connected to the substrate 1 are different, and since the distances d1 to d4 of the contacts w1 to w4 are different from the die detecting module 9 , the distances d1 to d4 are different. When the die detecting module 9 moves to a position point w1~w4, it must focus on different distances d1~d4 to effectively detect the corresponding contacts w1~w4, for example, when the die detecting module 9 After detecting the contact w1, when the contact w2 is to be detected, the die detecting module 9 needs to be moved from the position point S1 to the position point S2, and at the same time, the distance between the to-be-connected point w2 and the die detecting module 9 The d2 is greater than the distance d1 between the contact w1 and the die detecting module 9. Therefore, the die detecting module 9 must refocus to obtain a clear image of the contact w2 before detecting the contact w2. The correct test results can be obtained to apply the die of the Die Stacking technology in the industry today. The number of layers to be detected is almost always between 8 and 32 layers. In the future, as the technology evolves, it does not even rule out that it will increase to more than 64 layers. Therefore, in the prior art, each grain to be detected is detected. The detection module 9 needs to refocus to obtain a clear detection image, which will undoubtedly increase the detection time of the die 2 of the three-dimensional layout, and the detection cost will also increase greatly. Therefore, how to effectively reduce the detection time of the die in the three-dimensional layout and check the cost of the 201246418 is one of the key factors for the system-level three-dimensional packaging technology So3D to become the mainstream technology for the new crystal package inspection. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for detecting a three-dimensional layout die, which is suitable for assembling a control module to control a die detection module to detect a majority disposed on the substrate a plurality of contacts of the three-dimensional layout die of the layer to be detected, comprising the steps of: assembling the control module to detect a first imaginary line passing through the contacts; assembling the control module to Obtaining a first angle, wherein the first angle is an angle of an acute angle of the first imaginary line intersecting a normal line of the waiting detection layer; the control module is assembled to control the rotation of the die detection module The first angle is such that the die detection module is perpendicular to the first imaginary line; and the control module is configured to control the die detection module to move to a detection point on a second line to Detecting a contact point corresponding to each detection point, another object of the present invention is to provide a method for detecting a three-dimensional layout die, which is suitable for assembling a control module to control a die detection module and a substrate, Detecting a configuration a plurality of contacts on the substrate and having a plurality of solid layout dies of the layer to be detected, comprising the steps of: assembling the control module to detect a first imaginary line passing through the contacts; The control module is configured to obtain a second angle, and the second angle 201246418 is a complementary angle of the acute angle between the first imaginary straight line and a normal line of the waiting detection layer; the control module is assembled to control The substrate rotates the second angle to make the die detection module perpendicular to the first imaginary line; and the control module is assembled to control the die detection module to move to a second line Point to detect the contact point corresponding to each detection point. Another object of the present invention is to provide a method for detecting a three-dimensional layout die, which is suitable for assembling a control module to control a die detection module and a a substrate for detecting a conductive point of a three-dimensional layout die disposed on the substrate and having a plurality of to-be-detected layers electrically connected to a wire, and each of the conductive dots is electrically connected to a wire and the wire is electrically connected to the substrate Package The method includes the following steps: assembling the control module to set a third line parallel to the wire to assemble the control module to obtain a second angle, and the second angle is a third imaginary line and waiting Detecting a corner of an acute angle of the normal of the detection layer; assembling the control module to control the substrate to rotate the second angle, so that the die detection module is perpendicular to the first imaginary line; and assembling the control The module controls a die detection module to move to a detection point on a second line to detect a contact corresponding to each detection point. Another object of the present invention is to provide a method for detecting a three-dimensional layout die, which is suitable for assembling a control module to control a die 201246418 detection module to detect a configuration on the substrate and having a majority Each of the three-dimensional layout die of the layer to be inspected is electrically