JP7261556B2 - Optical filters, imaging devices, optical sensors - Google Patents

Optical filters, imaging devices, optical sensors Download PDF

Info

Publication number
JP7261556B2
JP7261556B2 JP2018186594A JP2018186594A JP7261556B2 JP 7261556 B2 JP7261556 B2 JP 7261556B2 JP 2018186594 A JP2018186594 A JP 2018186594A JP 2018186594 A JP2018186594 A JP 2018186594A JP 7261556 B2 JP7261556 B2 JP 7261556B2
Authority
JP
Japan
Prior art keywords
film
transmission
wavelength
visible
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018186594A
Other languages
Japanese (ja)
Other versions
JP2020056876A (en
Inventor
真志 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2018186594A priority Critical patent/JP7261556B2/en
Publication of JP2020056876A publication Critical patent/JP2020056876A/en
Application granted granted Critical
Publication of JP7261556B2 publication Critical patent/JP7261556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はデジタルカメラやビデオカメラ、監視カメラ、偽造紙幣の識別センサ(以下紙幣識別センサ)など、撮像装置や光学センサ等で使用される光学フィルタに関するものであり、特には可視光と近紫外光、または可視光と近赤外光において、特定波長の光を透過または遮断する光学フィルタに関する。また、このような光学フィルタを搭載した撮像装置、及び光学センサに関する。 The present invention relates to an optical filter used in imaging devices, optical sensors, etc., such as digital cameras, video cameras, surveillance cameras, identification sensors for counterfeit banknotes (hereinafter referred to as banknote identification sensors), and particularly to visible light and near-ultraviolet light. or an optical filter that transmits or blocks light of specific wavelengths in visible light and near-infrared light. The present invention also relates to an imaging device and an optical sensor equipped with such an optical filter.

ビデオカメラなどの撮像装置に使用される固体撮像素子は、人間の目の感度特性に対応させるために、分光透過率など光学特性を調節するフィルタと組み合わせて使用されることが多い。具体的には、紫外線カットフィルタ(UVカットフィルタ)や近赤外線カットフィルタ(IRカットフィルタ)、若しくはこれらを一枚のフィルタで実現した、UVIRカットフィルタなどがある。 2. Description of the Related Art Solid-state imaging devices used in imaging devices such as video cameras are often used in combination with filters that adjust optical characteristics such as spectral transmittance so as to correspond to the sensitivity characteristics of the human eye. Specifically, there are an ultraviolet cut filter (UV cut filter), a near infrared cut filter (IR cut filter), or a UVIR cut filter realized by one filter.

また、紙幣識別センサなどでは、紫外線を紙幣に照射し、紙幣に印刷された蛍光塗料からの蛍光を検知する為、ノイズ成分となる近紫外波長や可視波長の光をカットする目的で、UVカットフィルタやUVパスフィルタ(可視光カットフィルタ)などが用いられている。 In addition, banknote identification sensors irradiate banknotes with ultraviolet rays and detect the fluorescence from the fluorescent paint printed on the banknotes. Filters, UV pass filters (visible light cut filters), etc. are used.

特開2003-153076号公報JP-A-2003-153076

特許文献1では、入射光量が多い昼間の撮影時などには、近赤外波長領域の光を遮断し、可視波長領域の光のみを透過させるIRカットフィルタ(赤外光カットフィルタ)を用い、色再現性の低下などを招く近赤外波長領域のノイズ成分を低減することで画質の高精度化を図り、逆に入射光量が少ない夜間撮影時などではIRカットフィルタを取り除き、固体撮像素子の感度が高い近赤外波長領域の光を積極的に利用して暗視画像として撮影する方法が提案されている。 In Patent Document 1, an IR cut filter (infrared light cut filter) that blocks light in the near-infrared wavelength region and transmits only light in the visible wavelength region is used during daytime shooting when the amount of incident light is large. By reducing noise components in the near-infrared wavelength region that cause deterioration in color reproducibility, we aim to improve image quality.On the contrary, when shooting at night when the amount of incident light is low, the IR cut filter is removed and the solid-state image sensor is used. A method of taking a night vision image by positively using light in the near-infrared wavelength region with high sensitivity has been proposed.

しかしながら、昼夜を問わず撮影を行う必要がある、例えば監視カメラなどに用いられる撮像装置においては、昼間などの外光が強い撮影環境での高画質化に加え、夜間など入射光量が極めて少ないシチュエーションにおける撮影画像の更なる高精度化が強く求められている。また、紙幣識別センサなどでは、蛍光塗料にUV光を照射させる際にはノイズ成分となる可視光を極力低減し、蛍光塗料から再放射される可視光を受光する際にはノイズ成分となる紫外光を極力低減することが強く求められている。 However, it is necessary to shoot both day and night. For example, in imaging devices used for surveillance cameras, in addition to high image quality in shooting environments with strong external light such as during the day, it is also possible to shoot in situations where the amount of incident light is extremely low, such as at night. There is a strong demand for further improvement in the accuracy of captured images in . In addition, for bill identification sensors, etc., when the fluorescent paint is irradiated with UV light, visible light, which is a noise component, is reduced as much as possible. It is strongly demanded to reduce light as much as possible.

また一方で、低コスト化が強く望まれており、低コスト化に対応できる光学フィルタ、撮像装置、光学センサが求められている。 On the other hand, there is a strong demand for cost reduction, and there is a demand for optical filters, imaging devices, and optical sensors that can cope with cost reduction.

以上より、本発明の目的は上述の課題を解消し、不要成分波長と必要成分波長とが相反関係にある、透過帯と阻止帯の波長が相反する2種類以上の撮影環境下で高画質化を実現できる、低コスト化に対応できる光学フィルタを提供することにある。さらには、このような光学フィルタを用いることで高精度化を実現した撮像装置や光学センサを提供することにある。 As described above, the object of the present invention is to solve the above-mentioned problems, and improve image quality under two or more types of imaging environments in which the wavelengths of the unnecessary component and the wavelength of the necessary component are in conflict with each other, and the wavelengths of the transmission band and the stop band are conflicting. To provide an optical filter capable of realizing a low cost. Another object of the present invention is to provide an imaging device and an optical sensor that achieve high accuracy by using such an optical filter.

以上の課題を解決する為に本発明は、可視波長から、前記可視波長と波長が連続している近赤外波長領域に亘り光透過性を有する基板の一方の面の直上に、可視波長の光を遮断し前記近赤外波長領域の光の反射を阻止する近赤外波長透過膜と、可視波長の光の反射を阻止し前記近赤外波長領域の光を遮断する近赤外波長遮蔽膜と、を有し、前記基板のもう一方の面上の前記近赤外波長透過膜及び前記近赤外波長遮蔽膜に対向する位置に、可視波長から前記近赤外波長領域に亘り光の反射を阻止し、前記基板上において前記可視波長から前記近赤外波長領域に亘り透過率を90%以上とする単一の可視近赤外波長反射防止膜を有し、前記近赤外波長透過膜の透過-阻止遷移領域における透過率50%の波長を第1の半値波長とし、前記近赤外波長遮蔽膜の透過-阻止遷移領域における透過率50%の波長を第2の半値波長とすると、前記第1の半値波長及び前記第2の半値波長は、前記可視波長から前記近赤外波長領域に含まれることを特徴とする光学フィルタである。 In order to solve the above-mentioned problems, the present invention provides a visible wavelength to near-infrared wavelength region in which the wavelength is continuous with the visible wavelength. A near -infrared wavelength transmission film that blocks light and prevents reflection of light in the near-infrared wavelength region, and a near-infrared wavelength shield that blocks reflection of light in the visible wavelength region and blocks light in the near - infrared wavelength region and a film of light from visible wavelengths to the near -infrared wavelength region at a position facing the near- infrared wavelength transmitting film and the near-infrared wavelength shielding film on the other surface of the substrate. A single visible /near -infrared wavelength antireflection film that prevents reflection and has a transmittance of 90% or more over the visible wavelength to the near-infrared wavelength region on the substrate, and the near-infrared wavelength transmission If the wavelength at which the transmittance is 50% in the transmission-blocking transition region of the film is defined as the first half-value wavelength, and the wavelength at which the transmittance is 50% in the transmission-blocking transition region of the near-infrared wavelength shielding film is defined as the second half-value wavelength, , the first half-value wavelength and the second half-value wavelength are included in the visible wavelength to the near-infrared wavelength region.

本発明の光学フィルタであれば、特定波長透過膜と特定波長遮蔽膜とを設けた基板裏面側に、可視波長から特定波長領域における反射を低減する可視特定波長反射防止膜を設けることで、特定波長透過膜の透過帯、及び特定波長遮蔽膜が形成する可視波長領域における透過帯の透過率を増加させることができるため、2つの異なる機能性フィルタ両方で高画質化などの高精度化を図ることが可能である。 In the optical filter of the present invention, a specific visible wavelength anti-reflection film that reduces reflection in a specific wavelength range from the visible wavelength is provided on the back side of the substrate on which the specific wavelength transmission film and the specific wavelength shielding film are provided. It is possible to increase the transmittance of the transmission band of the wavelength transmission film and the transmission band in the visible wavelength region formed by the specific wavelength shielding film. Is possible.

また、このような本発明の光学フィルタを、紙幣識別センサや監視カメラ等の光学センサ、または撮影装置に使用することにより、高画質化が図られる光学センサ、及び撮像装置を提供することができる。 Further, by using such an optical filter of the present invention in an optical sensor such as a banknote identification sensor or a surveillance camera, or in an imaging device, it is possible to provide an optical sensor and an imaging device capable of achieving high image quality. .

さらに、昼間撮影と夜間撮影や、UV光撮影と蛍光(可視光)撮影など、透過帯と阻止帯の使用波長が相反するような撮影環境下で用いる、異なる2種の機能膜を1枚の基板上に形成したことにより、それぞれの機能膜を別フィルタとして個別に形成し、光学フィルタを複数枚設けた場合の装置構成と比較し、フィルタを駆動する為の駆動機構の点数を削減することでき、装置全体としてのコストの低減を図ることが可能である。また、特定波長遮蔽膜と特定波長透過膜とが形成された基板面の裏面側に設けた1種類の反射防止膜により、特定波長遮蔽膜が形成する透過帯と、特定波長透過膜が形成する可視波長領域における透過帯の両方の透過帯における反射を低減できる為、特定波長遮蔽膜、及び特定波長透過膜のそれぞれに適した、異なる反射防止膜をそれぞれ形成した場合と比較し、製造工程を低減することができ、フィルタ及び撮像装置や光学センサの低コスト化を図ることが可能である。 In addition, two different types of functional films are combined into one sheet for use in shooting environments where the wavelengths used in the transmission band and stopband conflict, such as daytime and nighttime photography, UV light photography and fluorescence (visible light) photography. By forming on the substrate, each functional film is individually formed as a separate filter, and the number of drive mechanisms for driving the filters is reduced compared to the device configuration in which a plurality of optical filters are provided. Therefore, it is possible to reduce the cost of the entire apparatus. In addition, the transmission band formed by the specific wavelength shielding film and the specific wavelength transmission film are formed by one type of antireflection film provided on the back side of the substrate surface on which the specific wavelength shielding film and the specific wavelength transmission film are formed. Since the reflection in both the transmission bands in the visible wavelength region can be reduced, the manufacturing process can be reduced compared to the case where different antireflection films suitable for the specific wavelength shielding film and the specific wavelength transmission film are formed. It is possible to reduce the cost of filters, imaging devices, and optical sensors.

本実施例1におけるIRパスフィルタの分光透過率特性図Spectral transmittance characteristic diagram of the IR pass filter in the present embodiment 1 本実施例1におけるIRカットフィルタの分光透過率特性図Spectral transmittance characteristic diagram of the IR cut filter in the present embodiment 1 本実施例1における光学フィルタの断面図Sectional view of the optical filter in the first embodiment 本実施例2におけるIRカットフィルタ、及びNDIRフィルタの分光透過率特性図Spectral transmittance characteristic diagram of the IR cut filter and the NDIR filter in the second embodiment 本実施例2における光学フィルタの断面図Cross-sectional view of the optical filter in the second embodiment 本実施例4における撮像装置の概略構成図Schematic configuration diagram of an imaging device in the present embodiment 4 本実施例5におけるUVパスフィルタの分光透過率特性図Spectral transmittance characteristic diagram of the UV pass filter in Example 5 本実施例5におけるUVカットフィルタの分光透過率特性図Spectral transmittance characteristic diagram of the UV cut filter in the fifth embodiment 本実施例5における光学フィルタの断面図Cross-sectional view of the optical filter in the fifth embodiment 本実施例6における紙幣識別センサの概略構成図Schematic configuration diagram of a banknote recognition sensor in the sixth embodiment

本実施例の光学フィルタは、基板の一方の面上の一部の領域に、所定の可視波長領域における光の透過を遮断し、特定波長領域の光を透過する特定波長透過膜を形成し、少なくても同一基板面上の特定波長透過膜を形成した領域とは異なる領域を含む別の領域に、可視波長領域における光を透過し、特定波長領域の光を遮蔽する特定波長遮蔽膜を形成し、基板のもう一方の面上に、可視波長から特定波長領域における光の反射を阻止する可視特定波長反射防止膜を構成することで、特定波長パスフィルタとしての機能と特定波長カットフィルタとしての機能の、2つの機能を1枚のフィルタ内に有した光学フィルタである。 In the optical filter of this embodiment, a specific wavelength transmission film that blocks transmission of light in a predetermined visible wavelength range and transmits light in a specific wavelength range is formed on a part of one surface of a substrate, Forming a specific wavelength shielding film that transmits light in the visible wavelength region and shields light in the specific wavelength region in at least another region including a region different from the region where the specific wavelength transmission film is formed on the same substrate surface On the other side of the substrate, a specific visible wavelength anti-reflection film that prevents reflection of light in a specific wavelength range from the visible wavelength is formed, thereby functioning as a specific wavelength pass filter and as a specific wavelength cut filter. It is an optical filter having two functions in one filter.

このような光学フィルタの基板としては、少なくても特定波長透過膜、及び特定波長遮蔽膜のそれぞれの透過帯において光透過性を有する、つまりは可視波長から特定波長において光透過性を有する基板を用いる。このような可視特定波長透明基板はガラスタイプや樹脂タイプ、さらには有機無機のハイブリッドタイプでも良く、光学フィルタの基板として必要とされる強度や光学特性を有する、基体として機能可能であるものが利用される。 As a substrate for such an optical filter, a substrate that has light transmittance at least in the respective transmission bands of the specific wavelength transmission film and the specific wavelength shielding film, that is, a substrate that has light transmittance in the visible wavelength range to the specific wavelength range is used. use. Such a visible specific wavelength transparent substrate may be a glass type, a resin type, or an organic-inorganic hybrid type, and a substrate that has the strength and optical properties required for an optical filter substrate and can function as a substrate is used. be done.

基板上に形成される特定波長透過膜と特定波長遮蔽膜、可視特定波長反射防止膜の機能膜は、基板上に1層以上の薄膜を積層することにより作製され、これらの薄膜は物理的、若しくは化学的成膜方法で形成しても良いし、スピンコートなどの湿式法で形成しても良い。これらの成膜方法の中で、再現性や膜の耐環境性などの観点からは、スパッタ法や、何らかのアシストを付加した成膜方法など、比較的高エネルギーで膜を形成できるプロセスが好ましい。より具体的にはスパッタ法、IAD法、イオンプレーティング法、IBS法、クラスター蒸着法などが適用可能であり、膜厚を比較的正確に制御でき、再現性の高い膜を得ることができる成膜方法であればよく、機能膜に求められる特性や生産性等を考慮し、最適な方法を選択すれば良い。 The functional films such as the specific wavelength transmission film, the specific wavelength shielding film, and the visible specific wavelength anti-reflection film formed on the substrate are produced by laminating one or more thin films on the substrate, and these thin films are physically, Alternatively, it may be formed by a chemical film forming method, or may be formed by a wet method such as spin coating. Among these film forming methods, from the viewpoint of reproducibility and environmental resistance of the film, a process capable of forming a film with relatively high energy, such as a sputtering method or a film forming method with some kind of assist, is preferable. More specifically, a sputtering method, an IAD method, an ion plating method, an IBS method, a cluster vapor deposition method, or the like can be applied, and the film thickness can be controlled relatively accurately, and a film with high reproducibility can be obtained. Any method may be used as long as it is a film method, and the optimum method may be selected in consideration of the properties, productivity, etc. required for the functional film.

本実施例における特定波長透過膜は、複数層の薄膜で構成されており、その最表層には透過帯である特定波長領域の光の反射を阻止する、1層または複数層の薄膜で構成される特定波長反射防止膜が形成されている。反射防止膜の最表層に配置される膜は透過帯の中心波長、例えば本実施例に記載されているような700~1100nmの透過帯を有する近赤外透過膜ならば透過帯の中心波長である波長800~1000nmの1.0qw程度の膜厚であることが好ましい。屈折率の波長分散が無い仮定であれば、400~500nmの2.0qwと言い換えることもできる。ここで、qwは膜厚を表す単位であり、1つの波長λを基準として、λ/4を1つの単位としたものであり、例えば 2.0×λ/4 の膜厚の場合は2.0qwと表現する。 The specific wavelength transmission film in this embodiment is composed of a plurality of layers of thin films, and the outermost layer is composed of one or more layers of thin films that block the reflection of light in a specific wavelength region, which is the transmission band. A specific wavelength anti-reflection film is formed. The film arranged as the outermost layer of the antireflection film has a central wavelength of the transmission band. A film thickness of about 1.0 qw at a certain wavelength of 800 to 1000 nm is preferable. If it is assumed that there is no wavelength dispersion of the refractive index, it can be rephrased as 2.0 qw at 400 to 500 nm. Here, qw is a unit representing the film thickness, and one wavelength λ is used as a reference, and λ/4 is used as one unit. Expressed as 0qw.

基板上に特定波長透過膜を形成することにより構成された光学フィルタの透過帯においては、理想的には全域で100%を透過することが望ましいが、実際にはこれを完璧に満足することは大変困難であり、透過帯の全波長域で可能な限り100%に近い透過率を得られるように調整される。このような透過率を実現する為に、本実施例では特定波長透過膜が形成する透過帯での透過率を最大化すると共に、基板裏面に設けられた可視特定波長反射防止膜が形成する透過帯での透過率を最大化し、特定波長透過膜と可視特定波長反射防止膜の2つの透過特性を合成することで、光学フィルタ総体としての透過帯の透過率を最大化している。 In the transmission band of an optical filter constructed by forming a specific wavelength transmission film on a substrate, it is ideally desirable to transmit 100% of the entire area, but in reality it is impossible to completely satisfy this. It is very difficult and is adjusted so as to obtain a transmittance as close to 100% as possible over the entire wavelength region of the transmission band. In order to realize such a transmittance, in this embodiment, the transmittance in the transmission band formed by the specific wavelength transmission film is maximized, and the transmission rate formed by the specific visible wavelength antireflection film provided on the back surface of the substrate is maximized. By maximizing the transmittance in the band and synthesizing the two transmission characteristics of the specific wavelength transmission film and the visible specific wavelength anti-reflection film, the transmittance in the transmission band of the optical filter as a whole is maximized.

ここで、透過帯における透過率は、波長が連続的に変化するにつれ、少なからず波打つように変化しており、これは透過帯のリップル(透過リップル)などと呼ばれ、薄膜の積層数が多く、厚膜化するほど発生し易い。この透過リップルが大きくなると、例えば、カラーバランスが崩れたり、夜間撮影時などでは撮像素子に入射する総合的な光量が低減したりするなど、画質の低下を引き起こすことがある為、リップルは可能な限り小さい方が望ましい。そこで、この透過帯でのリップルを低減する為に、基板と特定波長透過膜との間にリップルを低減する為の透過リップル調整層を挿入しても良い。光学フィルタ総体としての透過リップルは、特定波長透過膜が形成する透過帯での透過リップルと、可視特定波長反射防止膜が形成する透過帯での透過リップルとの合成により決定されるが、本発明においては、積層数が多い為に透過リップルが発生し易い特定波長透過膜単体でも透過リップルが少ない平坦な透過特性を有し、さらに特定波長透過膜が形成された基板の裏面側に配置された可視特定波長反射防止膜単体でも透過リップルが少ない平坦な透過特性を有するように構成されており、これらの平坦な2つの透過帯を合成することで、光学フィルタ総体として透過リップルの少ない平坦な透過特性を形成している。これとは別に、例えば、特定波長透過膜における透過リップルに対し、特定波長-反射防止膜の透過リップルの位相を調整し、両面でリップルを打ち消し合うように構成することでも光学フィルタ総体として透過リップルの少ない平坦な透過特性を得ることが可能ではあるが、特定波長透過膜、及び特定波長反射防止膜での位相関係に誤差が生じた場合には透過リップルを増大させてしまう虞がある為、高画質化の観点から本実施例では先の構成を選択した。このような透過リップル調整層は特定波長透過膜を形成する複数の薄膜と比較し、膜厚が薄い特徴を有しており、全ての層の中で最も薄い層となる。透過リップル調整層は2層以上であっても良いが、その場合も、全ての透過リップル調整層は特定波長透過膜を形成する層よりも薄くなる。 Here, as the wavelength continuously changes, the transmittance in the transmission band changes not a little in a wavy manner, and this is called a ripple in the transmission band (transmission ripple). , is likely to occur as the film becomes thicker. If this transmission ripple becomes large, for example, the color balance will be disturbed, and the overall amount of light that enters the image sensor will decrease when shooting at night. As small as possible is desirable. Therefore, in order to reduce ripples in this transmission band, a transmission ripple adjustment layer for reducing ripples may be inserted between the substrate and the specific wavelength transmission film. The transmission ripple of the optical filter as a whole is determined by combining the transmission ripple in the transmission band formed by the specific wavelength transmission film and the transmission ripple in the transmission band formed by the visible specific wavelength anti-reflection film. In , even the single specific wavelength transmission film, which easily generates transmission ripples due to the large number of layers, has a flat transmission characteristic with little transmission ripple, and is arranged on the back side of the substrate on which the specific wavelength transmission film is formed. Even the specific visible wavelength anti-reflection film alone is configured to have a flat transmission characteristic with little transmission ripple. forming a characteristic. Apart from this, for example, the phase of the transmission ripple of the specific wavelength-antireflection film is adjusted with respect to the transmission ripple of the specific wavelength transmission film, and the ripples are canceled on both sides. Although it is possible to obtain a flat transmission characteristic with a small amount of light, if there is an error in the phase relationship between the specific wavelength transmission film and the specific wavelength anti-reflection film, there is a risk of increasing the transmission ripple. From the viewpoint of high image quality, the above configuration was selected in this embodiment. Such a transmission ripple adjustment layer is characterized by being thinner than the plurality of thin films forming the specific wavelength transmission film, and is the thinnest layer among all the layers. Two or more transmission ripple adjustment layers may be provided, but in that case also, all transmission ripple adjustment layers are thinner than the layer forming the specific wavelength transmission film.

本実施例における特定波長遮蔽膜は、複数層の薄膜で構成されており、その最表層には透過帯である可視波長領域の光の反射を阻止する、1層または複数層の薄膜で構成された可視反射防止膜が形成されている。この可視反射防止膜の最表層に配置される膜は透過帯の中心波長の1.0qw程度の膜厚であることが好ましい。 The specific wavelength shielding film in this embodiment is composed of a plurality of layers of thin films, and the outermost layer is composed of one or more layers of thin films that block the reflection of light in the visible wavelength region, which is the transmission band. A visible antireflection film is formed on the surface. It is preferable that the film disposed as the outermost layer of the visible antireflection film has a film thickness of about 1.0 qw of the central wavelength of the transmission band.

基板上に特定波長遮蔽膜を形成することにより構成された光学フィルタの透過帯においては、透過帯の全波長域で可能な限り100%に近い透過率を得られるように調整される。このような透過率を実現する為に本実施例では、特定波長遮蔽膜が形成する透過帯での透過率を最大化すると共に、基板裏面に設けられた可視特定波長反射防止膜が形成する透過帯での透過率を最大化し、特定波長遮蔽膜と可視特定波長反射防止膜の2つの透過特性を合成することで、光学フィルタ総体としての透過帯の透過率を最大化している。 The transmission band of an optical filter constructed by forming a specific wavelength shielding film on a substrate is adjusted so as to obtain a transmittance as close to 100% as possible in the entire wavelength range of the transmission band. In order to achieve such a transmittance, in this embodiment, the transmittance in the transmission band formed by the specific wavelength shielding film is maximized, and the transmittance formed by the specific visible wavelength antireflection film provided on the back surface of the substrate is maximized. By maximizing the transmittance in the band and synthesizing the transmission characteristics of the specific wavelength shielding film and the specific visible wavelength anti-reflection film, the transmittance of the entire optical filter in the transmission band is maximized.

ここで、特定波長透過膜と同様に、特定波長遮蔽膜においても透過リップルは可能な限り小さい方が望ましい。そこで、この透過帯でのリップルを低減する為に、基板と特定波長透過膜との間にリップルを低減する為の透過リップル調整層を挿入しても良い。光学フィルタ総体としての透過リップルは、特定波長遮蔽膜が形成する透過帯での透過リップルと、可視特定波長反射防止膜が形成する透過帯での透過リップルとの合成により決定されるが、特定波長透過膜と同様に、特定波長遮蔽膜においても、積層数が多い為に透過リップルが発生し易い特定波長遮蔽膜単体でも透過リップルが少ない平坦な透過特性を有し、さらに特定波長遮蔽膜が形成された基板の裏面側に配置された可視特定波長反射防止膜単体でも透過リップルが少ない平坦な透過特性を有するように構成されており、これらの平坦な2つの透過帯を合成することで、光学フィルタ総体として透過リップルの少ない平坦な透過特性を形成している。このような透過リップル調整層は特定波長遮蔽膜を形成する複数の薄膜と比較し、膜厚が薄い特徴を有しており、全ての層の中で最も薄い層となる。透過リップル調整層は2層以上であっても良いが、その場合も、全ての透過リップル調整層は特定波長遮蔽膜を形成する層よりも薄くなる。 Here, as with the specific wavelength transmission film, it is desirable that the transmission ripple in the specific wavelength shielding film is as small as possible. Therefore, in order to reduce ripples in this transmission band, a transmission ripple adjustment layer for reducing ripples may be inserted between the substrate and the specific wavelength transmission film. The transmission ripple of the optical filter as a whole is determined by combining the transmission ripple in the transmission band formed by the specific wavelength shielding film and the transmission ripple in the transmission band formed by the visible specific wavelength antireflection film. As with the transmission film, the specific wavelength shielding film tends to generate transmission ripples due to the large number of layers. Even the specific wavelength shielding film alone has flat transmission characteristics with little transmission ripple, and the specific wavelength shielding film is formed. Even the specific visible wavelength anti-reflection film alone disposed on the back side of the substrate is configured to have a flat transmission characteristic with little transmission ripple. By combining these two flat transmission bands, optical The filter as a whole has a flat transmission characteristic with little transmission ripple. Such a transmission ripple adjustment layer is characterized by being thinner than the plurality of thin films forming the specific wavelength shielding film, and is the thinnest layer among all the layers. Two or more transmission ripple adjustment layers may be provided, but even in that case, all the transmission ripple adjustment layers are thinner than the layer forming the specific wavelength shielding film.

以上のような本発明の光学フィルタを監視カメラ等の撮影装置や、紙幣識別センサなどの光学センサに使用することにより、高精度化が可能となる撮像装置、または光学センサとすることができる。 By using the optical filter of the present invention as described above for an imaging device such as a surveillance camera or an optical sensor such as a banknote recognition sensor, an imaging device or an optical sensor capable of achieving high accuracy can be obtained.

以下、本発明の光学フィルタについて実施例に基づき具体的に説明する。 Hereinafter, the optical filter of the present invention will be specifically described based on examples.

(実施例1)
多層薄膜により構成された近赤外透過膜と近赤外遮蔽膜、及び可視近赤外反射防止膜とを、1枚の可視近赤外波長透明基板の両面に分割配置し、図1、図2に示した分光透過特性を設計値とする光学フィルタを作製した実施例について、以下に詳しく記載する。
(Example 1)
A near-infrared transmissive film, a near-infrared shielding film, and a visible/near-infrared antireflection film, which are composed of multilayer thin films, are separately arranged on both sides of a single visible/near-infrared wavelength transparent substrate. An example in which an optical filter having the spectral transmission characteristic shown in 2 as a design value was manufactured will be described in detail below.

図3に示したような本実施例1の光学フィルタの可視近赤外透明基板10には、少なくても400~1100nmの波長領域において、基板裏面側での反射成分を除いた入射光の殆どを透過する分光特性を有した厚さ0.4mmのD263Tecoガラスを使用した。 The visible and near-infrared transparent substrate 10 of the optical filter of Example 1 as shown in FIG. A 0.4 mm thick D263 Teco glass was used which had a spectral characteristic of transmitting .

そして、この可視近赤外透明基板10の一方の面上にIAD法により可視近赤外反射防止膜13を形成した後、可視近赤外透明基板10の表裏を変え、可視近赤外透明基板10のもう一方の面上の所定の領域に近赤外透過膜11をIAD法により形成し、さらに基板の同一面上の近赤外透過膜11を形成した領域とは異なる領域に近赤外遮蔽膜12をIAD法により形成した。先に可視近赤外反射防止膜13を形成したのは、近赤外透過膜11や近赤外遮蔽膜12よりも膜厚が薄く、膜応力が低い為、基板の反りに起因した成膜時の基板位置により成膜誤差の影響を小さくする理由からである。以上のように、本実施例1における光学フィルタ14は、図3に示すような、可視近赤外透明基板10の片面側に近赤外透過膜11と近赤外遮蔽膜12を、これと対峙する可視近赤外透明基板10のもう一方の面上に可視近赤外反射防止膜13を配置する構成とした。 Then, after forming the visible and near-infrared antireflection film 13 on one surface of the visible and near-infrared transparent substrate 10 by the IAD method, the visible and near-infrared transparent substrate 10 is turned over to form a visible and near-infrared transparent substrate. A near-infrared permeable film 11 is formed by the IAD method in a predetermined region on the other surface of the substrate 10, and a near-infrared permeable film is formed in a region different from the region where the near-infrared permeable film 11 is formed on the same surface of the substrate. A shielding film 12 was formed by the IAD method. The visible and near-infrared antireflection film 13 is formed first because it is thinner than the near-infrared transmissive film 11 and the near-infrared shielding film 12, and the film stress is low. This is because the effect of the film formation error is reduced depending on the position of the substrate at the time. As described above, the optical filter 14 in the first embodiment has the near-infrared transmissive film 11 and the near-infrared shielding film 12 on one side of the visible and near-infrared transparent substrate 10 as shown in FIG. A visible and near-infrared antireflection film 13 is disposed on the other surface of the opposing visible and near-infrared transparent substrate 10 .

可視近赤外透明基板10上に形成された本実施例1の近赤外透過膜11は、図1(b)に示すように、可視波長領域の約400~650nmの波長領域の光の殆どを遮断する透過阻止帯と、可視波長から近赤外波長領域にかけての約750~1100nmの波長領域の光を小さいリップルに抑えつつ、基板裏面側での反射成分を除いた殆どの光を透過させた透過帯を有している。また、透過阻止帯と透過帯に挟まれた約650~750nmの波長領域には、透過阻止帯から透過帯へ透過が連続的に変化する透過-阻止遷移領域を有している。さらには、透過-阻止遷移領域における透過率50%の波長をIR半値波長と定義し、この値を700nmとした。また、本実施例1における近赤外透過膜11は高屈折率材料であるTiOと低屈折率材料であるSiOを交互に積層した38層膜で構成されており、図3に示すように、この近赤外透過膜11の可視近赤外透明基板10直上の第1層には透過リップル低減機能を有する透過リップル調整層15aが配置されている。さらに、最表層となる第38層には、近赤外波長における透過帯での反射防止機能を有する1層で構成された近赤外反射防止構造16aが配置されている。透過リップル調整層15aは、近赤外透過膜11を構成する全ての膜厚の中で最も薄い膜厚となっており、また近赤外反射防止構造16aは反射防止帯となる波長域の中心波長である800~1000nmの約1.0qw程度の膜厚を有している。 The near-infrared transmissive film 11 of Example 1 formed on the visible and near-infrared transparent substrate 10, as shown in FIG. and the light in the wavelength region of about 750 to 1100 nm from the visible wavelength to the near-infrared wavelength region is suppressed to a small ripple, and most of the light except the reflected component on the back side of the substrate is transmitted. It has a clear transmission band. In addition, in the wavelength region of about 650 to 750 nm sandwiched between the transmission stop band and the transmission band, there is a transmission-block transition region where the transmission continuously changes from the transmission stop band to the transmission band. Furthermore, the wavelength at which the transmittance is 50% in the transmission-blocking transition region is defined as the IR half-value wavelength, and this value is set to 700 nm. Further, the near-infrared transmissive film 11 in Example 1 is composed of a 38-layer film in which TiO 2 which is a high refractive index material and SiO 2 which is a low refractive index material are alternately laminated, as shown in FIG. In addition, a transmission ripple adjusting layer 15a having a transmission ripple reduction function is arranged in the first layer of the near-infrared transmission film 11 directly above the visible and near-infrared transparent substrate 10 . Furthermore, the 38th layer, which is the outermost layer, is provided with a near-infrared antireflection structure 16a composed of a single layer having an antireflection function in the transmission band of near-infrared wavelengths. The transmission ripple adjustment layer 15a has the thinnest film thickness among all the film thicknesses constituting the near-infrared transmission film 11, and the near-infrared antireflection structure 16a has a wavelength band at the center of the antireflection band. It has a film thickness of about 1.0 qw at a wavelength of 800 to 1000 nm.

可視近赤外透明基板10上に形成された本実施例1の近赤外遮蔽膜12は、図2(b)に示すように、可視波長領域の約400~600nmの波長領域の光を小さいリップルに抑えつつ、基板裏面側での反射成分を除いた殆どを透過させた透過帯と、可視波長から近赤外波長領域にかけての約700~1100nmの波長領域の光を遮蔽した透過阻止帯を有している。また、透過帯と透過阻止帯に挟まれた約600~700nmの波長領域には、透過帯から透過阻止帯へ透過が連続的に変化する透過-阻止遷移領域を有している。さらには、透過-阻止遷移領域における透過率50%の波長をIR半値波長と定義し、この値を670nmとした。また、本実施例1における近赤外遮蔽膜12は高屈折率材料であるTiOと低屈折率材料であるSiOを交互に積層した38層膜で構成されており、図3に示すように、この近赤外遮蔽膜12の可視近赤外透明基板10直上の第1層には透過リップル低減機能を有する透過リップル調整層15bが配置されている。さらに、最表層となる第38層には、近赤外波長における透過帯での反射防止機能を有する1層で構成された可視反射防止構造16bが配置されている。透過リップル調整層15bは、近赤外遮蔽膜12を構成する全ての膜厚の中で最も薄い膜厚となっており、また可視反射防止構造16bは反射防止帯となる波長域の中心波長である400~600nmの約1.0qw程度の膜厚を有している。 As shown in FIG. 2B, the near-infrared shielding film 12 of the present embodiment 1 formed on the visible and near-infrared transparent substrate 10 reduces the light in the wavelength region of about 400 to 600 nm in the visible wavelength region. While suppressing ripples, a transmission band that transmits most of the components except for the reflection components on the back side of the substrate, and a transmission blocking band that blocks light in the wavelength range of about 700 to 1100 nm from visible wavelengths to the near infrared wavelength range. have. In addition, in the wavelength region of about 600 to 700 nm sandwiched between the transmission band and the transmission stop band, there is a transmission-block transition region in which the transmission continuously changes from the transmission band to the transmission stop band. Furthermore, the wavelength at which the transmittance is 50% in the transmission-blocking transition region is defined as the IR half-value wavelength, and this value is set to 670 nm. The near-infrared shielding film 12 in Example 1 is composed of a 38-layer film in which TiO 2 as a high refractive index material and SiO 2 as a low refractive index material are alternately laminated, as shown in FIG. In addition, a transmission ripple adjusting layer 15b having a transmission ripple reduction function is arranged in the first layer of the near-infrared shielding film 12 directly above the visible and near-infrared transparent substrate 10. As shown in FIG. Furthermore, the 38th layer, which is the outermost layer, is provided with a visible antireflection structure 16b composed of a single layer having an antireflection function in the transmission band of near-infrared wavelengths. The transmission ripple adjustment layer 15b has the thinnest film thickness among all the film thicknesses constituting the near-infrared shielding film 12, and the visible antireflection structure 16b has a central wavelength of the wavelength band serving as the antireflection band. It has a film thickness of about 1.0 qw of 400 to 600 nm.

可視近赤外透明基板10上に形成された本実施例1の可視近赤外反射防止膜13は、図1(c)または図2(c)に示すように、可視波長から近赤外波長領域にかけての約400~1100nmの波長領域の光における、基板裏面側での反射成分を除いた殆どの反射を阻止した、つまりは殆どの光を透過させた透過帯を有した光学特性となっている。このように、近赤外透過膜11のIR半値波長である700nm、及び近赤外遮蔽膜12のIR半値波長である670nmにおいて、可視近赤外反射防止膜13は透過帯を形成しており、成膜誤差等により光学特性が例えば10nm程度短波長側や長波長側へシフトとしたとしても、可視近赤外反射防止膜13はIR半値波長において透過帯を維持できる。従って、以上のような構成設計とすることにより、可視近赤外反射防止膜13形成時の成膜誤差により可視近赤外反射防止膜13の光学特性が変化したとしても、可視近赤外透明基板10を含んで形成されるIRパスフィルタ17またはIRカットフィルタ18の各IR半値波長に与える影響は極めて小さく、近赤外透過膜11または近赤外遮蔽膜12の誤差のみで、IRパスフィルタ17またはIRカットフィルタ18の透過-阻止遷移領域が決まる為、より再現性を高めることができ、光学フィルタ総体としての高精度化を実現することができる。 The visible and near-infrared antireflection film 13 of Example 1 formed on the visible and near-infrared transparent substrate 10 has a visible wavelength to a near-infrared wavelength as shown in FIG. 1(c) or FIG. 2(c). Most of the reflection of light in the wavelength region of about 400 to 1100 nm except for the reflection component on the back surface side of the substrate is blocked, that is, it has an optical characteristic that has a transmission band that transmits most of the light. there is Thus, the visible and near-infrared antireflection film 13 forms a transmission band at 700 nm, which is the IR half-value wavelength of the near-infrared transmissive film 11, and 670 nm, which is the IR half-value wavelength of the near-infrared shielding film 12. Even if the optical characteristics are shifted, for example, by about 10 nm to the short wavelength side or the long wavelength side due to film forming errors, the visible and near-infrared antireflection film 13 can maintain the transmission band at the IR half-value wavelength. Therefore, even if the optical characteristics of the visible and near-infrared antireflection film 13 change due to film formation errors during the formation of the visible and near-infrared antireflection film 13, the visible and near-infrared transparent The IR pass filter 17 or the IR cut filter 18 formed including the substrate 10 has an extremely small influence on each IR half-value wavelength. Since the transmission-blocking transition region of 17 or IR cut filter 18 is determined, the reproducibility can be further improved, and high precision of the optical filter as a whole can be realized.

また、本実施例1における可視近赤外反射防止膜13は高屈折率材料であるTiOと低屈折率材料であるSiOを交互に積層した12層膜で構成されており、特に反射防止機能に最も影響を与える最表層となる第12層は反射防止帯となる波長域の中心波長である600~900nmの約1.0qw程度の膜厚を有している。 The visible and near-infrared antireflection film 13 in Example 1 is composed of a 12-layer film in which high refractive index material TiO 2 and low refractive index material SiO 2 are alternately laminated. The twelfth layer, which is the outermost layer most influencing the function, has a film thickness of about 1.0 qw at 600 to 900 nm, which is the center wavelength of the wavelength range forming the antireflection band.

さらには、可視近赤外透明基板10上に構成された近赤外透過膜11単体が作り出す透過帯の透過特性は、図1(b)で示すように、透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板裏面側の反射成分を除いた殆どの光を透過する特性となっている。また同様に、可視近赤外透明基板10上に構成された可視近赤外反射防止膜13単体が作り出す透過帯の透過特性は、図1(c)で示すように透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板の裏面側の反射成分を除いた殆どの光を透過する特性となっている。これら2つの機能膜が作り出す透過帯におけるそれぞれの透過特性は図1(b)(c)に示すように、厳密には可視近赤外反射防止膜13の透過率の方が近赤外透過膜11の透過率よりも僅かながら高い値となっているが、実質的に同一とみなせる特性を有している。そして、これら2つの機能膜が作り出す、透過リップルが少なく平坦で、高透過となっているそれぞれの透過特性を合成することで、図1(a)で示すように、IRパスフィルタ17の透過帯において、透過リップルが少なく平坦で、近赤外透過膜11、及び可視近赤外反射防止膜13よりも高透過である特性を作り出している。また、IRパスフィルタ17の阻止帯においても同様に、2つの機能膜が作り出す透過特性の合成により透過特性が決定される。従って、近赤外透過膜11、及び可視近赤外反射防止膜13の2つの機能膜が作り出す透過特性の合成により、IRパスフィルタ17総体としての透過特性が決定される。 Furthermore, as shown in FIG. 1B, the transmission characteristics of the transmission band produced by the single near-infrared transmission film 11 formed on the visible and near-infrared transparent substrate 10 are flat with little transmission ripple and substantially It has a constant transmission characteristic, and has a characteristic of transmitting most of the light except for the reflection component on the back side of the substrate. Similarly, the transmission characteristics of the transmission band produced by the single visible and near-infrared antireflection film 13 formed on the visible and near-infrared transparent substrate 10 are flat with little transmission ripple as shown in FIG. It has a substantially constant transmission characteristic, and has a characteristic of transmitting most of the light except for the reflected component on the back side of the substrate. Strictly speaking, the transmittance of the visible and near-infrared antireflection film 13 is higher than that of the near-infrared transmitting film, as shown in FIGS. 1(b) and 1(c). Although the transmittance is slightly higher than that of No. 11, it has characteristics that can be regarded as substantially the same. By synthesizing the transmission characteristics of these two functional films, which are flat with little transmission ripple and have high transmission, the transmission band of the IR pass filter 17 is obtained as shown in FIG. , the transmission ripple is small, the film is flat, and the transmission is higher than that of the near-infrared transmission film 11 and the visible and near-infrared antireflection film 13 . Similarly, in the stop band of the IR pass filter 17, the transmission characteristics are determined by synthesizing the transmission characteristics produced by the two functional films. Therefore, the transmission characteristics of the IR pass filter 17 as a whole are determined by synthesizing the transmission characteristics produced by the two functional films of the near-infrared transmission film 11 and the visible/near-infrared antireflection film 13 .

同様に、可視近赤外透明基板10上に構成された近赤外遮蔽膜12単体が作り出す透過帯の透過特性は、図2(b)で示すように透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板の裏面側の反射成分を除いた殆どの光を透過する特性となっている。また同様に、可視近赤外透明基板10上に構成された可視近赤外反射防止膜13単体が作り出す透過帯の透過特性は、図2(c)で示すように透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板の裏面側の反射成分を除いた殆どの光を透過する特性となっている。これら2つの機能膜が作り出す透過帯におけるそれぞれの透過特性は図2(b)(c)に示すように、厳密には可視近赤外反射防止膜13の透過率の方が近赤外遮蔽膜12の透過率よりも僅かながら高い値となっているが、実質的に同一とみなせる特性を有している。そして、これら2つの機能膜が作り出す、透過リップルが少なく平坦で、高透過となっているそれぞれの透過特性を合成することで、図2(a)で示すように、IRカットフィルタ18の透過帯において、透過リップルが少なく平坦で、近赤外遮蔽膜12、及び可視近赤外反射防止膜13よりも高透過である特性を作り出している。また、IRカットフィルタ18の阻止帯においても同様に、2つの機能膜が作り出す透過特性の合成により透過特性が決定される。従って、近赤外遮蔽膜12、及び可視近赤外反射防止膜13の2つの機能膜が作り出す透過特性の合成により、IRカットフィルタ18総体としての透過特性が決定される。 Similarly, the transmission characteristics of the transmission band produced by the single near-infrared shielding film 12 formed on the visible and near-infrared transparent substrate 10 are flat with little transmission ripple as shown in FIG. It has a constant transmission characteristic, and has a characteristic of transmitting most of the light except for the reflected component on the back side of the substrate. Similarly, the transmission characteristics of the transmission band produced by the single visible and near-infrared antireflection film 13 formed on the visible and near-infrared transparent substrate 10 are flat with little transmission ripple as shown in FIG. It has a substantially constant transmission characteristic, and has a characteristic of transmitting most of the light except for the reflected component on the back side of the substrate. Strictly speaking, the transmittance of the visible and near-infrared antireflection film 13 is higher than that of the near-infrared shielding film, as shown in FIGS. Although the transmittance is slightly higher than that of 12, it has characteristics that can be regarded as substantially the same. By synthesizing the transmission characteristics of these two functional films, which are flat with little transmission ripple and have high transmission, the transmission band of the IR cut filter 18 is obtained as shown in FIG. , the transmission ripple is small, the film is flat, and the transmission is higher than that of the near-infrared shielding film 12 and the visible and near-infrared antireflection film 13 . Similarly, in the stop band of the IR cut filter 18, the transmission characteristics are determined by synthesizing the transmission characteristics produced by the two functional films. Therefore, the transmission characteristics of the IR cut filter 18 as a whole are determined by synthesizing the transmission characteristics produced by the two functional films of the near-infrared shielding film 12 and the visible/near-infrared antireflection film 13 .

また、本実施例のような監視カメラなどに用いられる撮像装置の場合、ノイズ成分に大変敏感であり、これらは画質に大きな影響を与える。従って、本実施例のフィルタのように、IRパスフィルタ17の阻止帯では透過を平均で1%以下、より好ましくは平均で0.1%以下に抑えつつ、透過帯では平均で80%以上、より好ましくは平均で90%以上の透過特性を有することが望ましい。同様に、IRカットフィルタ18も阻止帯では透過を平均で1%以下、より好ましくは平均で0.1%以下に抑えつつ、透過帯では平均で80%以上、より好ましく平均で90%以上の透過特性を有することが望ましい。 Further, the imaging apparatus used for surveillance cameras and the like as in this embodiment is very sensitive to noise components, which greatly affect the image quality. Therefore, as in the filter of this embodiment, the average transmission in the stop band of the IR pass filter 17 is suppressed to 1% or less, more preferably 0.1% or less on average, while the transmission band has an average transmission of 80% or more. More preferably, it should have an average transmittance of 90% or more. Similarly, the IR cut filter 18 has an average transmission of 1% or less, preferably 0.1% or less in the stopband, and an average transmission of 80% or more, more preferably 90% or more in the transmission band. It is desirable to have transmissive properties.

本実施例1における近赤外透過膜11、近赤外遮蔽膜12、及び可視近赤外反射防止膜13において、蒸着膜として構成された高屈折率材料であるTiOと低屈折率材料であるSiOの他に、高屈折率材料としてはNbやZrO、Taなどが使用でき、低屈折率材用としてはMgFなどが使用可能である。また、設計上や成膜上の理由から中間屈折率材料であるAlなどを一部の層で使用することも可能であり、これらの材料に限らず、NiやW、Mo、Cu、Cr、Fe、Al、Mg、Ti、Si、Nb、Zr、Ta、In、Ag、Auなどの金属化合物でも良く、その時々で最適な材料の組合せを選択すれば良い。 In the near-infrared transmissive film 11, the near-infrared shielding film 12, and the visible and near-infrared antireflection film 13 in the first embodiment, TiO 2 which is a high refractive index material and a low refractive index material configured as vapor deposition films In addition to SiO 2 , Nb 2 O 5 , ZrO 2 , Ta 2 O 5 and the like can be used as high refractive index materials, and MgF 2 and the like can be used as low refractive index materials. In addition, it is also possible to use an intermediate refractive index material such as Al 2 O 3 in some layers for reasons of design and film formation. , Cr, Fe, Al, Mg, Ti, Si, Nb, Zr, Ta, In, Ag, Au, etc., and an optimum combination of materials may be selected depending on the situation.

以上のように作製された、IRパスフィルタ17の分光透過特性は図1(a)で示した設計値と、IRカットフィルタ18の分光透過特性は図2(a)で示した設計値と略同じ特性を得ることができた。これにより、入射光量が多い昼間撮影時などにおいてはIRカットフィルタ18の領域を用いることでノイズ成分となる近赤外波長域の透過を遮断することでカラー画像の高画質化を図ることができ、さらに入射光量が少ない夜間撮影時などにおいてはIRパスフィルタ17の領域を用いることでノイズ成分となる可視波長域の透過を遮断することで、暗視画像の高画質化を図ることができる光学フィルタを得ることができる。 The spectral transmission characteristics of the IR pass filter 17 manufactured as described above are approximately the design values shown in FIG. 1A, and the spectral transmission characteristics of the IR cut filter 18 are approximately the design values shown in FIG. I got the same properties. As a result, when photographing in the daytime when the amount of incident light is large, the area of the IR cut filter 18 is used to cut off the transmission of the near-infrared wavelength region, which is a noise component, thereby improving the quality of the color image. Furthermore, when shooting at night when the amount of incident light is small, the area of the IR pass filter 17 is used to block the transmission of the visible wavelength range, which is a noise component, thereby improving the quality of the night vision image. You can get a filter.

また、近赤外透過膜11と近赤外遮蔽膜12の両方の透過帯において、反射防止効果を発現する可視近赤外反射防止膜13を構成することで、近赤外透過膜11と近赤外遮蔽膜12のそれぞれの機能膜に最適化された2種類の異なる反射防止膜を構成する必要がなくなる為、製造工程を簡易化することができ、光学フィルタの低コスト化を図ることができる。 In addition, in the transmission bands of both the near-infrared transmitting film 11 and the near-infrared shielding film 12, the near-infrared transmitting film 11 and the near-infrared shielding film 12 are provided with the visible and near-infrared antireflection film 13 that exhibits an antireflection effect. Since it is not necessary to configure two different types of antireflection films optimized for the respective functional films of the infrared shielding film 12, the manufacturing process can be simplified and the cost of the optical filter can be reduced. can.

以上より、IRパスフィルタ17とIRカットフィルタ18の2つの機能を合わせ持つ、高画質化と低コスト化を図ることが可能な光学フィルタ14を得ることができる。 As described above, it is possible to obtain the optical filter 14 having the two functions of the IR pass filter 17 and the IR cut filter 18 and capable of achieving high image quality and low cost.

(実施例2)
多層薄膜により構成された近赤外透過膜と近赤外遮蔽膜、及び近赤外反射防止膜に加え、可視波長を含む波長領域の光の透過を減衰するND膜を、1枚の可視近赤外波長透過基板の両面に分割配置し、図1、図4に示した分光透過特性を設計値とする光学フィルタを作製した実施例について、以下に詳しく記載する。
(Example 2)
In addition to the near-infrared transmissive film and near-infrared shielding film, which are composed of multilayer thin films, and the near-infrared antireflection film, an ND film that attenuates the transmission of light in the wavelength region including visible wavelengths is combined into a single visible and near-infrared film. An example in which an optical filter having the design values of the spectral transmission characteristics shown in FIGS. 1 and 4 by disposing them separately on both sides of an infrared wavelength transmitting substrate will be described in detail below.

本実施例2の光学フィルタの可視近赤外透明基板20には、少なくても400~1100nmの波長領域において、基板裏面側での反射成分を除いた入射光の殆どを透過する分光特性を有した厚さ0.4mmのB270iガラスを使用した。 The visible and near-infrared transparent substrate 20 of the optical filter of Example 2 has a spectral characteristic of transmitting most of the incident light, excluding the reflected component on the back side of the substrate, at least in the wavelength range of 400 to 1100 nm. A 0.4 mm thick B270i glass was used.

そして、この可視近赤外透明基板20の一方の面上にIAD法により可視近赤外反射防止膜23を形成した後、可視近赤外透明基板20の表裏を変え、可視近赤外透明基板20のもう一方の面上の所定の領域に近赤外透過膜21をIAD法により形成し、さらに基板の同一面上の近赤外透過膜21を形成した領域とは異なる領域に近赤外遮蔽膜22をIAD法により形成した。これに加えて、近赤外遮蔽膜22上にND膜29を通常のEB蒸着法により形成した。以上のように、本実施例2における光学フィルタ24は、図5に示すような、可視近赤外透明基板20の片面側に近赤外透過膜21と近赤外遮蔽膜22を、可視近赤外透明基板20のもう一方の面に可視近赤外波長反射防止膜23を配置し、さらに近赤外遮蔽膜22上の一部領域にND膜29を配置する構成とした。 Then, after forming the visible and near-infrared antireflection film 23 on one surface of the visible and near-infrared transparent substrate 20 by the IAD method, the visible and near-infrared transparent substrate 20 is turned over to form a visible and near-infrared transparent substrate. A near-infrared permeable film 21 is formed in a predetermined region on the other surface of the substrate 20 by the IAD method, and a near-infrared permeable film is formed in a region different from the region where the near-infrared permeable film 21 is formed on the same surface of the substrate. A shielding film 22 was formed by the IAD method. In addition, an ND film 29 was formed on the near-infrared shielding film 22 by a normal EB vapor deposition method. As described above, the optical filter 24 in the second embodiment has the near-infrared transmissive film 21 and the near-infrared shielding film 22 on one side of the visible and near-infrared transparent substrate 20 as shown in FIG. A visible and near-infrared wavelength antireflection film 23 is disposed on the other surface of the infrared transparent substrate 20 , and an ND film 29 is disposed on a partial region of the near-infrared shielding film 22 .

可視近赤外透明基板20上に形成された本実施例2の近赤外透過膜21は、図1(b)に示すように、可視波長領域の約400~650nmの波長領域の光の殆どを遮断する透過阻止帯と、可視波長から近赤外波長領域にかけての約750~1100nmの波長領域の光を小さいリップルに抑えつつ、基板裏面側での反射成分を除いた殆どの光を透過させた透過帯を有している。また、透過阻止帯と透過帯に挟まれた約650~750nmの波長領域には、透過阻止帯から透過帯へ透過が連続的に変化する透過-阻止遷移領域を有している。さらには、透過-阻止遷移領域における透過率50%の波長をIR半値波長と定義し、この値を700nmとした。また、本実施例2における近赤外透過膜21は高屈折率材料であるTiOと低屈折率材料であるSiOを交互に積層した38層膜で構成されており、図5に示すように、この近赤外透過膜21の可視近赤外透明基板20直上の第1層には透過リップル低減機能を有する透過リップル調整層25aが配置されている。さらに、最表層となる第38層には、近赤外波長における透過帯での反射防止機能を有する1層で構成された近赤外反射防止構造26aが配置されている。透過リップル調整層25aは、近赤外透過膜21を構成する全ての膜厚の中で最も薄い膜厚となっており、また近赤外反射防止構造26aは反射防止帯となる波長域の中心波長である800~1000nmの約1.0qw程度の膜厚を有している。 The near-infrared transmissive film 21 of the second embodiment formed on the visible and near-infrared transparent substrate 20, as shown in FIG. and the light in the wavelength region of about 750 to 1100 nm from the visible wavelength to the near-infrared wavelength region is suppressed to a small ripple, and most of the light except the reflected component on the back side of the substrate is transmitted. It has a clear transmission band. In addition, in the wavelength region of about 650 to 750 nm sandwiched between the transmission stop band and the transmission band, there is a transmission-block transition region where the transmission continuously changes from the transmission stop band to the transmission band. Furthermore, the wavelength at which the transmittance is 50% in the transmission-blocking transition region is defined as the IR half-value wavelength, and this value is set to 700 nm. The near-infrared transmissive film 21 in Example 2 is composed of a 38-layer film in which TiO 2 which is a high refractive index material and SiO 2 which is a low refractive index material are alternately laminated, as shown in FIG. In addition, a transmission ripple adjusting layer 25a having a transmission ripple reduction function is disposed in the first layer of the near-infrared transmission film 21 directly above the visible and near-infrared transparent substrate 20. As shown in FIG. Furthermore, the 38th layer, which is the outermost layer, is provided with a near-infrared antireflection structure 26a composed of a single layer having an antireflection function in the transmission band of near-infrared wavelengths. The transmission ripple adjustment layer 25a has the thinnest film thickness among all the film thicknesses constituting the near-infrared transmission film 21, and the near-infrared antireflection structure 26a has the wavelength band centered in the antireflection band. It has a film thickness of about 1.0 qw at a wavelength of 800 to 1000 nm.

可視近赤外透明基板20上に形成された本実施例2の近赤外遮蔽膜22は、図4(b)に示すように、可視波長領域の約400~600nmの波長領域の光を小さいリップルに抑えつつ、基板裏面側での反射成分を除いた殆どを透過させた透過帯と、可視波長から近赤外波長領域にかけての約700~1100nmの波長領域の光を遮蔽した透過阻止帯を有している。また、透過帯と透過阻止帯に挟まれた約600~700nmの波長領域には、透過帯から透過阻止帯へ透過が連続的に変化する透過-阻止遷移領域を有している。さらには、透過-阻止遷移領域における透過率50%の波長をIR半値波長と定義し、この値を670nmとした。また、本実施例2における近赤外透過膜21は高屈折率材料であるTiOと低屈折率材料であるSiOを交互に積層した38層膜で構成されており、図5に示すように、この近赤外遮蔽膜22の可視近赤外透明基板20直上の第1層には透過リップル低減機能を有する透過リップル調整層25bが配置されている。さらに、最表層となる第38層には、近赤外波長における透過帯での反射防止機能を有する1層で構成された可視反射防止構造26bが配置されている。透過リップル調整層25bは、近赤外遮蔽膜22を構成する全ての膜厚の中で最も薄い膜厚となっており、また可視反射防止構造26bは反射防止帯となる波長域の中心波長である400~600nmの約1.0qw程度の膜厚を有している。 As shown in FIG. 4B, the near-infrared shielding film 22 of the present embodiment 2 formed on the visible and near-infrared transparent substrate 20 reduces the light in the wavelength region of about 400 to 600 nm in the visible wavelength region. While suppressing ripples, a transmission band that transmits most of the components except for the reflection components on the back side of the substrate, and a transmission blocking band that blocks light in the wavelength range of about 700 to 1100 nm from visible wavelengths to the near infrared wavelength range. have. In addition, in the wavelength region of about 600 to 700 nm sandwiched between the transmission band and the transmission stop band, there is a transmission-block transition region in which the transmission continuously changes from the transmission band to the transmission stop band. Furthermore, the wavelength at which the transmittance is 50% in the transmission-blocking transition region is defined as the IR half-value wavelength, and this value is set to 670 nm. The near-infrared transmissive film 21 in Example 2 is composed of a 38-layer film in which TiO 2 which is a high refractive index material and SiO 2 which is a low refractive index material are alternately laminated, as shown in FIG. In addition, a transmission ripple adjusting layer 25b having a transmission ripple reduction function is arranged in the first layer of the near-infrared shielding film 22 directly above the visible and near-infrared transparent substrate 20. As shown in FIG. Further, the 38th layer, which is the outermost layer, is provided with a visible antireflection structure 26b composed of a single layer having an antireflection function in the transmission band of near-infrared wavelengths. The transmission ripple adjustment layer 25b has the thinnest film thickness among all the film thicknesses constituting the near-infrared shielding film 22, and the visible antireflection structure 26b has a central wavelength of the wavelength band serving as the antireflection band. It has a film thickness of about 1.0 qw of 400 to 600 nm.

次に、近赤外遮蔽膜22上に、近赤外遮蔽膜22との干渉条件を調整する為の干渉条件調整層としてSiO2膜とTiO2膜をこの順に1層ずつ積層した後、誘電体層であるAl2O3と光吸収層であるTiOx(xは約1.0~2.0)を交互に積層した8層を加え、さらに最表層には反射防止膜となる1層のMgF2膜を配置した全11層で構成されたND膜29を、特にアシストを付加しない通常のEB蒸着法により、図5に示すような配置構成となるように形成した。またND膜29のND濃度は約1.0となるように調整された。 Next, on the near-infrared shielding film 22, an SiO2 film and a TiO2 film are laminated in this order as an interference condition adjusting layer for adjusting the interference condition with the near-infrared shielding film 22, and then a dielectric layer is formed. and TiOx (x is about 1.0 to 2.0), which is a light absorption layer. The ND film 29 composed of a total of 11 layers was formed by a normal EB vapor deposition method with no particular assist added so as to have the arrangement configuration shown in FIG. Also, the ND concentration of the ND film 29 was adjusted to about 1.0.

ND膜29の最表層に配置された反射防止膜はMgF2に限らずSiO2膜でも良いし、IAD法により作製された1層のSiO2膜などであっても良い。さらには、例えば複数のSiO2膜とTiO2膜などで形成された多層膜構成であっても良い。ND膜29を構成する薄膜材料としては、本実施例2で形成された材料に限らず、SiO2やAl2O3などの誘電体層やこれらの酸価を変えたもの、NiやW、Mo、Cu、Cr、Fe、Al、Mg、Ti、Si、Nb、Zr、Ta、In、Ag、Auなどの金属単体、またはこれらの合金や金属化合物や、これらを混合させた層など、様々な材料を適宜選択することが可能である。 The antireflection film disposed on the outermost layer of the ND film 29 is not limited to MgF2, but may be an SiO2 film, or may be a one-layer SiO2 film produced by the IAD method. Furthermore, it may have a multilayer film structure formed of, for example, a plurality of SiO2 films and TiO2 films. The thin film material forming the ND film 29 is not limited to the material formed in the second embodiment, and may be dielectric layers such as SiO2 or Al2O3, materials with different acid values, Ni, W, Mo, Cu, Various materials such as single metals such as Cr, Fe, Al, Mg, Ti, Si, Nb, Zr, Ta, In, Ag, and Au, alloys and metal compounds thereof, and layers in which these are mixed are appropriately used. It is possible to choose.

このように形成された本実施例2におけるND膜29は近赤外遮蔽膜22が形成するIR半値波長の670nmを含む、400~1100nm、特に400~700nmの可視波長領域全域の透過を減衰し、略均一な透過特性を有する光学特性となっている。従って、成膜誤差により長波長側、または短波長側に例えば10nm程度ND膜29の分光透過特性がシフトしたとしても、先のIR半値波長に与える影響は極めて小さく、基板の特性を合わせ形成されるNDIRフィルタとしてのNDIR半値波長にも殆ど影響を与えない。このように、ND膜29の光学特性を調整することで、NDIRフィルタ30総体として光学特性における高い再現性を得ることが可能となっている。 The ND film 29 in Example 2 thus formed attenuates transmission in the entire visible wavelength range of 400 to 1100 nm, particularly 400 to 700 nm, including the IR half-value wavelength of 670 nm formed by the near-infrared shielding film 22. , has optical characteristics with substantially uniform transmission characteristics. Therefore, even if the spectral transmission characteristic of the ND film 29 shifts to the longer wavelength side or the shorter wavelength side due to a film formation error, the effect on the IR half-value wavelength described above is extremely small, and it is formed according to the characteristics of the substrate. It has almost no effect on the NDIR half-value wavelength as an NDIR filter. By adjusting the optical characteristics of the ND film 29 in this way, it is possible to obtain high reproducibility in the optical characteristics of the NDIR filter 30 as a whole.

可視近赤外透明基板20上に形成された本実施例2の可視近赤外反射防止膜23は、図1(c)または図4(c)に示すように、可視波長から近赤外波長領域にかけての約400~1100nmの波長領域の光における、基板裏面側での反射成分を除いた殆どの反射を阻止した、つまりは殆どの光を透過させた透過帯を有した光学特性となっている。このように、近赤外透過膜21のIR半値波長である700nm、及び近赤外遮蔽膜22のIR半値波長である670nmにおいて、可視近赤外反射防止膜23は透過帯を形成することにより再現性を高めることができ、光学フィルタ総体としての高精度化を実現することができる。 The visible and near-infrared antireflection film 23 of Example 2 formed on the visible and near-infrared transparent substrate 20 has a visible wavelength to a near-infrared wavelength as shown in FIG. 1(c) or FIG. 4(c). Most of the reflection of light in the wavelength region of about 400 to 1100 nm except for the reflection component on the back surface side of the substrate is blocked, that is, it has an optical characteristic that has a transmission band that transmits most of the light. there is Thus, at 700 nm, which is the IR half-value wavelength of the near-infrared transmissive film 21, and at 670 nm, which is the IR half-value wavelength of the near-infrared shielding film 22, the visible and near-infrared antireflection film 23 forms a transmission band. Reproducibility can be improved, and high precision of the optical filter as a whole can be realized.

また、本実施例2における可視近赤外反射防止膜23は高屈折率材料であるTiOと低屈折率材料であるSiOを交互に積層した12層膜で構成されており、特に反射防止機能に最も影響を与える最表層となる第12層は反射防止帯となる波長域の中心波長である600~900nmの約1.0qw程度の膜厚を有している。 The visible and near-infrared antireflection film 23 in Example 2 is composed of a 12-layer film in which high refractive index material TiO 2 and low refractive index material SiO 2 are alternately laminated. The twelfth layer, which is the outermost layer most influencing the function, has a film thickness of about 1.0 qw at 600 to 900 nm, which is the center wavelength of the wavelength range forming the antireflection band.

さらには、可視近赤外透明基板20上に構成された近赤外透過膜21単体が作り出す透過帯の透過特性は、図1(b)で示すように、透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板の裏面側の反射成分を除いた殆どの光を透過する特性となっている。また同様に、可視近赤外透明基板20上に構成された可視近赤外反射防止膜23単体が作り出す透過帯の透過特性は、図1(c)で示すように透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板の裏面側の反射成分を除いた殆どの光を透過する特性となっている。これら2つの機能膜が作り出す透過帯におけるそれぞれの透過特性は図1(b)(c)に示すように、実質的に同一とみなせる特性を有している。そして、これら2つの機能膜が作り出す、透過リップルが少なく平坦で、高透過となっているそれぞれの透過特性を合成することで、図1(a)で示すように、IRパスフィルタ27の透過帯において、透過リップルが少なく平坦で、近赤外透過膜21、及び可視近赤外反射防止膜23よりも高透過である特性を作り出している。また、IRパスフィルタ27の阻止帯においても同様に、2つの機能膜が作り出す透過特性の合成により透過特性が決定される。従って、近赤外透過膜21、及び可視近赤外反射防止膜23の2つの機能膜が作り出す透過特性の合成により、IRパスフィルタ27総体としての透過特性が決定される。 Furthermore, as shown in FIG. 1B, the transmission characteristics of the transmission band produced by the single near-infrared transmission film 21 formed on the visible and near-infrared transparent substrate 20 are flat with little transmission ripple and substantially It has a constant transmission characteristic, and has a characteristic of transmitting most of the light except for the reflected component on the back side of the substrate. Similarly, the transmission characteristics of the transmission band produced by the single visible and near-infrared antireflection film 23 formed on the visible and near-infrared transparent substrate 20 are flat with little transmission ripple as shown in FIG. It has a substantially constant transmission characteristic, and has a characteristic of transmitting most of the light except for the reflected component on the back side of the substrate. As shown in FIGS. 1(b) and 1(c), the respective transmission characteristics in the transmission bands produced by these two functional films have characteristics that can be regarded as substantially the same. By synthesizing the transmission characteristics of these two functional films, which are flat with little transmission ripple and have high transmission, the transmission band of the IR pass filter 27 is obtained as shown in FIG. , the transmission ripple is small, the film is flat, and the transmission is higher than that of the near-infrared transmission film 21 and the visible and near-infrared antireflection film 23 . Similarly, in the stop band of the IR pass filter 27, the transmission characteristics are determined by synthesizing the transmission characteristics produced by the two functional films. Therefore, the transmission characteristics of the IR pass filter 27 as a whole are determined by synthesizing the transmission characteristics produced by the two functional films of the near-infrared transmission film 21 and the visible/near-infrared antireflection film 23 .

同様に、可視近赤外透明基板20上に構成された近赤外遮蔽膜22単体が作り出す透過帯の透過特性は、図4(b)で示すように透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板の裏面側の反射成分を除いた殆どの光を透過する特性となっている。また同様に、可視近赤外透明基板20上に構成された可視近赤外反射防止膜23単体が作り出す透過帯の透過特性は、図4(c)で示すように透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板の裏面側の反射成分を除いた殆どの光を透過する特性となっている。さらには、近赤外遮蔽膜22上に構成されたND膜29単体が作り出す透過特性は図4(e)で示すように、可視波長から近赤外波長に掛けて透過リップが少ない平坦で実施的に一定である透過特性を有している。これら近赤外遮蔽膜22と可視近赤外反射防止膜23が作り出す透過帯におけるそれぞれの透過特性は図4(b)(c)に示すように、厳密には可視近赤外反射防止膜23の透過率の方が近赤外遮蔽膜22の透過率よりも僅かながら高い値となっているが、実質的に同一とみなせる特性を有している。そして、これら2つの機能膜が作り出す、透過リップルが少なく平坦で、高透過となっているそれぞれの透過特性を合成することで、図4(a)で示すように、IRカットフィルタ28の透過帯において、透過リップルが少なく平坦で、近赤外遮蔽膜22、及び可視近赤外反射防止膜23よりも高い透過特性を作り出している。また、IRカットフィルタ28の阻止帯においても同様に、2つの機能膜が作り出す透過特性の合成により透過特性が決定される。従って、近赤外遮蔽膜22、及び可視近赤外反射防止膜23の2つの機能膜が作り出す透過特性の合成により、IRカットフィルタ28総体としての透過特性が決定される。さらに、近赤外遮蔽膜22と可視近赤外反射防止膜23に加え、ND膜29が作り出す透過帯におけるそれぞれの透過特性は図4(b)(c)(f)に示すように、透過リップルが少なく平坦なそれぞれの透過特性を合成することで、図4(e)で示すように、NDIRフィルタ30の透過帯において、透過リップルが少なく平坦な透過特性を作り出している。 Similarly, the transmission characteristic of the transmission band produced by the single near-infrared shielding film 22 formed on the visible and near-infrared transparent substrate 20 is flat with little transmission ripple as shown in FIG. It has a constant transmission characteristic, and has a characteristic of transmitting most of the light except for the reflected component on the back side of the substrate. Similarly, the transmission characteristics of the transmission band produced by the single visible and near-infrared antireflection film 23 formed on the visible and near-infrared transparent substrate 20 are flat with little transmission ripple as shown in FIG. It has a substantially constant transmission characteristic, and has a characteristic of transmitting most of the light except for the reflected component on the back side of the substrate. Furthermore, as shown in FIG. 4( e ), the transmission characteristic produced by the ND film 29 alone formed on the near-infrared shielding film 22 is flat with few transmission lip from the visible wavelength to the near-infrared wavelength. It has a transmission characteristic that is relatively constant. Strictly speaking, the respective transmission characteristics in the transmission bands created by the near-infrared shielding film 22 and the visible/near-infrared antireflection film 23 are shown in FIGS. is slightly higher than the transmittance of the near-infrared shielding film 22, but they have substantially the same characteristics. By synthesizing the transmission characteristics of these two functional films, which are flat with little transmission ripple and have high transmission, the transmission band of the IR cut filter 28 is obtained as shown in FIG. , the transmission ripple is small and flat, and the transmission characteristics are higher than those of the near-infrared shielding film 22 and the visible and near-infrared antireflection film 23 . Similarly, in the stopband of the IR cut filter 28, the transmission characteristics are determined by synthesizing the transmission characteristics produced by the two functional films. Therefore, the transmission characteristics of the IR cut filter 28 as a whole are determined by synthesizing the transmission characteristics produced by the two functional films of the near-infrared shielding film 22 and the visible/near-infrared antireflection film 23 . Furthermore, in addition to the near-infrared shielding film 22 and visible/near-infrared antireflection film 23, the respective transmission characteristics in the transmission band created by the ND film 29 are shown in FIGS. By synthesizing the flat transmission characteristics with little ripple, a flat transmission characteristic with little transmission ripple is created in the transmission band of the NDIR filter 30, as shown in FIG. 4(e).

本実施例のようにIRパスフィルタ27の阻止帯では透過を平均で1%以下、より好ましくは平均で0.1%以下に抑えつつ、透過帯では平均で80%以上、より好ましくは平均で90%以上の透過特性を有することが望ましい。同様に、IRカットフィルタ28も本実施例のフィルタのように阻止帯では透過を平均で1%以下、より好ましくは平均で0.1%以下に抑えつつ、透過帯では平均で80%以上、より好ましく平均で90%以上の透過特性を有することが望ましい。さらに同様に、NDIRフィルタ30も本実施例のフィルタのように阻止帯では透過を平均で1%以下、より好ましくは平均で0.1%以下に抑えた特性を有することが望ましい。 As in the present embodiment, the average transmission in the blocking band of the IR pass filter 27 is suppressed to 1% or less, preferably 0.1% or less on average, while the transmission band has an average transmission of 80% or more, more preferably an average of 80% or more. It is desirable to have a transmission characteristic of 90% or more. Similarly, the IR cut filter 28, like the filter of this embodiment, has an average transmission of 1% or less in the stopband, more preferably 0.1% or less on average, and an average of 80% or more in the transmission band. More preferably, it is desirable to have an average transmittance of 90% or more. Furthermore, like the filter of this embodiment, the NDIR filter 30 also preferably has a characteristic of suppressing transmission to 1% or less on average, more preferably 0.1% or less on average in the stopband.

以上のように作製された、IRパスフィルタ27の分光透過特性は図1(a)で示した設計値と、IRカットフィルタ28の分光透過特性は図4(a)で示した設計値と、NDIRフィルタ30の分光透過特性は図4(e)で示した設計値と略同じ特性を得ることができた。 The spectral transmission characteristics of the IR pass filter 27 produced as described above are the design values shown in FIG. 1A, the spectral transmission characteristics of the IR cut filter 28 are the design values shown in FIG. 4A, As for the spectral transmission characteristics of the NDIR filter 30, substantially the same characteristics as the design values shown in FIG. 4(e) could be obtained.

これにより、入射光量が多い昼間撮影時などにおいては、図5におけるIRカットフィルタ28の領域を用い、さらには特に入射光量が多い撮影環境時には図5におけるNDIRフィルタ30の領域を用いることで、ノイズ成分となる近赤外波長域の透過を遮断することでカラー画像の高画質化を図ることができる。これに加え、入射光量が少ない夜間撮影時などにおいてはIRパスフィルタ27の領域を用いることでノイズ成分となる可視波長域の透過を遮断することで、暗視画像の高画質化を図ることができる光学フィルタを得ることができる。 As a result, noise can be reduced by using the area of the IR cut filter 28 in FIG. 5 during daytime shooting when the amount of incident light is large, and by using the area of the NDIR filter 30 in FIG. By blocking the transmission of the component near-infrared wavelength region, it is possible to improve the quality of the color image. In addition to this, when photographing at night when the amount of incident light is small, the area of the IR pass filter 27 is used to cut off the transmission of the visible wavelength range, which is a noise component, thereby improving the image quality of the night vision image. It is possible to obtain an optical filter capable of

また、近赤外透過膜21と近赤外遮蔽膜22の両方の透過帯において、反射防止効果を発現する可視近赤外反射防止膜23を構成することで、近赤外透過膜21と近赤外遮蔽膜22のそれぞれに最適化された2種類の異なる反射防止膜を構成する必要がなくなる為、製造工程を簡易化することができフィルタの低コスト化を図ることができる。 In addition, in the transmission band of both the near-infrared transmitting film 21 and the near-infrared shielding film 22, the near-infrared transmitting film 21 and the near-infrared shielding film 22 are provided with the visible and near-infrared antireflection film 23 that exhibits an antireflection effect. Since it is not necessary to form two different antireflection films optimized for each of the infrared shielding films 22, the manufacturing process can be simplified and the cost of the filter can be reduced.

以上より、IRパスフィルタ27とIRカットフィルタ28、NDIRフィルタ30の3つの機能を合わせ持つ、高画質化と低コスト化を図ることが可能な光学フィルタ24を得ることができる。 As described above, the optical filter 24 having the three functions of the IR pass filter 27, the IR cut filter 28, and the NDIR filter 30 and capable of achieving high image quality and low cost can be obtained.

(実施例3)
本実施例1、及び本実施例2で作製されたような、IRパスフィルタとIRカットフィルタの2つの機能を有する光学フィルタの他の構成例について説明する。
(Example 3)
Another configuration example of an optical filter having two functions of an IR pass filter and an IR cut filter, such as those manufactured in the present embodiment 1 and the present embodiment 2, will be described.

本実施例1、及び本実施例2で説明した、図1、図4で示したような、撮像素子の感度特性や、光学系での配置位置などの様々な要素から決定される、調整が必要な近赤外波長領域全域の光の殆どを透過させるエッジフィルタタイプの光学特性とは異なるIRパスフィルタとすることも可能である。 The adjustment is determined by various factors such as the sensitivity characteristics of the image sensor and the arrangement position in the optical system as shown in FIG. 1 and FIG. It is also possible to have an IR pass filter that differs from the optical properties of edge filter types that transmit most of the light in the entire required near-infrared wavelength range.

つまりは、調整が必要な近赤外波長領域の特定波長領域のみの光を透過させる、バンドパスタイプのIRパスフィルタとすることでも、本実施例1、2で作製した光学フィルタと同様の効果を持つフィルタを形成することが可能である。例えば、図1(b)における近赤外透過膜の透過帯の透過特性を、800~900nmの波長領域のみを100%に近い値で透過させ、950~1100nmの波長領域の透過を遮断し、その他の波長領域は図1(b)と同様な特性とする。そして、近赤外反射防止膜の光学特性を図1(c)と同様とする。以上より、これら2つの機能膜が作り出す、透過リップルが少なく平坦で、高透過となっているそれぞれの透過特性を合成することで作製される、透過帯において透過リップルが少なく平坦で、非常に高い透過特性を有するIRパスフィルタを、近赤外波長領域における800~900nmの特定領域のみ光を透過させるバンドパスタイプとして形成することができる。このようなバンドパスタイプの透過特性は、近赤外透過膜を構成している複数層の薄膜の膜厚や層数、薄膜材料などを調整することで得ることができる。同様に800~1000nmや750~850nmなど、意図する様々な波長領域のみを透過させるバンドパスタイプのIRパスフィルタを形成することが可能である。 In other words, the same effect as the optical filters produced in Examples 1 and 2 can be obtained by using a band-pass type IR pass filter that transmits only light in a specific wavelength region in the near-infrared wavelength region that requires adjustment. It is possible to form a filter with For example, the transmission characteristics of the transmission band of the near-infrared transmission film in FIG. Other wavelength regions have the same characteristics as in FIG. 1(b). The optical characteristics of the near-infrared antireflection film are assumed to be the same as those in FIG. 1(c). From the above, it can be concluded that by synthesizing the respective transmission characteristics of these two functional films, which have low transmission ripple and high transmission, the transmission band has low transmission ripple, flatness, and very high transmission. An IR pass filter having transmission characteristics can be formed as a bandpass type that transmits light only in a specific region of 800 to 900 nm in the near-infrared wavelength region. Such band-pass type transmission characteristics can be obtained by adjusting the film thickness, the number of layers, the thin film material, etc. of the multiple layers of thin films that constitute the near-infrared transmissive film. Similarly, it is possible to form a bandpass type IR pass filter that transmits only various intended wavelength regions such as 800-1000 nm and 750-850 nm.

他の例として、本実施例1、及び本実施例2では近赤外透過膜や近赤外遮蔽膜、可視近赤外反射防止膜、ND膜の最表層に配置された反射防止構造を1層の薄膜構成としたが、複数層で構成することも可能である。このような構成を取ることにより、前述の各機能膜がそれぞれで必要としている波長領域における、光の反射をより低減することが可能となる場合がある。 As another example, in Example 1 and Example 2, the antireflection structure disposed on the outermost layer of the near-infrared transmissive film, the near-infrared shielding film, the visible and near-infrared antireflection film, and the ND film was 1 Although the thin film structure of the layer was mentioned, it is also possible to structure with multiple layers. By adopting such a configuration, it may be possible to further reduce the reflection of light in the wavelength region required by each of the functional films described above.

また、本実施例2で記載した図5のNDIRフィルタ30について、近赤外遮蔽膜22とND膜29の積層順を反対に構成することも可能である。この場合、IRカットフィルタ28の作製と合わせて、近赤外遮蔽膜22とND膜29の基板面上の成膜領域は維持したまま、近赤外遮蔽膜22とND膜29の成膜の順番を変更し、更には積層順が反対になったことから生じる近赤外遮蔽膜22とND膜29との干渉条件のズレ分を修正する為に、ND膜29を形成する多層薄膜の積層構成を調整することで、本実施例2と略同じ特性、効果を有する光学フィルタを得ることができる。ここで、このような構成であれば、ND膜29の基板面上の成膜領域を少しずらして、ND膜29の断面を含む全体を近赤外遮蔽膜22で覆うように形成することも可能であり、例えばNDIRフィルタ30としての耐環境性が改善したり、耐摩耗性が改善したりするなどの第3の効果を得ることができる場合がある。 5 described in the second embodiment, the stacking order of the near-infrared shielding film 22 and the ND film 29 can be reversed. In this case, together with the fabrication of the IR cut filter 28, the formation of the near-infrared shielding film 22 and the ND film 29 is performed while maintaining the film-forming regions of the near-infrared shielding film 22 and the ND film 29 on the substrate surface. In order to correct the deviation of the interference condition between the near-infrared shielding film 22 and the ND film 29 caused by changing the order and furthermore, the order of lamination being reversed, the multi-layered thin film forming the ND film 29 is laminated. By adjusting the configuration, an optical filter having substantially the same characteristics and effects as those of the second embodiment can be obtained. Here, with such a configuration, the near-infrared shielding film 22 may be formed so as to cover the entirety of the ND film 29, including the cross section, by slightly shifting the deposition region of the ND film 29 on the substrate surface. It is possible, and in some cases it is possible to obtain a third effect such as improved environmental resistance as the NDIR filter 30 or improved abrasion resistance.

さらに別の構成例として、近赤外遮蔽膜のIRカット機能に加え、紫外波長域の光遮蔽機能を付加することで、IRカットフィルタをUVIRカットフィルタとすることも可能である。 As another configuration example, by adding a light shielding function in the ultraviolet wavelength region in addition to the IR shielding function of the near-infrared shielding film, the IR cut filter can be used as a UVIR cut filter.

以上のような、バンドパスタイプのIRパスフィルタや、各機能膜の最表層に形成された複数層で構成された反射防止膜、UVIRカットフィルタなどを、組み合わせて、IRパスフィルタとIRカットフィルタの2つの機能を有する光学フィルタを構成することも可能である。 The IR pass filter and the IR cut filter are combined with the band-pass type IR pass filter, the multi-layered antireflection film formed on the outermost layer of each functional film, the UVIR cut filter, etc. It is also possible to configure an optical filter having the two functions of

(実施例4)
本実施例1~3で作製した光学フィルタを備えるビデオカメラ等の撮像装置に適用した実施例について図6を用いて説明する。
(Example 4)
An example in which the optical filter manufactured in Examples 1 to 3 is applied to an imaging device such as a video camera will be described with reference to FIG.

図6(a)は、ビデオカメラなどの撮像装置で、絞り羽根49などで構成された撮像光学系47を透過した光線を、光学フィルタ挿入位置40に配置された光学フィルタにより固体撮像素子48の特性に合わせて調整し、適正な画像を得るような構成となっている。 FIG. 6(a) shows an imaging apparatus such as a video camera, in which light rays transmitted through an imaging optical system 47 composed of aperture blades 49 and the like are passed through an optical filter disposed at an optical filter insertion position 40 to a solid-state imaging device 48. It is configured so as to obtain an appropriate image by adjusting according to the characteristics.

例えば、図6の構成において、本実施例1~3で作製されたIRパスフィルタとIRカットフィルタの2つの機能を有する光学フィルタを撮像装置内の所定の位置に配置しておき、光学フィルタ挿入位置40にIRパスフィルタまたはIRカットフィルタの機能を発現する位置となるように光学フィルタを移動させることで、撮影状況に応じて適切なフィルタを選択し、撮影を行うことが可能である。例えば図6の構成において光学フィルタA44を用いて、撮像光学系47を透過して撮像素子47に結像した光量等を判断して、光学フィルタ挿入位置40にIRパスフィルタ41、またはIRカットフィルタ42のどちらか一方のフィルタ領域を配置させる。入射した光量が通常の撮影に十分な量であるときは、IRカットフィルタ42を光学フィルタ挿入位置40に配置させることでカラー画像を形成し、逆に光量が不十分であるときはIRパスフィルタ41を光学フィルタ挿入位置40に配置させることで暗視画像を形成する。 For example, in the configuration of FIG. 6, the optical filters having two functions of the IR pass filter and the IR cut filter produced in Examples 1 to 3 are arranged at predetermined positions in the imaging device, and the optical filters are inserted. By moving the optical filter to the position 40 where it functions as an IR pass filter or an IR cut filter, it is possible to select an appropriate filter according to the imaging situation and perform imaging. For example, using the optical filter A44 in the configuration of FIG. Either one of 42 filter areas is arranged. When the amount of incident light is sufficient for normal photography, the IR cut filter 42 is arranged at the optical filter insertion position 40 to form a color image, and conversely, when the amount of light is insufficient, the IR pass filter is used. 41 is positioned at the optical filter insertion position 40 to form a night vision image.

これにより作製された撮像装置は、入射光量が多い昼間の撮影時にはIRカットフィルタにより近赤外波長のノイズ成分を除去し、入射光量が少ない夜間の撮影時にはIRパスフィルタにより可視波長のノイズ成分を除去することが可能となり、撮影画像の高画質化が図られる。 An image pickup device manufactured by this method removes near-infrared wavelength noise components with an IR cut filter when shooting in the daytime when the amount of incident light is high, and removes visible wavelength noise components with an IR pass filter when shooting at night when the amount of incident light is low. It becomes possible to remove it, and it is possible to improve the image quality of the photographed image.

また、光学フィルタA44に変え、IRパスフィルタ41と、可視波長領域の光量を減衰させるNDフィルタの機能とIRカットフィルタの機能とを合成した光学特性を有するNDIRフィルタ43の機能を有する光学フィルタB45を用いることも可能である。このようなNDIRフィルタ43は、例えば図4(e)で示すように、可視波長領域の光を減衰し、近赤外波長領域の光を遮蔽する透過特性を有している。このような構成とすることで、入射した光量が通常の撮影に十分な量であるときは、NDIRフィルタ43を光学フィルタ挿入位置40に配置させカラー画像を形成し、逆に光量が不十分であるときはIRパスフィルタ41を光学フィルタ挿入位置40に配置させ暗視画像を形成する。 Further, instead of the optical filter A44, an optical filter B45 having the function of the IR pass filter 41 and the NDIR filter 43 having optical characteristics obtained by combining the function of the ND filter for attenuating the amount of light in the visible wavelength region and the function of the IR cut filter. It is also possible to use Such an NDIR filter 43 has a transmission characteristic of attenuating light in the visible wavelength range and blocking light in the near-infrared wavelength range, as shown in FIG. 4(e), for example. With such a configuration, when the amount of incident light is sufficient for normal photographing, the NDIR filter 43 is arranged at the optical filter insertion position 40 to form a color image. In some cases, the IR pass filter 41 is arranged at the optical filter insertion position 40 to form a night vision image.

さらには、IRパスフィルタ41とIRカットフィルタ42の機能に加え、NDIRフィルタ43の3種類の機能を有する光学フィルタC46を用いることも可能である。IRカットフィルタ41とIRパスフィルタ42に加え、可視波長領域の光量を減衰させるNDIRフィルタ43の3種の機能を有したフィルタを用いることで、入射光量が特に多いスチエーションではNDIRフィルタ43を光学フィルタ挿入位置40に配置させ、入射光量が通常の撮影に十分な量であるときは、IRカットフィルタ42を光学フィルタ挿入位置40に配置させカラー画像を形成し、逆に光量が不十分であるときはIRパスフィルタ41を光学フィルタ挿入位置40に配置させ暗視画像を形成する。このような構成とすることで、様々な撮影スチエーションにおいて高画質化を図ることが可能な撮像装置を実現することができる。 Furthermore, in addition to the functions of the IR pass filter 41 and the IR cut filter 42, it is also possible to use an optical filter C46 having three functions of the NDIR filter 43. In addition to the IR cut filter 41 and the IR pass filter 42, the NDIR filter 43 that attenuates the amount of light in the visible wavelength region is used. When it is placed at the insertion position 40 and the amount of incident light is sufficient for normal photographing, the IR cut filter 42 is placed at the optical filter insertion position 40 to form a color image, and conversely when the amount of light is insufficient. places an IR pass filter 41 at the optical filter insertion position 40 to form a night vision image. With such a configuration, it is possible to realize an imaging apparatus capable of achieving high image quality in various imaging situations.

また、本実施例の光学装置に限らず、他の光学装置であっても、実施例1~3で作製されたようなIRパスフィルタとIRカットフィルタの機能を1枚の基板上に有する光学フィルタを用いることで、様々な撮影スチエーションにおいて高画質化を図ることが可能な撮像装置を実現することができる。 Further, not only the optical device of the present embodiment, but also other optical devices have the functions of an IR pass filter and an IR cut filter as fabricated in Examples 1 to 3 on a single substrate. By using a filter, it is possible to realize an imaging apparatus capable of achieving high image quality in various shooting situations.

以上のように、本実施例4の構成であれば、昼間撮影または夜間撮影の異なる撮影環境下で用いる、IRカットフィルタ41とIRパスフィルタ42を1枚の基板上に形成したことにより、それぞれを別フィルタとして個別に形成し、光学フィルタを複数枚設けた場合の装置構成と比較し、フィルタを駆動する為の駆動機構の点数を削減することでき、装置全体としてのコストの低減を図ることができる。 As described above, in the configuration of the fourth embodiment, the IR cut filter 41 and the IR pass filter 42, which are used under different shooting environments such as daytime shooting and nighttime shooting, are formed on one substrate. is individually formed as a separate filter, and compared with a device configuration in which a plurality of optical filters are provided, the number of drive mechanisms for driving the filters can be reduced, and the cost of the entire device can be reduced. can be done.

(実施例5)UVPF
多層薄膜により構成された近紫外透過膜と近紫外遮蔽膜、及び可視近紫外反射防止膜とを、1枚の可視近紫外波長透明基板の両面に分割配置し、図7、図8に示した分光透過特性を設計値とする光学フィルタを作製した実施例について、以下に詳しく記載する。
(Example 5) UVPF
A near-ultraviolet transmitting film, a near-ultraviolet shielding film, and a visible and near-ultraviolet antireflection film, which are composed of multilayer thin films, are separately arranged on both sides of a single visible and near-ultraviolet wavelength transparent substrate, as shown in FIGS. Examples in which optical filters having spectral transmission characteristics as design values were produced will be described in detail below.

図9に示したような本実施例5の光学フィルタの可視近紫外透明基板50には、少なくても350~600nmの波長領域において、基板裏面側での反射成分を除いた入射光の殆どを透過する分光特性を有した厚さ0.4mmのD263Tecoガラスを使用した。 The visible and near-ultraviolet transparent substrate 50 of the optical filter of Example 5 as shown in FIG. A 0.4 mm thick D263 Teco glass with transmitting spectral properties was used.

そして、この可視近紫外透明基板50の一方の面上にIAD法により可視近紫外反射防止膜53を形成した後、可視近紫外透明基板50の表裏を変え、可視近紫外透明基板50のもう一方の面上の所定の領域に近紫外透過膜51をIAD法により形成し、さらに基板の同一面上の近紫外透過膜51を形成した領域とは異なる領域に近紫外遮蔽膜52をIAD法により形成した。先に可視近紫外反射防止膜53を形成したのは、近紫外透過膜51や近紫外遮蔽膜52よりも膜厚が薄く、膜応力が低い為、基板の反りに起因した成膜時の基板位置により成膜誤差の影響を小さくする理由からである。以上のように、本実施例5における光学フィルタ54は、図9に示すような、可視近紫外透明基板50の片面側に近紫外透過膜51と近紫外遮蔽膜52を、これと対峙する可視近紫外透明基板50のもう一方の面上に可視近紫外反射防止膜53を配置する構成とした。 Then, after forming the visible and near-ultraviolet antireflection film 53 on one surface of the visible and near-ultraviolet transparent substrate 50 by the IAD method, the visible and near-ultraviolet transparent substrate 50 is turned over, and the other side of the visible and near-ultraviolet transparent substrate 50 is A near-ultraviolet transmitting film 51 is formed by the IAD method in a predetermined region on the surface of the substrate, and a near-ultraviolet shielding film 52 is formed by the IAD method in a region different from the region where the near-ultraviolet transmitting film 51 is formed on the same surface of the substrate. formed. The visible and near-ultraviolet antireflection film 53 is formed first because it is thinner than the near-ultraviolet transmitting film 51 and the near-ultraviolet shielding film 52, and the film stress is low. This is because the position reduces the influence of film formation errors. As described above, the optical filter 54 in the fifth embodiment has the near-ultraviolet transmissive film 51 and the near-ultraviolet shielding film 52 on one side of the visible and near-ultraviolet transparent substrate 50 as shown in FIG. A visible and near-ultraviolet antireflection film 53 is arranged on the other surface of the near-ultraviolet transparent substrate 50 .

可視近紫外透明基板50上に形成された本実施例5の近紫外透過膜51は、図7(b)に示すように、可視波長領域の約400~500nmの波長領域の光の殆どを遮断する透過阻止帯と、可視波長から近紫外波長領域にかけての約350~377nmの波長領域の光を小さいリップルに抑えつつ、基板裏面側での反射成分を除いた殆どの光を透過させた透過帯を有している。また、透過阻止帯と透過帯に挟まれた約380~395nmの波長領域には、透過阻止帯から透過帯へ透過が連続的に変化する透過-阻止遷移領域を有している。さらには、透過-阻止遷移領域における透過率50%の波長をUV半値波長と定義し、この値を382nmとした。また、本実施例5における近紫外透過膜51は高屈折率材料であるLaTiと低屈折率材料であるSiOを交互に積層した38層膜で構成されており、図9に示すように、この近紫外透過膜51の可視近紫外透明基板50直上の第1層には透過リップル低減機能を有する透過リップル調整層55aが配置されている。さらに、最表層となる第38層には、近紫外波長における透過帯での反射防止機能を有する1層で構成された近紫外反射防止構造56aが配置されている。透過リップル調整層55aは、近紫外透過膜51を構成する全ての膜厚の中で最も薄い膜厚となっており、また近紫外反射防止構造56aは反射防止帯となる波長域の中心波長である330~380nmの約1.0qw程度の膜厚を有している。 The near-ultraviolet transmissive film 51 of Example 5 formed on the visible and near-ultraviolet transparent substrate 50, as shown in FIG. and a transmission band that transmits most of the light except for the reflection component on the back side of the substrate while suppressing the ripple of light in the wavelength range of about 350 to 377 nm from the visible wavelength to the near-ultraviolet wavelength range. have. In addition, in the wavelength region of about 380 to 395 nm sandwiched between the transmission stop band and the transmission band, there is a transmission-block transition region where the transmission continuously changes from the transmission stop band to the transmission band. Furthermore, the wavelength at which the transmittance is 50% in the transmission-blocking transition region was defined as the UV half-value wavelength, and this value was set at 382 nm. The near-ultraviolet transmission film 51 in Example 5 is composed of a 38-layer film in which La 2 Ti 2 O 7 which is a high refractive index material and SiO 2 which is a low refractive index material are alternately laminated. 2, a transmission ripple adjusting layer 55a having a transmission ripple reduction function is arranged in the first layer of the near-ultraviolet transmission film 51 directly above the visible and near-ultraviolet transparent substrate 50. As shown in FIG. Furthermore, the 38th layer, which is the outermost layer, is provided with a near-ultraviolet antireflection structure 56a composed of a single layer having an antireflection function in the transmission band of near-ultraviolet wavelengths. The transmission ripple adjustment layer 55a has the thinnest film thickness among all the film thicknesses constituting the near-ultraviolet transmission film 51, and the near-ultraviolet antireflection structure 56a has a central wavelength of the wavelength band serving as the antireflection band. It has a film thickness of about 1.0 qw of 330 to 380 nm.

可視近紫外透明基板50上に形成された本実施例5の近紫外遮蔽膜52は、図8(b)に示すように、可視波長領域の約430~600nmの波長領域の光を小さいリップルに抑えつつ、基板裏面側での反射成分を除いた殆どを透過させた透過帯と、可視波長から近紫外波長領域にかけての約350~400nmの波長領域の光を遮蔽した透過阻止帯を有している。また、透過帯と透過阻止帯に挟まれた約400~430nmの波長領域には、透過帯から透過阻止帯へ透過が連続的に変化する透過-阻止遷移領域を有している。さらには、透過-阻止遷移領域における透過率50%の波長をUV半値波長と定義し、この値を415nmとした。また、本実施例5における近紫外遮蔽膜52は高屈折率材料であるTiOと低屈折率材料であるSiOを交互に積層した38層膜で構成されており、図9に示すように、この近紫外遮蔽膜52の可視近紫外透明基板50直上の第1層には透過リップル低減機能を有する透過リップル調整層55bが配置されている。さらに、最表層となる第38層には、近紫外波長における透過帯での反射防止機能を有する1層で構成された可視反射防止構造56bが配置されている。透過リップル調整層55bは、近紫外遮蔽膜52を構成する全ての膜厚の中で最も薄い膜厚となっており、また可視反射防止構造56bは反射防止帯となる波長域の中心波長である400~600nmの約1.0qw程度の膜厚を有している。 As shown in FIG. 8B, the near-ultraviolet shielding film 52 of the present embodiment 5 formed on the visible and near-ultraviolet transparent substrate 50 reduces the light in the wavelength region of about 430 to 600 nm in the visible wavelength region into small ripples. While suppressing, it has a transmission band that transmits most of the light except the reflected component on the back side of the substrate and a transmission blocking band that blocks light in the wavelength range of about 350 to 400 nm from the visible wavelength range to the near-ultraviolet wavelength range. there is Also, in the wavelength region of about 400 to 430 nm sandwiched between the transmission band and the transmission stop band, there is a transmission-block transition region in which the transmission continuously changes from the transmission band to the transmission stop band. Furthermore, the wavelength at which the transmittance is 50% in the transmission-blocking transition region was defined as the UV half-value wavelength, and this value was set to 415 nm. The near-ultraviolet shielding film 52 in Example 5 is composed of a 38-layer film in which TiO 2 as a high refractive index material and SiO 2 as a low refractive index material are alternately laminated, as shown in FIG. As the first layer of the near-ultraviolet shielding film 52 directly above the visible and near-ultraviolet transparent substrate 50, a transmission ripple adjusting layer 55b having a transmission ripple reduction function is arranged. Furthermore, the 38th layer, which is the outermost layer, is provided with a visible antireflection structure 56b composed of a single layer having an antireflection function in the transmission band of near-ultraviolet wavelengths. The transmission ripple adjustment layer 55b has the thinnest film thickness among all the film thicknesses constituting the near-ultraviolet shielding film 52, and the visible antireflection structure 56b has the central wavelength of the wavelength range that becomes the antireflection band. It has a film thickness of about 1.0 qw from 400 to 600 nm.

可視近紫外透明基板50上に形成された本実施例5の可視近紫外反射防止膜53は、図7(c)または図8(c)に示すように、可視波長から近紫外波長領域にかけての約350~600nmの波長領域の光における、基板裏面側での反射成分を除いた殆どの反射を阻止した、つまりは殆どの光を透過させた透過帯を有した光学特性となっている。このように、近紫外透過膜51のUV半値波長である382nm、及び近紫外遮蔽膜52のUV半値波長である415nmにおいて、可視近紫外反射防止膜53は透過帯を形成しており、成膜誤差等により近紫外透過膜51や近紫外遮蔽膜52の光学特性が例えば10nm程度短波長側や長波長側へシフトとしたとしても、可視近紫外反射防止膜53はそれぞれのUV半値波長において透過帯を維持できる。従って、以上のような構成設計とすることにより、可視近紫外反射防止膜53形成時の成膜誤差により可視近紫外反射防止膜53の光学特性が変化したとしても、可視近紫外透明基板50を含んで形成されるUVパスフィルタ57またはUVカットフィルタ58の各UV半値波長に与える影響は極めて小さく、近紫外透過膜51または近紫外遮蔽膜52の誤差のみで、UVパスフィルタ57またはUVカットフィルタ58の透過-阻止遷移領域が決まる為、より再現性を高めることができ、光学フィルタ54総体としての高精度化を実現することができる。 The visible and near-ultraviolet antireflection film 53 of Example 5 formed on the visible and near-ultraviolet transparent substrate 50 is, as shown in FIG. 7(c) or FIG. It has an optical characteristic of having a transmission band in which most of the light in the wavelength range of about 350 to 600 nm is blocked, ie, most of the light is transmitted, except for the reflected component on the back side of the substrate. Thus, the visible and near-ultraviolet antireflection film 53 forms a transmission band at 382 nm, which is the UV half-value wavelength of the near-ultraviolet transmission film 51, and at 415 nm, which is the UV half-value wavelength of the near-ultraviolet shielding film 52. Even if the optical characteristics of the near-ultraviolet transmission film 51 and the near-ultraviolet shielding film 52 are shifted, for example, by about 10 nm to the short wavelength side or the long wavelength side due to an error or the like, the visible and near-ultraviolet antireflection film 53 can transmit at each UV half-value wavelength. You can keep your belt. Therefore, by designing the configuration as described above, even if the optical characteristics of the visible and near-ultraviolet antireflection film 53 change due to film formation errors during the formation of the visible and near-ultraviolet antireflection film 53, the visible and near-ultraviolet transparent substrate 50 can be maintained. The influence of the UV pass filter 57 or the UV cut filter 58 formed by including the UV pass filter 57 or the UV cut filter 58 on each UV half-value wavelength is extremely small, and only the error of the near-ultraviolet transmission film 51 or the near-ultraviolet shielding film 52 causes the UV pass filter 57 or the UV cut filter Since the transmission-blocking transition region of 58 is determined, the reproducibility can be further improved, and the accuracy of the optical filter 54 as a whole can be improved.

また、本実施例5における可視近紫外反射防止膜53は高屈折率材料であるLaTiと低屈折率材料であるSiOを交互に積層した4層膜で構成されており、特に反射防止機能に最も影響を与える最表層となる第4層は反射防止帯となる波長域の中心波長である350~600nmの約1.0qw程度の膜厚を有している。 Further, the visible and near-ultraviolet antireflection film 53 in Example 5 is composed of a four-layer film in which La 2 Ti 2 O 7 as a high refractive index material and SiO 2 as a low refractive index material are alternately laminated. In particular, the fourth layer, which is the outermost layer most influencing the antireflection function, has a film thickness of about 1.0 qw at 350 to 600 nm, which is the center wavelength of the wavelength range forming the antireflection band.

さらには、可視近紫外透明基板50上に構成された近紫外透過膜51単体が作り出す透過帯の透過特性は、図7(b)で示すように、透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板裏面側の反射成分を除いた殆どの光を透過する特性となっている。また同様に、可視近紫外透明基板50上に構成された可視近紫外反射防止膜53単体が作り出す透過帯の透過特性は、図7(c)で示すように透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板の裏面側の反射成分を除いた殆どの光を透過する特性となっている。これら2つの機能膜が作り出す透過帯におけるそれぞれの透過特性は図7(b)(c)に示すように、厳密には可視近紫外反射防止膜53の透過率の方が近紫外透過膜51の透過率よりも僅かながら高い値となっているが、実質的に同一とみなせる特性を有している。そして、これら2つの機能膜が作り出す、透過リップルが少なく平坦で、高透過となっているそれぞれの透過特性を合成することで、図7(a)で示すように、UVパスフィルタ57の透過帯において、透過リップルが少なく平坦で、近紫外透過膜51、及び可視近紫外反射防止膜53よりも高透過である特性を作り出している。また、UVパスフィルタ57の阻止帯においても同様に、2つの機能膜が作り出す透過特性の合成により透過特性が決定される。従って、近紫外透過膜51、及び可視近紫外反射防止膜53の2つの機能膜が作り出す透過特性の合成により、UVパスフィルタ57総体としての透過特性が決定される。 Furthermore, as shown in FIG. 7B, the transmission characteristics of the transmission band produced by the single near-ultraviolet transmission film 51 formed on the visible and near-ultraviolet transparent substrate 50 are flat with little transmission ripple and substantially constant. It has a transmission characteristic of , and has a characteristic of transmitting most of the light except for the reflection component on the back side of the substrate. Similarly, the transmission characteristic of the transmission band produced by the single visible and near-ultraviolet antireflection film 53 formed on the visible and near-ultraviolet transparent substrate 50 is flat with little transmission ripple as shown in FIG. It has a constant transmission characteristic, and has a characteristic of transmitting most of the light except for the reflected component on the back side of the substrate. Strictly speaking, the transmittance of the visible and near-ultraviolet antireflection film 53 is higher than that of the near-ultraviolet transmission film 51, as shown in FIGS. 7(b) and 7(c). Although the value is slightly higher than the transmittance, it has characteristics that can be regarded as substantially the same. By synthesizing the transmission characteristics of these two functional films, which are flat with little transmission ripple and have high transmission, the transmission band of the UV pass filter 57 is obtained as shown in FIG. , the transmission ripple is small, the film is flat, and the transmission is higher than that of the near-ultraviolet transmission film 51 and the visible and near-ultraviolet antireflection film 53 . Similarly, in the blocking band of the UV pass filter 57, the transmission characteristics are determined by synthesizing the transmission characteristics produced by the two functional films. Therefore, the transmission characteristics of the UV pass filter 57 as a whole are determined by synthesizing the transmission characteristics produced by the two functional films of the near-ultraviolet transmission film 51 and the visible and near-ultraviolet antireflection film 53 .

同様に、可視近紫外透明基板50上に構成された近紫外遮蔽膜52単体が作り出す透過帯の透過特性は、図8(b)で示すように透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板の裏面側の反射成分を除いた殆どの光を透過する特性となっている。また同様に、可視近紫外透明基板50上に構成された可視近紫外反射防止膜53単体が作り出す透過帯の透過特性は、図8(c)で示すように透過リップルが少ない平坦で、実質的に一定である透過特性を有しており、基板の裏面側の反射成分を除いた殆どの光を透過する特性となっている。これら2つの機能膜が作り出す透過帯におけるそれぞれの透過特性は図8(b)(c)に示すように、厳密には可視近紫外反射防止膜53の透過率の方が近紫外遮蔽膜52の透過率よりも僅かながら高い値となっているが、実質的に同一とみなせる特性を有している。そして、これら2つの機能膜が作り出す、透過リップルが少なく平坦で、高透過となっているそれぞれの透過特性を合成することで、図8(a)で示すように、UVカットフィルタ58の透過帯において、透過リップルが少なく平坦で、近紫外遮蔽膜52、及び可視近紫外反射防止膜53よりも高透過である特性を作り出している。また、UVカットフィルタ58の阻止帯においても同様に、2つの機能膜が作り出す透過特性の合成により透過特性が決定される。従って、近紫外遮蔽膜52、及び可視近紫外反射防止膜53の2つの機能膜が作り出す透過特性の合成により、UVカットフィルタ58総体としての透過特性が決定される。 Similarly, the transmission characteristics of the transmission band produced by the single near-ultraviolet shielding film 52 formed on the visible and near-ultraviolet transparent substrate 50 are flat and substantially constant with little transmission ripple as shown in FIG. 8(b). It has a certain transmission characteristic, and has a characteristic of transmitting most of the light except for the reflected component on the back surface side of the substrate. Similarly, the transmission characteristic of the transmission band produced by the single visible and near-ultraviolet antireflection film 53 formed on the visible and near-ultraviolet transparent substrate 50 is flat with little transmission ripple as shown in FIG. It has a constant transmission characteristic, and has a characteristic of transmitting most of the light except for the reflected component on the back side of the substrate. Strictly speaking, the transmittance of the visible and near-ultraviolet antireflection film 53 is higher than that of the near-ultraviolet shielding film 52, as shown in FIGS. Although the value is slightly higher than the transmittance, it has characteristics that can be regarded as substantially the same. By synthesizing the transmission characteristics of these two functional films, which are flat with little transmission ripple and have high transmission, the transmission band of the UV cut filter 58 is obtained as shown in FIG. , the transmittance ripple is small, the film is flat, and the transmittance is higher than that of the near-ultraviolet shielding film 52 and the visible and near-ultraviolet antireflection film 53 . Similarly, in the blocking band of the UV cut filter 58, the transmission characteristics are determined by synthesizing the transmission characteristics produced by the two functional films. Therefore, the transmission characteristics of the UV cut filter 58 as a whole are determined by synthesizing the transmission characteristics produced by the two functional films of the near-ultraviolet shielding film 52 and the visible and near-ultraviolet antireflection film 53 .

また、本実施例のような紙幣識別センサなどに用いられる光学センサの場合、ノイズ成分に大変敏感であり、これらはセンシング精度に大きな影響を与える。従って、本実施例のフィルタのように、UVパスフィルタ57の阻止帯では透過を1%以下、より好ましくは0.1%以下に抑えつつ、透過帯では80%以上、より好ましくは90%以上の透過特性を有することが望ましい。同様に、UVカットフィルタ58も阻止帯では透過を1%以下、より好ましくは0.1%以下に抑えつつ、透過帯では80%以上、より好ましく90%以上の透過特性を有することが望ましい。 In addition, the optical sensor used for the banknote recognition sensor, etc., as in the present embodiment is very sensitive to noise components, which greatly affect the sensing accuracy. Therefore, as in the filter of this embodiment, the transmission is suppressed to 1% or less, more preferably 0.1% or less in the blocking band of the UV pass filter 57, and 80% or more, more preferably 90% or more in the transmission band. It is desirable to have a transmission characteristic of Similarly, it is desirable that the UV cut filter 58 has a transmission characteristic of 80% or more, more preferably 90% or more in the transmission band while suppressing the transmission in the stopband to 1% or less, more preferably 0.1% or less.

本実施例5における近紫外透過膜51、近紫外遮蔽膜52、及び可視近紫外反射防止膜53において、蒸着膜として構成された高屈折率材料であるLaTiやTiOと低屈折率材料であるSiOの他に、高屈折率材料としてはNbやZrO、Taなどが使用でき、低屈折率材用としてはMgFなどが使用可能である。また、設計上や成膜上の理由から中間屈折率材料であるAlなどを一部の層で使用することも可能であり、これらの材料に限らず、NiやW、Mo、Cu、Cr、Fe、Al、Mg、Ti、Si、Nb、Zr、Ta、In、Ag、Auなどの金属化合物でも良く、その時々で最適な材料の組合せを選択すれば良い。 In the near-ultraviolet transmitting film 51, the near-ultraviolet shielding film 52, and the visible and near-ultraviolet antireflection film 53 in the present embodiment 5, La 2 Ti 2 O 7 and TiO 2 , which are high refractive index materials configured as vapor deposition films, are low. In addition to SiO 2 as a refractive index material, Nb 2 O 5 , ZrO 2 , Ta 2 O 5 and the like can be used as high refractive index materials, and MgF 2 and the like can be used as low refractive index materials. In addition, it is also possible to use an intermediate refractive index material such as Al 2 O 3 in some layers for reasons of design and film formation. , Cr, Fe, Al, Mg, Ti, Si, Nb, Zr, Ta, In, Ag, Au, etc., and an optimum combination of materials may be selected depending on the situation.

以上のように作製された、UVパスフィルタ57の分光透過特性は図7(a)で示した設計値と、UVカットフィルタ58の分光透過特性は図8(a)で示した設計値と略同じ特性を得ることができた。これにより、紙幣識別センサなどでは、UVパスフィルタ57の領域を用いることでUV光の出射時にノイズ成分となる可視波長域の透過を遮断し、さらに蛍光を受光する際にノイズ成分となる近紫外波長の透過を遮断することで、センシング精度の向上を図ることができる光学フィルタを得ることができる。 The spectral transmission characteristics of the UV pass filter 57 manufactured as described above are approximately the design values shown in FIG. 7A, and the spectral transmission characteristics of the UV cut filter 58 are approximately the design values shown in FIG. I got the same properties. As a result, in a banknote recognition sensor or the like, the area of the UV pass filter 57 is used to block the transmission of the visible wavelength region, which becomes a noise component when UV light is emitted, and the near-ultraviolet region, which becomes a noise component when fluorescence is received. By blocking transmission of wavelengths, an optical filter capable of improving sensing accuracy can be obtained.

また、近紫外透過膜51と近紫外遮蔽膜52の両方の透過帯において、反射防止効果を発現する可視近紫外反射防止膜53を構成することで、近紫外透過膜51と近紫外遮蔽膜52のそれぞれの機能膜に最適化された2種類の異なる反射防止膜を構成する必要がなくなる為、製造工程を簡易化することができ、光学フィルタの低コスト化を図ることができる。 In addition, the near-ultraviolet transmission film 51 and the near-ultraviolet shielding film 52 are formed by forming the visible and near-ultraviolet antireflection film 53 that exhibits an antireflection effect in the transmission bands of both the near-ultraviolet transmission film 51 and the near-ultraviolet shielding film 52 . Since there is no need to construct two different types of antireflection films optimized for each of the functional films, the manufacturing process can be simplified, and the cost of the optical filter can be reduced.

以上より、UVパスフィルタ57とUVカットフィルタ58の2つの機能を合わせ持つ、高画質化と低コスト化を図ることが可能な光学フィルタ54を得ることができる。 As described above, it is possible to obtain the optical filter 54 having the two functions of the UV pass filter 57 and the UV cut filter 58 and capable of achieving high image quality and low cost.

さらには、本実施例5ではエッジタイプのUVパスフィルタ57とUVカットフィルタ58を作製したが、同様の作成方法により、積層膜の種類や膜厚、層数などを調整することで、バンドパスタイプのUVパスフィルタ57やUVカットフィルタ58を作製することも可能である。 Furthermore, in Example 5, the edge type UV pass filter 57 and UV cut filter 58 were produced. It is also possible to produce a UV pass filter 57 and a UV cut filter 58 of the type.

これにより、ノイズ成分となる可視波長域の透過を遮断し、所定の近紫外波長領域の光を今まで以上に効率良く活用することを可能とした、高精度化を図ることができる光学フィルタを得ることができる。 As a result, we have developed an optical filter that blocks transmission of noise components in the visible wavelength range and makes it possible to use light in the predetermined near-ultraviolet wavelength range more efficiently than ever before. Obtainable.

(実施例6)紙幣識別センサ
本実施例5で作製した光学フィルタを備える紙幣識別センサ用の光学センサに適用した実施例について図10を用いて説明する。
(Example 6) Banknote identification sensor An example in which the optical filter manufactured in Example 5 is applied to an optical sensor for a banknote identification sensor will be described with reference to Fig. 10 .

図10は紙幣の偽造を防止する為の紙幣識別センサの概略構成図であり、60は投光部、61は受光部、62はUVパスフィルタ、63はUVカットフィルタ、64は紙幣などの被測定物、65はUVパスフィルタ62とUVカットフィルタ63が一体的に構成された光学フィルタである。 FIG. 10 is a schematic configuration diagram of a banknote identification sensor for preventing counterfeiting of banknotes. Reference numeral 60 denotes a light projecting unit; 61, a light receiving unit; 62, a UV pass filter; A measurement object 65 is an optical filter in which a UV pass filter 62 and a UV cut filter 63 are integrally constructed.

LEDライトにより構成された投光部60から照射されたUV光が光学フィルタ65の一部であるUVパスフィルタ62を通過することで可視光のノイズ成分がカットされる。その後、被測定物64に印刷された蛍光塗料に入射した光は、蛍光現象により可視波長に波長変換されて再出射し、蛍光成分のみを受光させる為にノイズ成分となるUV光をカットする為のUVカットフィルタ63を介して、受光部61に到達する。 The UV light emitted from the light projecting unit 60 composed of an LED light passes through the UV pass filter 62, which is a part of the optical filter 65, thereby cutting noise components of visible light. After that, the light incident on the fluorescent paint printed on the object to be measured 64 is wavelength-converted into a visible wavelength by the fluorescence phenomenon and emitted again. reaches the light receiving portion 61 via the UV cut filter 63 .

紙幣識別センサなどの光学センサは、測定光出射時、及び受光時のノイズ成分に大変敏感であり、これらはセンシング精度に大きな影響を与える。従って、UVパスフィルタ62の阻止帯では透過を1%以下、望ましくは0.1%以下に抑えつつ、透過帯では80%以上、望ましくは90%以上の透過特性を必要とする。同様に、UVカットフィルタ63も阻止帯では透過を1%以下、望ましくは0.1%以下に抑えつつ、透過帯では80%以上、望ましくは90%以上の透過特性が必要とされる。 An optical sensor such as a bill identification sensor is very sensitive to noise components when measuring light is emitted and received, and these greatly affect sensing accuracy. Therefore, the blocking band of the UV pass filter 62 must have a transmission of 1% or less, preferably 0.1% or less, while the transmission band must have a transmission of 80% or more, preferably 90% or more. Similarly, the UV cut filter 63 is required to have a transmission characteristic of 80% or more, preferably 90% or more in the transmission band while suppressing the transmission to 1% or less, preferably 0.1% or less in the stopband.

以上より、光学フィルタ65として、本実施例5で作製された光学フィルタを用いることで、より高精度化が図られた光学センサを得ることができる。また、本実施例の構成に限らず、他の装置や光学センサに本実施例5の光学フィルタを用いることで、高精度化を図ることができる。 As described above, by using the optical filter manufactured in Example 5 as the optical filter 65, an optical sensor with higher precision can be obtained. Further, by using the optical filter of the present embodiment 5 not only in the configuration of the present embodiment, but also in other devices and optical sensors, high accuracy can be achieved.

10,20.可視近赤外透明基板
11,21,31.近赤外透過膜
12,22,32.近赤外遮蔽膜
13,23,33.可視近赤反射防止膜
14,24,34.光学フィルタ
15a,15b,25a,25b.透過リップル調整層
16a,26a.近赤外反射防止構造
16b,26b.可視反射防止構造
17.IRパスフィルタ
18.IRカットフィルタ
29.ND膜
30.NDIRフィルタ

40.光学フィルタ挿入位置
41.IRパスフィルタ
42.IRカットフィルタ
43.NDIRフィルタ
44.光学フィルタA
45.光学フィルタB
46.光学フィルタC
47.撮像光学系
48.固体撮像素子
49.絞り羽根

50.可視近紫外透明基板
51.近紫外透過膜
52.近紫外遮蔽膜
53.可視近紫外反射防止膜
54.光学フィルタ
55a,55b.透過リップル調整層
56a,56a.近紫外反射防止構造
56b,56b.可視反射防止構造
57.UVパスフィルタ
58.UVカットフィルタ

60.投光部
61.受光部
62.UVパスフィルタ
63.UVカットフィルタ
64.被測定物
65.光学フィルタ

10, 20. Visible and near-infrared transparent substrates 11, 21, 31 . near-infrared transmissive films 12, 22, 32; Near-infrared shielding films 13, 23, 33. Visible and near-red antireflection films 14, 24, 34. Optical filters 15a, 15b, 25a, 25b . Transmission ripple adjustment layers 16a, 26a . Near-infrared antireflection structures 16b, 26b. Visible antireflection structure 17 . IR pass filter 18 . IR cut filter 29 . ND film 30 . NDIR filter

40. Optical filter insertion position 41 . IR pass filter 42 . IR cut filter 43 . NDIR filter 44 . Optical filter A
45. Optical filter B
46. Optical filter C
47. imaging optical system 48 . Solid-state imaging device 49 . Aperture blade

50. Visible and near-ultraviolet transparent substrate 51 . Near-ultraviolet transmission film 52 . Near-ultraviolet shielding film 53 . Visible and near-ultraviolet antireflection film 54 . Optical filters 55a, 55b . Transmission ripple adjustment layers 56a, 56a . Near-ultraviolet antireflection structures 56b, 56b. Visible antireflection structure 57 . UV pass filter 58 . UV cut filter

60. Light projecting section 61 . light receiving portion 62 . UV pass filter 63 . UV cut filter 64 . object to be measured 65 . optical filter

Claims (8)

可視波長から、前記可視波長と波長が連続している近赤外波長領域に亘り光透過性を有する基板の一方の面の直上に、
可視波長の光を遮断し前記近赤外波長領域の光の反射を阻止する近赤外波長透過膜と、
可視波長の光の反射を阻止し前記近赤外波長領域の光を遮断する近赤外波長遮蔽膜と、を有し、
前記基板のもう一方の面上の前記近赤外波長透過膜及び前記近赤外波長遮蔽膜に対向する位置に、可視波長から前記近赤外波長領域に亘り光の反射を阻止し、前記基板上において前記可視波長から前記近赤外波長領域に亘り透過率を90%以上とする単一の可視近赤外波長反射防止膜を有し、
前記近赤外波長透過膜の透過-阻止遷移領域における透過率50%の波長を第1の半値波長とし、
前記近赤外波長遮蔽膜の透過-阻止遷移領域における透過率50%の波長を第2の半値波長とすると、
前記第1の半値波長及び前記第2の半値波長は、前記可視波長から前記近赤外波長領域に含まれることを特徴とする光学フィルタ。
Immediately above one surface of a substrate having light transmission properties from visible wavelengths to the near-infrared wavelength region where the wavelengths are continuous with the visible wavelengths,
a near-infrared wavelength transmitting film that blocks visible wavelength light and blocks reflection of light in the near -infrared wavelength region;
a near-infrared wavelength shielding film that blocks reflection of visible wavelength light and blocks light in the near -infrared wavelength region;
At a position facing the near-infrared wavelength transmissive film and the near-infrared wavelength shielding film on the other surface of the substrate, the substrate prevents reflection of light over the visible wavelength range to the near-infrared wavelength region , A single visible and near -infrared wavelength antireflection film having a transmittance of 90% or more over the visible wavelength to the near-infrared wavelength region on the above ,
A wavelength with a transmittance of 50% in the transmission-blocking transition region of the near-infrared wavelength transmission film is defined as a first half-value wavelength,
Assuming that the wavelength at which the transmittance is 50% in the transmission-blocking transition region of the near-infrared wavelength shielding film is the second half-value wavelength,
The optical filter, wherein the first half-value wavelength and the second half-value wavelength are included in the visible wavelength to the near-infrared wavelength region.
前記基板、及び前記近赤外波長透過膜が形成する前記近赤外波長領域の光透過と、
前記基板、及び前記可視近赤外波長反射防止膜が形成する前記近赤外波長領域の光透過と、
を実質的に同一とすることにより、
前記基板、及び前記近赤外波長透過膜、及び前記可視近赤外波長反射防止膜の総体として可視波長の光を遮断し近赤外波長の光を透過させる光透過特性を有したことを特徴とする、請求項に記載の光学フィルタ。
light transmission in the near-infrared wavelength region formed by the substrate and the near-infrared wavelength- transmitting film;
light transmission in the near- infrared wavelength region formed by the substrate and the visible and near-infrared wavelength antireflection film;
are substantially the same,
The substrate, the near-infrared wavelength transmission film, and the visible/ near-infrared wavelength antireflection film collectively have a light transmission characteristic of blocking visible wavelength light and transmitting near-infrared wavelength light. 2. The optical filter of claim 1 , wherein .
前記基板、及び前記近赤外波長遮蔽膜が形成する可視波長の光透過と、
前記基板、及び前記可視近赤外波長反射防止膜が形成する可視波長の光透過と、を実質的に同一とすることにより、
前記基板、及び前記近赤外波長遮蔽膜、及び前記可視近赤外波長反射防止膜の総体として可視波長の光を透過し近赤外波長領域の光を遮蔽する光透過特性を有したことを特徴とする、請求項1または2に記載の光学フィルタ。
light transmission of visible wavelengths formed by the substrate and the near-infrared wavelength shielding film;
By making the light transmission of visible wavelengths formed by the substrate and the visible and near-infrared wavelength antireflection film substantially the same,
The substrate, the near-infrared wavelength shielding film, and the visible/ near-infrared wavelength antireflection film as a whole have a light transmission characteristic of transmitting light in the visible wavelength region and blocking light in the near-infrared wavelength region. 3. Optical filter according to claim 1 or 2 , characterized in that.
前記基板上に形成された前記近赤外波長遮蔽膜が形成された領域と重なる少なくても一部の領域に、可視波長を含む波長領域の光の透過を減衰するND膜が形成されていることを特徴とする、請求項1~のいずれか一項に記載の光学フィルタ。 An ND film that attenuates transmission of light in a wavelength region including visible wavelengths is formed on at least a part of the region that overlaps the region where the near-infrared wavelength shielding film is formed on the substrate. The optical filter according to any one of claims 1 to 3 , characterized by: 請求項1~のいずれか一項に記載の光学フィルタを備えたことを特徴とする、光学センサ、または撮像装置。 An optical sensor or imaging device comprising the optical filter according to any one of claims 1 to 4 . 前記近赤外波長透過膜を含む領域と、前記近赤外波長遮蔽膜を含む領域の一方を、撮影状況に応じて選択的に光路上に配置するように駆動することを特徴とする、請求項に記載の光学センサ、または撮像装置。 One of the region including the near-infrared wavelength transmitting film and the region including the near-infrared wavelength shielding film is driven so as to be selectively placed on the optical path according to the photographing situation. Item 6. The optical sensor or imaging device according to item 5 . 前記光学フィルタは、前記基板上に形成された前記近赤外波長遮蔽膜が形成された領域と重なる少なくても一部の領域に、可視波長を含む波長領域の光の透過を減衰するND膜が形成されており、前記ND膜を含む領域と、前記近赤外波長透過膜を含む領域の一方を、撮影状況に応じて選択的に光路上に配置するように駆動することを特徴とする、請求項に記載の光学センサ、または撮像装置。 The optical filter includes an ND film that attenuates transmission of light in a wavelength region including visible wavelengths in at least a part of a region that overlaps a region where the near-infrared wavelength shielding film is formed on the substrate. is formed, and one of the region including the ND film and the region including the near-infrared wavelength transmitting film is driven so as to be selectively arranged on the optical path according to the photographing situation. 6. An optical sensor or imaging device according to claim 5 . 前記光学フィルタは、前記基板上に形成された前記近赤外波長遮蔽膜が形成された領域と重なる少なくても一部の領域に、可視波長を含む波長領域の光の透過を減衰するND膜が形成されており、前記近赤外波長透過膜を含む領域と、前記近赤外波長遮蔽膜を含む領域と、前記ND膜を含む領域の何れか1つの領域を、撮影状況に応じて選択的に光路上に配置するように駆動することを特徴とする、請求項に記載の光学センサ、または撮像装置。 The optical filter includes an ND film that attenuates transmission of light in a wavelength region including visible wavelengths in at least a part of a region that overlaps a region where the near-infrared wavelength shielding film is formed on the substrate. is formed, and any one of a region including the near-infrared wavelength transmitting film, a region including the near-infrared wavelength shielding film, and a region including the ND film is selected according to the imaging situation. 6. The optical sensor or imaging device according to claim 5 , wherein the optical sensor or imaging device is driven so as to be arranged on the optical path.
JP2018186594A 2018-10-01 2018-10-01 Optical filters, imaging devices, optical sensors Active JP7261556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018186594A JP7261556B2 (en) 2018-10-01 2018-10-01 Optical filters, imaging devices, optical sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186594A JP7261556B2 (en) 2018-10-01 2018-10-01 Optical filters, imaging devices, optical sensors

Publications (2)

Publication Number Publication Date
JP2020056876A JP2020056876A (en) 2020-04-09
JP7261556B2 true JP7261556B2 (en) 2023-04-20

Family

ID=70107130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186594A Active JP7261556B2 (en) 2018-10-01 2018-10-01 Optical filters, imaging devices, optical sensors

Country Status (1)

Country Link
JP (1) JP7261556B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230250228A1 (en) 2020-03-26 2023-08-10 Toyobo Co., Ltd. Polyester resin and method for producing blow-molded product made of polyester resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042845A (en) 2001-07-30 2003-02-13 Sony Corp Optical device
JP2012037610A (en) 2010-08-04 2012-02-23 Tanaka Engineering Inc Nd filter with ir cut-off function
JP2012159658A (en) 2011-01-31 2012-08-23 Daishinku Corp Optical filter module, and optical filter system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154104A (en) * 1987-12-11 1989-06-16 Fuji Photo Film Co Ltd Composite interference filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042845A (en) 2001-07-30 2003-02-13 Sony Corp Optical device
JP2012037610A (en) 2010-08-04 2012-02-23 Tanaka Engineering Inc Nd filter with ir cut-off function
JP2012159658A (en) 2011-01-31 2012-08-23 Daishinku Corp Optical filter module, and optical filter system

Also Published As

Publication number Publication date
JP2020056876A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP6241419B2 (en) Near-infrared cut filter
TWI575261B (en) Optical filter
JP6003895B2 (en) Near-infrared cut filter
KR101374755B1 (en) Infrared blocking filter
JP6119747B2 (en) Near-infrared cut filter
US20070127126A1 (en) Dielectric multilayer filter
EP1879058A2 (en) Dielectric Multilayer Filter
TWI589935B (en) Optical component
JP5973747B2 (en) Near-infrared cut filter
JP2004354735A (en) Light ray cut filter
CN109975905B (en) Near infrared cut-off filter
JP6383980B2 (en) Near-infrared cut filter
JP2015227963A (en) Optical filter and manufacturing method therefor
JP7261556B2 (en) Optical filters, imaging devices, optical sensors
JP4914955B2 (en) ND filter with IR cut function
JP2013083885A (en) Nd filter
JP5287362B2 (en) Optical filter and imaging system
JP4981456B2 (en) ND filter
JP2004258494A (en) Nd filter
JP2020056875A (en) Optical filter, imaging apparatus, and optical sensor
JP2020056873A (en) Optical filter and imaging apparatus
US20240125989A1 (en) Optical filter
US20240125988A1 (en) Optical filter
JP2020056877A (en) Optical filter and optical device
JP7326738B2 (en) Near-infrared cut filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230221

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R150 Certificate of patent or registration of utility model

Ref document number: 7261556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150