TW201245836A - Optical filter module and optical filter system - Google Patents

Optical filter module and optical filter system Download PDF

Info

Publication number
TW201245836A
TW201245836A TW101103130A TW101103130A TW201245836A TW 201245836 A TW201245836 A TW 201245836A TW 101103130 A TW101103130 A TW 101103130A TW 101103130 A TW101103130 A TW 101103130A TW 201245836 A TW201245836 A TW 201245836A
Authority
TW
Taiwan
Prior art keywords
infrared
filter
wavelength
transmittance
light
Prior art date
Application number
TW101103130A
Other languages
Chinese (zh)
Other versions
TWI526767B (en
Inventor
Hideshi Saitoh
Manabu Ohnishi
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Publication of TW201245836A publication Critical patent/TW201245836A/en
Application granted granted Critical
Publication of TWI526767B publication Critical patent/TWI526767B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)
  • Blocking Light For Cameras (AREA)
  • Studio Devices (AREA)

Abstract

A plurality of filters is disposed in an optical filter module which is disposed in an image capture device. The plurality of filters comprises a first filter which transmits visible light and blocks at least infrared, and a second filter which allows only infrared to pass. The first filter and the second filter are positioned to be selectively switchable.

Description

201245836 六、發明說明: 【發明所屬之技術領域】 本發明係關於光學濾鏡模組及光學濾鏡系統。 【先前技術】 在一般的視訊相機及數位靜態相機等所代表之電子相 機的光學系中,沿著光軸從被攝體側,依序配設有結合光 學系、紅外線遮斷濾鏡、光學低通濾波器、CCD ( Charge Coupled Device )或 MOS ( Metal Oxide Semiconductor ) 等的攝像元件(例如參照專利文獻1 )。再者,在此所謂 攝像元件係具有回應比人眼可視認之波長帶域之光線(可 視光線)更廣之波長帶域之光線的感度特性。爲此,除了 可視光線之外,也會回應紅外光域或紫外光域的光線。 人眼係於暗處會回應400〜620nm程度之範圍的波長 之光線,於明處會回應420nm〜7〇Onm程度之範圍的波長 之光線。相對於此,例如在CCD中,以髙感度回應400 〜7 00nm之範圍的波長之光線,進而也回應未滿400nm 的波長之光線及超過700nm的波長之光線。 爲此,在後述之專利文獻1所記載的攝像裝置中,除 了攝像元件的CCD之外,設置紅外線遮斷濾鏡,使紅外 光域的光線不會到達攝像元件’獲得接近人眼的攝像畫像 〇 又,在先前的光學濾鏡中’爲了盡量提升在人眼可看 到之可視域的透射率而於光學濾鏡的主面’施加減低該可 -5- 201245836 視域中光線之反射的反射防止膜(AR塗層)爲一般濾鏡 構造。 [先前技術文獻] [專利文獻] [專利文獻1]日本特開2000-2095 1 0號公報 【發明內容】 [發明所欲解決之課題] 然而,於攝像裝置,除了 一般的視訊相機及數位靜態 相機以外,也有監視相機等之與通常攝影不同之其他用途 所使用之攝像裝置》 例如,在監視相機中,不僅白天,也需要進行在夜間 等的暗視下之監視攝影。在暗視下,因爲是人眼無法目視 之狀態下的攝影,故將通常的可視域設爲攝影之帶域的相 機無法進行暗視下之攝影。爲此,現在暗視下之攝影係使 用紅外光域的光線來進行,但是,前述專利文獻1所記載 之攝像裝置中,設置有遮斷紅外光域之光線的紅外線遮斷 濾鏡,故無法使用於暗視的攝影。 在此,爲了解決前述課題,本發明的目的係提供不僅 在自然光進入之白天,即使在夜間等的暗視下也可進行攝 影的光學濾鏡模組及光學濾鏡系統。 [用以解決課題之手段] -6 -201245836 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optical filter module and an optical filter system. [Prior Art] In the optical system of an electronic camera represented by a general video camera and a digital still camera, a combined optical system, an infrared ray interrupt filter, and optical are sequentially arranged from the object side along the optical axis. An imaging element such as a low-pass filter, a CCD (Charge Coupled Device), or a MOS (Metal Oxide Semiconductor) (see, for example, Patent Document 1). Further, the image pickup element herein has a sensitivity characteristic of light in a wavelength band which is wider than light (visible light) which is visible in the wavelength band visible to the human eye. To this end, in addition to visible light, it also responds to light in the infrared or ultraviolet range. The human eye responds to light at a wavelength in the range of 400 to 620 nm in the dark, and responds to light having a wavelength in the range of 420 nm to 7 〇 Onm. On the other hand, for example, in the CCD, light having a wavelength in the range of 400 to 700 nm is responded to with a sensitivity of 髙, and light having a wavelength of less than 400 nm and light having a wavelength exceeding 700 nm are also responded. For this reason, in the imaging device described in Patent Document 1 to be described later, an infrared ray blocking filter is provided in addition to the CCD of the imaging element, so that the light in the infrared light region does not reach the imaging element, and an image of the image close to the human eye is obtained. In addition, in the previous optical filter 'in order to maximize the transmittance of the visible field visible to the human eye, the main surface of the optical filter' is applied to reduce the reflection of light in the field of view. The anti-reflection film (AR coating) is a general filter structure. [Prior Art] [Patent Document 1] [Patent Document 1] JP-A-2000-2095 No. 1 (Invention) [Problems to be Solved by the Invention] However, in addition to general video cameras and digital stills, In addition to the camera, there is also an imaging device used for other purposes such as a surveillance camera that is different from normal photography. For example, in a surveillance camera, it is necessary to perform surveillance photography under dark vision such as nighttime, not only during the daytime. In the sneak peek, since the photograph is in a state in which the human eye cannot see it, the camera having the normal visible field as the photographing region cannot perform photography under scotopic vision. For this reason, the photographic recording system in the illuminating state is performed by using the light in the infrared light field. However, the imaging device described in Patent Document 1 is provided with an infrared ray blocking filter that blocks the light in the infrared light field. Used for squint photography. Here, in order to solve the above problems, an object of the present invention is to provide an optical filter module and an optical filter system that can perform photographing not only during daylight hours when natural light enters, but also under dark vision such as nighttime. [Means to solve the problem] -6 -

S 201245836 爲了達成前述目的,關於本發明的光學濾鏡模 設置於攝像裝置,可切換配置複數濾鏡的光學濾鏡 其特徵爲:複數濾鏡係透射可視光,至少遮斷紅外 1濾鏡,與僅通過紅外線的第2濾鏡;前述第1濾 述第2濾鏡配置成可選擇性切換。 依據本發明,因爲前述第1濾鏡與前述第2濾 成可選擇性切換,故不僅在自然光進入之白天,即 間等的暗視下也可進行攝影。具體來說,利用於白 置前述第1濾鏡,於暗視狀態時配置前述第2濾鏡 在白天,在夜間等的暗視下也可進行攝影。尤其, 透射可視光,至少遮斷紅外線之前述第1濾鏡中介 狀態下可進行白天的攝影,故白天可獲得接近人眼 然的攝像畫像。又,因爲在僅通過紅外線之前述第 中介存在之狀態下可進行夜間攝影,故完全不會有 攝影中可視域的自然光之一部分射入而發生曝光過 獲得更穩定之鮮明的紅外線之攝影畫像。 於前述構造中’前述第2爐鏡’係僅通過紅外 先設定的特定帶域’遮斷紅外線之其他帶域亦可。 此時,除了上述之作用效果’前述第2濾鏡係 紅外線之預先設定的特定帶域’遮斷紅外線之其他 故可讓暗視下之攝影有更好之效果。 於前述構造中’前述第1濾鏡’係具備吸收紅 紅外線吸收體’與反射紅^外線@ #彳泉@ Μ ^亦可 此時,除了上述之作用效果之外’因爲前述第 組,係 模組, 線的第 鏡與前 鏡配置 使在夜 天時配 ,不僅 因爲在 存在之 之更自 2濾鏡 因夜間 度,可 線之預 僅通過 帶域, 外線的 〇 1濾鏡 201245836 具備吸收紅外線的紅外線吸收體,與反射紅外線的紅外線 反射體,故可一邊抑制重影(ghost )及光斑,同時提升 色彩真實度,故可使白天的攝影有更好之效果。 於前述構造中,前述紅外線吸收體,係表示620nm〜 660nm之波長帶域內的波長中透射率爲50%的透光特性 :前述紅外線反射體,係表示670nm〜690nm之波長帶域 內的波長中透射率爲50%的透光特性;藉由前述紅外線 吸收體與前述紅外線反射體的組合,表示620nm〜66〇nm 之波長帶域內的波長中透射率爲50%,70 0nm的波長中 透射率未滿5%的透光特性亦可。 此時,前述第1濾鏡具備前述紅外線吸收體與前述紅 外線反射體,前述紅外線吸收體表示620nm〜660nm之波 長帶域內的波長中透射率爲50%的透光特性,前述紅外 線反射體表示670nm〜690nm之波長帶域內的波長中透射 率爲5 0 %的透光特性,藉由前述紅外線吸收體與前述紅 外線反射體的組合,表示620nm〜660nm之波長帶域內的 波長中透射率爲50%,700nm的波長中透射率未滿5% ’ 所以,藉由該等前述紅外線吸收體與前述紅外線反射體的 組合,可獲得從可視預涵蓋紅外光域’透射率緩慢地減少 ,700nm的波長中透射率約0%之接近人眼的感度特性之 透光特性。 又,於前述紅外線吸收體,使用表示620nm〜660nm 之波長帶域內的波長中透射率爲50%的透光特性之前述 紅外線吸收體,例如’具有圖1 〇的L 1 1所示之透光特性S 201245836 In order to achieve the foregoing object, an optical filter mold according to the present invention is disposed on an image pickup device, and an optical filter capable of switching a plurality of filters is characterized in that: the plurality of filters transmit visible light, at least interrupt the infrared filter, And the second filter that passes only infrared rays; the first filter of the first filter is arranged to be selectively switchable. According to the present invention, since the first filter and the second filter can be selectively switched, photographing can be performed not only during daylight when natural light enters, but also during dark vision. Specifically, the first filter is disposed in the white state, and the second filter is disposed in a dark state. In the daytime, photographing can be performed under dark vision such as at night. In particular, when the visible light is transmitted and at least the infrared rays are blocked, the first filter can be photographed during the day, so that an image of the human eye can be obtained during the day. Further, since night photography can be performed only in the state in which the above-described first medium of the infrared rays exists, there is no possibility that a part of the natural light in the visible region of the image is incident and the exposure is made to obtain a more stable and vivid infrared image. In the above structure, the "second oven mirror" may be used to block other regions of the infrared rays only by the specific band region set in the infrared first. At this time, in addition to the above-described action effect, the "specific band of the second filter system in which the infrared rays are set in advance" blocks the infrared rays, so that the photography under scotopic effect is better. In the above structure, the 'first filter' is provided with an absorbing red infrared absorbing body' and a reflecting red ray external line @#彳泉@ Μ ^, but in addition to the above-mentioned effects, 'because of the aforementioned group, The module, the line mirror and the front mirror configuration make it suitable for nighttime, not only because of the presence of the 2 filters due to the nighttime, but also the line only through the band, the outer line 〇1 filter 201245836 Infrared absorbers that absorb infrared rays and infrared reflectors that reflect infrared rays can suppress ghosts and spots while improving color realism, so that daytime photography can be better. In the above configuration, the infrared absorber is a light transmission characteristic having a transmittance of 50% in a wavelength band of 620 nm to 660 nm: the infrared reflector is a wavelength in a wavelength band of 670 nm to 690 nm. a light transmission characteristic having a medium transmittance of 50%; a combination of the infrared absorber and the infrared reflector described above indicates a transmittance of 50% in a wavelength band of 620 nm to 66 〇 nm, and a wavelength of 70 nm The light transmission property of the transmittance of less than 5% is also acceptable. In this case, the first filter includes the infrared absorber and the infrared reflector, and the infrared absorber indicates a light transmission characteristic in which a transmittance in a wavelength band of 620 nm to 660 nm is 50%, and the infrared reflector indicates a light transmission characteristic in which a transmittance in a wavelength band of 670 nm to 690 nm is 50%, and a combination of the infrared absorber and the infrared reflector indicates a transmittance in a wavelength band of 620 nm to 660 nm. 50%, the transmittance of the wavelength of 700 nm is less than 5%. Therefore, by the combination of the above-mentioned infrared absorber and the above-mentioned infrared reflector, it is possible to obtain a slow decrease in transmittance from the visible pre-covered infrared light field, 700 nm. The transmittance in the wavelength is about 0% which is close to the light transmission characteristic of the sensitivity characteristic of the human eye. Further, in the infrared absorber, the infrared absorber having a light transmittance of 50% in a wavelength in a wavelength band of 620 nm to 660 nm is used, for example, 'the one shown by L 1 1 of FIG. Optical characteristics