connected to a wire, and each of the conduction points is electrically connected to a wire and the wire is electrically connected to the substrate, and the method comprises the following steps: assembling the control module, The control module is assembled by setting a third line 9 parallel to the wire to obtain a first angle, and the first angle is an acute angle between the third imaginary line and the normal line of the waiting detection layer. The control module is configured to control the die detection module to rotate the second angle to make the die detection module perpendicular to the first imaginary line; and the control module is configured to control a die The detecting module moves to a detection point on a second line to detect the contact point corresponding to each detection point. Therefore, the effect of the present invention is to properly rotate the die detection module or the substrate, such that the distance between the die detection module and each contact or each conduction point is between the die detection mode tissue imaging. Between the focal lengths, therefore, the die detection module does not need to refocus when detecting each contact or each conduction point, so the detection time can be greatly reduced, thereby greatly reducing the detection time of the three-dimensional layout die, and effectively Reduce inspection costs. The detailed description of the three preferred embodiments of the present invention will be apparent from the following detailed description of the preferred embodiments. First preferred embodiment 201246418 Referring to FIG. 4 and FIG. 5, the preferred embodiment is suitable for assembling a control module (not shown) to control a die detecting module 9 or a substrate 6 to rotate Detecting a plurality of contacts t1 to t4 of the three-dimensional layout die 4 disposed on the substrate 6 and having a plurality of to-be-detected layers C1 to C4, each of which is electrically connected to the substrate 6 corresponding to the layer to be detected Wherein, the method includes the following steps: Step 51 is to assemble the control module to detect a first imaginary straight line T passing through the joints t1 to t4 of the waiting detection layers C1 to C4; step 52 is to combine the control The module is configured to obtain a first angle α, and the first angle α is calculated as follows: the first imaginary line Μ intersects with a normal angle 该 of the waiting detection layer C1~C4, and then the acute angle The remaining angle is the first angle "; step 53 is to assemble the control module to control the die detecting module 9 to rotate the first angle "to be perpendicular to the first imaginary straight line, and at the same time, The die detecting module 9 is movably movable in a second parallel to the first imaginary straight line I want to move on the straight line L1 (that is, the die detecting module 9 moves in parallel between the two parallel lines L1, L2), and the distance between the first imaginary straight line Τ and the second imaginary line L1 is between the grains The detection module 9 is configured to image the focal length F. Step 54 is to assemble the control module to control the die detection module 9 to move to a detection point S1 on the second imaginary line L1 to detect the corresponding waiting. The detection layer C1 is worth noting that the detection points S1 to S4 correspond to the contacts t1 to t4, respectively, and the distances d1 to d4 of each detection point to the corresponding contact are equal to the first imaginary straight line T and The distance of the second imaginary line L1; 9 201246418 Step 55 is to assemble the control module to determine whether each layer to be detected has been tested, and if so, the die contact detection process is terminated, and if not, the steps are performed. 56; and step 56 is to configure the control module to control the die detection module 9 to move from the current detection point (eg, S1) to the next detection point (eg, S2) to detect the corresponding detection layer. The contact (eg: t2) and return to step 55. As can be seen from the above, since each of the detecting points S1 to S4 has the same distance from the corresponding contact point t1 to t4, or the error range does not exceed the imaging focal length F of the die detecting module 9, the die The detection module 9 can effectively obtain a clear image of each contact without re-focusing when detecting each contact', so the test time and test cost of the die can be reduced. The second preferred embodiment is further described with reference to FIGS. 6 and 7. The greatest difference between the preferred embodiment and the first preferred embodiment is that, in the first preferred embodiment, the control module controls a hai die. The detecting module 9 rotates the first angle ^, and in the preferred embodiment, the control module controls the substrate 6 to rotate by a first angle ρ. Step 51 is to assemble the control module to detect - Passing the first imaginary straight line τ of one of the contacts t1 to t4 of the waiting detection layers C1 to C4; step 52' is to assemble the control module to obtain a second angle 々, and the second angle P is calculated. As follows: the first imaginary line T intersects with a normal angle 该 of the waiting detection layer C1~C4, and then the angle of the acute angle 即 is the second angle #; step 53' is to match the control a module for controlling the substrate 6 to rotate the second angle Ρ until the die detecting module 9 is perpendicular to the first imaginary straight line 10 201246418, and at the same time, the die detecting module 9 is movably The first imaginary line T moves parallel to the second imaginary line L1 (that is, the die detection module 9 The two parallel lines L1 and L2 move in parallel, and the distance between the first imaginary line T and the second imaginary line L1 is within an imaging focal length F of the die detecting module 9; The control module controls the die detection module 9 to move to a detection point S1 on the second imaginary line L1 to detect the corresponding layer C1 to be detected. It is worth noting that the detection points S1 to S4 are respectively Corresponding to the contact points t1 to t4 and the distances d1 to d4 of each detection point to the corresponding contact point are equal to the distance between the first imaginary straight line T and the second imaginary straight line L1; Step 55 is to assemble the control mode a group to determine whether each layer to be detected has been tested, and if so, the die contact detection process is terminated, if not, step 56 is performed; and step 56 is to assemble the control module to control the die detection mode. Group 9 is moved from the current detection point (e.g., S1) to the next detection point (e.g., S2) to detect the contact of the corresponding layer to be detected (e.g., t2), and returns to step 55. The third preferred embodiment refers to FIG. 8. The biggest difference between the preferred embodiment and the first and second preferred embodiments is that the control module cannot detect the connection through the waiting detection layers C1 to C4. When the first imaginary straight line T of one of the points t1 to t4 (that is, a first imaginary straight line T cannot be obtained such that it coincides with the contact point t1 to t4 of each layer to be detected), the control module is based on a substrate 6 Electrically connecting the wires, Η and setting a third imaginary line parallel to the wire, and the contacts Π~t4 of each layer to be detected C1~C4 are electrically connected to the wire Η11 respectively. Therefore, similar to the first preferred embodiment, the control module can control the die detecting module 9 to rotate the first angle “, and the first angle α is the first imaginary straight line and the waiting The normal line 检测 of the detection layers C1 to C4 intersects with one of the acute angles Θ, and then the angle of the acute angle Θ is the first angle α, so the die detection module 9 is movably coupled to the first imaginary Straight line 平行 parallel second imaginary line L1 moves (that is, the die detection module 9 is between two The row lines L1 and L2 are moved in parallel to detect each of the conduction points w1 to w4. Further, the distance between the first imaginary line Τ and the second imaginary line L1 is between one of the die detecting modules 9 The focal length F is inside. Similarly, similar to the second preferred embodiment, the control module can control the substrate 6 to rotate the second angle; 0, and the second angle p is the first imaginary straight line T and the waiting detection layer C1. The normal line ~C4 intersects one of the acute angles Θ, and then the corner of the acute angle Θ is the second angle A, so the die detecting module 9 is movably parallel to the first imaginary straight line T The second imaginary line L1 moves to detect each of the conduction points w1 to W4. Further, the distance between the first imaginary line T and the second imaginary line L1 is between the imaging focal length F of the die detecting module 9. Inside. In summary, the present invention is characterized in that the die detecting module or the substrate is appropriately rotated, so that the distance between the die detecting module and each contact or the conductive point is within the imaging focal length thereof. Therefore, the die detection module does not need to repeat the focus when detecting each contact or the conduction point, so the detection time of the die of the three-dimensional layout can be greatly reduced, thereby greatly reducing the detection cost of the die of the three-dimensional layout. The object of the invention can be achieved. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent change of the patent application scope and the description of the invention is Modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a planar layout die; FIG. 2 is a schematic view of a three-dimensional layout die; FIG. 3 is a side view of a three-dimensional layout die and a die detection module, FIG. Figure 5 is a schematic view of the first preferred embodiment; Figure 6 is a flow chart of a second preferred embodiment of the present invention; Figure 7 is a second comparison of the second preferred embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 8 is a schematic view of a third preferred embodiment of the present invention. 13 201246418 [Description of main component symbols] Substrate Grain inspection module 4........ Stereo layout die 51~56 _ •Steps 52'~53'·Step 14

Claims (1)

201246418 七、申請專利範圍: 1. 一種立體佈局晶粒之檢測方法,適用於組配一控制模組 控制一晶粒檢測模組,以檢測一配置於該基板上且具有 多數個待檢測層之立體佈局晶粒之多數個接點,其包含 以下步驟: 組配該控制模組,以偵測一通過該等接點之第一假 想直線; 組配該控制模組,以得到一第一角度,且該第一角 度為該第一假想直線與一該等待檢測層之法線相交之一 銳角之餘角; 組配該控制模組,以控制該晶粒檢測模組轉動該第 一角度,使該晶粒檢測模組與該第一假想直線垂直;及 組配該控制模組,以控制該晶粒檢測模組於一第二 直線上移動至每一檢測點,以檢測每一檢測點所對應之 接點。 2. 依據申請專利範圍第1項所述之立體佈局晶粒之檢測方 法,其中,該等接點分別為每一待檢測層與該基板電連 接之處。 3. 依據申請專利範圍第1項所述之立體佈局晶粒之檢測方 法,其中,該第二直線是一與該第一假想直線平行且與 該第一假想直線之距離介於該晶粒檢測模組之一成像焦 距內之直線。 4. 一種立體佈局晶粒之檢測方法,適用於組配一控制模組 控制一晶粒檢測模組與一基板,以檢測一配置於該基板 15 201246418 上且具有多數個待檢測層之立體佈局晶粒之多數個接點 ,其包含以下步驟: 組配該控制模組,以偵測一通過該等接點之第一假 想直線; 組配該控制模組,以得到一第二角度,且該第二角 度為該第一假想直線與一該等待檢測層之法線相交之一 銳角之餘角; 組配該控制模組,以控制該基板轉動該第二角度, 使該晶粒檢測模組與該第一假想直線垂直;及 組配該控制模組,以控制該晶粒檢測模組於一第二 直線上移動至每一檢測點,以檢測每一檢測點所對應之 接點。 5. 依據申請專利範圍第4項所述之立體佈局晶粒之檢測方 法,其中,該等接點分別為每一待檢測層與該基板電連 接之處。 6. 依據申請專利範圍第4項所述之立體佈局晶粒之檢測方 法,其中,該第二直線是一與該第一假想直線平行且與 該第一假想直線之距離介於該晶粒檢測模組之一成像焦 距内之直線。 7. —種立體佈局晶粒之檢測方法,適用於組配一控制模組 控制一晶粒檢測模組及一基板,以檢測一配置於該基板 上且具有多數個待檢測層之立體佈局晶粒與一導線電連 接之導通點,且每一導通點分別電連接於一導線且該導 線與該基板電連接,其包含以下步驟: 16 201246418 組配該控制模組,以設定一平行於該導線之第三直 線, 組配該控制模組,以得到一第二角度,且該第二角 度為第三假想直線與該等待檢測層之法線相交之一銳角 之餘角; 組配該控制模組,以控制該基板轉動該第二角度, 使該晶粒檢測模組與該第一假想直線垂直;及 組配該控制模組以控制一晶粒檢測模組於一第二直 線上移動至每一檢測點,以檢測每一檢測點所對應之接 點。 8. 依據申請專利範圍第7項所述之立體佈局晶粒之檢測方 法,其中,該第二直線是一與該第一假想直線平行且與 該第一假想直線之距離介於該晶粒檢測模組之一成像焦 距內之直線。 9. 一種立體佈局晶粒之檢測方法,適用於組配一控制模組 控制一晶粒檢測模組,以檢測一配置於該基板上且具有 多數個待檢測層之立體佈局晶粒與一導線電連接之導通 點,且每一導通點分別電連接於一導線且該導線與該基 板電連接,其包含以下步驟: 組配該控制模組,以設定一平行於該導線之第三直 線; 組配該控制模組,以得到一第一角度,且該第一角 度為第三假想直線與該等待檢測層之法線相交之一銳角 之餘角; 17 201246418 組配該控制模組,以控制該晶粒檢測模組轉動該第 二角度,使該晶粒檢測模組與該第一假想直線垂直;及 組配該控制模組以控制一晶粒檢測模組於一第二直 線上移動至每一檢測點,以檢測每一檢測點所對應之接 點。 10.依據申請專利範圍第9項所述之立體佈局晶粒之檢測方 法,其中,該第二直線是一與該第一假想直線平行且與 該第一假想直線之距離介於該晶粒檢測模組之一成像焦 距内之直線。 18201246418 VII. Patent application scope: 1. A method for detecting a three-dimensional layout die, which is suitable for assembling a control module to control a die detection module to detect a plurality of layers to be detected disposed on the substrate. a plurality of contacts of the three-dimensional layout die, comprising the steps of: assembling the control module to detect a first imaginary line passing through the contacts; assembling the control module to obtain a first angle And the first angle is an angle of an acute angle of the first imaginary line intersecting a normal line of the waiting detection layer; the control module is assembled to control the die detection module to rotate the first angle, The die detection module is perpendicular to the first imaginary line; and the control module is assembled to control the die detection module to move to a detection point on a second line to detect each detection point The corresponding contact. 2. The method for detecting a three-dimensional layout die according to claim 1, wherein the contacts are electrically connected to the substrate, respectively. 3. The method for detecting a three-dimensional layout die according to claim 1, wherein the second line is parallel to the first imaginary line and the distance from the first imaginary line is between the grain detection. One of the modules images a straight line within the focal length. 4. A method for detecting a three-dimensional layout die, which is suitable for assembling a control module to control a die detection module and a substrate to detect a three-dimensional layout disposed on the substrate 15 201246418 and having a plurality of to-be-detected layers a plurality of contacts of the die, comprising the steps of: assembling the control module to detect a first imaginary line passing through the contacts; assembling the control module to obtain a second angle, and The second angle is a complementary angle of the acute angle between the first imaginary line and a normal line of the waiting detection layer; the control module is assembled to control the substrate to rotate the second angle to make the die detection mode The group is perpendicular to the first imaginary line; and the control module is configured to control the die detection module to move to a detection point on a second line to detect the contact point corresponding to each detection point. 5. The method for detecting a three-dimensional layout die according to claim 4, wherein the contacts are respectively electrically connected to the substrate to be detected. 6. The method for detecting a three-dimensional layout die according to claim 4, wherein the second line is parallel to the first imaginary line and the distance from the first imaginary line is between the die detection One of the modules images a straight line within the focal length. 7. A method for detecting a three-dimensional layout die, which is suitable for assembling a control module to control a die detection module and a substrate to detect a three-dimensional layout crystal disposed on the substrate and having a plurality of to-be-detected layers a conductive point connecting the wire and a wire, and each of the conductive points is electrically connected to a wire and the wire is electrically connected to the substrate, and the method comprises the following steps: 16 201246418 assembling the control module to set a parallel to the a third line of the wire, the control module is assembled to obtain a second angle, and the second angle is a complementary angle of an acute angle between the third imaginary line and the normal line of the waiting detection layer; a module for controlling the substrate to rotate the second angle to make the die detection module perpendicular to the first imaginary line; and assembling the control module to control a die detection module to move on a second line To each detection point, to detect the contact point corresponding to each detection point. 8. The method for detecting a three-dimensional layout die according to claim 7, wherein the second line is parallel to the first imaginary line and the distance from the first imaginary line is between the grain detection. One of the modules images a straight line within the focal length. A method for detecting a three-dimensional layout die, which is suitable for assembling a control module to control a die detection module to detect a three-dimensional layout die and a wire disposed on the substrate and having a plurality of to-be-detected layers a conductive connection point, and each of the conductive points is electrically connected to a wire and the wire is electrically connected to the substrate, and the method comprises the steps of: assembling the control module to set a third line parallel to the wire; The control module is assembled to obtain a first angle, and the first angle is a complementary angle of an acute angle between the third imaginary line and the normal line of the waiting detection layer; 17 201246418 the control module is assembled to Controlling the die detection module to rotate the second angle to make the die detection module perpendicular to the first imaginary line; and assembling the control module to control a die detection module to move on a second line To each detection point, to detect the contact point corresponding to each detection point. 10. The method for detecting a three-dimensional layout die according to claim 9, wherein the second line is parallel to the first imaginary line and the distance from the first imaginary line is between the die detection One of the modules images a straight line within the focal length. 18
TW100116247A 2011-05-10 2011-05-10 A die detection method for 3d die stacking TWI420614B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100116247A TWI420614B (en) 2011-05-10 2011-05-10 A die detection method for 3d die stacking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100116247A TWI420614B (en) 2011-05-10 2011-05-10 A die detection method for 3d die stacking

Publications (2)

Publication Number Publication Date
TW201246418A true TW201246418A (en) 2012-11-16
TWI420614B TWI420614B (en) 2013-12-21

Family

ID=48094550

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116247A TWI420614B (en) 2011-05-10 2011-05-10 A die detection method for 3d die stacking

Country Status (1)

Country Link
TW (1) TWI420614B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776648B (en) * 2021-03-26 2022-09-01 世芯電子股份有限公司 Integrated circuit product and chip floorplan arrangement thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7640529B2 (en) * 2002-07-30 2009-12-29 Photronics, Inc. User-friendly rule-based system and method for automatically generating photomask orders
TWI225675B (en) * 2003-10-17 2004-12-21 Taiwan E & M Systems Inc Apparatus and method of inspecting and sorting dies
TWM350093U (en) * 2008-06-18 2009-02-01 Wecon Automation Corp Die detection device
TWI393902B (en) * 2008-12-23 2013-04-21 Chroma Ate Inc Test Method and Platform of Semiconductor Grain Point Measuring Machine
TWI416642B (en) * 2009-01-22 2013-11-21 Chroma Ate Inc With double-sided electrode semiconductor grain detection method and testing machine
TWM358303U (en) * 2009-01-22 2009-06-01 de-wei Jia Gig structure for die testing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776648B (en) * 2021-03-26 2022-09-01 世芯電子股份有限公司 Integrated circuit product and chip floorplan arrangement thereof
TWI790977B (en) * 2021-03-26 2023-01-21 世芯電子股份有限公司 Integrated circuit product and chip floorplan arrangement thereof

Also Published As

Publication number Publication date
TWI420614B (en) 2013-12-21

Similar Documents

Publication Publication Date Title
CN110088899B (en) Structure and method for testing three-dimensional memory devices
US10037968B2 (en) Alignment systems and wafer bonding systems and methods
US9653430B2 (en) Semiconductor devices having stacked structures and methods for fabricating the same
US9653372B2 (en) Method for fabricating fan-out wafer level package and fan-out wafer level package fabricated thereby
TWI517353B (en) Assembly component and method for assembling a chip package
TWI501380B (en) Three-dimensional soc structure stacking by multiple chip modules
JP2017515306A (en) Stacked semiconductor die assembly having support members and associated systems and methods
US9448065B2 (en) Manufacturing method of semiconductor device and semiconductor manufacturing apparatus
JPWO2005067046A1 (en) Laminating apparatus and integrated circuit element laminating method
JP2008078626A (en) Laminated semiconductor package comprising interposer chip capable of wire bonding monitoring, and manufacturing method thereof
US9165916B2 (en) Semiconductor package and method of fabricating the same
CN103579171B (en) Semiconductor package part and manufacture method thereof
JP2014103395A (en) Electrical coupling method between wafers using batting contact system and semiconductor device achieved by using the same
KR101434039B1 (en) Power semiconductor module, and manufacturing method thereof
TWI640788B (en) Method and apparatus for detection of failures in under-fill layers in integrated circuit assemblies
TW201121319A (en) Image acquiring device
US20120280405A1 (en) Semiconductor packages and methods of manufacuring the same
TW201246418A (en) A die detection method for 3D die stacking
KR20180119096A (en) Method for manufacturing inspection device
US9384105B2 (en) Method of detecting faults of operation algorithms in a wire bonding machine and apparatus for performing the same
TWI767957B (en) Interposer design in package structures for wire bonding applications
KR101817328B1 (en) Method of manufacturing semiconductor module
US9117871B2 (en) Multi-axial acceleration sensor and method of manufacturing the same
CN109148357A (en) Test interface board assembly and manufacturing method thereof
JP2009295880A (en) Semiconductor device, method for manufacturing semiconductor device, method for inspecting semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees