JP2006195373A - Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same - Google Patents

Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same Download PDF

Info

Publication number
JP2006195373A
JP2006195373A JP2005009346A JP2005009346A JP2006195373A JP 2006195373 A JP2006195373 A JP 2006195373A JP 2005009346 A JP2005009346 A JP 2005009346A JP 2005009346 A JP2005009346 A JP 2005009346A JP 2006195373 A JP2006195373 A JP 2006195373A
Authority
JP
Japan
Prior art keywords
visibility
infrared cut
cut filter
wavelength
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005009346A
Other languages
Japanese (ja)
Inventor
Seijiro Okada
誠治郎 岡田
Tomihiro Takahashi
東美浩 高橋
Masahiro Tatewaki
正浩 帯刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005009346A priority Critical patent/JP2006195373A/en
Publication of JP2006195373A publication Critical patent/JP2006195373A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a visibility correcting near infrared cut filter which has a sufficient visibility correcting performance and is capable of realizing a thin and low-cost optical low pass filter. <P>SOLUTION: The visibility correcting near infrared cut filter of a coating type is provided. The visibility correcting near infrared cut filter has the maximum transmittance in the region of wavelength 450 to 550 nm, and has such a spectral characteristic as to exhibit transmittance of 80% or less of the maximum value at wavelength 400 nm, transmittance of 90% or less of the maximum value at wavelength 600 nm and transmittance of 80% or less of the maximum value at wavelength 650 nm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体撮像素子に使用され、十分な視感度補正を行なうことができる視感度補正近赤外カットフィルタ、並びに、それを用いた光学ローパスフィルタ及び視感度補正素子に関する。   The present invention relates to a visibility correction near-infrared cut filter that can be used in a solid-state imaging device and can perform sufficient visibility correction, and an optical low-pass filter and a visibility correction device using the same.

デジタルスチルカメラやデジタルビデオカメラには、CCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)などの固体撮像素子が使用されている。しかし、固体撮像素子の分光感度は、人の目の感度(視感度)と異なるために補正が必要となる。   Solid-state imaging devices such as CCD (Charge Coupled Device) and CMOS (Complementary Metal-Oxide Semiconductor) are used in digital still cameras and digital video cameras. However, since the spectral sensitivity of the solid-state imaging device is different from the sensitivity (visual sensitivity) of the human eye, correction is necessary.

図5に、固体撮像素子の分光感度を示し、図6に、人の目の標準比視感度を示す。固体撮像素子の分光感度と人の目の標準比視感度とを比較すると、可視領域(波長400〜700nm)での感度差はホワイトバランス差となり、波長700nm以上の赤外(以下「IR」と略記する)領域においては、リモコンの近赤外光など目に見えないものが撮影されたり、露出差となったりする。   FIG. 5 shows the spectral sensitivity of the solid-state imaging device, and FIG. 6 shows the standard relative luminous sensitivity of the human eye. Comparing the spectral sensitivity of the solid-state imaging device and the standard relative luminous efficiency of the human eye, the sensitivity difference in the visible region (wavelength 400 to 700 nm) is a white balance difference, and infrared (hereinafter referred to as “IR”) having a wavelength of 700 nm or more. In the (abbreviated) area, invisible objects such as near-infrared light from the remote controller are photographed or exposure difference is caused.

そこで、従来においては、視感度補正ガラスを使用することにより、可視領域での分光感度の補正と近赤外光の吸収(遮断)とが行なわれていた。また、近赤外光の遮断特性を向上させるためにIRカットコートを併用したり、IRカットコートのみを使用したりすることもある(例えば、特許文献1参照)。図7に、視感度補正ガラスの分光特性を示し、図8に、IRカットコートの分光特性を示す。これらは、通常、モアレ防止用の空間フィルタと組み合わされ、光学ローパスフィルタとして使用される。図9に、従来の光学ローパスフィルタの一例を示す。図8に示すように、従来の光学ローパスフィルタ9は、偏光解消板2とその両面に設けられた第1及び第2の複屈折板3、4とからなる空間フィルタ5と、第1の複屈折板3の、偏光解消板2が設けられた面と反対側の面に接着された視感度補正ガラス10とにより構成されている。
特開2003−279726号公報
Therefore, conventionally, by using the visibility correction glass, correction of spectral sensitivity in the visible region and absorption (blocking) of near-infrared light have been performed. In addition, an IR cut coat may be used in combination to improve near-infrared light blocking characteristics, or only an IR cut coat may be used (see, for example, Patent Document 1). FIG. 7 shows the spectral characteristics of the visibility correction glass, and FIG. 8 shows the spectral characteristics of the IR cut coat. These are usually combined with a spatial filter for preventing moire and used as an optical low-pass filter. FIG. 9 shows an example of a conventional optical low-pass filter. As shown in FIG. 8, the conventional optical low-pass filter 9 includes a spatial filter 5 including a depolarizing plate 2 and first and second birefringent plates 3 and 4 provided on both surfaces thereof, and a first complex filter. The refracting plate 3 is composed of a visibility correction glass 10 bonded to the surface opposite to the surface on which the depolarization plate 2 is provided.
JP 2003-279726 A

しかし、IRカットコートのみでは視感度との差が大きく、例えば、上記特許文献1に開示されているものにあっては、波長550nmから波長650nmにかけてなだらかに透過率を落とすことにより、視感度との差を小さくすることができるものの、波長550nm以下の領域ではほぼ100%の透過率となっており(特許文献1の図3参照)、何らかの補正手段が必要になる。従って、光学ローパスフィルタにIRカットコートを使用した場合には、厚みを薄くすることができるものの、視感度補正は不完全なものとなる。   However, the IR cut coat alone has a large difference from the visibility. For example, in the case of the one disclosed in Patent Document 1, the transmittance is lowered gradually from the wavelength 550 nm to the wavelength 650 nm. However, the transmittance is almost 100% in the wavelength region of 550 nm or less (see FIG. 3 of Patent Document 1), and some correction means is necessary. Therefore, when an IR cut coat is used for the optical low-pass filter, the thickness can be reduced, but the visibility correction is incomplete.

また、視感度補正ガラスは、十分な視感度補正を行うためには数百μmと厚みを厚くする必要がある。従って、光学ローパスフィルタに視感度補正ガラスを使用した場合には、接着も必要となることから、固体撮像素子、ひいてはそれが搭載されるデジタルスチルカメラ等の小型化を図ることができない。   The visibility correction glass needs to be as thick as several hundred μm in order to perform sufficient visibility correction. Therefore, when the visibility correction glass is used for the optical low-pass filter, since adhesion is also required, it is not possible to reduce the size of the solid-state imaging device, and thus the digital still camera on which it is mounted.

本発明は、従来技術における前記課題を解決するためになされたものであり、十分な視感度補正性能を有し、薄くて低コストの光学ローパスフィルタ及び視感度補正素子を実現することのできる視感度補正近赤外カットフィルタ、並びに、それを用いた光学ローパスフィルタ及び視感度補正素子を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems in the prior art, and has a sufficient visibility correction performance and can realize a thin and low-cost optical low-pass filter and a visibility correction element. An object is to provide a sensitivity-corrected near-infrared cut filter, an optical low-pass filter using the same, and a visibility correction element.

前記目的を達成するため、本発明に係る視感度補正近赤外カットフィルタの構成は、コーティングタイプの視感度補正近赤外カットフィルタであって、波長450〜550nmの領域で最大透過率となり、かつ、波長400nmで最大値の80%以下の透過率、波長600nmで最大値の90%以下の透過率、波長650nmで最大値の80%以下の透過率となる分光特性を有することを特徴とする。   In order to achieve the above object, the configuration of the visibility-corrected near-infrared cut filter according to the present invention is a coating-type visibility-corrected near-infrared cut filter having a maximum transmittance in a wavelength region of 450 to 550 nm, And having a spectral characteristic of a transmittance of 80% or less of the maximum value at a wavelength of 400 nm, a transmittance of 90% or less of the maximum value at a wavelength of 600 nm, and a transmittance of 80% or less of the maximum value at a wavelength of 650 nm. To do.

また、本発明に係る光学ローパスフィルタの構成は、空間フィルタと、前記空間フィルタのいずれかの面にコーティングされた前記本発明の視感度補正近赤外カットフィルタとを備えたことを特徴とする。   In addition, the configuration of the optical low-pass filter according to the present invention includes a spatial filter, and the visibility-corrected near-infrared cut filter according to the present invention coated on any surface of the spatial filter. .

また、本発明に係る視感度補正素子の構成は、透明基板と、前記透明基板のいずれかの面にコーティングされた前記本発明の視感度補正近赤外カットフィルタとを備えたことを特徴とする。   In addition, the configuration of the visibility correction element according to the present invention includes a transparent substrate and the visibility correction near-infrared cut filter according to the present invention coated on any surface of the transparent substrate. To do.

本発明によれば、視感度補正ガラスの分光特性と同等の分光特性を有するコーティングタイプの、すなわち、薄型の視感度補正近赤外カットフィルタを提供することができる。その結果、十分な視感度補正性能を有し、薄くて低コストの光学ローパスフィルタ及び視感度補正素子を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the coating type which has the spectral characteristic equivalent to the spectral characteristic of the visibility correction | amendment glass, ie, a thin visibility correction | amendment near-infrared cut filter, can be provided. As a result, it is possible to realize a thin and low-cost optical low-pass filter and a visibility correction element having sufficient visibility correction performance.

以下、実施の形態を用いて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically using embodiments.

[第1の実施の形態]
図1は本発明の第1の実施の形態における視感度補正近赤外カットフィルタを搭載した光学ローパスフィルタの構成を示す斜視図である。
[First Embodiment]
FIG. 1 is a perspective view showing the configuration of an optical low-pass filter including a visibility-corrected near-infrared cut filter according to the first embodiment of the present invention.

図1に示すように、本実施の形態の光学ローパスフィルタ1は、偏光解消板2とその両面に設けられた第1及び第2の複屈折板3、4とからなる空間フィルタ5と、第1の複屈折板3の、偏光解消板2が設けられた面と反対側の面にコーティングされた視感度補正近赤外カットフィルタ6とにより構成されている。ここで、偏光解消板は、偏光した光を無偏光に変換するための素子であり、複屈折板は、入射光を常光線と異常光線とに分けるための素子である。   As shown in FIG. 1, the optical low-pass filter 1 of the present embodiment includes a spatial filter 5 including a depolarizing plate 2 and first and second birefringent plates 3 and 4 provided on both surfaces thereof, The birefringent plate 3 is composed of a near-infrared cut filter 6 with a corrected visibility coated on the surface opposite to the surface on which the depolarizing plate 2 is provided. Here, the depolarizing plate is an element for converting polarized light into non-polarized light, and the birefringent plate is an element for separating incident light into ordinary rays and extraordinary rays.

視感度補正近赤外カットフィルタ6は、波長450〜550nmの領域で最大透過率となり、かつ、波長400nmで最大値の80%以下の透過率、波長600nmで最大値の90%以下の透過率、波長650nmで最大値の80%以下の透過率となる分光特性を有するように構成されている。この分光特性は、図7に示す視感度補正ガラスの分光特性と同等のものとなっており、十分な視感度補正を実現することができる。   The visibility-corrected near-infrared cut filter 6 has a maximum transmittance in the wavelength region of 450 to 550 nm, a transmittance of 80% or less of the maximum value at a wavelength of 400 nm, and a transmittance of 90% or less of the maximum value at a wavelength of 600 nm. , And has a spectral characteristic of a transmittance of 80% or less of the maximum value at a wavelength of 650 nm. This spectral characteristic is equivalent to the spectral characteristic of the visibility correction glass shown in FIG. 7, and sufficient visibility correction can be realized.

視感度補正近赤外カットフィルタ6は、高屈折率材料である二酸化チタン(TiO2 )からなる透明薄膜と、低屈折率材料である二酸化シリコン(SiO2 )からなる透明薄膜とを交互に積層した層構成を有している。すなわち、当該視感度補正近赤外カットフィルタ6は、コーティングタイプの、すなわち、薄型の視感度補正近赤外カットフィルタである。視感度補正近赤外カットフィルタ6は、第1の複屈折板3の、偏光解消板2が設けられた面と反対側の面に、高屈折率材料からなる透明薄膜と低屈折率材料からなる透明薄膜とを、例えば、公知の真空蒸着法を用いて交互に形成することによって得られる。尚、高屈折率材料としては、TiO2 の他に五酸化タンタル(Ta25 )、五酸化ニオブ(Nb25 )などを用いることができ、また、低屈折率材料としては、SiO2 の他にフッ化マグネシウム(MgF2 )などを用いることができる。 The visibility-corrected near-infrared cut filter 6 is formed by alternately laminating a transparent thin film made of titanium dioxide (TiO 2 ) as a high refractive index material and a transparent thin film made of silicon dioxide (SiO 2 ) as a low refractive index material. It has a layered structure. That is, the visibility correction near infrared cut filter 6 is a coating type, that is, a thin visibility correction near infrared cut filter. The visibility-corrected near-infrared cut filter 6 includes a transparent thin film made of a high refractive index material and a low refractive index material on the surface of the first birefringent plate 3 opposite to the surface on which the depolarization plate 2 is provided. The transparent thin film to be obtained is obtained, for example, by alternately forming using a known vacuum deposition method. In addition to TiO 2 , tantalum pentoxide (Ta 2 O 5 ), niobium pentoxide (Nb 2 O 5 ), etc. can be used as the high refractive index material, and SiO 2 can be used as the low refractive index material. In addition to 2 , magnesium fluoride (MgF 2 ) or the like can be used.

下記(表1)〜(表3)に、本実施の形態の視感度補正近赤外カットフィルタ6の層構成例を示す。下記(表1)は、総層数が38層である場合の層構成例であり、下記(表2)は、総層数が30層である場合の層構成例であり、下記(表3)は、総層数が28層である場合の層構成例である。尚、各表中の「厚み」は、光学厚み(n・d)を意味している。   The following (Table 1) to (Table 3) show layer configuration examples of the visibility-corrected near-infrared cut filter 6 of the present embodiment. The following (Table 1) is a layer configuration example when the total number of layers is 38 layers, and the following (Table 2) is a layer configuration example when the total number of layers is 30 layers. ) Is an example of a layer structure when the total number of layers is 28 layers. In addition, “thickness” in each table means an optical thickness (n · d).

Figure 2006195373
Figure 2006195373

Figure 2006195373
Figure 2006195373

Figure 2006195373
Figure 2006195373

図2に、上記(表1)〜(表3)に示す層構成を有する視感度補正近赤外カットフィルタの分光特性を示す。図2に示すように、総層数が30層及び38層である場合には、上記した分光特性となっている。すなわち、総層数が30層である場合には、波長492.6nmで最大透過率99.6%となり、かつ、波長400nmで最大値の5.4%の透過率、波長600nmで最大値の81%の透過率、波長650nmで最大値の45%の透過率となる分光特性を有している。また、総層数が38層である場合には、波長503.7nmで最大透過率98.5%となり、かつ、波長400nmで最大値の5.4%の透過率、波長600nmで最大値の81.5%の透過率、波長650nmで最大値の45%の透過率となる分光特性を有している。これに対し、総層数が28層である場合には、上記した分光特性からずれたものとなっている。しかし、視感度補正近赤外カットフィルタ6のコーティング面と反対側の面に、波長400nm、波長650nmでの反射率が10%以上となるようなAR(Anti Reflection:低反射)膜をコーティングすれば、上記した分光特性にすることができる。この場合には、視感度補正近赤外カットフィルタ6とAR膜とを組み合わせたものが本発明にいう“視感度補正近赤外カットフィルタ”となる。下記(表4)に、波長400nm、波長650nmでの反射率が10%以上となるようなAR膜として、総層数が4層である場合の層構成例を示す。尚、下記(表4)中の「厚み」は、光学厚み(n・d)を意味している。   FIG. 2 shows spectral characteristics of the visibility-corrected near-infrared cut filter having the layer configuration shown in (Table 1) to (Table 3). As shown in FIG. 2, when the total number of layers is 30 and 38, the above-described spectral characteristics are obtained. That is, when the total number of layers is 30, the maximum transmittance is 99.6% at a wavelength of 492.6 nm, the maximum transmittance is 5.4% at a wavelength of 400 nm, and the maximum value is at a wavelength of 600 nm. It has a spectral characteristic of 81% transmittance and a maximum transmittance of 45% at a wavelength of 650 nm. When the total number of layers is 38, the maximum transmittance is 98.5% at a wavelength of 503.7 nm, the maximum transmittance is 5.4% at a wavelength of 400 nm, and the maximum value is at a wavelength of 600 nm. It has a spectral characteristic of 81.5% transmittance and a maximum transmittance of 45% at a wavelength of 650 nm. On the other hand, when the total number of layers is 28, it deviates from the spectral characteristics described above. However, an AR (Anti Reflection) film having a reflectance of 10% or more at a wavelength of 400 nm and a wavelength of 650 nm is coated on the surface opposite to the coating surface of the visibility correction near-infrared cut filter 6. For example, the above-described spectral characteristics can be obtained. In this case, a combination of the visibility corrected near-infrared cut filter 6 and the AR film is the “visibility corrected near-infrared cut filter” according to the present invention. The following (Table 4) shows a layer configuration example in the case where the total number of layers is four as an AR film having a reflectance of 10% or more at a wavelength of 400 nm and a wavelength of 650 nm. In the following (Table 4), “thickness” means optical thickness (n · d).

Figure 2006195373
Figure 2006195373

また、図3に、上記(表3)に示す層構成(28層)を有する視感度補正近赤外カットフィルタ6の分光特性と、当該視感度補正近赤外カットフィルタと上記(表4)に示す層構成を有するAR膜とを組み合わせた場合(完成品)の分光特性を示す。尚、図3中には、AR膜の反射率特性をも含めている。   3 shows the spectral characteristics of the visibility corrected near-infrared cut filter 6 having the layer configuration (28 layers) shown in (Table 3) above, the visibility corrected near-infrared cut filter, and the above (Table 4). Spectral characteristics when combined with an AR film having the layer structure shown in FIG. Note that FIG. 3 also includes the reflectance characteristics of the AR film.

以上説明したように、本実施の形態によれば、視感度補正ガラスの分光特性と同等の分光特性を有するコーティングタイプの、すなわち、薄型の視感度補正近赤外カットフィルタを提供することができる。その結果、空間フィルタ5の第1の複屈折板3に視感度補正近赤外カットフィルタ6をコーティングすることにより(必要に応じて第2の複屈折板4にAR膜をコーティングすることにより)、十分な視感度補正性能を有し、薄くて低コストの光学ローパスフィルタ1を実現することができる。   As described above, according to the present embodiment, it is possible to provide a coating-type, that is, a thin, visibility-corrected near-infrared cut filter having spectral characteristics equivalent to the spectral characteristics of the visibility-corrected glass. . As a result, the first birefringent plate 3 of the spatial filter 5 is coated with the visibility corrected near-infrared cut filter 6 (by coating the second birefringent plate 4 with an AR film as necessary). Therefore, it is possible to realize a thin and low-cost optical low-pass filter 1 having sufficient visibility correction performance.

尚、視感度補正近赤外カットフィルタは、波長450〜550nmの領域で最大透過率となり、かつ、波長400nmで最大値の80%以下の透過率、波長600nmで最大値の90%以下の透過率、波長650nmで最大値の80%以下の透過率となる分光特性を有するように構成することができれば、上記(表1)〜(表4)に示す層構成を有するものに限定されない。   Note that the visibility-corrected near-infrared cut filter has a maximum transmittance in the wavelength region of 450 to 550 nm, a transmittance of 80% or less of the maximum value at the wavelength of 400 nm, and a transmittance of 90% or less of the maximum value at the wavelength of 600 nm. As long as it can be configured to have a spectral characteristic having a transmittance of 80% or less of the maximum value at a wavelength of 650 nm, it is not limited to those having the layer configurations shown in the above (Table 1) to (Table 4).

また、本実施の形態においては、視感度補正近赤外カットフィルタ6を、第1の複屈折板3の、偏光解消板2が設けられた面と反対側の面にコーティングしているが、必ずしもこの構成に限定されるものではない。例えば、視感度補正近赤外カットフィルタ6を、空間フィルタ5の、偏光解消板2と第1又は第2の複屈折板3、4との接着面にコーティングしてもよく、接着面を含む空間フィルタ5の2つの面に分割してコーティングしてもよい。   In the present embodiment, the visibility correction near-infrared cut filter 6 is coated on the surface of the first birefringent plate 3 opposite to the surface on which the depolarization plate 2 is provided. The configuration is not necessarily limited to this. For example, the visibility-corrected near-infrared cut filter 6 may be coated on the adhesion surface of the spatial filter 5 between the depolarization plate 2 and the first or second birefringence plates 3 and 4 and includes the adhesion surface. The spatial filter 5 may be divided and coated on two surfaces.

また、本実施の形態においては、偏光解消板2とその両面に設けられた第1及び第2の複屈折板3、4とからなる空間フィルタ5を例に挙げて説明したが、空間フィルタは必ずしもこの構成のものに限定されるものではない。空間フィルタとしては、例えば、複屈折板が1枚あるいは3枚以上の構成のもの、偏光解消板を使用しない構成のものであってもよい。   In the present embodiment, the spatial filter 5 including the depolarizing plate 2 and the first and second birefringent plates 3 and 4 provided on both sides thereof is described as an example. The configuration is not necessarily limited to this. As the spatial filter, for example, one having a configuration of one or three or more birefringent plates or a configuration not using a depolarizing plate may be used.

[第2の実施の形態]
図3は本発明の第2の実施の形態における視感度補正近赤外カットフィルタを搭載した視感度補正素子を示す斜視図である。
[Second Embodiment]
FIG. 3 is a perspective view showing a visibility correction element equipped with a visibility correction near-infrared cut filter according to the second embodiment of the present invention.

図3に示すように、本実施の形態の視感度補正素子7は、透明基板としての平行平板の光学ガラス8と、光学ガラス8の一方の面にコーティングされた視感度補正近赤外カットフィルタ6とにより構成されている。ここで、視感度補正近赤外カットフィルタ6は、上記第1の実施の形態で説明したものと同様の構成を有しており、必要に応じて上記第1の実施の形態で説明したAR膜と組み合わせて用いられる。   As shown in FIG. 3, the visibility correction element 7 of the present embodiment includes a parallel plate optical glass 8 as a transparent substrate, and a visibility correction near-infrared cut filter coated on one surface of the optical glass 8. 6. Here, the visibility correction near-infrared cut filter 6 has the same configuration as that described in the first embodiment, and the AR described in the first embodiment as necessary. Used in combination with a membrane.

視感度補正ガラスは、十分な視感度補正を行うためには数百μmと厚みを厚くする必要があるが、厚みの薄い光学ガラス8の表面に視感度補正近赤外カットフィルタ6をコーティングすることにより、十分な視感度補正性能を有し、薄くて低コストの視感度補正素子7を実現することができる。   In order to perform sufficient visibility correction, the visibility correction glass needs to be as thick as several hundred μm. However, the surface of the optical glass 8 having a small thickness is coated with the visibility correction near-infrared cut filter 6. As a result, it is possible to realize a thin and low-cost visibility correction element 7 having sufficient visibility correction performance.

尚、本実施の形態においては、視感度補正近赤外カットフィルタ6を、光学ガラス8の一方の面にコーティングしているが、必ずしもこの構成に限定されるものではない。例えば、視感度補正近赤外カットフィルタ6を、光学ガラス8の両面に分割してコーティングしてもよい。   In the present embodiment, the visibility-corrected near-infrared cut filter 6 is coated on one surface of the optical glass 8, but it is not necessarily limited to this configuration. For example, the visibility correction near-infrared cut filter 6 may be divided and coated on both sides of the optical glass 8.

また、本実施の形態においては、透明基板として光学ガラス8を例に挙げて説明したが、透明基板は必ずしも光学ガラス8に限定されるものではない。透明基板として、例えば、透明な樹脂、石英、セラッミクなどを使用しても、上記と同様の効果を得ることができる。   In the present embodiment, the optical glass 8 is described as an example of the transparent substrate, but the transparent substrate is not necessarily limited to the optical glass 8. Even if, for example, transparent resin, quartz, ceramic, or the like is used as the transparent substrate, the same effect as described above can be obtained.

本発明の視感度補正近赤外カットフィルタは、視感度補正ガラスの分光特性と同等の分光特性を有するコーティングタイプの、すなわち、薄型の視感度補正近赤外カットフィルタであるので、視感度補正を必要とし、かつ、小型化が要求される高性能のデジタルスチルカメラやビデオカメラに有用である。   The visibility correction near-infrared cut filter of the present invention is a coating type having a spectral characteristic equivalent to the spectral characteristic of the visibility correction glass, that is, a thin visibility correction near-infrared cut filter. And is useful for high-performance digital still cameras and video cameras that require downsizing.

本発明の第1の実施の形態における視感度補正近赤外カットフィルタを搭載した光学ローパスフィルタの構成を示す斜視図The perspective view which shows the structure of the optical low-pass filter carrying the visibility correction | amendment near-infrared cut filter in the 1st Embodiment of this invention. 本発明の第1の実施の形態における視感度補正近赤外カットフィルタの分光特性を示す図The figure which shows the spectral characteristic of the visibility correction | amendment near infrared cut filter in the 1st Embodiment of this invention 本発明の第1の実施の形態におけるAR膜を含めた視感度補正近赤外カットフィルタの分光特性を示す図The figure which shows the spectral characteristic of the visibility correction | amendment near-infrared cut filter including AR film | membrane in the 1st Embodiment of this invention 本発明の第2の実施の形態における視感度補正近赤外カットフィルタを搭載した視感度補正素子を示す斜視図The perspective view which shows the visibility correction element which mounts the visibility correction near-infrared cut filter in the 2nd Embodiment of this invention. 固体撮像素子の分光感度を示す図Diagram showing spectral sensitivity of solid-state image sensor 人の目の標準比視感度を示す図Diagram showing the standard relative luminous efficiency of the human eye 視感度補正ガラスの分光特性を示す図Diagram showing spectral characteristics of visibility correction glass IRカットコートの分光特性を示す図Diagram showing spectral characteristics of IR cut coat 従来の光学ローパスフィルタの一例を示す斜視図A perspective view showing an example of a conventional optical low-pass filter

符号の説明Explanation of symbols

1 光学ローパスフィルタ
2 偏光解消板
3 第1の複屈折板
4 第2の複屈折板
5 空間フィルタ
6 視感度補正近赤外カットフィルタ
7 視感度補正素子
8 光学ガラス
DESCRIPTION OF SYMBOLS 1 Optical low-pass filter 2 Depolarization plate 3 1st birefringent plate 4 2nd birefringent plate 5 Spatial filter 6 Visibility correction near-infrared cut filter 7 Visibility correction element 8 Optical glass

Claims (3)

コーティングタイプの視感度補正近赤外カットフィルタであって、波長450〜550nmの領域で最大透過率となり、かつ、波長400nmで最大値の80%以下の透過率、波長600nmで最大値の90%以下の透過率、波長650nmで最大値の80%以下の透過率となる分光特性を有することを特徴とする視感度補正近赤外カットフィルタ。 This is a coating-type visible-sensitivity corrected near-infrared cut filter that has a maximum transmittance in the wavelength region of 450 to 550 nm, a transmittance of 80% or less of the maximum value at a wavelength of 400 nm, and a maximum value of 90% at a wavelength of 600 nm. A visibility-corrected near-infrared cut filter having the following transmittance and spectral characteristics having a transmittance of 80% or less of the maximum value at a wavelength of 650 nm. 空間フィルタと、前記空間フィルタのいずれかの面にコーティングされた請求項1に記載の視感度補正近赤外カットフィルタとを備えた光学ローパスフィルタ。 An optical low-pass filter comprising: a spatial filter; and the visibility-corrected near-infrared cut filter according to claim 1 coated on any surface of the spatial filter. 透明基板と、前記透明基板のいずれかの面にコーティングされた請求項1に記載の視感度補正近赤外カットフィルタとを備えた視感度補正素子。

The visibility correction | amendment element provided with the transparent substrate and the visibility correction | amendment near-infrared cut filter of Claim 1 coated in any surface of the said transparent substrate.

JP2005009346A 2005-01-17 2005-01-17 Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same Withdrawn JP2006195373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009346A JP2006195373A (en) 2005-01-17 2005-01-17 Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009346A JP2006195373A (en) 2005-01-17 2005-01-17 Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same

Publications (1)

Publication Number Publication Date
JP2006195373A true JP2006195373A (en) 2006-07-27

Family

ID=36801486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009346A Withdrawn JP2006195373A (en) 2005-01-17 2005-01-17 Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same

Country Status (1)

Country Link
JP (1) JP2006195373A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092303A (en) * 2006-10-02 2008-04-17 Sharp Corp Optical transmitter, optical transmission system, optical receiver, and optical communication system
JP2010151752A (en) * 2008-12-26 2010-07-08 Nikon Corp Visibility filter, light-receiving device, and method for manufacturing visibility filter
JP2017122934A (en) * 2015-01-14 2017-07-13 旭硝子株式会社 Near-infrared cut filter and imaging apparatus
JPWO2016148119A1 (en) * 2015-03-18 2017-12-28 住友化学株式会社 Photoelectric conversion element having a reflector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092303A (en) * 2006-10-02 2008-04-17 Sharp Corp Optical transmitter, optical transmission system, optical receiver, and optical communication system
JP2010151752A (en) * 2008-12-26 2010-07-08 Nikon Corp Visibility filter, light-receiving device, and method for manufacturing visibility filter
JP2017122934A (en) * 2015-01-14 2017-07-13 旭硝子株式会社 Near-infrared cut filter and imaging apparatus
JPWO2016148119A1 (en) * 2015-03-18 2017-12-28 住友化学株式会社 Photoelectric conversion element having a reflector

Similar Documents

Publication Publication Date Title
JP5013022B2 (en) Infrared cut filter
TWI575261B (en) Optical filter
JP6241419B2 (en) Near-infrared cut filter
TWI526767B (en) Optical filter module and optical filter system
JP2004354735A (en) Light ray cut filter
CN103718070A (en) Optical member
WO2005010575A1 (en) Optical multilayer film filter, production method for optical multilayer film filter, optical low-pass filter, and electronic equipment system
JP2004309934A (en) Infrared cut filter and its manufacturing method
CN109975905B (en) Near infrared cut-off filter
JP6383980B2 (en) Near-infrared cut filter
JP2003161831A (en) Ray cut filter
JP2010032867A (en) Infrared ray cutoff filter
KR102314952B1 (en) Imaging element, imaging device, and production device and method
JP6174379B2 (en) Visible light transmission filter
JP2006195373A (en) Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same
JP4848876B2 (en) Solid-state imaging device cover and solid-state imaging device
JP2007304573A (en) Near ultraviolet ray and infrared ray blocking filter, birefringent plate with near ultraviolet ray and infrared ray blocking filter, optical low pass filter and imaging apparatus
TWI397760B (en) Lens module and camera module
JP5287362B2 (en) Optical filter and imaging system
JP2009192708A (en) Beam splitter, single-lens reflex digital camera using the same, and autofocus video camera
JP2006276617A (en) Polarization converting element and projection type liquid crystal display device using same
JP2002286934A (en) Optical filter, imaging unit using the same and imaging appliance using the same
US20120212809A1 (en) Infrared Cut Filter
JP4853157B2 (en) Antireflection film, optical element, imaging device, and camera
JP2014032330A (en) Half mirror and digital single-lens reflex camera

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401