-8- S 201245836 的紅外線吸收玻璃,透射率成爲約〇 % (未滿5 % )之點 係藉由將在前述紅外線吸收體的紅外線吸收作用組合在前 述紅外線反射體的紅外線反射作用,設爲70〇nm。爲此, 本發明的第1濾鏡係相較於由具有圖1〇的L12所示之透 光特性的紅外線吸收玻璃所成之先前的紅外線遮斷濾鏡, 在可視域,尤其在600nm〜700nm的波長帶域,可維持高 透射率。亦即,可一邊遮斷波長超過700ηηι的紅外線, 一邊透射利用前述攝像裝置的前述攝像元件可感測之充分 量的紅色光線(波長爲600nm〜700nm的光線)。因此, 利用將本發明的前述第1濾鏡,適用於前述攝像裝置的紅 外線遮斷濾鏡,可消除前述攝像元件之紅色的感度較弱, 以前述攝像裝置攝像之畫像容易成爲較暗的畫像之缺點。 又,在前述第1濾鏡中,利用將前述紅外線反射體與 前述紅外線吸收體組合,抑制藉由前述紅外線反射體反射 之光線的量。爲此,可抑制在前述紅外線反射體之光線的 反射所致之重影的發生。 又,具有640nm的波長中透射率爲50%之圖10的 L 1 1所示之透光特性的前述紅外線吸收玻璃之厚度,係作 爲先前的紅外線遮斷濾鏡所使用之具有圖1 〇的L 1 2所示 之透光特性的紅外線吸收玻璃之厚度的一半以下,據此’ 於構成本發明之前述第1濾鏡的具有620〜660nm的波長 帶域內的波長中透射率爲5 0 %的透光特性之前述紅外線 吸收體,可使用厚度比由具有圖1〇的L12所示之透光特 性的先前之紅外線吸收玻璃所構成之紅外線遮斷濾鏡還薄 -9- 201245836 者。爲此,依據本發明的前述第1濾鏡, 以紅外線吸收體構成之先前的紅外線遮斷 較薄的厚度’ 一邊充分透射紅色的可視光 ’且於可視域中,具有接近人眼之透光特 濾鏡。 又,爲了達成前述目的,關於本發明 ,係沿著光軸而從外部的被攝體側,至少 部射入光線的結合光學系、可切換配置複 鏡系統、光學濾鏡、攝像元件之攝像裝置 ,其特徵爲:複數濾鏡係透射可視光,至 第1濾鏡,與僅通過紅外線的第2濾鏡; 前述第2濾鏡之任一方可選擇性切換配置 依據本發明,因爲前述第1濾鏡與前 —方成可選擇性切換配置於前述光軸上, 進入之白天,即使在夜間等的暗視下也可 來說,利用於白天時前述第1濾鏡切換配 ,於暗視狀態時前述第2濾鏡切換配置於 僅在白天,在夜間等的暗視下也可進行攝 在透射可視光,至少遮斷紅外線之前述第 之狀態下可進行白天的攝影,故白天可獲 自然的攝像畫像。又,因爲在僅通過紅外 鏡中介存在之狀態下可進行夜間攝影’故 間攝影中可視域的自然光之一部分射入而 可獲得更穩定之鮮明的紅外線之攝影畫像 可提供利用與僅 濾鏡相同厚度或 線,遮斷紅外線 性的紅外線遮斷 的光學濾鏡系統 依序配設有從外 數濾鏡的光學濾 的光學濾鏡系統 少遮斷紅外線的 前述第1濾鏡與 於前述光軸上。 述第2濾鏡之任 故不僅在自然光 進行攝影。具體 置於前述光軸上 前述光軸上,不 影。尤其,因爲 1濾鏡中介存在 得接近人眼之更 線之前述第2濾 完全不會有因夜 發生曝光過度,In the infrared absorbing glass of -8-S 201245836, the transmittance is about 〇% (less than 5%), and the infrared ray absorbing effect of the infrared ray absorber is combined with the infrared ray reflection of the infrared ray reflector. 70〇nm. For this reason, the first filter of the present invention is compared with the conventional infrared ray interrupting filter formed of the infrared absorbing glass having the light transmitting property shown by L12 of Fig. 1 in the visible region, especially at 600 nm. The 700 nm wavelength band maintains high transmittance. In other words, it is possible to transmit a sufficient amount of red light (light having a wavelength of 600 nm to 700 nm) which can be sensed by the image pickup element of the image pickup device while blocking infrared rays having a wavelength exceeding 700 ηη. Therefore, the first filter of the present invention is applied to the infrared ray blocking filter of the imaging device, and the sensitivity of the red color of the imaging element can be eliminated, and the image captured by the imaging device can easily become a dark image. The shortcomings. Further, in the first filter, the infrared ray reflector is combined with the infrared ray absorbing body to suppress the amount of light reflected by the infrared ray reflector. For this reason, it is possible to suppress the occurrence of ghosting due to reflection of the light of the infrared reflector. Further, the thickness of the infrared absorbing glass having a light transmission characteristic indicated by L 1 1 in Fig. 10 having a transmittance of 50% at a wavelength of 640 nm is used as a conventional infrared ray interrupting filter. The thickness of the infrared absorbing glass of the light transmitting property indicated by L 1 2 is less than or equal to half, and accordingly, the transmittance in the wavelength band of 620 to 660 nm constituting the aforementioned first filter of the present invention is 50. The infrared ray absorbing body having a light transmission characteristic of % can be thinner than the infrared ray blocking filter composed of the previous infrared absorbing glass having the light transmitting property shown by L12 in Fig. 1A, which is -9-201245836. Therefore, according to the first filter of the present invention, the previous infrared ray constituted by the infrared absorbing body blocks a thin thickness 'on the side, sufficiently transmits red visible light' and in the visible field, has a light transmittance close to the human eye. Special filter. Further, in order to achieve the above object, the present invention relates to a combined optical system in which light is incident on at least a part of an object from the outside along the optical axis, and a switchable configuration of a multi-mirror system, an optical filter, and an imaging element. The device is characterized in that: the plurality of filters transmit visible light to the first filter and the second filter that passes only infrared rays; and any one of the second filters is selectively switchable according to the present invention, because the foregoing 1 The filter and the front-side can be selectively switched and arranged on the optical axis, and during the daytime, even in the dark vision at night, the first filter can be used in the daytime to switch between In the view state, the second filter is arranged to be placed in the daylight only, and in the dark vision such as at night, the visible light can be captured, and at least the infrared rays can be blocked in the first state, so that daytime photography can be performed. Get a natural camera portrait. In addition, since it is possible to perform nighttime photography in a state in which only the infrared mirror is interposed, it is possible to obtain a more stable and vivid infrared photographic image by partially injecting a natural light in the visible field in the photography of the future. An optical filter system that cuts off infrared rays and blocks infrared rays, and an optical filter system that optically filters from an external filter is provided with the first filter that blocks infrared rays and the optical axis. on. The second filter is not only photographed in natural light. Specifically, it is placed on the aforementioned optical axis on the optical axis, and is not shadowed. In particular, because the 1 filter has a second filter that is close to the line of the human eye, there is no overexposure due to night.

-10- S 201245836 於前述構造中,前述第2濾鏡,係僅通過紅外線之預 先設定的特定帶域,遮斷紅外線之其他帶域亦可》 此時,除了上述之作用效果,前述第2濾鏡係僅通過 紅外線之預先設定的特定帶域,遮斷紅外線之其他帶域, 故可讓暗視下之攝影有更好之效果。 於前述構造中,前述第1濾鏡,係具備吸收紅外線的 紅外線吸收體,與反射紅外線的紅外線反射體亦可。 此時,除了上述之作用效果之外1因爲前述第1濾鏡 具備吸收紅外線的紅外線吸收體,與反射紅外線的紅外線 反射體,故可一邊抑制重影及光斑,同時提升色彩真實度 ,故可使白天的攝影有更好之效果。 於前述構造中,前述紅外線吸收體,係表示62〇nm〜 660nm之波長帶域內的波長中透射率爲50%的透光特性 ;前述紅外線反射體,係表示670nm〜690nm之波長帶域 內的波長中透射率爲50%的透光特性;藉由前述紅外線 吸收體與前述紅外線反射體的組合,表示620nm〜660nm 之波長帶域內的波長中透射率爲50%,7〇Onm的波長中 透射率未滿5%的透光特性亦可。 此時,前述第1濾鏡具備前述紅外線吸收體與前述紅 外線反射體,前述紅外線吸收體表示620nm〜660nm之波 長帶域內的波長中透射率爲5 0 %的透光特性’前述紅外 線反射體表示670nm〜690nm之波長帶域內的波長中透射 率爲5 0 %的透光特性,藉由前述紅外線吸收體與前述紅 外線反射體的組合,表示620nm〜660nm之波長帶域內的 -11 - 201245836 波長中透射率爲50%,700nm的波長中透射率未滿5% ’ 所以,藉由該等前述紅外線吸收體與前述紅外線反射體的 組合,可獲得從可視域涵蓋紅外光域,透射率緩慢地減少 ,700nm的波長中透射率約0%之接近人眼的感度特性之 透光特性。 又,於前述紅外線吸收體,使用表示620nm〜660nm 之波長帶域內的波長中透射率爲50%的透光特性之前述 紅外線吸收體,例如,具有圖1 0的L 1 1所示之透光特性 的紅外線吸收玻璃,透射率成爲約〇% (未滿5% )之點 係藉由將在前述紅外線吸收體的紅外線吸收作用組合在前 述紅外線反射體的紅外線反射作用,設爲700nm。爲此, 本發明的第1濾鏡係相較於由具有圖1 〇的L 1 2所示之透 光特性的紅外線吸收玻璃所成之先前的紅外線遮斷濾鏡, 在可視域,尤其在600nm〜700nm的波長帶域,可維持高 透射率。亦即,可一邊遮斷波長超過 7 OOnm的紅外線, 一邊透射利用前述攝像裝置的前述攝像元件可感測之充分 量的紅色光線(波長爲600nm〜700nm的光線)。因此, 利用將本發明的前述第1濾鏡,適用於前述攝像裝置的紅 外線遮斷濾鏡,可消除前述攝像元件之紅色的感度較弱, 以前述攝像裝置攝像之畫像容易成爲較暗的畫像之缺點。 又,在前述第1濾鏡中,利用將前述紅外線反射體與 前述紅外線吸收體組合,抑制藉由前述紅外線反射體反射 之光線的量。爲此,可抑制在前述紅外線反射體之光線的 反射所致之重影的發生。 8 201245836 又,具有640nm的波長中透射率爲50%之圖10的 L 1 1所示之透光特性的前述紅外線吸收玻璃之厚度,係作 爲先前的紅外線遮斷濾鏡所使用之具有圖10的L12所示 之透光特性的紅外線吸收玻璃之厚度的一半以下,據此, 於構成本發明之前述第1濾鏡的具有620〜660nm的波長 帶域內的波長中透射率爲50%的透光特性之前述紅外線 吸收體,可使用厚度比由具有圖10的L12所示之透光特 性的先前之紅外線吸收玻璃所構成之紅外線遮斷濾鏡還薄 者。爲此,依據本發明的前述第1濾鏡,可提供利用與僅 以紅外線吸收體構成之先前的紅外線遮斷濾鏡相同厚度或 較薄的厚度,一邊充分透射紅色的可視光線,遮斷紅外線 ,且於可視域中,具有接近人眼之透光特性的紅外線遮斷 濾鏡。 又,於前述之本發明的構造中,前述紅外線吸收體係 表示700 nm的波長中透射率爲10%〜40%的透光特性, 前述紅外線反射體係表示700nm的波長中透射率未滿1 5 %的透光特性亦可。 此時,藉由表示7〇Onm的波長中透射率爲10%〜40 %的透光特性之前述紅外線吸收體,與表示7OOnm的波 長中透射率未滿1 5 %的透光特性之前述紅外線反射體的 組合,在紅色之可視光線的波長帶域(600nm〜700nm ) 中可確實獲得高透射率。 又’於前述之本發明的構造中,前述紅外線反射體係 表示43 0nm〜6 5 0nm的波長帶域中具有90%以上的透光 -13- 201245836 特性亦可。 此時,因爲可獲得依存於430nm〜650nm的波長帶域 中前述紅外線吸收體的透光特性之透光特性,從可視域涵 蓋紅外光域,透射率緩慢地減少,可獲得70〇Tim的波長 中透射率成爲〇%之接近人眼的感度特性之透光特性,除 此之外,在可視域,尤其在紅色之可視光線的波長帶域( 600nm〜700nm)中可確實獲得闻透射率。 [發明的效果] 依據本發明,不僅在自然光進入的白天,即使在夜間 等的暗視下也可進行攝影。 【實施方式】 以下,針對本發明的實施形態,參照圖面來進行說明 &lt;實施形態&gt; 關於本實施形態的攝像裝置1係如圖1所示,沿著光 軸11從外部的被攝體側,至少依序配設有從外部射入光 線之結合光學系的透鏡2、可切換配置複數濾鏡(參照後 述)的光學濾鏡模組3、身爲〇LPF的光學濾鏡8及攝像 元件9 » 在光學濾鏡模組3中,設置有透射可視光,至少遮斷 紅外線的第1濾鏡4,與僅通過紅外線的第2濾鏡7。該-10- S 201245836 In the above configuration, the second filter is only a specific band set in advance by infrared rays, and the other bands of the infrared rays may be blocked. In this case, in addition to the above-described effects, the second The filter only blocks the other areas of the infrared rays by the specific band set in advance by the infrared rays, so that the photography under scotopic has a better effect. In the above configuration, the first filter may include an infrared absorber that absorbs infrared rays and an infrared reflector that reflects infrared rays. In this case, in addition to the above-described effects, the first filter includes an infrared absorber that absorbs infrared rays and an infrared reflector that reflects infrared rays, so that it is possible to suppress ghosting and light spots while improving color realism. Make daytime photography a better result. In the above configuration, the infrared absorber is a light transmitting property having a transmittance of 50% in a wavelength band of 62 〇 nm to 660 nm; and the infrared ray reflector is in a wavelength band of 670 nm to 690 nm. a light transmission characteristic having a transmittance of 50% in the wavelength; a combination of the infrared absorber and the infrared reflector, indicating a wavelength in a wavelength band of 620 nm to 660 nm of 50%, a wavelength of 7 〇 Onm A light transmission characteristic in which the medium transmittance is less than 5% is also acceptable. In this case, the first filter includes the infrared absorber and the infrared reflector, and the infrared absorber indicates a light transmission characteristic of a wavelength in a wavelength band of 620 nm to 660 nm of 50%. A light transmission characteristic indicating a transmittance in a wavelength band of 670 nm to 690 nm in a wavelength range of 50%, and a combination of the infrared absorber and the infrared reflector means a -11 in a wavelength band of 620 nm to 660 nm. 201245836 The transmittance in the wavelength is 50%, and the transmittance in the wavelength of 700 nm is less than 5%. Therefore, by combining the above-mentioned infrared absorber and the above-mentioned infrared reflector, it is possible to obtain the infrared light field from the visible region, and the transmittance Slowly decreasing, the transmission at a wavelength of 700 nm is about 0% close to the light transmission characteristic of the sensitivity characteristic of the human eye. In the infrared absorber, the infrared absorber having a light transmission characteristic of a wavelength of 50% in a wavelength band of 620 nm to 660 nm is used, for example, as shown by L 1 1 in FIG. In the infrared absorbing glass of the optical property, the transmittance is about 〇% (less than 5%), and the infrared ray absorbing effect of the infrared ray absorbing body is combined with the infrared ray reflecting action of the infrared ray reflector to be 700 nm. For this reason, the first filter of the present invention is compared with the conventional infrared ray interrupting filter formed of the infrared absorbing glass having the light transmitting property shown by L 1 2 of FIG. 1 in the visible region, especially in the visible region. A wavelength band of 600 nm to 700 nm maintains high transmittance. In other words, it is possible to transmit a sufficient amount of red light (light having a wavelength of 600 nm to 700 nm) which can be sensed by the image pickup element of the image pickup device while blocking infrared rays having a wavelength exceeding 700 nm. Therefore, the first filter of the present invention is applied to the infrared ray blocking filter of the imaging device, and the sensitivity of the red color of the imaging element can be eliminated, and the image captured by the imaging device can easily become a dark image. The shortcomings. Further, in the first filter, the infrared ray reflector is combined with the infrared ray absorbing body to suppress the amount of light reflected by the infrared ray reflector. For this reason, it is possible to suppress the occurrence of ghosting due to reflection of the light of the infrared reflector. 8 201245836 Further, the thickness of the infrared absorbing glass having a light transmission characteristic indicated by L 1 1 in Fig. 10 having a transmittance of 50% at a wavelength of 640 nm is used as a conventional infrared ray interrupting filter. The thickness of the infrared absorbing glass of the light transmitting property indicated by L12 is less than or equal to half, and accordingly, the transmittance in the wavelength range of 620 to 660 nm constituting the first filter of the present invention is 50%. The infrared absorber of the light transmission property can be made thinner than the infrared ray shielding filter which consists of the previous infrared absorbing glass which has the light transmission characteristic shown by L12 of FIG. Therefore, according to the first filter of the present invention, it is possible to provide a visible light having a thickness equal to or thinner than that of the conventional infrared ray interrupting filter formed of only the infrared absorbing body, and to sufficiently transmit the visible light of the red light to block the infrared ray. And in the visible field, an infrared ray blocking filter having a light transmission property close to the human eye. Further, in the above configuration of the present invention, the infrared ray absorbing system indicates a light transmission characteristic of a transmittance of 10% to 40% at a wavelength of 700 nm, and the infrared reflection system indicates a transmittance of less than 15% at a wavelength of 700 nm. The light transmission characteristics are also available. In this case, the infrared absorber having a light transmission characteristic of a transmittance of 10% to 40% in a wavelength of 7〇Onm and the infrared ray having a light transmission characteristic of a wavelength of less than 15% in a wavelength of 7 00 nm are used. The combination of the reflectors can surely achieve high transmittance in the wavelength band of the visible light of red (600 nm to 700 nm). Further, in the above-described configuration of the present invention, the infrared reflecting system may have a light transmittance of 90% or more in the wavelength band of 43 0 nm to 600 nm. At this time, since the light transmission property of the light transmitting property of the infrared absorbing body in the wavelength band of 430 nm to 650 nm is obtained, the infrared light domain is covered from the visible region, and the transmittance is slowly decreased, and a wavelength of 70 〇 Tim can be obtained. The medium transmittance is a light transmission characteristic close to the sensitivity characteristic of the human eye, and in addition, the transmittance can be surely obtained in the visible region, particularly in the wavelength band of the visible light of red (600 nm to 700 nm). [Effects of the Invention] According to the present invention, photographing can be performed not only during daylight when natural light enters, but also under dark vision such as nighttime. [Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. <Embodiment> The imaging device 1 of the present embodiment is photographed from the outside along the optical axis 11 as shown in Fig. 1 . On the body side, at least a lens 2 that combines optical light from the outside is provided, an optical filter module 3 that can switch between a plurality of filters (see below), an optical filter 8 that is a 〇LPF, and Imaging Device 9 » The optical filter module 3 is provided with a first filter 4 that transmits visible light, at least blocks infrared rays, and a second filter 7 that passes only infrared rays. The

-14- S 201245836 等第1濾鏡4與第2濾鏡7之任一方藉由公知的切換手段 (省略圖示)選擇性被切換配置於光軸11上。具體來說 |白天等之自然光進入時第1濾鏡4被配置於光軸11上 5在夜間等之暗視下,第2濾鏡7被配置於光軸1 1上。 再者,在第2濾鏡7被配置於光軸U上時,將來自光線 的峰値波長爲8 5 0〜900nm (在本實施形態中爲8 70nm ) 之LED (省略圖示)的光線照射至被攝體。再者,本實施 形態中所謂白天的定義係照度超過4001x之狀況,夜間的 定義係照度爲400x1以下之狀況。再者,在此所謂400x1 係爲一例,白天與夜間的境界照度係當業者可自由設定。 或者,僅進行夜間的定義,將偏離夜間的定義之照度判斷 爲白天亦可,或者僅進行白天的定義,將偏離白天的定義 之照度判斷爲夜間亦可。亦即,預先設定照度的基準,依 據設定之照度來切換第1濾鏡4與第2濾鏡7亦可。 又,因爲光學濾鏡模組3包含第1濾鏡4,於身爲 OLPF的光學濾鏡8,並未形成紅外線遮斷濾鏡,僅防止 兩個波長帶域(可視域與紅外光域)之光線的反射之單層 的反射防止膜8 1形成於兩主面。再者,在本實施形態中 ,於光學濾鏡8僅單層的反射防止膜81形成於兩主面, 但是,並不限定於此,形成可防止特定波長之光線的反射 之反射防止膜即可。 依據圖1所示之攝像裝置1,白天時,沿著光軸1 1 從外部的被攝體側,依序配設有透鏡2、第1濾鏡4、光 學濾鏡8及攝像元件9。藉由將此第1濾鏡、配置於光軸 -15- 201245836 1 1上的構造,攝像裝置1 (光學濾鏡模組3)係具有圖2 所示之透光特性。另一方面,夜間時,沿著光軸1 1從外 部的被攝體側,依序配設有透鏡2、第2濾鏡7、光學濾 鏡8、攝像元件9。藉由將此第2濾鏡7配置於光軸11上 的構造,攝像裝置1 (光學濾鏡模組3)係具有圖5所示 之透光特性。 如此,依據圖1所示之攝像裝置,因爲第1濾鏡4與 第2濾鏡7任一方選擇性被切換配置於光軸11上,於可 視域中,可獲得接近人眼之感度特性的分光特性,且可透 射紅外光域之所希望帶域的光線。結果,依據圖1所示之 攝像裝置1,可適切進行遮斷紅外線之白天的攝影,與僅 通過紅外線之夜間等的暗視下的攝影。亦即,不僅在自然 光進入的白天,即使在夜間等的暗視下也可進行攝影。具 體來說,利用在白天時第1濾鏡4被切換配置於光軸11 上,暗視狀態時第2濾鏡7被切換配置於光軸1 1上,不 僅白天,即使在夜間等的暗視下也可進行攝影。尤其,因 爲在透射可視光,至少遮斷紅外線之第1濾鏡4中介存在 之狀態下可進行白天的攝影,故白天可獲得接近人眼之更 自然的攝像畫像。又,因爲在僅通過紅外線之第2濾鏡7 中介存在之狀態下可進行夜間攝影,故完全不會有因夜間 攝影中可視域的自然光之一部分射入而發生曝光過度,可 獲得更穩定之鮮明的紅外線之攝影畫像。 接著,針對光學濾鏡模組3,使用圖1〜圖7來進行 說明。於光學濾鏡模組3,設置有第1濾鏡4與第2濾鏡-14-S 201245836 Any one of the first filter 4 and the second filter 7 is selectively switched to the optical axis 11 by a known switching means (not shown). Specifically, the first filter 4 is placed on the optical axis 11 when natural light such as daylight enters. 5 The second filter 7 is placed on the optical axis 1 1 in a dark vision such as at night. Further, when the second filter 7 is disposed on the optical axis U, light from an LED (not shown) having a peak wavelength of 850 to 900 nm (in the present embodiment, 8 70 nm) Irradiate to the subject. Further, in the present embodiment, the definition of the daytime illuminance is more than 4001x, and the definition of nighttime is the condition of 400x1 or less. Furthermore, the 400x1 system is an example here, and the daytime and nighttime illumination can be freely set by the practitioner. Alternatively, only the nighttime definition is made, and the illuminance of the definition that deviates from the nighttime is judged to be daytime, or only the daytime definition is made, and the illuminance of the definition that deviates from the daytime is judged to be nighttime. In other words, the first filter 4 and the second filter 7 may be switched in accordance with the set illuminance based on the illuminance reference. Moreover, since the optical filter module 3 includes the first filter 4, the optical filter 8 which is an OLPF does not form an infrared ray interrupting filter, and only two wavelength bands (visible field and infrared light field) are prevented. The reflection preventing film of the single layer of the light is formed on both main faces. In the present embodiment, only the single-layer anti-reflection film 81 is formed on the both main surfaces of the optical filter 8. However, the present invention is not limited thereto, and an anti-reflection film capable of preventing reflection of light of a specific wavelength is formed. can. According to the imaging device 1 shown in Fig. 1, the lens 2, the first filter 4, the optical filter 8, and the imaging element 9 are sequentially disposed from the external subject side along the optical axis 1 1 during the daytime. The imaging device 1 (optical filter module 3) has the light transmission characteristics shown in Fig. 2 by the structure in which the first filter is disposed on the optical axis -15-201245836 1 1 . On the other hand, at night, the lens 2, the second filter 7, the optical filter 8, and the imaging element 9 are sequentially disposed from the external subject side along the optical axis 11. By arranging the second filter 7 on the optical axis 11, the imaging device 1 (optical filter module 3) has the light transmission characteristics shown in Fig. 5. As described above, according to the imaging apparatus shown in FIG. 1, since either the first filter 4 and the second filter 7 are selectively switched and arranged on the optical axis 11, in the visible region, sensitivity characteristics close to the human eye can be obtained. The spectral characteristic, and can transmit the light of the desired band of the infrared light domain. As a result, according to the image pickup apparatus 1 shown in Fig. 1, it is possible to appropriately perform photographing during the day when the infrared rays are blocked, and photographing under the dark vision such as nighttime only by infrared rays. That is, photographing can be performed not only during the day when natural light enters, but also under squint at night. Specifically, the first filter 4 is switched to be disposed on the optical axis 11 during the daytime, and the second filter 7 is switched to be disposed on the optical axis 11 in the dark state, not only during the day, but also at night or the like. Photography can also be taken. In particular, since the daytime photography can be performed while the visible light is transmitted through at least the first filter 4 that blocks the infrared rays, a more natural image of the image close to the human eye can be obtained during the day. Further, since nighttime photography can be performed in a state in which only the second filter 7 of the infrared rays is present, there is no possibility that overexposure occurs due to partial injection of natural light in the visible region in nighttime photography, and it is possible to obtain more stable. A vivid portrait of infrared photography. Next, the optical filter module 3 will be described with reference to Figs. 1 to 7 . In the optical filter module 3, a first filter 4 and a second filter are provided

S -16- 201245836 7與公知的切換手段(省略圖示)。 第1濾鏡4係如圖2、3所示,接著透射可視光線, 且吸收紅外線的紅外線吸收體5,與透射可視光線,且反 射紅外線的紅外線反射體6所構成。 紅外線吸收體5係於紅外線吸收玻璃5 1之一主面52 形成反射防止膜54 ( AR塗層)所構成。 作爲紅外線吸收玻璃51,使用分散銅離子等之色素 的藍色玻璃,例如,厚度爲0.2mm〜1 .2mm之方形薄板狀 的玻璃。 又,反射防止膜54係對於紅外線吸收玻璃5 1的一主 面52,利用公知的真空蒸鍍裝置(省略圖示),藉由真 空蒸鍍(vacuum deposition)來形成由MgF2所成之單層 '由 A1202與Zr02與MgF2所成之多層膜、由Ti02與 Si〇2所成之多層膜之任一膜。再者,反射防止膜54係一 邊監視膜厚一邊進行蒸鍍動作,藉由在達到所定膜厚時, 關閉設置於蒸鑛源(省略圖示)附近之閘門(省略圖示) 等,停止蒸鍍物質的蒸鍍來進行》 紅外線吸收體5係表示620nm〜660nm之波長帶域內 的波長中透射率爲50%,700nm的波長中透射率爲1〇% 〜4 0%的透光特性。再者,於此種紅外線吸收體5的透光 特性中,透射率係在4〇〇nm〜550nm之波長帶域內的波長 中成爲90%以上之最大値。 紅外線反射體6係於透明基板6 1的一主面62形成紅 外線反射膜64所構成。 -17- 201245836 作爲透明基板6 1,使用透射可視光線及紅外線的無 色透明玻璃’例如,厚度爲0.2mm〜1.0mm之方形薄板狀 的玻璃。 紅外線反射膜64係如圖4所示,爲由高折射率材料 所成之第1薄膜65與由低折射率材料所成之第2薄膜66 交互複數層積的多層膜。再者,在此實施形態中,於第1 薄膜65使用Ti02,於第2薄膜66使用Si02,奇數層爲 Ti〇2,偶數層爲Si02,但是,奇數層爲Si02,偶數層爲 T i Ο 2亦可。 作爲紅外線反射膜64的製造方法,使用對於透明基 板61的一主面62,藉由公知的真空蒸鍍裝置(省略圖示 )交互真空蒸鍍Ti02與Si02,形成圖4所示之紅外線反 射膜64的方法。再者,第1薄膜65及第2薄膜66的膜 厚調整係一邊監視膜厚一邊進行蒸鍍動作,藉由在達到所 定膜厚時,關閉設置於蒸鍍源(省略圖示)附近之閘門( 省略圖示)等,停止蒸鍍物質(Ti_02,Si02 )的蒸鍍來進 行》 又,紅外線反射膜64係如圖4所示,由從透明基板 61的一主面62側依序以序數定義之複數層,在本實施形 態中由1層、2層、3層…所構成。該等1層' 2層、3層 …各層係層積第1薄膜65與第2薄膜66所構成。因該等 層積之第1薄膜65與第2薄膜66的光學膜厚不同,丨層 、2層、3層…各層的厚度也不同。再者,在此所謂光學 膜厚係藉由下述計算式1求出。S-16-201245836 7 and well-known switching means (not shown). As shown in Figs. 2 and 3, the first filter 4 is composed of an infrared ray absorber 5 that transmits visible light and absorbs infrared rays, and an infrared ray reflector 6 that transmits visible light and reflects infrared rays. The infrared absorbing body 5 is formed by forming an anti-reflection film 54 (AR coating) on one main surface 52 of the infrared absorbing glass 51. As the infrared absorbing glass 51, a blue glass in which a dye such as copper ions is dispersed is used, for example, a square thin plate glass having a thickness of 0.2 mm to 1.2 mm. Further, the anti-reflection film 54 is formed on a main surface 52 of the infrared absorbing glass 51 by a vacuum deposition apparatus (not shown) to form a single layer made of MgF2 by vacuum deposition. 'Multilayer film made of A1202 and Zr02 and MgF2, or a film of a multilayer film made of TiO 2 and Si 〇 2 . In addition, the anti-reflection film 54 performs a vapor deposition operation while monitoring the film thickness, and when the predetermined film thickness is reached, the gate (not shown) provided in the vicinity of the vapor source (not shown) is closed, and the steaming is stopped. In the case of vapor deposition of a plating material, the infrared absorber 5 shows a transmittance of 50% in a wavelength band of 620 nm to 660 nm, and a transmittance of 1% to 40% in a wavelength of 700 nm. Further, in the light transmission characteristics of the infrared absorber 5, the transmittance is 90% or more of the maximum wavelength in the wavelength range of 4 〇〇 nm to 550 nm. The infrared reflecting body 6 is formed by forming an infrared reflecting film 64 on one main surface 62 of the transparent substrate 61. -17- 201245836 As the transparent substrate 6-1, a colorless transparent glass that transmits visible light and infrared rays is used, for example, a square thin plate glass having a thickness of 0.2 mm to 1.0 mm. As shown in Fig. 4, the infrared reflecting film 64 is a multilayer film in which a first film 65 made of a high refractive index material and a second film 66 made of a low refractive index material are alternately laminated. Further, in this embodiment, TiO 2 is used for the first film 65, SiO 2 is used for the second film 66, Ti 〇 2 for the odd layer, and SiO 2 for the even layer, but the odd layer is SiO 2 and the even layer is T i Ο 2 can also. As a method of manufacturing the infrared ray reflection film 64, TiO2 and SiO2 are alternately vacuum-deposited on a main surface 62 of the transparent substrate 61 by a known vacuum vapor deposition apparatus (not shown) to form an infrared ray reflection film as shown in FIG. 64 methods. In addition, the film thickness adjustment of the first film 65 and the second film 66 is performed while monitoring the film thickness, and when the film thickness is reached, the gate provided in the vicinity of the vapor deposition source (not shown) is closed. (The illustration is omitted), the vapor deposition of the vapor deposition material (Ti_02, SiO2) is stopped, and the infrared reflection film 64 is sequentially numbered from the main surface 62 side of the transparent substrate 61 as shown in FIG. The plural layer defined is composed of one layer, two layers, and three layers in the present embodiment. The one layer 'two layers, three layers, ... each layer is formed by laminating the first film 65 and the second film 66. The thickness of each of the enamel layer, the two layers, and the third layer is different depending on the optical film thickness of the first film 65 and the second film 66 which are laminated. Here, the optical film thickness is determined by the following calculation formula 1.

-18- S 201245836 [計算式1]-18- S 201245836 [Calculation 1]

Nd = dxNx4/ Λ (Nd:光學膜厚,d:物理膜厚,ν: 折射率,λ :中心波長) 在本實施形態中,紅外線反射體6以具有在43 Onm〜 6 50nm之波長帶域內的透射率爲90%以上,在660nm〜 6 9 Onm之波長帶域內的波長中透射率成爲 50% ,在 7OOnm的波長中透射率未滿15%的透光特性之方式,適 切調整紅外線反射體64的層數及各層的光學膜厚。 由此種紅外線吸收體5與紅外線反射體6所構成之第 1濾鏡4例如具有0.4mm〜1.6mm的厚度。亦即,構成紅 外線吸收玻璃5之紅外線吸收玻璃51的厚度及構成紅外 線反射體6之透明基板61的厚度被適切調整,使得紅外 線吸收體5與紅外線反射體 6之厚度的合計例如成爲 0.4mm 〜1.6mm 〇 然後,第1濾鏡4係藉由前述紅外線吸收體5與紅外 線反射體6之透光特性的組合,表示40Onm〜5 5 0nm之波 長帶域內的波長中透射率成爲最大値,62 Onm〜66 Onm之 波長帶域內的波長中透射率成爲50%,700nm的波長中 透射率未滿5 %的透光特性。 因爲於由前述構造所成的第1濾鏡4,如前述般具備 吸收紅外線之紅外線吸收體5 ’與反射紅外線之紅外線反 射體6,可一邊抑制重影及光斑’同時也可提升色彩真實 -19- 201245836 度,故可讓白天的攝影有更好的效果。 又,第2濾鏡7係如圖5、6所示,僅通 預先設定的特定帶域(在本實施形態中半値I 上),遮斷可視域。再者,於第2濾鏡7設置 値波長爲 8 5 0〜900nm (在本實施形態中爲 LED (省略圖示),在第2濾鏡7被配置於分 將來自LED的光線照射至被攝體。如此,第 暗視下之攝影專用的濾鏡,並不是以白天等的 影爲目的者,無法進行可視下之攝影。再者, 此實施形態,設爲僅通過接近8 70nm之特定 亦可。此時可進行去除雜訊之更好的暗視攝影 此第2濾鏡7係爲了僅通過紅外線之預先 帶域(在本苡施形態中對應從LED照射之光 ,遮斷紅外線之其他帶域,於透明基板7 1的-成紅外線通過塗層74 ( IR通過塗層)所構成 第2濾鏡7的另一主面73,形成有反射防止| 防止膜77係對於第2濾鏡7的另一主面73, 真空蒸鍍裝置(省略圖示),藉由真空蒸g MgF2所成之單層、由a1202與Zr02與MgF2 膜、由Ti〇2與Si02所成之多層膜之任一膜。 濾鏡7’因爲僅通過紅外線之預先設定之特定 實施形態中對應從LED照射之光線的波長) 線之其他帶域,可讓暗視下之攝影有更好的效 作爲透明基板7 1,使用透射可視光線及 過紅外線之 ! 8 5 Onm 以 有光線的峰 8 7 0nm )之 5軸11上時 2濾鏡7係 可視下之攝 並不限定於 帶域的構造 〇 設定之特定 線的波長) -主面7 2形 。再者,於 漠77 。反射 利用公知的 渡來形成由 所成之多層 依據此第2 帶域(在本 ,遮斷紅外 果。 紅外線的無Nd = dxNx4 / Λ (Nd: optical film thickness, d: physical film thickness, ν: refractive index, λ: center wavelength) In the present embodiment, the infrared ray reflector 6 has a wavelength band of 43 Onm 〜 6 50 nm The transmittance in the wavelength is 90% or more, the transmittance is 50% in the wavelength range of 660 nm to 6 9 Onm, and the transmission characteristic is less than 15% in the wavelength of 7OO nm, and the infrared ray is appropriately adjusted. The number of layers of the reflector 64 and the optical film thickness of each layer. The first filter 4 composed of the infrared absorber 5 and the infrared reflector 6 has a thickness of, for example, 0.4 mm to 1.6 mm. In other words, the thickness of the infrared absorbing glass 51 constituting the infrared absorbing glass 5 and the thickness of the transparent substrate 61 constituting the infrared ray reflector 6 are appropriately adjusted so that the total thickness of the infrared absorbing body 5 and the infrared ray reflector 6 is, for example, 0.4 mm. 1.6 mm 〇 Then, the first filter 4 is a combination of the light transmitting characteristics of the infrared ray absorbing body 5 and the infrared ray reflector 6, and the transmittance in the wavelength band of 40 Onm to 550 nm is the maximum 値, The transmittance in the wavelength range of 62 Onm to 66 Onm is 50%, and the transmittance at the wavelength of 700 nm is less than 5%. Since the first filter 4 formed by the above-described structure has the infrared absorbing body 5 ′ that absorbs infrared rays and the infrared ray reflecting body 6 that reflects infrared rays as described above, it is possible to suppress the ghost image and the spot spot while improving the color reality. 19-201245836 degrees, so that daytime photography can have a better effect. Further, as shown in Figs. 5 and 6, the second filter 7 blocks only the visible band (in the present embodiment, the half-turn I), and blocks the visible region. Further, the second filter 7 is provided with a 値 wavelength of 850 to 900 nm (in the present embodiment, an LED (not shown), and the second filter 7 is disposed to illuminate the light from the LED to be In this way, the filter for photography under the sneak peek is not for the purpose of daytime shadowing, and it is impossible to perform visual photography. Furthermore, in this embodiment, it is assumed that only the specificity is close to 8 70 nm. In this case, it is possible to perform better scotopic photography for removing noise. The second filter 7 is for pre-banding only by infrared rays (in the present embodiment, the light is irradiated from the LED, and the infrared ray is blocked. In the other region, the other main surface 73 of the second filter 7 is formed on the transparent substrate 71 by the infrared ray 74 through the coating 74 (IR coating), and the anti-reflection film 77 is formed for the second filter. The other main surface 73 of the mirror 7 is a vacuum vapor deposition apparatus (not shown), a single layer formed by vacuum evaporation of g MgF2, a multilayer film formed of a1202 and Zr02 and MgF2 films, and Ti 2 and SiO 2 . Any of the membranes. The filter 7' corresponds to the corresponding LED illumination in a specific embodiment that is preset only by infrared rays. The wavelength of the light) The other bands of the line allow the photography under scotopic to have better effect as a transparent substrate. 7. Use visible light and over-infrared rays! 8 5 Onm with a peak of light 8 7 0 nm ) When the 5 axes 11 are on, the 2 filters 7 are not limited to the wavelength of the specific line set by the structure of the band) - the main surface is 2 2 shaped. Furthermore, Yu Qian 77. Reflection uses a well-known ferry to form a multi-layered layer based on this second band (in this case, the infrared ray is blocked.

-20- S 201245836 免透明玻璃,例如,厚度爲0.4mm〜l.6mm之方形薄 的玻璃。 紅外線通過塗層7 4係如圖7所示’爲由高折射 料所成之第1薄膜7 5與由低折射率材料所成之第2 76交互複數層積的多層膜。再者,在此實施形態中 第1薄膜75使用Ti02,於第2薄膜76使用Si02, 層爲Ti02,偶數層爲Si02,但是,奇數層爲Si02, 層爲T i 0 2亦可。 作爲紅外線通過塗層74的製造方法,使用對於 基板71的一主面72,藉由公知的真空蒸鍍裝置(省 示)交互真空蒸鍍Ti02與Si02,形成圖7所示之紅 通過塗層74的方法。再者,第1薄膜75及第2薄月 的膜厚調整係一邊監視膜厚一邊進行蒸鍍動作,藉由 到所定膜厚時,關閉設置於蒸鍍源(省略圖示)附近 門(省略圖示)等,停止蒸鍍物質(Ti02,Si02 )的 來進行。 又,紅外線通過塗層74係如圖7所示,由從透 板71的一主面72側依序以序數定義之複數層,在本 形態中由1層、2層' 3層…所構成。該等1層、2擇 層…各層係層積第1薄膜75與第2薄膜76所構成。 等層積之第1薄膜75與第2薄膜76的光學膜厚不(1 層、2層、3層…各層的厚度也不同。再者,在此所 學膜厚係藉由前述計算式1求出。 在本實施形態中’第2爐鏡以具有在860nm之 板狀 率材 薄膜 ,於 奇數 偶數 透明 略圖 外線 莫76 在達 之閘 蒸鏟 明基 實施 ί ' 3 因該 3,1 謂光 波長 -21 - 201245836 帶域的透射率爲90%以上,在8 50nm之波長帶域內的波 長中透射率成爲50%,在840 nm的波長中透射率未滿15 %的透光特性之方式,適切調整紅外線通過塗層74的層 數及各層的光學膜厚。 此種第2濾鏡7例如具有0.4mm〜1.6mm的厚度。 然後,第2濾鏡7係藉由紅外線通過塗層74的透光 特性,表示8 60nm以上之波長帶域內的波長中透射率成 爲最大値,在850nm之波長帶域內的波長中透射率成爲 50%,8 3 0nm的波長中透射率未滿5%的透光特性。 接著,實際測定第1濾鏡4及第2濾鏡5的波長特性 ,於圖8及表1、2作爲實施例來揭示其結果及構造。 一關於實施例的第1濾鏡4一 在關於本實施例的第1濾鏡4中,作爲紅外線吸收玻 璃51,使用分散銅離子等之色素的藍色玻璃,厚度爲 0.8mm,N大氣中之折射率約1.5的玻璃板。然後,於此 紅外線吸收玻璃51的一主面52,依N大氣中之折射率爲 1.6的Al2〇3膜、N大氣中之折射率爲2.0的Zr02膜、N 大氣中之折射率爲I.4的MgF2膜之順序,藉由真空蒸鍍 來形成構成反射防止膜54的各膜,獲得紅外線吸收體5 〇 此紅外線吸收體S係具有如圖8的L1之透光特性》 再者,在此實施例中,將光線的射入角設爲0度,亦即, 使光線垂直射入。-20- S 201245836 Clear transparent glass, for example, square thin glass with a thickness of 0.4mm~l.6mm. The infrared ray-passing coating layer 7 is a multilayer film in which a first film 7 made of a high refractive material and a 2nd 76th layer formed of a low refractive index material are stacked as shown in Fig. 7 . Further, in this embodiment, TiO 2 is used for the first film 75, SiO 2 is used for the second film 76, TiO 2 is the layer, and SiO 2 is even layer. However, the odd layer is SiO 2 and the layer is T i 0 2 . As a method of manufacturing the infrared ray-passing coating 74, using a main surface 72 of the substrate 71, TiO2 and SiO2 are alternately vacuum-deposited by a known vacuum evaporation apparatus (denotation) to form a red pass coating as shown in FIG. 74 method. In addition, the film thickness adjustment system of the first film 75 and the second thin film is subjected to a vapor deposition operation while monitoring the film thickness, and when it is set to a predetermined film thickness, the door adjacent to the vapor deposition source (not shown) is closed (omitted) In the figure, etc., the vapor deposition material (Ti02, SiO2) is stopped. Further, the infrared ray-passing coating layer 74 is composed of a plurality of layers which are sequentially defined by an ordinal number from the main surface 72 side of the permeable plate 71 as shown in Fig. 7, and is composed of one layer and two layers of 'three layers' in this embodiment. . Each of the first layer and the second layer is formed by laminating the first film 75 and the second film 76. The optical film thickness of the first film 75 and the second film 76 which are laminated is not the same (the thickness of each layer of the first film, the second layer, and the third layer) is different. Further, the film thickness is determined by the above formula 1 In the present embodiment, the second gantry mirror has a plate-like rate film at 860 nm, and the odd-numbered even-numbered transparent outline is used to implement the 763. Wavelength - 21 - 201245836 The transmittance of the band is 90% or more, the transmittance is 50% in the wavelength range of 8 50 nm, and the transmittance is less than 15 % at 840 nm. The number of layers of the infrared ray passage coating 74 and the optical film thickness of each layer are appropriately adjusted. The second filter 7 has a thickness of, for example, 0.4 mm to 1.6 mm. Then, the second filter 7 passes through the coating layer 74 by infrared rays. The light transmission property indicates that the transmittance in the wavelength band of 8 60 nm or more becomes the maximum 値, the transmittance in the wavelength band of 850 nm is 50%, and the transmittance in the wavelength of 830 nm is less than 5 % light transmission characteristics. Next, the wavelength characteristics of the first filter 4 and the second filter 5 are actually measured, Fig. 8 and Tables 1 and 2 show the results and the structure as an embodiment. A first filter 4 of the embodiment is a dispersion of copper as the infrared absorbing glass 51 in the first filter 4 of the present embodiment. a blue glass having a pigment such as an ion, a glass plate having a thickness of 0.8 mm and a refractive index of about 1.5 in the atmosphere of N. Then, a main surface 52 of the infrared absorbing glass 51 has a refractive index of 1.6 in the atmosphere of N. In the order of the Al 2 〇 3 film, the ZrO 2 film having a refractive index of 2.0 in the N atmosphere, and the MgF 2 film having a refractive index of 1.4 in the N atmosphere, each film constituting the anti-reflection film 54 is formed by vacuum deposition. Infrared absorber 5, the infrared absorber S has a light transmission characteristic as shown in L1 of Fig. 8. Further, in this embodiment, the incident angle of the light is set to 0 degree, that is, the light is incident vertically. .

S 201245836 如圖8所示,紅外線吸收玻璃51係表示在4 0 0 n m〜 5 5 Onm之波長帶域的透射率爲90%以上,在550 nm〜 700nm的波長帶域中透射率減少,在約640nm的波長中 成爲50%,在700nm的波長中透射率成爲約17%的透光 特性。 作爲紅外線反射體6的透明基板61,使用N大氣中 之折射率爲1 .5,厚度爲0.3mm的玻璃板。又,作爲構成 紅外線反射膜64的第1薄膜65,使用N大氣中之折射率 爲2,3 0的Ti02,作爲第2薄膜66,使用N大氣中之折射 率爲1.46的Si02,該等的中心波長爲688nm。 藉由由該等第1薄膜65與第2薄膜66之各光學膜厚 爲表1所示之前述40層所構成之紅外線反射膜64的製造 方法,對於透明基板61的一主面62’形成(層積)第1 薄膜65及第2薄膜66,獲得紅外線反射膜6。 -23- 201245836 表1 層 蒸鍍物質 折射率N 光學膜厚Nd 中心波長λ (nm) 1 Ti〇2 2.30 0.122 688 2 Si〇2 1.46 0.274 688 3 Τί〇2 2.30 1.296 688 4 Si〇2 1.46 1.279 688 5 Τί〇2 2.30 1.152 688 6 Si〇2 1.46 1.197 688 7 Τΐ〇2 2.30 1.115 688 8 Si〇2 1.46 1.180 688 9 Τί〇2 2.30 1.094 688 10 Si〇2 1.46 1.173 688 11 Τί〇2 2.30 1,089 688 12 Si〇2 1.46 1.176 688 13 Ti〇2 2.30 1.094 688 14 Si〇2 1.46 1.179 688 15 Ti〇2 2.30 1.096 688 16 Si〇2 1.46 1,187 688 17 Ti〇2 2.30 1.103 688 18 Si〇2 1.46 1.205 688 19 Ti〇2 2.30 1.142 688 20 Si〇2 1.46 1.234 688 21 Ti〇2 2.30 1.275 688 22 Si〇2 1.46 1.422 688 23 Ti〇2 2.30 1.437 688 24 Si〇2 1.46 1.486 688 25 Ti〇2 2.30 1.422 688 26 Si〇2 1.46 1.475 688 27 Ti〇2 2.30 1.463 688 28 Si〇2 1.46 1.492 688 29 Ti〇2 2.30 1.424 688 30 Si〇2 1.46 1.472 688 31 Ti〇2 2.30 1.446 688 32 SiOz 1.46 1.488 688 33 Ti〇2 2.30 1.422 688 34 Si〇2 1.46 1.462 688 35 Ti〇2 2.30 1.424 688 36 Si〇2 1.46 1,468 688 37 Ti〇2 2.30 1.396 688 38 Si〇2 1.46 1.424 688 39 Ti〇2 2.30 1,352 688 40 Si〇2 1.46 0.696 688 s -24- 201245836 表1係揭示第1濾鏡4之紅外線反射膜64的組成及 各薄膜(第1薄膜65,第2薄膜66)的光學膜厚。 此紅外線反射體6係具有如圖8的L2之透光特性。 亦即,紅外線反射膜64的透光特性係表示在395nm〜 670nm的波長帶域(包含430nm〜650nm之波長帶域的波 長:帶域)中表不約100%的透射率*波長超過約670nm的 話,透射率會急遽減少而在約680nm的波長中透射率成 爲約50%,7OOnm的波長中透射率成爲約4%的透光特性 〇 然後,如圖8所示,藉由於紅外線吸收玻璃51的另 一主面53,接著透明基板61的另一主面63,獲得厚度爲 1.1 mm之實施例的第1濾鏡4。 此第1濾鏡4係具有組合紅外線吸收體5及紅外線反 射體6的透光特性之圖8的L3所示之透光特性。亦即, 實施例的第1濾鏡4係表示在400nm〜5 5 0nm之波長帶域 的透射率爲90%以上,在5 5 0nm〜700nm的波帶域中透 射率減少,在約640nm的波長中透射率成爲50%,在 7 00nm的波長中透射率成爲約〇%的透光特性。 如此實施例之第1濾鏡4的透光特性所示,在關於本 實施形態的第1濾鏡4中,藉由紅外線吸收體5與紅外線 反射體6的組合,可獲得在400nm〜5 50nm之波長帶域內 的波長中透射率爲90%以上的最大値,在620nm〜660nm 之波長帶域內的波長中透射率成爲50%,在7〇〇nm的波 長中透射率成爲約0 % (未滿5 % )的透光特性。亦即, -25- 201245836 可獲得從可視域涵蓋紅外光域,透射率緩慢地減少, 700nm的波長中透射率約〇%之接近人眼的感度特性之透 光特性。 藉由圖8所示之關於實施例的第丨濾鏡4之透光特性 L3與先前的紅外線遮斷濾鏡之透光特性L4的比較,更具 體進行說明。 具有圖8的L4所示之透光特性的先前之紅外線遮斷 濾鏡,係以於紅外線吸收玻璃的兩面形成反射防止膜之紅 外線吸收體所構成者。在此先前的紅外線遮斷濾鏡中,利 用將身爲紅外線吸收體的紅外線吸收玻璃之厚度設爲 1.6mm,將透射率成爲〇%之點設爲700nm。 相對於此,在實施例的第1濾鏡4中,利用於表示 L4之透光特性的先前之紅外線遮斷濾鏡(紅外線吸收體 )的一半厚度,且於可視域,尤其600nm〜700nm的波長 帶域中,表示比先前的紅外線遮斷濾鏡更高之透射率的紅 外線吸收體5,亦即,於表示L1所示之透光特性的紅外 線吸收體5,組合紅外線反射體6,將透射率成爲〇 %之 點設爲700nm。 爲此,關於實施例之第1濾鏡4的透光特性L3係在 可視光域,尤其在600nm〜700nm的波長帶域,相較於先 前的紅外線遮斷濾鏡之透光特性L4,表示更高的透射率 。又,於關於實施例之第1濾鏡4的透光特性L3中, 7OOnm之波長的光線相對之透射率相較於先前的紅外線遮 斷濾鏡之透光特性L4,更接近〇%。S 201245836 As shown in FIG. 8, the infrared absorbing glass 51 indicates that the transmittance in the wavelength band of 400 nm to 5 5 Onm is 90% or more, and the transmittance in the wavelength band of 550 nm to 700 nm is decreased. The wavelength was about 50% in the wavelength of about 640 nm, and the transmittance was about 17% in the wavelength of 700 nm. As the transparent substrate 61 of the infrared ray reflector 6, a glass plate having a refractive index of 1.5 in N atmosphere and a thickness of 0.3 mm was used. Further, as the first film 65 constituting the infrared ray reflection film 64, TiO 2 having a refractive index of 2,300 in N atmosphere is used, and as the second film 66, SiO 2 having a refractive index of 1.46 in N atmosphere is used. The center wavelength is 688 nm. The method of manufacturing the infrared reflecting film 64 composed of the above-described 40 layers of the first film 65 and the second film 66 having the optical film thickness shown in Table 1 is formed on one main surface 62' of the transparent substrate 61. (Layer) The first film 65 and the second film 66 are obtained to obtain an infrared ray reflection film 6. -23- 201245836 Table 1 Refractive index of layer evaporation material N Optical film thickness Nd Center wavelength λ (nm) 1 Ti〇2 2.30 0.122 688 2 Si〇2 1.46 0.274 688 3 Τί〇2 2.30 1.296 688 4 Si〇2 1.46 1.279 688 5 Τί〇2 2.30 1.152 688 6 Si〇2 1.46 1.197 688 7 Τΐ〇2 2.30 1.115 688 8 Si〇2 1.46 1.180 688 9 Τί〇2 2.30 1.094 688 10 Si〇2 1.46 1.173 688 11 Τί〇2 2.30 1,089 688 12 Si〇2 1.46 1.176 688 13 Ti〇2 2.30 1.094 688 14 Si〇2 1.46 1.179 688 15 Ti〇2 2.30 1.096 688 16 Si〇2 1.46 1,187 688 17 Ti〇2 2.30 1.103 688 18 Si〇2 1.46 1.205 688 19 Ti〇2 2.30 1.142 688 20 Si〇2 1.46 1.234 688 21 Ti〇2 2.30 1.275 688 22 Si〇2 1.46 1.422 688 23 Ti〇2 2.30 1.437 688 24 Si〇2 1.46 1.486 688 25 Ti〇2 2.30 1.422 688 26 Si 〇2 1.46 1.475 688 27 Ti〇2 2.30 1.463 688 28 Si〇2 1.46 1.492 688 29 Ti〇2 2.30 1.424 688 30 Si〇2 1.46 1.472 688 31 Ti〇2 2.30 1.446 688 32 SiOz 1.46 1.488 688 33 Ti〇2 2.30 1.422 688 34 Si〇2 1.46 1.462 688 35 Ti〇2 2.30 1.424 688 36 Si 〇2 1.46 1,468 688 37 Ti〇2 2.30 1.396 688 38 Si〇2 1.46 1.424 688 39 Ti〇2 2.30 1,352 688 40 Si〇2 1.46 0.696 688 s -24- 201245836 Table 1 reveals the infrared reflection of the first filter 4. The composition of the film 64 and the optical film thickness of each of the films (the first film 65 and the second film 66). This infrared ray reflector 6 has a light transmitting property as L2 of FIG. That is, the light transmission property of the infrared ray reflection film 64 indicates that the transmittance in the wavelength band of 395 nm to 670 nm (wavelength including the wavelength band of 430 nm to 650 nm: band) is not more than 100% * the wavelength exceeds about 670 nm. In this case, the transmittance is drastically reduced and the transmittance becomes about 50% at a wavelength of about 680 nm, and the transmittance at a wavelength of 700 nm becomes a light transmission characteristic of about 4%. Then, as shown in Fig. 8, by the infrared absorbing glass 51 The other main surface 53, followed by the other main surface 63 of the transparent substrate 61, obtains the first filter 4 of the embodiment having a thickness of 1.1 mm. The first filter 4 has a light transmitting property as shown by L3 in Fig. 8 in which the light transmitting characteristics of the infrared ray absorbing body 5 and the infrared ray reflecting body 6 are combined. That is, the first filter 4 of the embodiment shows that the transmittance in the wavelength band of 400 nm to 550 nm is 90% or more, and the transmittance in the band of 550 nm to 700 nm is reduced, at about 640 nm. The transmittance in the wavelength is 50%, and the transmittance at a wavelength of 700 nm becomes a light transmission characteristic of about 〇%. In the first filter 4 of the present embodiment, the combination of the infrared absorber 5 and the infrared reflector 6 can be obtained at 400 nm to 5 50 nm as shown by the light transmission characteristics of the first filter 4 of the present embodiment. The maximum transmittance of the wavelength in the wavelength band of 90% or more in the wavelength band is 50% in the wavelength band of 620 nm to 660 nm, and the transmittance becomes about 0% in the wavelength of 7 〇〇 nm. Light transmission characteristics (less than 5%). That is, -25-201245836 can obtain a light transmission characteristic that is close to the infrared light domain from the visible field, the transmittance is slowly decreased, and the transmittance at a wavelength of 700 nm is about 〇% which is close to the sensitivity characteristic of the human eye. The comparison between the light transmission characteristic L3 of the second filter 4 of the embodiment shown in Fig. 8 and the light transmission characteristic L4 of the previous infrared cut filter is more specifically described. The conventional infrared ray blocking filter having the light transmitting property shown by L4 in Fig. 8 is composed of an infrared absorbing body in which an antireflection film is formed on both surfaces of the infrared absorbing glass. In the conventional infrared ray interrupting filter, the thickness of the infrared absorbing glass which is an infrared absorbing body is set to 1.6 mm, and the point at which the transmittance becomes 〇% is set to 700 nm. On the other hand, in the first filter 4 of the embodiment, half of the thickness of the previous infrared ray blocking filter (infrared absorbing body) indicating the light transmitting property of L4 is used, and in the visible region, particularly, 600 nm to 700 nm. In the wavelength band, the infrared absorber 5 having a higher transmittance than the previous infrared cut filter, that is, the infrared absorber 5 showing the light transmission characteristics indicated by L1, combines the infrared reflector 6 and The point at which the transmittance became 〇% was set to 700 nm. For this reason, the light transmission characteristic L3 of the first filter 4 of the embodiment is in the visible light domain, especially in the wavelength band of 600 nm to 700 nm, which is compared with the light transmission characteristic L4 of the previous infrared cut filter. Higher transmittance. Further, in the light transmission characteristic L3 of the first filter 4 of the embodiment, the light transmittance at a wavelength of 700 nm is closer to 〇% than the light transmission property L4 of the previous infrared ray interrupt filter.

-26- S 201245836 具體來說,在先前的紅外線遮斷濾鏡之透光特性L4 中,在600nm的波長之透射率成爲約55%,在約6〇5nm 的波長中透射率成爲5〇%,在675 nm的波長中透射率成 爲約7.5%,在700nm的波長中透射率成爲約3%。 相對於此,在關於實施例的第1濾鏡4之透光特性 L3中,在 600 nm的波長之透射率成爲約 75%,在約 64〇nm的波長中透射率爲50%,在675nm的波長中透射 率成爲約20%,在700nm的波長中透射率成爲約0%。 如此,關於實施例之第1濾鏡4的透光特性L3相較 於先前之紅外線遮斷濾鏡的透光特性L4,在 600nm〜 700nm的波長帶域,尤其在600nm〜67 5nm的波長帶域之 透射率較高,且在700nm的波長之透射率接近0%。亦即 ,關於實施例的第1濾鏡4相較於先前的紅外線遮斷濾鏡 ,可知爲可一邊充分遮斷超過 7 OOnm的紅外線,一邊充 分透射波長爲600nm〜700nm之紅色的可視光線者。爲此 ,關於實施例的第1濾鏡4搭載於攝像裝置的話,可利用 攝像元件9,相較於先前以紅色較強之色澤來對畫像作攝 像,可對暗處的畫像作較明亮的攝像。 又,如前述般,在關於本實施形態的第1濾鏡4中, 利用將紅外線反射體6組合紅外線吸收體5,抑制藉由紅 外線反射體6反射之光線的量。爲此,可抑制在紅外線反 射體6之光線的反射所致之重影的發生。 又,以第1濾鏡4的半波長與紅外線吸收體5的半波 長幾近一致之方式’紅外線反射體6構成爲對於紅外線吸 -27- 201245836 收體5之半波長的光線,表示90%以上的透射率,故紅 外線遮斷濾鏡具備紅外線吸收體5的在5 5 0nm〜700nm的 波長中透射率逐漸減少之接近人眼的感度特性之透光特性 ,可獲得接近人眼之感度特性的透光特性。 進而,於關於實施形態的第1濾鏡4中,紅外線吸收 體5係可利用比具有L4所示之透光特性的先前之紅外線 遮斷濾鏡還要薄的厚度來構成。爲此,可將第1濾鏡4的 厚度設爲與先前之紅外線遮斷濾鏡相同,或比此先前之紅 外線遮斷濾鏡還要薄。 一關於實施例的第2濾鏡7 — 在關於本實施例的第2濾鏡7中,作爲透明基板71 ,使用N大氣中之折射率爲1.5,厚度爲1.1mm的玻璃板 »又,作爲構成紅外線通過塗層74的第1薄膜75,使用 N大氣中之折射率爲2.30的Ti02,作爲第2薄膜76,使 用N大氣中之折射率爲1.46的Si02,該等的中心波長爲 7 2Onm ° 藉由由該等第1薄膜75與第2薄膜76之各光學膜厚 爲表2所示之前述48層所構成之紅外線通過塗層74的製 造方法,對於透明基板71的一主面72,形成(層積)第 1薄膜75及第2薄膜76,獲得第2濾鏡7。-26- S 201245836 Specifically, in the light transmission characteristic L4 of the prior infrared ray interrupting filter, the transmittance at a wavelength of 600 nm is about 55%, and the transmittance at a wavelength of about 6 〇 5 nm is 5%. The transmittance was about 7.5% at a wavelength of 675 nm, and the transmittance was about 3% at a wavelength of 700 nm. On the other hand, in the light transmission characteristic L3 of the first filter 4 of the embodiment, the transmittance at a wavelength of 600 nm is about 75%, and the transmittance at a wavelength of about 64 〇 nm is 50% at 675 nm. The transmittance in the wavelength is about 20%, and the transmittance is about 0% in the wavelength of 700 nm. Thus, the light transmission characteristic L3 of the first filter 4 of the embodiment is in the wavelength band of 600 nm to 700 nm, especially in the wavelength band of 600 nm to 67 5 nm, compared with the light transmission characteristic L4 of the previous infrared blocking filter. The transmittance of the domain is high and the transmittance at a wavelength of 700 nm is close to 0%. In other words, in the first filter 4 of the embodiment, it is understood that the visible light of the red light having a wavelength of 600 nm to 700 nm can be sufficiently transmitted while sufficiently blocking the infrared rays of more than 700 nm. . Therefore, when the first filter 4 of the embodiment is mounted on the imaging device, the image sensor 9 can be used to image the image in comparison with the color which is strong in red in the past, and the image in the dark can be brightened. Camera. In the first filter 4 of the present embodiment, the infrared ray reflector 6 is combined with the infrared ray absorbing body 5 to suppress the amount of light reflected by the infrared ray reflector 6. For this reason, occurrence of ghosting due to reflection of the light of the infrared ray reflector 6 can be suppressed. Further, the half-wavelength of the first filter 4 is approximately the same as the half-wavelength of the infrared absorbing body 5, and the infrared ray reflector 6 is configured to represent 90% of the half-wavelength light of the infrared ray -27-201245836. In the above-mentioned transmittance, the infrared ray-shielding filter is provided with a light-transmitting characteristic of the infrared absorbing body 5 whose transmittance is gradually reduced at a wavelength of 550 nm to 700 nm, which is close to the sensitivity of the human eye, and the sensitivity characteristic close to the human eye can be obtained. Light transmission characteristics. Further, in the first filter 4 of the embodiment, the infrared absorbing body 5 can be configured to have a thickness smaller than that of the conventional infrared ray shielding filter having the light transmitting property indicated by L4. For this reason, the thickness of the first filter 4 can be set to be the same as or smaller than the previous infrared occlusion filter. A second filter 7 of the embodiment - In the second filter 7 of the present embodiment, as the transparent substrate 71, a glass plate having a refractive index of 1.5 in the atmosphere of N and a thickness of 1.1 mm is used. The first film 75 constituting the infrared ray-passing coating 74 is made of TiO 2 having a refractive index of 2.30 in the N atmosphere, and the second film 76 is made of SiO 2 having a refractive index of 1.46 in N atmosphere, and the center wavelength is 7 2 Onm. The main surface 72 of the transparent substrate 71 is formed by the method of manufacturing the infrared ray-passing coating 74 composed of the above-mentioned 48 layers of the first film 75 and the second film 76. The first film 75 and the second film 76 are formed (layered) to obtain the second filter 7.

-28- S 201245836 表2 層 蒸鍍物質 折射率N 光學膜厚Nd 中心波長λ (nm) 1 Ti〇2 2.30 0.117 720 2 Si〇2 1.46 1.169 720 3 Τί〇2 2.30 0.580 720 4 Si〇2 1.46 0.584 720 5 Ti〇2 2.30 0.588 720 6 Si〇2 1.46 0.455 720 7 Ti〇2 2.30 0.620 720 8 Si〇2 1.46 0.556 720 9 Ti〇2 2,30 0.396 720 10 Si〇2 1.46 0.667 720 11 Ti〇2 2.30 0.696 720 12 SiOz 1.46 0.694 720 13 Ti〇2 2.30 0.549 720 14 Si〇2 1,46 0.347 720 15 TiOz 2,30 0.677 720 16 Si〇2 1.46 0.556 720 17 Ti〇2 2.30 0.654 720 18 Si〇2 1.46 0.600 720 19 Ti〇2 2.30 0.598 720 20 Si〇2 1.46 1.032 720 21 Ti〇2 2.30 0.735 720 22 Si〇2 1.46 0.791 720 23 TiOz 2.30 0.734 720 24 Si〇2 1.46 0,551 720 25 Ti〇2 2.30 0.769 720 26 Si〇2 1.46 0.825 720 27 Ti〇2 2.30 0,876 720 28 Si〇2 1.46 0.848 720 29 Ti〇2 2.30 0.859 720 30 Si〇2 1.46 0,470 720 31 Ti〇2 2.30 0.771 720 32 Si〇2 1.46 0,662 720 33 Ti〇2 2.30 0.946 720 34 Si〇2 1.46 0.993 720 35 Ti〇2 2.30 0.978 720 36 Si〇2 1.46 1.040 720 37 Ti〇2 2,30 1,007 720 38 Si〇2 1.46 0,967 720 39 Ti〇2 2.30 1.057 • 720 40 Si〇2 1,46 1,042 720 41 Ti〇2 2.30 0,995 720 42 Si〇2 1.46 0.974 720 43 Ti〇2 2.30 1.036 720 44 Si〇2 1.46 1.023 720 45 Ti〇2 2,30 0.982 720 46 Si〇2 1.46 0.886 720 47 Ti〇2 2.30 0.936 720 48 Si〇2 1.46 1.978 720 -29- 201245836 表2係揭示第2濾鏡7的組成及各薄膜(第1薄膜 75,第2薄膜76)的光學膜厚。此第2濾鏡7係具有如 圖5所示之透光特性。再者,於透明基板71的另一主面 73,形成有反射防止膜77。 再者,在前述實施形態中,於光學濾鏡模組3,設置 有第1濾鏡4與第2濾鏡7與切換手段(省略圖示),但 是,並不限定於此,不模組化,作爲第1濾鏡4與第2濾 鏡7與切換手段(省略圖示)直接設置於攝像裝置1的圖 9所示之光學濾鏡系統來構築亦可》 又,作爲透明基板61使用玻璃板,但是,並不限定 於此,只要是光線可透射的基板,例如使用水晶板亦可。 又,透明基板61爲雙折射板(birefringentplate)亦可, 由複數張所構成之雙折射板亦可。又,組合水晶板與玻璃 板來構成透明基板61亦可。 又,在實施形態中,於第1薄膜65使用Ti02,但是 ,並不限定此,第1薄膜65由高折射材料所構成即可, 例如使用Zr02、Ta02、Nb202等亦可。又,於第2薄膜 66使用Si 02,但是,並不限定於此,第2薄膜66由低折 射材料所構成即可,例如使用MgF2等亦可。 又,實施形態的第I濾鏡4係以於攝像裝置中,紅外 線吸收體5位於比紅外線反射體6更靠透鏡2側之方式配 置’但是,並不限定於此。亦即,第1濾鏡4係以紅外線 反射體6位於比紅外線吸收體5更靠透鏡2側之方式配置 亦可。 -30--28- S 201245836 Table 2 Refractive index of layer evaporation material N Optical film thickness Nd Center wavelength λ (nm) 1 Ti〇2 2.30 0.117 720 2 Si〇2 1.46 1.169 720 3 Τί〇2 2.30 0.580 720 4 Si〇2 1.46 0.584 720 5 Ti〇2 2.30 0.588 720 6 Si〇2 1.46 0.455 720 7 Ti〇2 2.30 0.620 720 8 Si〇2 1.46 0.556 720 9 Ti〇2 2,30 0.396 720 10 Si〇2 1.46 0.667 720 11 Ti〇2 2.30 0.696 720 12 SiOz 1.46 0.694 720 13 Ti〇2 2.30 0.549 720 14 Si〇2 1,46 0.347 720 15 TiOz 2,30 0.677 720 16 Si〇2 1.46 0.556 720 17 Ti〇2 2.30 0.654 720 18 Si〇2 1.46 0.600 720 19 Ti〇2 2.30 0.598 720 20 Si〇2 1.46 1.032 720 21 Ti〇2 2.30 0.735 720 22 Si〇2 1.46 0.791 720 23 TiOz 2.30 0.734 720 24 Si〇2 1.46 0,551 720 25 Ti〇2 2.30 0.769 720 26 Si〇2 1.46 0.825 720 27 Ti〇2 2.30 0,876 720 28 Si〇2 1.46 0.848 720 29 Ti〇2 2.30 0.859 720 30 Si〇2 1.46 0,470 720 31 Ti〇2 2.30 0.771 720 32 Si〇2 1.46 0,662 720 33 Ti 〇2 2.30 0.946 720 34 Si〇2 1.46 0.993 720 35 Ti〇2 2.30 0.978 720 36 Si〇2 1.46 1.040 720 37 Ti〇2 2,30 1,007 720 38 Si〇2 1.46 0,967 720 39 Ti〇2 2.30 1.057 • 720 40 Si〇2 1,46 1,042 720 41 Ti〇2 2.30 0,995 720 42 Si〇2 1.46 0.974 720 43 Ti〇2 2.30 1.036 720 44 Si〇2 1.46 1.023 720 45 Ti〇2 2,30 0.982 720 46 Si〇2 1.46 0.886 720 47 Ti〇2 2.30 0.936 720 48 Si〇2 1.46 1.978 720 -29- 201245836 Table 2 The composition of the second filter 7 and the optical film thickness of each of the films (the first film 75 and the second film 76) are disclosed. This second filter 7 has a light transmitting property as shown in Fig. 5. Further, an anti-reflection film 77 is formed on the other main surface 73 of the transparent substrate 71. Further, in the above-described embodiment, the first filter 4 and the second filter 7 and the switching means (not shown) are provided in the optical filter module 3. However, the present invention is not limited thereto, and the module is not limited thereto. The first filter 4 and the second filter 7 and the switching means (not shown) are directly provided in the optical filter system shown in FIG. 9 of the imaging device 1 and can be constructed as a transparent substrate 61. The glass plate is not limited thereto, and may be any substrate that transmits light, for example, a crystal plate. Further, the transparent substrate 61 may be a birefringent plate, and a birefringent plate composed of a plurality of sheets may be used. Further, the crystal plate and the glass plate may be combined to form the transparent substrate 61. Further, in the embodiment, TiO 2 is used for the first film 65. However, the first film 65 is not limited thereto, and the first film 65 may be made of a high refractive material. For example, Zr02, Ta02, Nb202 or the like may be used. Further, Si 02 is used for the second film 66. However, the second film 66 is not limited thereto, and the second film 66 may be made of a low-refractive material. For example, MgF2 or the like may be used. Further, the first filter 4 of the embodiment is such that the infrared absorbing body 5 is disposed closer to the lens 2 side than the infrared ray reflector 6 in the imaging device. However, the present invention is not limited thereto. In other words, the first filter 4 may be disposed such that the infrared reflector 6 is located closer to the lens 2 than the infrared absorber 5. -30-

S 201245836 例如,於攝像裝置中,因爲將第1濾鏡4以紅外線吸 收體5位於透鏡2側之方式配置之狀況中,可利用紅外線 吸收體5吸收藉由紅外線反射體6反射之光線,相較於以 紅外線反射體6位於透鏡2側之方式配置之狀況,可減低 藉由紅外線反射體6反射而散亂於透鏡2之光線的量,且 可抑制重影的發生。另一方面,將第1濾鏡4以紅外線反 射體6位於透鏡2側之方式配置之狀況中,相較於以紅外 線吸收體5位於透鏡2側之方式配置之狀況,因爲紅外線 反射體6與攝像元件9的距離,具體來說,在製造過程中 發生於紅外線反射體6內之異物與攝像元件9的距離會拉 開,故可抑制異物所致之映像的劣化。 又,在實施形態中,作爲紅外線吸收體5,使用於紅 外線吸收玻璃5 1的一主面52或兩主面5 1、52形成反射 防止膜54者,但是,在本發明中之紅外線吸收體5並不 限定於此。例如,紅外線吸收玻璃5 1的大氣中之折射率 與大氣的折射率幾近相同時,不形成反射防止膜54亦可 。亦即,作爲紅外線吸收體,使用未形成反射防止膜的紅 外線吸收玻璃亦可。 又,在實施形態中,作爲紅外線反射體6,使用於接 著在紅外線吸收玻璃51的另一主面5 3之透明基板6 1的 一主面62形成紅外線反射膜64者,但是,在本發明中之 紅外線反射體6並不限定於此。例如,作爲紅外線反射體 ,使用形成於紅外線吸收玻璃之表面的紅外線反射膜亦可 。此時,可易於進行前述光學濾鏡模組及光學濾鏡系統的 -31 - 201245836 小型化與切換機構的簡略化及省電力化。 亦即,在實施形態中,於接著在紅外線吸ί 的另一主面53之透明基板61的一主面62形成 射膜64,但是,於紅外線吸收玻璃5 1的另一主 接形成作爲紅外線吸收體的紅外線反射膜64亦 ,於紅外線吸收玻璃5 1的另一主面5 3直接形成 射膜64的話,可使第1濾鏡4薄型化。 再者,本發明係不脫離其精神及主旨或主要 利用其他各種形態來實施。爲此,上述之實施形 例在各種觀點上僅爲例示,並不是限定的解釋。 範圍係根據申請專利範圍所揭示者,不被說明書 制。進而,屬於申請專利範圍的均等範圍之變形 部都在本發明的範圍內。 又,此申請係要求依據2011年1月31日在 之日本特願2011-018751號的優先權。根據以上 所有內容爲組入於本申請案者。 [產業上之利用可能性] 本發明係可適用於攝像裝置所用的光學濾鏡 【圖式簡單說明】 [圖1 ]圖1係揭示關於實施形態的攝像裝置 造的槪略模式圖》 [圖2 ]圖2係揭示關於實施形態的第1濾鏡 丨女玻璃51 ,紅外線反 面53,直 可。如此 紅外線反 特徵,可 態及實施 本發明的 本文所限 及變更全 曰本申請 所述,其 之槪略構 之透光特 -32-For example, in the image pickup apparatus, the first filter 4 is disposed such that the infrared absorber 5 is positioned on the side of the lens 2, and the infrared absorber 5 can absorb the light reflected by the infrared reflector 6. The arrangement of the infrared reflector 6 on the side of the lens 2 is smaller than the amount of light scattered by the infrared reflector 6 and scattered on the lens 2, and the occurrence of ghosting can be suppressed. On the other hand, in the case where the first filter 4 is disposed such that the infrared ray reflector 6 is positioned on the side of the lens 2, the infrared ray reflector 6 is disposed in comparison with the case where the infrared absorbing body 5 is disposed on the lens 2 side. Specifically, the distance between the foreign matter generated in the infrared reflector 6 and the imaging element 9 during the manufacturing process is reduced, so that deterioration of the image due to foreign matter can be suppressed. Further, in the embodiment, the infrared absorber 5 is used for forming the anti-reflection film 54 on one main surface 52 or both main surfaces 51 and 52 of the infrared absorbing glass 51. However, the infrared absorbing body in the present invention is used. 5 is not limited to this. For example, when the refractive index in the atmosphere of the infrared absorbing glass 51 is almost the same as the refractive index of the atmosphere, the anti-reflection film 54 may not be formed. In other words, as the infrared ray absorbing body, an infrared absorbing glass which does not form an antireflection film may be used. Further, in the embodiment, the infrared reflecting body 6 is used to form the infrared reflecting film 64 on one main surface 62 of the transparent substrate 61 of the other main surface 53 of the infrared absorbing glass 51. However, the present invention is The infrared reflector 6 in the middle is not limited to this. For example, as the infrared reflector, an infrared reflection film formed on the surface of the infrared absorbing glass may be used. In this case, it is easy to carry out the simplification and power saving of the miniaturization and switching mechanism of the optical filter module and the optical filter system. That is, in the embodiment, the film 64 is formed on one main surface 62 of the transparent substrate 61 on the other main surface 53 of the infrared ray, but the other main connection of the infrared absorbing glass 51 is formed as infrared rays. When the infrared ray reflection film 64 of the absorber is formed directly on the other main surface 53 of the infrared absorbing glass 51, the first filter 4 can be made thinner. Furthermore, the invention may be embodied without departing from the spirit and scope of the invention. For this reason, the above-described embodiments are merely illustrative and not limitative in various respects. The scope is based on the scope of the patent application and is not subject to the specification. Further, the modifications of the equal scope of the claims are within the scope of the invention. In addition, this application is based on the priority of Japan's Japanese Patent No. 2011-018751 on January 31, 2011. All of the above are incorporated into this application. [Industrial Applicability] The present invention is applicable to an optical filter used in an image pickup apparatus. [FIG. 1] FIG. 1 is a schematic diagram showing a schematic mode of an image pickup apparatus according to an embodiment. 2] Fig. 2 shows the first filter virgin glass 51 and the infrared ray reverse surface 53 of the embodiment. Such an infrared inverse characteristic, the state of the invention and the implementation of the present invention are limited and fully described in the present application.

S 201245836 性的圖。 [圖3 ]圖3係揭示關於實施形態的第1濾鏡之槪略構 造的槪略模式圖。 [圖4]圖4係揭示關於實施形態之第1濾鏡的紅外線 反射體之槪略構造的部分放大圖。 [圖5]圖5係揭示關於實施形態的第2濾鏡之透光特 性的圖。 [圖6]圖6係揭示關於實施形態的第2濾鏡之槪略構 造的槪略模式圖。 [圖7 ]圖7係揭示關於實施形態之第2濾鏡的紅外線 透射體之槪略構造的部分放大圖。 [圖8]圖8係揭示關於實施例的紅外線遮斷濾鏡之透 光特性的圖。 [圖9]圖9係揭示關於其他實施形態的攝像裝置之槪 略構造的槪略模式圖。 [圖1 0]圖1 0係揭示紅外線吸收玻璃之透光特性的圖 【主要元件符號說明】 1 :攝像裝置 11 :光軸 2 :透鏡 3 :光學濾鏡模組 4 :第1濾鏡 -33- 201245836 5 :紅外線吸收體 5 1 :紅外線吸收玻璃 5 2,5 3 :主面 54 :反射防止膜 6 :紅外線反射體 61 :透明基板 62,63 :主面 64 :紅外線反射膜 65 :第1薄膜 66 :第2薄膜 7 :第2濾鏡 7 1 :透明基板 72,73 :主面 7 4 :紅外線通過塗層 75 :第1薄膜 76 :第2薄膜 77 :反射防止膜 8 :光學濾鏡 8 1 :反射防止膜 9 :攝像元件S 201245836 Sexual map. Fig. 3 is a schematic diagram showing a schematic configuration of a first filter of the embodiment. Fig. 4 is a partially enlarged view showing a schematic structure of an infrared reflector of a first filter of the embodiment. Fig. 5 is a view showing the light transmission characteristics of the second filter of the embodiment. Fig. 6 is a schematic diagram showing a schematic configuration of a second filter of the embodiment. Fig. 7 is a partially enlarged view showing a schematic structure of an infrared ray transmitting body of a second filter of the embodiment. Fig. 8 is a view showing the light transmission characteristics of the infrared ray interrupt filter of the embodiment. Fig. 9 is a schematic diagram showing a schematic configuration of an image pickup apparatus according to another embodiment. [Fig. 10] Fig. 10 is a diagram showing the light transmission characteristics of the infrared absorbing glass [Description of main components] 1 : Image pickup device 11: Optical axis 2: Lens 3: Optical filter module 4: 1st filter - 33- 201245836 5 : Infrared absorber 5 1 : Infrared absorption glass 5 2, 5 3 : Main surface 54 : Anti-reflection film 6 : Infrared reflector 61 : Transparent substrate 62 , 63 : Main surface 64 : Infrared reflection film 65 : 1 film 66: second film 7: second filter 7 1 : transparent substrate 72, 73: main surface 7 4 : infrared light-passing coating 75: first film 76: second film 77: anti-reflection film 8: optical filter Mirror 8 1 : Anti-reflection film 9 : imaging element

SS

Claims (1)

201245836 七、申請專利範圍: 1. 一種光學濾鏡模組,係設置於攝像裝置,可切換 配置複數濾鏡的光學濾鏡模組,其特徵爲: 複數濾鏡係透射可視光,至少遮斷紅外線的第1濾鏡 ,與僅通過紅外線的第2濾鏡;前述第1濾鏡與前述第2 濾鏡配置成可選擇性切換。 2 ·如申請專利範圍第1項所記載之光學濾鏡模組, 其中, 前述第2濾鏡,係僅通過紅外線之預先設定的特定帶 域,遮斷紅外線之其他帶域。 3. 如申請專利範圍第1項或第2項所記載之光學濾 鏡模組,其中, 前述第1濾鏡,係具備吸收紅外線的紅外線吸收體, 與反射紅外線的紅外線反射體。 4. 如申請專利範圍第3項所記載之光學濾鏡模組, 其中, 前述紅外線吸收體,係表示620nm〜660nm之波長帶 域內的波長中透射率爲50%的透光特性; 前述紅外線反射體,係表示670nm〜690nm之波長帶 域內的波長中透射率爲50%的透光特性; 藉由前述紅外線吸收體與前述紅外線反射體的組合, 表示620nm〜660nm之波長帶域內的波長中透射率爲50 %,700nm的波長中透射率未滿5%的透光特性。 5. 一種光學濾鏡系統,係沿著光軸而從外部的被攝 -35- 201245836 體側’至少依序配設有從外部射入光線的結合光學系、可 切換配置複數濾鏡的光學濾鏡系統、光學濾鏡、攝像元件 之攝像裝置的光學濾鏡系統,其特徵爲: 複數濾鏡係透射可視光,至少遮斷紅外線的第1爐鏡 ,與僅通過紅外線的第2濾鏡;前述第1濾鏡與前述第2 濾鏡之任一方可選擇性切換配置於前述光軸上。 6.如申請專利範圍第5項所記載之光學濾鏡系統, 其中, 前述第2濾鏡,係僅通過紅外線之預先設定的特定帶 域,遮斷紅外線之其他帶域。 7 ·如申請專利範圍第5項或第6項所記載之光學濾 鏡系統,其中, 前述第1濾鏡,係具備吸收紅外線的紅外線吸收體, 與反射紅外線的紅外線反射體。 8.如申請專利範圍第7項所記載之光學濾鏡系統, 其中, 前述紅外線吸收體,係表示620nm〜660nm之波長帶 域內的波長中透射率爲50%的透光特性; 前述紅外線反射體,係表示670nm〜690nm之波長帶 域內的波長中透射率爲50%的透光特性; 藉由前述紅外線吸收體與前述紅外線反射體的組合’ 表示620nm〜660nm之波長帶域內的波長中透射率爲50 %,700nm的波長中透射率未滿5%的透光特性。 -36- S201245836 VII. Patent application scope: 1. An optical filter module is provided in the camera device, which can switch the optical filter module with a plurality of filters, wherein: the plurality of filters transmit visible light, at least interrupted. The first filter of the infrared ray and the second filter of only the infrared ray are arranged; the first filter and the second filter are arranged to be selectively switchable. The optical filter module according to the first aspect of the invention, wherein the second filter blocks another region of the infrared ray only by a predetermined band set in advance by infrared rays. 3. The optical filter module according to the first or second aspect of the invention, wherein the first filter comprises an infrared absorber that absorbs infrared rays and an infrared reflector that reflects infrared rays. 4. The optical filter module according to the third aspect of the invention, wherein the infrared absorber is a light transmission characteristic having a transmittance of 50% in a wavelength band of 620 nm to 660 nm; The reflector is a light transmission characteristic having a transmittance of 50% in a wavelength band of 670 nm to 690 nm; and a combination of the infrared absorber and the infrared reflector indicates a wavelength band of 620 nm to 660 nm. The transmittance in the wavelength is 50%, and the transmittance in the wavelength of 700 nm is less than 5%. 5. An optical filter system, which is arranged along the optical axis from the outside -35-201245836 body side' at least in sequence with a combined optical system that emits light from the outside, and an optical that can switch between the complex filters An optical filter system for an image pickup device of a filter system, an optical filter, and an imaging element, wherein: the plurality of filters transmit visible light, at least the first oven mirror that blocks infrared rays, and the second filter that passes only infrared rays One of the first filter and the second filter can be selectively switched and disposed on the optical axis. 6. The optical filter system according to claim 5, wherein the second filter blocks another region of the infrared ray only by a predetermined band set in advance by infrared rays. The optical filter system according to claim 5, wherein the first filter includes an infrared absorber that absorbs infrared rays and an infrared reflector that reflects infrared rays. 8. The optical filter system according to claim 7, wherein the infrared absorber is a light transmission characteristic having a transmittance of 50% in a wavelength band of 620 nm to 660 nm; The light body exhibits a light transmittance of 50% in a wavelength in a wavelength band of 670 nm to 690 nm; and the combination of the infrared absorber and the infrared reflector represents a wavelength in a wavelength band of 620 nm to 660 nm. The medium transmittance is 50%, and the transmittance at a wavelength of 700 nm is less than 5%. -36- S
TW101103130A 2011-01-31 2012-01-31 Optical filter module and optical filter system TWI526767B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018751A JP2012159658A (en) 2011-01-31 2011-01-31 Optical filter module, and optical filter system

Publications (2)

Publication Number Publication Date
TW201245836A true TW201245836A (en) 2012-11-16
TWI526767B TWI526767B (en) 2016-03-21

Family

ID=46602562

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101103130A TWI526767B (en) 2011-01-31 2012-01-31 Optical filter module and optical filter system

Country Status (4)

Country Link
JP (1) JP2012159658A (en)
CN (1) CN103261927B (en)
TW (1) TWI526767B (en)
WO (1) WO2012105343A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554791B (en) * 2015-08-11 2016-10-21 Univ Kun Shan Color correction filter
TWI558201B (en) * 2014-05-14 2016-11-11 創見資訊股份有限公司 Image-capturing device having infrared filtering switchover functions
US10365417B2 (en) 2015-01-14 2019-07-30 AGC Inc. Near-infrared cut filter and imaging device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6525723B2 (en) * 2015-05-19 2019-06-05 キヤノン株式会社 Imaging device, control method therefor, program, and storage medium
WO2017124664A1 (en) * 2016-01-21 2017-07-27 3M Innovative Properties Company Optical camouflage filters
JP6643495B2 (en) 2016-01-25 2020-02-12 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. Optical parameter detection system
CN106650585B (en) * 2016-09-30 2019-10-08 浙江星星科技股份有限公司 A kind of glass panel for living body finger print identification
CN107592445A (en) * 2017-11-13 2018-01-16 戴承萍 Optical filter module and optical filter system
JP7261556B2 (en) * 2018-10-01 2023-04-20 キヤノン電子株式会社 Optical filters, imaging devices, optical sensors
JP2020056875A (en) * 2018-10-01 2020-04-09 キヤノン電子株式会社 Optical filter, imaging apparatus, and optical sensor
JP6706700B2 (en) * 2019-02-06 2020-06-10 日本板硝子株式会社 Infrared cut filter, imaging device, and method for manufacturing infrared cut filter
CN112526663A (en) * 2020-11-04 2021-03-19 浙江大学 Atomic layer deposition-based absorption film and manufacturing method thereof
JP7436729B2 (en) * 2023-01-31 2024-02-22 深▲せん▼市予一電子科技有限公司 Optical filter and intense pulse light device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133004A (en) * 1990-09-25 1992-05-07 Matsushita Electric Works Ltd Ultraviolet and infrared cut filter
JP2000059798A (en) * 1998-08-10 2000-02-25 Sony Corp Near-infrared light/visible light shared image-pickup device
JP2000329932A (en) * 1999-05-17 2000-11-30 Olympus Optical Co Ltd Interference filter
JP2001042230A (en) * 1999-07-27 2001-02-16 Olympus Optical Co Ltd Image pickup optical system
JP2002084451A (en) * 2000-09-11 2002-03-22 Minolta Co Ltd Digital image pickup device, image processing system, recording medium, and digital image pickup method
JP2002316580A (en) * 2001-04-24 2002-10-29 Murakami Corp Mirror device with built-in camera
JP2003004941A (en) * 2001-06-25 2003-01-08 Mitsutoyo Corp Band-pass filter and method of manufacturing this band- pass filter
JP2003059461A (en) * 2001-08-10 2003-02-28 Stanley Electric Co Ltd Infrared light projecting electric lamp and vehicular sighting fixture having the electric lamp
JP4039311B2 (en) * 2003-05-20 2008-01-30 日産自動車株式会社 Vehicle night vision system and vehicle headlamp device
JP4326999B2 (en) * 2003-08-12 2009-09-09 株式会社日立製作所 Image processing system
JP4327024B2 (en) * 2003-08-12 2009-09-09 株式会社日立製作所 Image processing system
JP4768995B2 (en) * 2005-02-09 2011-09-07 オリンパス株式会社 Optical filter and imaging device
JP2006154395A (en) * 2004-11-30 2006-06-15 Canon Inc Optical filter and imaging device having the same
JP2007079338A (en) * 2005-09-16 2007-03-29 Fujinon Corp Filter switching mechanism
JP2008070828A (en) * 2006-09-15 2008-03-27 Agc Techno Glass Co Ltd Infrared ray shielding filter
JP5078470B2 (en) * 2007-07-05 2012-11-21 ペンタックスリコーイメージング株式会社 Optical low-pass filter and imaging apparatus including the same
JP2009049910A (en) * 2007-08-22 2009-03-05 Hoya Corp Electronic imaging device
JP2011017819A (en) * 2009-07-08 2011-01-27 Sony Corp Imaging optical system and imaging apparatus
CN102377937B (en) * 2010-08-04 2015-07-15 株式会社日立国际电气 Shooting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558201B (en) * 2014-05-14 2016-11-11 創見資訊股份有限公司 Image-capturing device having infrared filtering switchover functions
US10365417B2 (en) 2015-01-14 2019-07-30 AGC Inc. Near-infrared cut filter and imaging device
TWI554791B (en) * 2015-08-11 2016-10-21 Univ Kun Shan Color correction filter

Also Published As

Publication number Publication date
JP2012159658A (en) 2012-08-23
TWI526767B (en) 2016-03-21
CN103261927B (en) 2016-02-17
CN103261927A (en) 2013-08-21
WO2012105343A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
TW201245836A (en) Optical filter module and optical filter system
JP5672233B2 (en) Optical filter, imaging device, optical system
TWI537616B (en) Infrared cut-off filter and photography device
JP6034785B2 (en) Optical member
JP5617063B1 (en) Near-infrared cut filter
TWI296695B (en)
CN107076895A (en) Optical filter and camera device
JP2010032867A (en) Infrared ray cutoff filter
JP5287362B2 (en) Optical filter and imaging system
JP6116337B2 (en) Optical device
JP2008035199A (en) Imaging apparatus having optical filter means
JP5126089B2 (en) Ray cut filter
JP2006195373A (en) Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same
JP2014032330A (en) Half mirror and digital single-lens reflex camera
JP2013200519A (en) Optical filter and imaging device
JP2020056873A (en) Optical filter and imaging apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees