JP5973747B2 - Near-infrared cut filter - Google Patents

Near-infrared cut filter Download PDF

Info

Publication number
JP5973747B2
JP5973747B2 JP2012041392A JP2012041392A JP5973747B2 JP 5973747 B2 JP5973747 B2 JP 5973747B2 JP 2012041392 A JP2012041392 A JP 2012041392A JP 2012041392 A JP2012041392 A JP 2012041392A JP 5973747 B2 JP5973747 B2 JP 5973747B2
Authority
JP
Japan
Prior art keywords
refractive index
light side
wavelength
infrared
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012041392A
Other languages
Japanese (ja)
Other versions
JP2013178338A (en
Inventor
満幸 舘村
満幸 舘村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Coatings Japan
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Optical Coatings Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Optical Coatings Japan filed Critical Asahi Glass Co Ltd
Priority to JP2012041392A priority Critical patent/JP5973747B2/en
Publication of JP2013178338A publication Critical patent/JP2013178338A/en
Application granted granted Critical
Publication of JP5973747B2 publication Critical patent/JP5973747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、CCD、CMOS等の固体撮像素子を備える固体撮像装置に用いられる視感度補正のための近赤外線カットフィルターに関する。   The present invention relates to a near-infrared cut filter for correcting visibility used in a solid-state imaging device including a solid-state imaging device such as a CCD or a CMOS.

デジタルカメラやビデオカメラ等に利用されるCCDやCMOS等の固体撮像素子の分光感度は人間の視感度特性に比べて近赤外域に強い感度を有することから、近赤外線カットフィルターによる分光補正が必要となる。従来、近赤外線カットフィルターとして、Cu2+イオンを着色成分として含有するフツリン酸塩系ガラス等の近赤外線吸収タイプの色ガラスフィルターが用いられている。しかし、このようなものは、比較的高価であるとともに、吸収による分光特性を維持する必要から必ずしも薄型化が容易でない。 The spectral sensitivity of CCDs, CMOSs, and other solid-state image sensors used in digital cameras and video cameras has a higher sensitivity in the near infrared region than human visual characteristics, so spectral correction using a near infrared cut filter is required. It becomes. Conventionally, as a near-infrared cut filter, a near-infrared absorption type color glass filter such as a fluorophosphate glass containing Cu 2+ ions as a coloring component has been used. However, such a device is relatively expensive and is not always easy to reduce in thickness because it is necessary to maintain spectral characteristics due to absorption.

このため珪酸塩系ガラス等に近赤外線カット特性を有する光学多層膜を積層した干渉タイプの近赤外線カットフィルターも広く利用されている。干渉タイプの近赤外線カットフィルターは、干渉作用を利用して必要な分光特性を得ることから、安価かつ取り扱いが容易な珪酸塩系ガラス等を使用でき、薄型化が容易であり、かつ吸収タイプに比べて可視光透過率を高くできるなど多くの利点を有するが、干渉作用を利用するために以下のような問題を有する。   For this reason, an interference type near-infrared cut filter in which an optical multilayer film having near-infrared cut characteristics is laminated on silicate glass or the like is also widely used. The interference type near-infrared cut filter uses the interference action to obtain the necessary spectral characteristics, so it is possible to use low-cost and easy-to-handle silicate glass, etc. Although it has many advantages, such as a higher visible light transmittance, it has the following problems in order to use the interference action.

一般的に、干渉タイプの近赤外線カットフィルターは、分光特性における可視光を透過させる透過帯から紫外光及び赤外光を阻止する阻止帯にかけての透過率変化が急峻であり、人間の視感度特性とは大きく異なった分光特性が得られる。また、光の入射角度依存性が強く、入射角度が大きくなったときに分光波形が長波長側から短波長側に向かって移動することから、画像の色味変化が問題になる。それぞれの問題を解決する技術は知られており、人間の視感度特性に近くなるように透過率変化をなだらかにする技術(例えば、特許文献1〜3参照)、入射角度依存性を低減する技術(例えば、特許文献4〜6参照)が知られている。   In general, interference-type near-infrared cut filters have a sharp change in transmittance from the transmission band that transmits visible light to the blocking band that blocks ultraviolet light and infrared light in the spectral characteristics, and human visibility characteristics. A spectral characteristic that is greatly different from that of the first embodiment can be obtained. In addition, since the dependence on the incident angle of light is strong and the spectral waveform moves from the long wavelength side toward the short wavelength side when the incident angle becomes large, a change in color of the image becomes a problem. A technique for solving each problem is known, a technique for smoothing the transmittance change so as to be close to human visibility characteristics (for example, refer to Patent Documents 1 to 3), and a technique for reducing the incident angle dependency. (For example, see Patent Documents 4 to 6).

基本的に、透過率変化をなだらかにするには、光学多層膜の層数を少なくすることが好ましいが、入射角度依存性を抑制するためには、光学多層膜の層数を多くすることが設計の調整幅が大きくなるために好ましい。しかし、上記特許文献3にも記載されるように、層数を多くした状態で透過率変化をなだらかにすることは容易でなく、膜構成に種々の限定が必要となる。つまり、干渉タイプの近赤外線カットフィルターについては、吸収タイプの色ガラスフィルターのように、透過率変化をなだらかとしつつ、入射角度依存性を抑制することは難しく、少なくとも本発明者が調べた範囲内においては有効な手法は提案されていない。   Basically, it is preferable to reduce the number of layers of the optical multilayer film in order to smooth the transmittance change, but in order to suppress the incident angle dependency, it is necessary to increase the number of layers of the optical multilayer film. This is preferable because the adjustment width of the design becomes large. However, as described in Patent Document 3 described above, it is not easy to gently change the transmittance with an increased number of layers, and various restrictions are required on the film configuration. In other words, it is difficult for the interference type near-infrared cut filter, like the absorption type colored glass filter, to suppress the incident angle dependency while smoothing the transmittance change, at least within the range investigated by the present inventors. No effective method has been proposed.

一方、膜の吸収を利用することで透過率変化をなだらかにし、かつ入射角度依存性を抑制することが提案されている(例えば、特許文献7参照)。しかし、銀膜の吸収を利用するために透過率の低下が避けられず、かつ反応性が比較的高い銀を用いることから、高温高湿環境下における耐候性の低下等が予想される。   On the other hand, it has been proposed to use the absorption of the film to smooth the transmittance change and suppress the incident angle dependency (see, for example, Patent Document 7). However, a decrease in transmittance is unavoidable due to the use of absorption of the silver film, and silver having a relatively high reactivity is used. Therefore, a decrease in weather resistance under a high temperature and high humidity environment is expected.

特開2003−29027号公報JP 2003-29027 A 特開2004−163869号公報JP 2004-163869 A 特許3679268号公報Japanese Patent No. 3679268 特開平7−27907号公報JP-A-7-27907 特開2004−163741号公報JP 2004-163741 A 特開2008−20563号公報JP 2008-20563 A 特許4404568号公報Japanese Patent No. 4404568

本発明は上記状況を鑑みてなされたものであり、干渉作用を利用するものであって、赤外光側の透過率変化がなだらかであるとともに、入射角度依存性が抑制され、吸収タイプの色ガラスフィルターに近い分光特性を有する近赤外線カットフィルターの提供を目的とする。   The present invention has been made in view of the above-described situation, and uses an interference action. The transmittance change on the infrared light side is gentle, the incident angle dependency is suppressed, and the absorption type color is reduced. The object is to provide a near-infrared cut filter having spectral characteristics close to those of a glass filter.

本発明の近赤外線カットフィルターは、透明基板と、前記透明基板の少なくとも一方の主面に設けられ、屈折率が2.0以上の高屈折率膜および屈折率が1.7以下の低屈折率膜を有する光学多層膜とを備える。
前記光学多層膜は、前記透明基板の一方の主面に設けられ、透過帯の形状を主として規定する透過帯規定部と、前記透明基板の他方の主面に設けられ、近赤外光側阻止帯および紫外光側阻止帯の形状を主として規定する阻止帯規定部とを有する。
前記透過帯規定部は、基本部と、前記基本部の少なくとも一方の主面に設けられる調整部とを有する。
前記基本部は、屈折率が2.0以上の基本部用高屈折率膜と屈折率が1.7以下の基本部用低屈折率膜との交互積層構造を有し、前記基本部用高屈折率膜と前記基本部用低屈折率膜との合計層数が10層以上、前記基本部用高屈折率膜の平均光学膜厚をTH1、前記基本部用低屈折率膜の平均光学膜厚をTL1としたとき、TH1/TL1が2以上である。
前記調整部は、前記基本部の一方の主面または両主面に設けられ、屈折率が2.0以上の調整部用高屈折率膜と屈折率が1.7以下の調整部用低屈折率膜との交互積層構造を有し、前記調整部用高屈折率膜と前記調整部用低屈折率膜との合計層数が10層以上、前記調整部用高屈折率膜の平均光学膜厚をTH2、前記調整部用低屈折率膜の平均光学膜厚をTL2としたとき、TH2/TL2が1.5以下である。
また、本発明の近赤外線カットフィルターは、以下の分光特性を有する。すなわち、垂直入射条件において、400〜700nmの波長範囲の少なくとも一部に最大透過率が85%以上となる透過帯、750〜1000nmの波長範囲の少なくとも一部に最小透過率が1%以下となる近赤外光側阻止帯、および350〜400nmの波長範囲の少なくとも一部に最小透過率が1%以下となる紫外光側阻止帯を有する。また、垂直入射条件において、透過帯の紫外光側半値波長と近赤外光側半値波長との差が200nm以上、透過帯と近赤外光側阻止帯との間における透過率が80%となるときの波長と透過率が40%となるときの波長との絶対値での差が20〜100nmである。さらに、垂直入射条件と30度入射条件との比較において、透過帯と近赤外光側阻止帯との間における透過率が20〜80%となる部分の絶対値での平均波長シフト量が14nm以下である。
The near-infrared cut filter of the present invention is provided on a transparent substrate and at least one main surface of the transparent substrate, and has a high refractive index film having a refractive index of 2.0 or more and a low refractive index having a refractive index of 1.7 or less. And an optical multilayer film having a film.
The optical multilayer film is provided on one main surface of the transparent substrate, and the transmission band defining portion for mainly defining the shape of transparently strip, provided on the other main surface of the transparent substrate, a near-infrared light side mainly and a stopband defining portion for defining a zone of inhibition and ultraviolet light side blocking band shape.
The transmission band defining portion includes a basic portion and an adjustment portion provided on at least one main surface of the basic portion.
The basic part has an alternate laminated structure of a high refractive index film for a basic part having a refractive index of 2.0 or more and a low refractive index film for a basic part having a refractive index of 1.7 or less. The total number of layers of the refractive index film and the basic portion low refractive index film is 10 or more, the average optical film thickness of the basic portion high refractive index film is T H1 , and the average optical thickness of the basic portion low refractive index film is When the film thickness is T L1 , T H1 / T L1 is 2 or more.
The adjusting portion is provided on one main surface or both main surfaces of the basic portion, and the adjusting portion high refractive index film having a refractive index of 2.0 or more and the adjusting portion low refraction having a refractive index of 1.7 or less. An average optical film of the high refractive index film for the adjustment part, the total number of layers of the high refractive index film for the adjustment part and the low refractive index film for the adjustment part being 10 or more. When the thickness is T H2 and the average optical film thickness of the low refractive index film for adjusting part is T L2 , T H2 / T L2 is 1.5 or less.
Moreover, the near-infrared cut filter of the present invention has the following spectral characteristics. That is, under normal incidence conditions, a transmission band having a maximum transmittance of 85% or more in at least a part of the wavelength range of 400 to 700 nm, and a minimum transmittance of 1% or less in at least a part of the wavelength range of 750 to 1000 nm. It has a near infrared light side stop band and an ultraviolet light side stop band where the minimum transmittance is 1% or less in at least part of the wavelength range of 350 to 400 nm. Further, under normal incidence conditions, the difference between the half-value wavelength of the ultraviolet light side and the near-infrared light side half-value wavelength of the transmission band is 200 nm or more, and the transmittance between the transmission band and the near-infrared light side stop band is 80%. The difference in absolute value between the wavelength at the time and the wavelength at which the transmittance is 40% is 20 to 100 nm. Further, in the comparison between the normal incidence condition and the 30 degree incidence condition, the average wavelength shift amount at the absolute value of the portion where the transmittance is 20 to 80% between the transmission band and the near infrared light side stop band is 14 nm. It is as follows.

本発明によれば、干渉作用を利用するものであって、赤外光側の透過率変化がなだらかであるとともに、入射角度依存性が抑制され、吸収タイプの色ガラスフィルターに近い分光特性を有する近赤外線カットフィルターを提供できる。   According to the present invention, the interference action is utilized, the transmittance change on the infrared light side is gentle, the incident angle dependency is suppressed, and the spectral characteristics are close to those of an absorption type colored glass filter. A near-infrared cut filter can be provided.

本発明の近赤外線カットフィルターの一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the near-infrared cut off filter of this invention. 近赤外線カットフィルターが適用される撮像装置の一例を示す断面図。Sectional drawing which shows an example of the imaging device to which a near-infrared cut filter is applied. 例1の近赤外線カットフィルターの分光特性を示す図。The figure which shows the spectral characteristics of the near-infrared cut off filter of Example 1. 例1の近赤外線カットフィルターにおける基本部の分光特性を示す図。FIG. 6 is a diagram showing the spectral characteristics of the basic part in the near-infrared cut filter of Example 1. 例1の近赤外線カットフィルターにおける調整部の分光特性を示す図。FIG. 6 is a diagram illustrating spectral characteristics of an adjustment unit in the near-infrared cut filter of Example 1. 例2の近赤外線カットフィルターの分光特性を示す図。The figure which shows the spectral characteristics of the near-infrared cut off filter of Example 2. 例2の近赤外線カットフィルターにおける基本部の分光特性を示す図。FIG. 6 is a diagram showing spectral characteristics of a basic part in the near-infrared cut filter of Example 2. 例2の近赤外線カットフィルターにおける調整部の分光特性を示す図。FIG. 10 is a diagram illustrating spectral characteristics of an adjustment unit in the near-infrared cut filter of Example 2. 例3の近赤外線カットフィルターの分光特性を示す図。FIG. 6 is a diagram showing spectral characteristics of the near-infrared cut filter of Example 3. 例3の近赤外線カットフィルターにおける基本部の分光特性を示す図。FIG. 10 is a diagram showing the spectral characteristics of the basic part in the near-infrared cut filter of Example 3. 例3の近赤外線カットフィルターにおける調整部の分光特性を示す図。FIG. 10 is a diagram illustrating spectral characteristics of an adjustment unit in the near-infrared cut filter of Example 3. 例4の近赤外線カットフィルターの分光特性を示す図。FIG. 10 is a diagram showing the spectral characteristics of the near-infrared cut filter of Example 4. 例4の近赤外線カットフィルターにおける基本部の分光特性を示す図。FIG. 10 is a diagram showing spectral characteristics of a basic part in the near-infrared cut filter of Example 4. 例4の近赤外線カットフィルターにおける調整部(1)の分光特性を示す図。The figure which shows the spectral characteristics of the adjustment part (1) in the near-infrared cut off filter of Example 4. 例4の近赤外線カットフィルターにおける調整部(2)の分光特性を示す図。FIG. 10 is a diagram illustrating spectral characteristics of an adjustment unit (2) in the near-infrared cut filter of Example 4. 例5の近赤外線カットフィルターの分光特性を示す図。FIG. 10 is a diagram showing the spectral characteristics of the near-infrared cut filter of Example 5. 例5の近赤外線カットフィルターにおける基本部の分光特性を示す図。FIG. 10 is a diagram showing the spectral characteristics of the basic part in the near-infrared cut filter of Example 5. 例5の近赤外線カットフィルターにおける調整部の分光特性を示す図。FIG. 10 is a diagram illustrating spectral characteristics of an adjustment unit in the near-infrared cut filter of Example 5. 例6の近赤外線カットフィルターの分光特性を示す図。The figure which shows the spectral characteristics of the near-infrared cut off filter of Example 6. 例6の近赤外線カットフィルターにおける阻止帯規定部の分光特性を示す図。The figure which shows the spectral characteristic of the stop band prescription | regulation part in the near-infrared cut off filter of Example 6. 例6、9の近赤外線カットフィルターの分光特性をまとめて示す図。The figure which shows collectively the spectral characteristics of the near-infrared cut off filters of Examples 6 and 9. 例7の近赤外線カットフィルターの分光特性を示す図。The figure which shows the spectral characteristics of the near-infrared cut off filter of Example 7. 例7の近赤外線カットフィルターにおける基本部の分光特性を示す図。The figure which shows the spectral characteristic of the fundamental part in the near-infrared cut off filter of Example 7. 例7の近赤外線カットフィルターにおける調整部の分光特性を示す図。FIG. 10 is a diagram illustrating spectral characteristics of an adjustment unit in the near-infrared cut filter of Example 7. 例8の近赤外線カットフィルターの分光特性を示す図。FIG. 10 is a diagram showing the spectral characteristics of the near-infrared cut filter of Example 8. 例9の近赤外線カットフィルターの分光特性を示す図。FIG. 10 is a diagram showing the spectral characteristics of the near-infrared cut filter of Example 9.

以下、本発明の近赤外線カットフィルターの実施形態について説明する。
近赤外線カットフィルターは、例えば、透明基板と、この透明基板の少なくとも一方の主面に設けられる光学多層膜とを有する。光学多層膜は、屈折率が2.0以上の高屈折率膜と屈折率が1.7以下の低屈折率膜とを有する。通常、これら高屈折率膜と低屈折率膜とは、交互に積層されて交互積層構造を形成する。なお、本発明における屈折率は、特に断らない限り、波長500nmの光に対する屈折率を意味する。
Hereinafter, embodiments of the near-infrared cut filter of the present invention will be described.
The near-infrared cut filter has, for example, a transparent substrate and an optical multilayer film provided on at least one main surface of the transparent substrate. The optical multilayer film has a high refractive index film having a refractive index of 2.0 or more and a low refractive index film having a refractive index of 1.7 or less. Usually, these high refractive index films and low refractive index films are alternately stacked to form an alternately stacked structure. In addition, the refractive index in this invention means the refractive index with respect to the light of wavelength 500nm unless there is particular notice.

本発明の近赤外線カットフィルターは、以下のような分光特性を有する。すなわち、垂直入射条件において、400〜700nmの波長範囲の少なくとも一部に最大透過率が85%以上となる透過帯、750〜1000nmの波長範囲の少なくとも一部に最小透過率が1%以下となる近赤外光側阻止帯、および350〜400nmの波長範囲の少なくとも一部に最小透過率が1%以下となる紫外光側阻止帯を有する。   The near infrared cut filter of the present invention has the following spectral characteristics. That is, under normal incidence conditions, a transmission band having a maximum transmittance of 85% or more in at least a part of the wavelength range of 400 to 700 nm, and a minimum transmittance of 1% or less in at least a part of the wavelength range of 750 to 1000 nm. It has a near infrared light side stop band and an ultraviolet light side stop band where the minimum transmittance is 1% or less in at least part of the wavelength range of 350 to 400 nm.

ここで、透過帯の範囲は、透過帯から紫外光側の阻止帯に向かって透過率の低下が開始するときの波長(紫外光側の基点)から、透過帯から近赤外光側の阻止帯に向かって透過率の低下が開始するときの波長(近赤外光側の基点)までとする。   Here, the range of the transmission band is from the wavelength (base point on the ultraviolet light side) when the transmittance starts to decrease from the transmission band toward the ultraviolet light blocking band, and from the transmission band to the near infrared light blocking side. Up to the wavelength (base point on the near-infrared light side) when the transmittance starts to decrease toward the band.

また、紫外光側阻止帯の範囲は、紫外光側阻止帯から透過帯に向かって透過率の上昇が開始するときの波長(透過帯側の基点)から、その紫外光側に向かって透過率が最初に40%に達するときの上昇が開始するときの波長(紫外光側の基点)までとする。近赤外光側阻止帯の範囲は、近赤外光側阻止帯から透過帯に向かって透過率の上昇が開始するときの波長(透過帯側の基点)から、その近赤外光側に向かって透過率が最初に40%に達するときの上昇が開始するときの波長(近赤外光側の基点)までとする。   Moreover, the range of the ultraviolet light side stop band is the transmittance from the wavelength (base point on the transmission band side) when the transmittance starts increasing from the ultraviolet light side stop band toward the transmission band toward the ultraviolet light side. Up to the wavelength (base point on the ultraviolet light side) when the rise starts when it first reaches 40%. The range of the near-infrared light side stopband is from the wavelength (base point on the transmission band side) when the transmittance starts from the near-infrared light side stopband toward the transmission band, to the near-infrared light side. Up to the wavelength (base point on the near-infrared light side) when the rise starts when the transmittance first reaches 40%.

なお、以下では、特に断らない限り、透過帯、近赤外光側阻止帯、紫外光側阻止帯とは、近赤外線カットフィルターの全体により形成される透過帯、近赤外光側阻止帯、紫外光側阻止帯を意味する。   In the following, unless otherwise specified, the transmission band, the near infrared light side stop band, the ultraviolet light side stop band is a transmission band formed by the entire near infrared cut filter, a near infrared light side stop band, Means the ultraviolet light side stopband.

また、垂直入射条件において、透過帯の紫外光側半値波長と近赤外光側半値波長との差が200nm以上、透過帯と近赤外光側阻止帯との間における透過率が80%となるときの波長と透過率が40%となるときの波長との絶対値での差が20〜100nmである。   Further, under normal incidence conditions, the difference between the half-value wavelength of the ultraviolet light side and the near-infrared light side half-value wavelength of the transmission band is 200 nm or more, and the transmittance between the transmission band and the near-infrared light side stop band is 80%. The difference in absolute value between the wavelength at the time and the wavelength at which the transmittance is 40% is 20 to 100 nm.

なお、半値波長とは、透過率が50%となるときの波長を意味し、紫外光側半値波長とは透過帯の紫外光側近傍における半値波長、近赤外光側半値波長とは、透過帯の近赤外光側近傍における半値波長を意味する。以下では、特に断らない限り、紫外光側半値波長、近赤外光側半値波長は、いずれも垂直入射条件におけるものとする。   The half-value wavelength means the wavelength when the transmittance is 50%. The ultraviolet light side half-value wavelength means the half-value wavelength near the ultraviolet light side of the transmission band, and the near-infrared light side half-value wavelength means the transmission. This means the half-value wavelength near the near infrared light side of the band. In the following description, unless otherwise specified, the ultraviolet light side half-value wavelength and the near-infrared light side half-value wavelength are both assumed to be in a perpendicular incidence condition.

また、以下では、近赤外線カットフィルターでの分光特性は勿論のこと、各部単独での分光特性においても、垂直入射条件における透過帯の紫外光側半値波長と近赤外光側半値波長との差を「半値波長差」、垂直入射条件における透過帯と近赤外光側阻止帯との間における透過率が80%となるときの波長と透過率が40%となるときの波長との絶対値での差を「近赤外光側40〜80%波長差」、垂直入射条件における透過帯と紫外光側阻止帯との間における透過率が80%となるときの波長と透過率が40%となるときの波長との絶対値での差を「紫外光側40〜80%波長差」と記す。   In addition, in the following, not only the spectral characteristics of the near-infrared cut filter but also the spectral characteristics of each part alone, the difference between the ultraviolet half-wave wavelength and near-infrared half-wave wavelength in the transmission band under normal incidence conditions. Is the absolute value of the wavelength when the transmittance is 80% and the wavelength when the transmittance is 40% between the transmission band and the near-infrared light side stop band under normal incidence conditions. The difference in is “near infrared light side 40-80% wavelength difference”, the wavelength and transmittance is 40% when the transmittance between the transmission band and the ultraviolet light side stop band in the normal incidence condition is 80%. The difference in absolute value with respect to the wavelength when it becomes is described as “40 to 80% wavelength difference on the ultraviolet light side”.

さらに、垂直入射条件と30度入射条件との比較において、透過帯と近赤外光側阻止帯との間における透過率が20〜80%となる部分の絶対値での平均波長シフト量が14nm以下である。ここで、平均波長シフト量とは、垂直入射条件と30度入射条件のそれぞれにおける透過率が20〜80%における波長を透過率1%刻みで算出する。ついで、単位透過率(1%)ごとの垂直入射条件と30度入射条件との波長の差を算出する。そしてこれらを用いて、透過率が20〜80%における単位透過率における波長の差を算出することにより求められる。   Further, in the comparison between the normal incidence condition and the 30 degree incidence condition, the average wavelength shift amount at the absolute value of the portion where the transmittance is 20 to 80% between the transmission band and the near infrared light side stop band is 14 nm. It is as follows. Here, the average wavelength shift amount is calculated in steps of 1% transmittance when the transmittance is 20 to 80% in each of the normal incidence condition and the 30 degree incidence condition. Next, the difference in wavelength between the normal incidence condition and the 30 degree incidence condition for each unit transmittance (1%) is calculated. And using these, it calculates | requires by calculating the difference of the wavelength in the unit transmittance | permeability in 20-80% of the transmittance | permeability.

なお、以下では、近赤外線カットフィルターでの分光特性は勿論のこと、各部単独での分光特性においても、垂直入射条件と30度入射条件との比較における透過帯と近赤外光側阻止帯との間における透過率が20〜80%となる部分の絶対値での平均波長シフト量を「近赤外光側平均シフト量」、垂直入射条件と30度入射条件との比較における透過帯と紫側阻止帯との間における透過率が20〜80%となる部分の絶対値での平均波長シフト量を「紫外光側平均シフト量」と記す。   In the following, not only the spectral characteristics of the near-infrared cut filter, but also the spectral characteristics of each part alone, the transmission band and the near-infrared light side stop band in the comparison between the normal incidence condition and the 30-degree incidence condition The average wavelength shift amount in the absolute value of the portion where the transmittance between 20 and 80% is “near infrared light side average shift amount”, and the transmission band and purple in the comparison between the normal incidence condition and the 30 degree incidence condition The average wavelength shift amount at the absolute value of the portion where the transmittance between the side stop band and 20 to 80% is described as “ultraviolet light side average shift amount”.

このような近赤外線カットフィルターによれば、近赤外光側40〜80%波長差が20〜100nmであることから、透過率変化がなだらかな分光波形が得られる。また、この近赤外線カットフィルターによれば、近赤外光側平均シフト量が14nm以下であることから、入射角度依存性が抑制される。従って、このような近赤外線カットフィルターによれば、吸収タイプの色ガラスフィルターに近い分光特性を得ることができる。   According to such a near-infrared cut filter, since the wavelength difference of 40 to 80% on the near-infrared light side is 20 to 100 nm, a spectral waveform with a gentle change in transmittance can be obtained. Moreover, according to this near-infrared cut filter, since the near-infrared light side average shift amount is 14 nm or less, the incident angle dependency is suppressed. Therefore, according to such a near-infrared cut filter, a spectral characteristic close to that of an absorption type colored glass filter can be obtained.

近赤外光側40〜80%波長差は、より好ましくは30〜100nm、より好ましくは35〜100nmである。また、近赤外光側平均シフト量は12nm以下が好ましい。このような近赤外光側平均シフト量とすることで、さらに吸収タイプの色ガラスフィルターに近い分光特性を得ることができる。また、紫外光側平均シフト量は、10nm以下が好ましく、7nm以下がより好ましい。このような紫外光側平均シフト量とすることで、さらに吸収タイプの色ガラスフィルターに近い分光特性を得ることができる。また、半値波長差は200nm以上であれば必ずしも制限されないが、350nm以下が好ましい。   The near infrared light side wavelength difference of 40 to 80% is more preferably 30 to 100 nm, and more preferably 35 to 100 nm. Moreover, the near infrared light side average shift amount is preferably 12 nm or less. By setting such an average shift amount on the near infrared light side, it is possible to obtain spectral characteristics closer to those of an absorption type colored glass filter. Further, the ultraviolet light side average shift amount is preferably 10 nm or less, more preferably 7 nm or less. By setting such an ultraviolet light side average shift amount, it is possible to obtain spectral characteristics closer to those of an absorption type colored glass filter. The half-value wavelength difference is not necessarily limited as long as it is 200 nm or more, but 350 nm or less is preferable.

近赤外線カットフィルターは、さらに垂直入射条件での近赤外光側半値波長が600〜750nmの範囲内にあることが好ましく、同条件での紫外光側半値波長が380〜430nmの範囲内にあることが好ましい。   The near-infrared cut filter preferably further has a near-infrared light half-value wavelength in the range of 600 to 750 nm under normal incidence conditions, and an ultraviolet light-side half-value wavelength in the range of 380 to 430 nm under the same conditions. It is preferable.

このような分光特性を有する近赤外線カットフィルターは、例えば、以下のような構成とすることにより得られる。図1は、近赤外線カットフィルターの一実施形態を示す模式的断面図である。   A near-infrared cut filter having such spectral characteristics can be obtained, for example, by adopting the following configuration. FIG. 1 is a schematic cross-sectional view showing an embodiment of a near-infrared cut filter.

近赤外線カットフィルター1は、例えば、透明基板2と、この透明基板2の両主面に設けられる光学多層膜3とを有する。光学多層膜3は、例えば、透明基板2の一方の主面に設けられ、透過帯の形状を主として規定する透過帯規定部31と、透明基板2の他方の主面に設けられ、近赤外光側阻止帯および紫外光側阻止帯の形状を主として規定する阻止帯規定部32とを有する。なお、近赤外線カットフィルター1は、図示するように透過帯規定部31および阻止帯規定部32の両者を有することが好ましいが、所定の分光特性が得られる場合には、透過帯規定部31のみを有するものでもよい。   The near-infrared cut filter 1 includes, for example, a transparent substrate 2 and an optical multilayer film 3 provided on both main surfaces of the transparent substrate 2. The optical multilayer film 3 is provided, for example, on one main surface of the transparent substrate 2, and is provided on the other main surface of the transparent substrate 2 and the transmission band defining portion 31 that mainly defines the shape of the transmission band. And a stop band defining portion 32 that mainly defines the shapes of the light side stop band and the ultraviolet light side stop band. The near-infrared cut filter 1 preferably has both a transmission band defining part 31 and a stop band defining part 32 as shown in the figure. However, when a predetermined spectral characteristic is obtained, only the transmission band defining part 31 is provided. It may have.

透過帯規定部31は、例えば、透過帯の形状を主として規定する基本部311と、この基本部311の少なくとも一方の主面に設けられ、基本部311が形成する透過帯の主として近赤外光側の近傍部分の形状をなめらかにするとともに、基本部311が形成する透過帯の波長シフトをさらに抑制する調整部312とを有する。ここで、調整部312は、図示するように基本部311の両主面に設けられてもよいし、図示しないが基本部311のいずれか一方の主面に設けられてもよい。   The transmission band defining portion 31 is provided on, for example, a basic portion 311 that mainly defines the shape of the transmission band, and at least one main surface of the basic portion 311, and mainly a near-infrared light in the transmission band formed by the basic portion 311. And an adjustment unit 312 that further smoothes the wavelength shift of the transmission band formed by the basic unit 311. Here, the adjustment unit 312 may be provided on both main surfaces of the basic unit 311 as illustrated, or may be provided on one main surface of the basic unit 311 although not illustrated.

基本部311は、上記したように透過帯の形状を主として規定する。調整部312は、基本部311が形成する透過帯の主として近赤外光側の近傍部分の形状をなめらかにするもの、言い換えれば当該部分における透過率変化をゆるやかにするものであり、具体的には基本部311と合わせて上記したように近赤外光側40〜80%波長差を20〜100nmとするものである。また、調整部312は、基本部311が形成する透過帯の波長シフトをさらに抑制するものであり、具体的には基本部311と合わせて上記したように近赤外光側平均シフト量を14nm以下とするものである。   The basic part 311 mainly defines the shape of the transmission band as described above. The adjustment unit 312 smoothes the shape of the vicinity of the near-infrared light mainly in the transmission band formed by the basic unit 311. In other words, the adjustment unit 312 gently changes the transmittance in the portion. As described above together with the basic portion 311, the near infrared light side wavelength difference of 40 to 80% is set to 20 to 100 nm. The adjustment unit 312 further suppresses the wavelength shift of the transmission band formed by the basic unit 311. Specifically, as described above together with the basic unit 311, the near infrared light side average shift amount is set to 14 nm. It is as follows.

このような基本部311と調整部312とを併用することで、近赤外線カットフィルター1の分光特性を吸収タイプの色ガラスフィルターに近い分光特性とすることができる。すなわち、透過率変化がなだらかな分光波形とするとともに、入射角度依存性が抑制されたものとすることができる。   By using the basic unit 311 and the adjustment unit 312 together, the spectral characteristic of the near-infrared cut filter 1 can be made to be a spectral characteristic close to that of an absorption type color glass filter. That is, it is possible to obtain a spectral waveform in which the transmittance change is gentle and the incident angle dependency is suppressed.

(透明基板)
透明基板2は、少なくとも可視波長域の光を透過できるものであれば特に限定されず、例えば、ガラス、水晶、ニオブ酸リチウム、サファイヤ等の結晶、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂等が挙げられる。
(Transparent substrate)
The transparent substrate 2 is not particularly limited as long as it can transmit at least light in the visible wavelength range. For example, crystals such as glass, quartz, lithium niobate, sapphire, polyethylene terephthalate (PET), polybutylene terephthalate (PBT) Polyester resin such as polyethylene, polypropylene, ethylene vinyl acetate copolymer, etc., acrylic resin such as norbornene resin, polyacrylate, polymethyl methacrylate, urethane resin, vinyl chloride resin, fluorine resin, polycarbonate resin, polyvinyl butyral resin And polyvinyl alcohol resin.

透明基板2としては、近赤外や紫外等の特定波長域に吸収を有するものを用いることもできる。なお、近赤外波長域に吸収を有する透明基板2としては、例えば、フツリン酸塩系ガラスやリン酸塩系ガラスにCuO等が添加された吸収型ガラスが挙げられる。また、樹脂材料中に近赤外線を吸収する吸収剤を添加されたものが挙げられる。吸収剤としては、例えば、染料、顔料、金属錯体系化合物が挙げられ、具体的には、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属系錯体系化合物が挙げられる。このような、特定波長域に吸収を有する透明基板2を用いることで、近赤外線カットフィルター1の光学特性は、透明基板2の吸収特性と光学多層膜3との光学特性とを組み合わせたものとなる。そのため、このような透明基板2を用いることで、近赤外線カットフィルターの光学特性をより良いものとしたり、光学多層膜3の膜厚を薄くする等が可能となる。   As the transparent substrate 2, a substrate having absorption in a specific wavelength region such as near infrared or ultraviolet can be used. Examples of the transparent substrate 2 having absorption in the near-infrared wavelength region include absorption glass in which CuO or the like is added to fluorophosphate glass or phosphate glass. Moreover, what added the absorber which absorbs near infrared rays in the resin material is mentioned. Examples of the absorbent include dyes, pigments, and metal complex compounds, and specifically include phthalocyanine compounds, naphthalocyanine compounds, and dithiol metal complex compounds. By using such a transparent substrate 2 having absorption in a specific wavelength region, the optical characteristics of the near infrared cut filter 1 are a combination of the absorption characteristics of the transparent substrate 2 and the optical characteristics of the optical multilayer film 3. Become. Therefore, by using such a transparent substrate 2, it is possible to improve the optical characteristics of the near-infrared cut filter, reduce the film thickness of the optical multilayer film 3, and the like.

(透過帯規定部)
透過帯規定部31は、透過帯ならびにその紫外光側および近赤外光側の近傍部分の形状を規定するものである。具体的には、阻止帯規定部32が形成する透過帯に含まれるとともに、これよりも狭い透過帯を形成することで、近赤外線カットフィルター1による透過帯の形状を規定する。
(Transmission band defining part)
The transmission band defining part 31 defines the shape of the transmission band and the vicinity of the ultraviolet light side and near infrared light side thereof. Specifically, the shape of the transmission band by the near-infrared cut filter 1 is defined by forming a transmission band that is included in the transmission band formed by the blocking band defining unit 32 and narrower than this.

透過帯規定部31は、単独での分光特性が以下のような分光特性を有することが好ましい。すなわち、透過帯規定部31による透過帯ならびにその紫外光側および近赤外光側の近傍部分については、近赤外線カットフィルター1による透過帯ならびにその紫外光側および近赤外光側の近傍部分と同様とすることが好ましい。   The transmission band defining portion 31 preferably has the following spectral characteristics as a single spectral characteristic. That is, the transmission band by the transmission band defining part 31 and the vicinity of the ultraviolet light side and near infrared light side are the transmission band by the near infrared cut filter 1 and the vicinity of the ultraviolet light side and near infrared light side. The same is preferable.

具体的には、半値波長差は、200nm以上が好ましく、300nm以下がより好ましく、近赤外光側40〜80%波長差は20〜100nmが好ましい。また、近赤外光側平均シフト量は、14nm以下が好ましく、12nm以下がより好ましく、紫外光側平均シフト量は、10nm以下が好ましく、7nm以下がより好ましい。さらに、近赤外光側半値波長は、630〜690nmが好ましく、紫外光側半値波長は、395〜430nmが好ましい。   Specifically, the half-value wavelength difference is preferably 200 nm or more, more preferably 300 nm or less, and the near infrared light side 40 to 80% wavelength difference is preferably 20 to 100 nm. Further, the near-infrared light side average shift amount is preferably 14 nm or less, more preferably 12 nm or less, and the ultraviolet light side average shift amount is preferably 10 nm or less, more preferably 7 nm or less. Furthermore, the near-infrared light half-value wavelength is preferably 630 to 690 nm, and the ultraviolet light-side half-value wavelength is preferably 395 to 430 nm.

透過帯規定部31は、透過帯の形状を主として規定する基本部311と、この基本部311の少なくとも一方の主面に設けられ、基本部311が形成する透過帯の主として近赤外光側の近傍部分の形状をなめらかにするとともに、基本部311が形成する透過帯の波長シフトをさらに抑制する調整部312とを有する。ここで、調整部312は、図示するように基本部311の両主面に分割して設けられてもよいし、図示しないが基本部311の一方の主面のみに設けられてもよい。   The transmission band defining portion 31 is provided on at least one main surface of the basic portion 311 that mainly defines the shape of the transmission band, and the transmission band formed by the basic portion 311 mainly on the near infrared light side. An adjustment unit 312 that smoothes the shape of the vicinity and further suppresses the wavelength shift of the transmission band formed by the basic unit 311 is provided. Here, the adjustment unit 312 may be provided separately on both main surfaces of the basic unit 311 as illustrated, or may be provided on only one main surface of the basic unit 311 although not illustrated.

透過帯規定部31は、垂直入射条件および30度入射条件の調整部312および基本部311のそれぞれ単独の分光特性において、調整部312での紫外線側半値波長が基本部311の紫外線側半値波長よりも紫外線側にあり、調整部312の赤外線側半値波長が基本部311の赤外線側半値波長よりも赤外線側にある。また、垂直入射条件における調整部312の赤外線側半値波長と基本部312の赤外線側半値波長との絶対値での差が20nm以上である。上記差の上限値は必ずしも制限されないが、好ましくは200nm以下、より好ましくは150nm以下である。   The transmission band defining unit 31 has a single-side spectral characteristic of the adjustment unit 312 and the basic unit 311 for the normal incidence condition and the 30-degree incidence condition. Are also on the ultraviolet side, and the infrared half-value wavelength of the adjustment unit 312 is on the infrared side of the infrared half-value wavelength of the basic unit 311. Further, the difference between the absolute value of the infrared half-value wavelength of the adjustment unit 312 and the infrared half-value wavelength of the basic unit 312 in the normal incidence condition is 20 nm or more. The upper limit of the difference is not necessarily limited, but is preferably 200 nm or less, more preferably 150 nm or less.

基本部311は、単独での分光特性が矩形形状の透過帯を形成し、赤外線側の阻止帯から透過帯の透過率変化が垂直に近い急峻なものである。そして、垂直入射条件と30度入射条件とにおける近赤外光側半値波長の絶対値での差が小さいという特徴を備える。   The basic part 311 forms a rectangular transmission band with a single spectral characteristic, and the transmittance change of the transmission band from the infrared side blocking band is steep near vertical. And it has the characteristic that the difference in the absolute value of the near-infrared-light side half-value wavelength between the normal incidence condition and the 30 degree incidence condition is small.

調整部312は、前述のとおり基本部311の透過帯を含みこれよりも広い透過帯を備える。また、透過帯から阻止帯への分光変化が非常になだらかである。そして、垂直入射条件と30度入射条件とにおける近赤外光側半値波長の絶対値での差が大きいという特徴を備える。   As described above, the adjustment unit 312 includes the transmission band of the basic unit 311 and includes a wider transmission band. Further, the spectral change from the transmission band to the stop band is very gentle. And it has the characteristic that the difference in the absolute value of the near-infrared light side half-value wavelength in a normal incidence condition and a 30 degree incidence condition is large.

透過帯規定部31は、基本部311と調整部312とを組み合わせることで、基本部311単独での赤外線側半値波長シフト量と比べてより小さい赤外線側半値波長シフト量を得ることができる。更に、赤外線側の透過率変化をなだらかなものとし、吸収タイプの色ガラスフィルターに近い分光特性を得ることができる。   The transmission band defining unit 31 can combine the basic unit 311 and the adjusting unit 312 to obtain a smaller infrared-side half-value wavelength shift amount than the infrared-side half-value wavelength shift amount of the basic unit 311 alone. Furthermore, the change in transmittance on the infrared side can be made gentle, and spectral characteristics close to those of an absorption type colored glass filter can be obtained.

また、透過帯規定部31の入射角度特性は、30度より大きい入射条件であっても、波長の移動量を小さくすることが可能である。上記のとおり、調整部312の垂直入射条件と斜め入射条件とにおける分光変化が大きいため、これを用いることで、赤外線側の立ち上がりの一部のみ波長シフトを見かけ上の小さくすることができる。固体撮像素子における視感度補正フィルターでの使用用途に限れば、RGBに相当する波長範囲の透過率変化が斜入射によって起こらないことが本質的に重要であるため、上記のように特定波長域部分(ここでは特にR)の波長シフト量だけでも見かけ上抑止出来ることは大きな利点となる。   Further, the incident angle characteristic of the transmission band defining portion 31 can reduce the amount of wavelength shift even under an incident condition larger than 30 degrees. As described above, since the spectral change between the vertical incident condition and the oblique incident condition of the adjustment unit 312 is large, the wavelength shift can be apparently reduced by using only this part of the rising on the infrared side. If it is limited to the use of the visibility correction filter in the solid-state imaging device, it is essential that the transmittance change in the wavelength range corresponding to RGB does not occur due to oblique incidence. It is a great advantage that it can be apparently suppressed only by the wavelength shift amount (in particular, R here).

なお、45度入射条件における波長シフトを抑制するには、垂直入射条件における調整部312の赤外線側半値波長と基本部312の赤外線側半値波長との絶対値での差が40nm以上であることが好ましい。垂直入射条件における調整部312の赤外線側半値波長と基本部312の赤外線側半値波長との絶対値での差は、200nm以下が好ましく、150nm以下がより好ましい。   In order to suppress the wavelength shift under the 45-degree incidence condition, the difference in absolute value between the infrared half-value wavelength of the adjustment unit 312 and the infrared half-value wavelength of the basic unit 312 under the normal incidence condition is 40 nm or more. preferable. The difference in absolute value between the infrared half-value wavelength of the adjusting unit 312 and the infrared half-value wavelength of the basic unit 312 under normal incidence conditions is preferably 200 nm or less, and more preferably 150 nm or less.

基本部311は、単独での分光特性が以下のような分光特性を有することが好ましい。垂直入射条件と30度入射条件とにおける近赤外光側半値波長の絶対値での差は、18nm以下が好ましく、同条件における紫外光側半値波長の絶対値での差は、8nm以下が好ましい。このような分光特性とすることで、近赤外線カットフィルター1における入射角度依存性を効果的に抑制できる。なお、以下では、垂直入射条件と30度入射条件とにおける近赤外光側半値波長の絶対値での差を「近赤外光側半値波長シフト量」、紫外光側半値波長の絶対値での差を「紫外光側半値波長シフト量」と記す。   The basic part 311 preferably has the following spectral characteristics as individual spectral characteristics. The difference in absolute value of near-infrared light half-value wavelength under normal incidence conditions and 30 degree incidence condition is preferably 18 nm or less, and the difference in absolute value of ultraviolet light half-value wavelength under the same conditions is preferably 8 nm or less. . By setting it as such a spectral characteristic, the incident angle dependence in the near-infrared cut filter 1 can be suppressed effectively. In the following, the difference in the absolute value of the near-infrared light half-value wavelength under the normal incidence condition and the 30-degree incidence condition is expressed as “near-infrared light half-value wavelength shift amount” and the absolute value of the ultraviolet light half-value wavelength. Is described as “half-value wavelength shift amount on the ultraviolet light side”.

基本部311は、例えば、屈折率が2.0以上の基本部用高屈折率膜と屈折率が1.7以下の基本部用低屈折率膜との交互積層構造を有し、基本部用高屈折率膜と基本部用低屈折率膜との合計層数が10層以上、基本部用高屈折率膜の平均光学膜厚をTH1、基本部用低屈折率膜の平均光学膜厚をTL1としたとき、TH1/TL1が2以上のものである。このようなものとすることで、上記したような分光特性を得ることができる。すなわち、単独での分光特性において、透過帯が矩形形状であり、赤外線側の阻止帯から透過帯にかけての透過率変化が垂直に近い急峻であり、垂直入射条件と30度入射条件とにおける近赤外光側半値波長の絶対値での差が小さいものが得られる。 The basic part 311 has, for example, an alternating laminated structure of a high refractive index film for a basic part with a refractive index of 2.0 or more and a low refractive index film for a basic part with a refractive index of 1.7 or less. The total number of layers of the high refractive index film and the basic part low refractive index film is 10 or more, the average optical film thickness of the basic part high refractive index film is T H1 , and the average optical film thickness of the basic part low refractive index film when was the T L1, T H1 / T L1 is of 2 or more. By setting it as such, the above spectral characteristics can be obtained. That is, in the single spectral characteristic, the transmission band is rectangular, the transmittance change from the stop band on the infrared side to the transmission band is steep near vertical, and near red under normal incidence conditions and 30 degree incidence conditions. A small difference in absolute value of the external light side half-value wavelength is obtained.

合計層数は10層以上であれば必ずしも制限されないが、所定の分光特性を得やすいことから15層以上が好ましい。合計層数は、基本的に多くなるほど所定の分光特性を得やすくなるために好ましいが、生産性等の観点から100層以下が好ましく、80層以下が好ましい。また、TH1/TL1についても、2以上であれば必ずしも制限されないが、所定の分光特性を得やすいことから3以上が好ましく、4以上がより好ましい。TH1/TL1は、通常、15以下が好ましく、10以下がより好ましい。 The total number of layers is not necessarily limited as long as it is 10 or more, but is preferably 15 or more because it is easy to obtain predetermined spectral characteristics. The total number of layers is preferably as the number of layers basically increases, because it becomes easier to obtain predetermined spectral characteristics, but from the viewpoint of productivity and the like, 100 layers or less is preferable, and 80 layers or less are preferable. Further, T H1 / T L1 is not necessarily limited as long as it is 2 or more. However, it is preferably 3 or more and more preferably 4 or more because predetermined spectral characteristics are easily obtained. T H1 / T L1 is usually preferably 15 or less, and more preferably 10 or less.

ここで、光学膜厚は、膜の屈折率をn[−]、物理膜厚をd[nm]としたとき、nd[nm]として求められる。また、平均光学膜厚は、各部における同種の膜、例えば基本部用高屈折率膜の全ての膜について光学膜厚nd[nm]を算出した後、この光学膜厚nd[nm]の合計をその膜の層数で除して算出される。   Here, the optical film thickness is obtained as nd [nm] when the refractive index of the film is n [-] and the physical film thickness is d [nm]. Further, the average optical film thickness is calculated by calculating the optical film thickness nd [nm] for all of the same type of film in each part, for example, the high refractive index film for the basic part, and then calculating the total optical film thickness nd [nm]. It is calculated by dividing by the number of layers of the film.

調整部312は、単独での分光特性が以下のような分光特性を有することが好ましい。すなわち、垂直入射条件および30度入射条件において、近赤外光側半値波長が基本部311による近赤外光側半値波長よりも大きく、紫外光側半値波長が基本部311による紫外光側半値波長よりも小さいことが好ましい。このようなものとすることで、基本部311の分光特性と合わせたときに、近赤外線カットフィルター1の透過率変化を効果的になだらかにでき、近赤外光側平均シフト量等を低減できる。   The adjusting unit 312 preferably has the following spectral characteristics alone. That is, in the normal incidence condition and the 30 degree incidence condition, the near-infrared light half-value wavelength is larger than the near-infrared light half-value wavelength of the basic part 311, and the ultraviolet light-side half-value wavelength is the ultraviolet light side half-value wavelength of the basic part 311. Is preferably smaller. With this configuration, when combined with the spectral characteristics of the basic unit 311, the transmittance change of the near-infrared cut filter 1 can be effectively smoothed, and the near-infrared light side average shift amount can be reduced. .

調整部312は、斜入射依存性が高いことが必要となる。これは、基本部311による波形と組み合わせることにより形成される波形をなだらかにするだけでなく、斜入射時に波形変形を生じさせることで、基本部311と調整部312とを組み合わせた波長の見かけ上の波長シフトを小さくすることが必要だからである。具体的には、調整部312の近赤外側半値付近の波形が斜入射とともに大きく変化させることで、基本部311と調整部312とを組み合わせた波長の近赤外側半値付近の波長シフト量が結果的に小さくなる。基本部311の近赤外側半値波長付近の波形シフトは相似形で平行にシフトするが、調整部312の波形シフトは波形変形を伴いながら、つまり相似形でない形でシフトする。このような調整部312の斜入射時の波形変形は、入射角度の変化に伴う光学的膜厚変化から生じている。垂直入射条件と30度入射条件とにおける近赤外光側半値波長の絶対値での差(近赤外光側半値波長シフト量)は、25nm以上が好ましく、30nm以上がより好ましい。上限値については必ずしも制限されないが50nm以下が好ましい。このような分光特性を有することで、近赤外線カットフィルター1の透過率変化をより効果的になだらかにすることができる。   The adjustment unit 312 needs to have high oblique incidence dependency. This not only smooths the waveform formed by combining with the waveform by the basic unit 311 but also causes the waveform deformation at the time of oblique incidence, so that the apparent wavelength of the combination of the basic unit 311 and the adjusting unit 312 is apparent. This is because it is necessary to reduce the wavelength shift. Specifically, the waveform near the half value on the near infrared side of the adjustment unit 312 is greatly changed with oblique incidence, so that the wavelength shift amount near the half value on the near infrared side of the wavelength combining the basic unit 311 and the adjustment unit 312 is the result. Become smaller. The waveform shift in the vicinity of the near infrared half-value wavelength of the basic unit 311 shifts in parallel with a similar shape, but the waveform shift of the adjustment unit 312 shifts with waveform deformation, that is, in a non-similar shape. Such waveform deformation at the time of oblique incidence of the adjusting unit 312 is caused by a change in the optical film thickness accompanying a change in the incident angle. The difference in the absolute value of the near-infrared light side half-value wavelength between the normal incidence condition and the 30-degree incidence condition (near infrared light side half-value wavelength shift amount) is preferably 25 nm or more, and more preferably 30 nm or more. The upper limit is not necessarily limited, but is preferably 50 nm or less. By having such spectral characteristics, the transmittance change of the near infrared cut filter 1 can be smoothed more effectively.

調整部312は、例えば、屈折率が2.0以上の調整部用高屈折率膜と屈折率が1.7以下の調整部用低屈折率膜との交互積層構造を有し、調整部用高屈折率膜と調整部用低屈折率膜との合計層数が10層以上、調整部用高屈折率膜の平均光学膜厚をTH2、調整部用低屈折率膜の平均光学膜厚をTL2としたとき、TH2/TL2が1.5以下のものである。このようなものとすることで、上記したような分光特性とすることができる。すなわち、単独での分光特性において、基本部311の透過帯を含みこれよりも広い透過帯を形成でき、透過帯から阻止帯への分光変化が非常になだらかであり、垂直入射条件と30度入射条件とにおける近赤外光側半値波長の絶対値での差が大きいものとすることができる。 The adjustment unit 312 has, for example, an alternating stacked structure of an adjustment unit high refractive index film having a refractive index of 2.0 or more and an adjustment unit low refractive index film having a refractive index of 1.7 or less. The total number of layers of the high refractive index film and the adjustment part low refractive index film is 10 or more, the average optical film thickness of the adjustment part high refractive index film is T H2 , and the average optical film thickness of the adjustment part low refractive index film when was the T L2, T H2 / T L2 is of 1.5 or less. By setting it as such, it can be set as the above-mentioned spectral characteristics. That is, in a single spectral characteristic, a wider transmission band including the transmission band of the basic portion 311 can be formed, and the spectral change from the transmission band to the stop band is very gentle. The difference in the absolute value of the near-infrared light half-value wavelength in the conditions can be large.

合計層数は、基本的に多くなるほど所定の分光特性を得やすくなるために好ましいが、生産性等の観点から100層以下が好ましく、50層以下が好ましい。また、TH2/TL2についても、1.5以下であれば必ずしも制限されないが、所定の分光特性を得やすいことから1.0以下が好ましく、0.8以下がより好ましい。TH2/TL2は、通常、0.1以上が好ましく、0.3以上がより好ましい。 The total number of layers is preferably as the number of layers basically increases, because it becomes easier to obtain predetermined spectral characteristics, but from the viewpoint of productivity and the like, 100 layers or less is preferable, and 50 layers or less are preferable. Further, T H2 / T L2 is not necessarily limited as long as it is 1.5 or less, but is preferably 1.0 or less and more preferably 0.8 or less because it is easy to obtain predetermined spectral characteristics. T H2 / T L2 is usually preferably 0.1 or more, and more preferably 0.3 or more.

このような基本部311と調整部312とによって透過帯規定部31を構成することで、近赤外線カットフィルター1において、400〜700nmの波長範囲の少なくとも一部に最大透過率が85%以上となる透過帯を形成できるとともに、半値波長差を200nm以上、近赤外光側40〜80%波長差を20〜100nmにできる。また、近赤外光側平均シフト量を14nm以下にできる。   By configuring the transmission band defining unit 31 with the basic unit 311 and the adjusting unit 312, the near-infrared cut filter 1 has a maximum transmittance of 85% or more in at least a part of the wavelength range of 400 to 700 nm. While being able to form a transmission band, the half-value wavelength difference can be 200 nm or more and the near infrared light side 40-80% wavelength difference can be 20-100 nm. Moreover, the near-infrared light side average shift amount can be made 14 nm or less.

高屈折率膜、すなわち基本部用高屈折率膜および調整部用高屈折率膜は、屈折率が2.0以上の材料からなるものであれば特に限定されないが、例えば、TiO、Nb、Ta、またはこれらの複合酸化物からなるものが好ましい。高屈折率膜の屈折率は、2.3以上が好ましく、2.4以上がより好ましい。このようなものとしては、例えばTiO(屈折率2.5)が好ましいものとして挙げられる。なお、基本部用高屈折率膜と調整部用高屈折率膜とは互いに屈折率が異なる材料からなるものであってもよく、また基本部用高屈折率膜どうし、調整部用高屈折率膜どうしについても、互いに屈折率が異なる材料からなるものであってもよい。 The high refractive index film, that is, the high refractive index film for the basic part and the high refractive index film for the adjustment part are not particularly limited as long as they are made of a material having a refractive index of 2.0 or more. For example, TiO 2 , Nb 2 O 5 , Ta 2 O 5 , or a composite oxide thereof is preferable. The refractive index of the high refractive index film is preferably 2.3 or more, and more preferably 2.4 or more. Such as those mentioned as example TiO 2 (refractive index 2.5) is preferred. The high refractive index film for the basic part and the high refractive index film for the adjustment part may be made of materials having different refractive indexes, and the high refractive index film for the basic part may be made of the high refractive index for the adjustment part. The films may be made of materials having different refractive indexes.

低屈折率膜、すなわち基本部用低屈折率膜および調整部用低屈折率膜は、屈折率が1.7以下の材料からなるものであれば特に限定されないが、例えば、SiO、MgF、Al、またはこれらの複合酸化物からなるものが好ましい。なお、基本部用低屈折率膜と調整部用低屈折率膜とは互いに屈折率が異なる材料からなるものであってもよく、また基本部用低屈折率膜どうし、調整部用低屈折率膜どうしについても、互いに屈折率が異なる材料からなるものであってもよい。 The low refractive index film, that is, the low refractive index film for the basic part and the low refractive index film for the adjustment part are not particularly limited as long as they are made of a material having a refractive index of 1.7 or less. For example, SiO 2 , MgF 2 , Al 2 O 3 , or a composite oxide thereof is preferable. The low refractive index film for the basic part and the low refractive index film for the adjustment part may be made of materials having different refractive indexes, and the low refractive index film for the basic part may be made of the low refractive index for the adjustment part. The films may be made of materials having different refractive indexes.

透過帯規定部31は、層数が多く、総膜厚も大きいことから、膜物質の入手性、分光特性、耐候性、強度等の様々な理由から、上記したような、TiO、Nb、Ta、SiO、MgF、Al等が好適に用いられる。 Since the transmission band defining portion 31 has a large number of layers and a large total film thickness, for various reasons such as availability of film materials, spectral characteristics, weather resistance, strength, and the like, TiO 2 , Nb 2 as described above. O 5 , Ta 2 O 5 , SiO 2 , MgF 2 , Al 2 O 3 and the like are preferably used.

(阻止帯規定部)
阻止帯規定部32は、近赤外光側阻止帯および紫外光側阻止帯の形状を主として規定する。すなわち、透過帯規定部31は、透過帯やその紫外光側および赤外側の近傍部分の形状を主として規定するものであり、単独では必ずしも十分な幅の近赤外光側阻止帯や紫外光側阻止帯を形成できない。阻止帯規定部32を併用することで、近赤外光側阻止帯や紫外光側阻止帯の幅の拡張を行うことができる。
(Stop zone regulation part)
The stopband defining unit 32 mainly defines the shapes of the near infrared light side stopband and the ultraviolet light side stopband. That is, the transmission band defining portion 31 mainly defines the shape of the transmission band and the vicinity of the ultraviolet light side and the infrared light side thereof, and the transmission band defining part 31 does not necessarily have a sufficiently wide near infrared light side blocking band or ultraviolet light side. A stopband cannot be formed. By using the stopband defining portion 32 in combination, the width of the near infrared light side stopband and the ultraviolet light side stopband can be expanded.

阻止帯規定部32は、光学多層膜3による透過帯、すなわち透過帯規定部31による透過帯よりも広い透過帯を形成するとともに、350〜400nmの波長範囲の少なくとも一部に平均透過率が5%以下となる紫外光側阻止帯、および800〜1000nmの波長範囲の少なくとも一部に平均透過率が3%以下となる近赤外光側阻止帯を形成するものが好ましい。   The stopband defining part 32 forms a transmission band formed by the optical multilayer film 3, that is, a transmission band wider than the transmission band formed by the transmission band defining part 31, and has an average transmittance of 5 in at least a part of the wavelength range of 350 to 400 nm. It is preferable to form an ultraviolet light side stop band that is not more than% and a near infrared light side stop band that has an average transmittance of not more than 3% in at least part of the wavelength range of 800 to 1000 nm.

「第1の阻止帯規定部」
阻止帯規定部32は、例えば、屈折率が2.0以上である阻止帯用高屈折率膜と屈折率が1.7以下である阻止帯用低屈折率膜との繰り返し構造を有する。また、高屈折率膜の平均光学膜厚をTH3、低屈折率膜の平均光学膜厚をTL3としたとき、TH3/TL3は2未満である。
“First stopband prescribing section”
The stop band defining portion 32 has, for example, a repeating structure of a high refractive index film for a stop band having a refractive index of 2.0 or more and a low refractive index film for a stop band having a refractive index of 1.7 or less. Further, when the average optical film thickness of the high refractive index film is T H3 and the average optical film thickness of the low refractive index film is T L3 , T H3 / T L3 is less than 2.

このような構成とすることで、光学多層膜3による透過帯、すなわち透過帯規定部31による透過帯を含むような透過帯を形成できるとともに、光学多層膜3による紫外光側半値波長以下の紫外光側半値波長、および光学多層膜3による近赤外光側半値波長より7nm以上大きい近赤外光側半値波長を得ることができる。すなわち、TH3/TL3が2以上の場合、入射角度依存性は抑制しやすいが、透過帯が狭くなる。TH3/TL3を2未満とすることで、入射角度依存性は必ずしも抑制できないが、光学多層膜3、すなわち透過帯規定部31による透過帯を含むような広い透過帯を形成できる。 With such a configuration, it is possible to form a transmission band including the transmission band by the optical multilayer film 3, that is, including the transmission band by the transmission band defining portion 31, and an ultraviolet light having a wavelength less than the half-value wavelength on the ultraviolet light side by the optical multilayer film 3. The near-infrared light half-value wavelength that is 7 nm or more larger than the near-infrared light side half-value wavelength by the optical multilayer film 3 can be obtained. That is, when T H3 / T L3 is 2 or more, the incident angle dependency is easily suppressed, but the transmission band is narrowed. By making T H3 / T L3 less than 2, the incident angle dependency cannot necessarily be suppressed, but a wide transmission band including the transmission band by the optical multilayer film 3, that is, the transmission band defining portion 31, can be formed.

阻止帯規定部32の層数は、十分な幅の透過帯や阻止帯、および所定の半値波長を得る観点から、40以上が好ましく、50以上がより好ましい。層数の上限値については特に制限されないが、一般に層数が多くなると生産性が低下することから、150以下が好ましく、100以下がより好ましい。   The number of layers of the stop band defining portion 32 is preferably 40 or more, and more preferably 50 or more, from the viewpoint of obtaining a sufficiently wide transmission band or stop band and a predetermined half-value wavelength. Although the upper limit of the number of layers is not particularly limited, generally 150 or less is preferable and 100 or less is more preferable because productivity decreases when the number of layers increases.

H3/TL3については特に限定されないが、十分な幅の透過帯や阻止帯、特に広い阻止帯を得ることを考えれば、阻止帯を設計する際の設計上の中心波長に対し、TH3/TL3比率が1程度の一般的な膜設計手法を用いることがよい。TH3/TL3が大きい場合、入射角度依存性は抑制できるが、阻止帯の幅が減少する。 T H3 / T L3 is not particularly limited, but considering that a sufficiently wide transmission band or stop band, particularly a wide stop band is obtained, T H3 is compared to the design center wavelength when the stop band is designed. It is preferable to use a general film design technique with a / TL3 ratio of about 1. When T H3 / T L3 is large, the incident angle dependency can be suppressed, but the width of the stop band decreases.

「第2の阻止帯規定部」
阻止帯規定部32は、紫外光側の阻止帯を構成するための紫外光側阻止帯規定部と、近赤外光側の阻止帯を構成するための近赤外光側阻止帯規定部とを有するものであってもよい。紫外光側阻止帯規定部は、屈折率が2以上である紫外光側阻止帯用高屈折率膜と屈折率が1.7以下である紫外光側阻止帯用低屈折率膜との繰り返し構造を有する。近赤外光側阻止帯規定部は、屈折率が2.0以上である近赤外光側阻止帯用高屈折率膜、屈折率が2.0以上であって近赤外光側阻止帯用高屈折率膜の屈折率未満である近赤外光側阻止帯用中屈折率膜、および屈折率が1.70以下である近赤外光側阻止帯用低屈折率膜を有し、近赤外光側阻止帯用高屈折率膜、近赤外光側阻止帯用中屈折率膜、および近赤外光側阻止帯用低屈折率膜の合計した層数が30層以上である。
"Second stopband prescription part"
The stopband defining unit 32 includes an ultraviolet light side stopband defining unit for configuring an ultraviolet light side stopband, and a near infrared light side stopband defining unit for configuring a nearinfrared light side stopband. It may have. The ultraviolet light side stop band defining portion has a repeating structure of a high refractive index film for an ultraviolet light side stop band having a refractive index of 2 or more and a low refractive index film for an ultraviolet light side stop band having a refractive index of 1.7 or less. Have The near-infrared light side stop band defining portion is a high-refractive index film for near-infrared light side stop band having a refractive index of 2.0 or more, a near-infrared light side stop band having a refractive index of 2.0 or more. An intermediate refractive index film for near infrared light side stop band that is less than the refractive index of the high refractive index film for use, and a low refractive index film for near infrared light side stop band that has a refractive index of 1.70 or less, The total number of layers of the high refractive index film for the near infrared light side stop band, the middle refractive index film for the near infrared light side stop band, and the low refractive index film for the near infrared light side stop band is 30 or more. .

この阻止帯規定部32についても、光学多層膜3による透過帯、すなわち透過帯構成部31による透過帯を含む透過帯を形成できるとともに、光学多層膜3による紫外光側半値波長以下の紫外光側半値波長、および光学多層膜3による近赤外光側半値波長より7nm以上大きい近赤外光側半値波長を形成できる。   The stop band defining part 32 can also form a transmission band including the transmission band formed by the optical multilayer film 3, that is, the transmission band formed by the transmission band forming part 31, and the ultraviolet light side of the optical multilayer film 3 having an ultraviolet light side half wavelength or less. The near-infrared light side half-value wavelength larger by 7 nm or more than the near-infrared light side half-value wavelength by the optical multilayer film 3 can be formed.

一般に、光学多層膜は、近赤外光側の阻止帯が広く、入射角が大きくなったときの透過帯におけるリップルの発生が少ないことが好ましい。上記した透過帯規定部31は、いずれも入射角度依存性を抑制する技術を用いているためにリップルの発生をある程度抑制できるが、この技術を入れない阻止帯規定部32は依然としてリップルが発生する。第1の阻止帯規定部32については、必ずしもこのようなリップルを十分に抑制できない。第2の阻止帯規定部32によれば、透過帯や阻止帯の幅を十分に拡張しつつ、リップルの発生を抑制できる。   In general, it is preferable that the optical multilayer film has a wide stop band on the near-infrared light side, and the occurrence of ripples in the transmission band when the incident angle increases is small. The transmission band defining part 31 described above can suppress the occurrence of ripple to some extent because it uses a technique for suppressing the incident angle dependency, but the blocking band defining part 32 that does not include this technique still generates a ripple. . For the first stop band defining portion 32, such a ripple cannot necessarily be sufficiently suppressed. According to the second stop band defining unit 32, it is possible to suppress the occurrence of ripples while sufficiently expanding the width of the transmission band and the stop band.

紫外光側阻止帯規定部は、上記したように屈折率が2以上である紫外光側阻止帯用高屈折率膜と屈折率が1.7以下である紫外光側阻止帯用低屈折率膜との繰り返し構造を有する。   As described above, the ultraviolet light side stop band defining portion includes the high refractive index film for the ultraviolet light side stop band having a refractive index of 2 or more and the low refractive index film for the ultraviolet light side stop band having a refractive index of 1.7 or less. And a repeating structure.

紫外光側阻止帯規定部の層数は、十分な幅の紫外光側の阻止帯を形成する観点から、15以上が好ましく、20以上がより好ましい。層数の上限値については特に制限されないが、一般に層数が多くなると生産性が低下することから、60以下が好ましく、40以下がより好ましい。   The number of layers of the ultraviolet light side stop band defining portion is preferably 15 or more, and more preferably 20 or more, from the viewpoint of forming a sufficiently wide ultraviolet light side stop band. Although the upper limit of the number of layers is not particularly limited, generally 60 or less is preferable and 40 or less is more preferable because productivity decreases when the number of layers increases.

紫外光側阻止帯用高屈折率膜としては、屈折率が2.0以上となる材料からなるものであれば特に限定されないが、例えば、TiO、Nb、Ta、またはこれらの複合酸化物からなるものが好適に挙げられる。紫外光側阻止帯用高屈折率膜としては、屈折率が2.3以上のものが好ましく、屈折率が2.4以上のものがより好ましい。このようなものとしては、TiO(屈折率2.5)からなるものが好適に挙げられる。 The high refractive index film for the ultraviolet light side stop band is not particularly limited as long as it is made of a material having a refractive index of 2.0 or more. For example, TiO 2 , Nb 2 O 5 , Ta 2 O 5 , or The thing which consists of these complex oxides is mentioned suitably. The high refractive index film for the ultraviolet light side stop band preferably has a refractive index of 2.3 or higher, more preferably a refractive index of 2.4 or higher. As such, the ones made of TiO 2 (refractive index 2.5) are preferably exemplified.

紫外光側阻止帯用低屈折率膜としては、屈折率が1.7以下となる材料からなるものであれば特に限定されないが、例えば、SiO、MgF、Al、またはこれらの複合酸化物からなるものが好適に挙げられる。 The low refractive index film for the ultraviolet light side stop band is not particularly limited as long as it is made of a material having a refractive index of 1.7 or less. For example, SiO 2 , MgF 2 , Al 2 O 3 , or these Preferred examples include those composed of complex oxides.

近赤外光側阻止帯規定部は、屈折率が2.0以上である近赤外光側阻止帯用高屈折率膜、屈折率が2.0以上であって近赤外光側阻止帯用高屈折率膜の屈折率未満である近赤外光側阻止帯用中屈折率膜、および屈折率が1.70以下である近赤外光側阻止帯用低屈折率膜を有する。これら、近赤外光側阻止帯用高屈折率膜、近赤外光側阻止帯用中屈折率膜、および近赤外光側阻止帯用低屈折率膜の合計した層数は30層以上である。   The near-infrared light side stop band defining portion is a high-refractive index film for near-infrared light side stop band having a refractive index of 2.0 or more, and a near-infrared light side stop band having a refractive index of 2.0 or more. A middle refractive index film for near-infrared light side stop band that is less than the refractive index of the high refractive index film for use, and a low refractive index film for near-infrared light side stop band that has a refractive index of 1.70 or less. The total number of these high-refractive-index films for near-infrared light side stopbands, medium-refractive-index films for near-infrared-light side stopbands, and low-refractive-index films for near-infrared-light side stopbands is 30 or more. It is.

近赤外光側阻止帯規定部の層数は、30以上であれば特に制限されないが、より十分な幅を有する近赤外光側の阻止帯を形成する観点から、40以上が好ましく、60以上がより好ましい。層数の上限値については特に制限されないが、一般に層数が多くなると生産性が低下することから、150以下が好ましく、100以下がより好ましい。   The number of layers of the near-infrared light side stop band defining portion is not particularly limited as long as it is 30 or more, but 40 or more is preferable from the viewpoint of forming a near-infrared light side stop band having a more sufficient width. The above is more preferable. Although the upper limit of the number of layers is not particularly limited, generally 150 or less is preferable and 100 or less is more preferable because productivity decreases when the number of layers increases.

近赤外光側阻止帯用高屈折率膜、近赤外光側阻止帯用中屈折率膜、および近赤外光側阻止帯用低屈折率膜は、近赤外光側阻止帯用高屈折率膜をH、近赤外光側阻止帯用中屈折率膜をM、近赤外光側阻止帯用低屈折率膜をLとしたとき、例えば、以下のような基本単位の繰り返し構造となるように積層される。
基本単位:[HML]
基本単位:[LMHML]
High refractive index film for near infrared light side stop band, medium refractive index film for near infrared light side stop band, and low refractive index film for near infrared light side stop band are high for near infrared light side stop band. When the refractive index film is H, the near-infrared light side stopband medium refractive index film is M, and the near-infrared light side stopband low-refractive index film is L, for example, the following basic unit repeating structure: It is laminated so that
Basic unit: [HML]
Basic unit: [LMMHML]

上記のような繰り返し構造を用いる場合、平均光学膜厚TH4、平均光学膜厚TM4、平均光学膜厚TL4は、十分に広い阻止帯を得る観点から、HMLを基本単位とする部分は、TH4:TM4:TL4=1:1:1前後であり、LMHMLを基本単位とする部分はTH4:TM4:TL4=1:1:2前後とする一般的な膜設計での比率程度であることがよい。なお、後者のTL4比率が2となったのは、LMHMLの繰り返しは、LLと重なるために、最終的な膜設計では比率が2となるためであり、基本的な考え方はTH4:TM4:TL4=1:1:1と変わらない。なお、ここで一般的な比率を採用したのは、TH4、TM4の比率を大きくすると阻止帯が狭くなることから、光学的膜厚比率を大きく変えない考えを基としている。 When the above repeating structure is used, the average optical film thickness T H4 , the average optical film thickness T M4 , and the average optical film thickness T L4 are obtained from the viewpoint of obtaining a sufficiently wide stop band. , T H4 : T M4 : T L4 = 1: 1: 1, and the portion having LMHML as a basic unit is a general membrane design with T H4 : T M4 : T L4 = 1: 1: 2. The ratio is preferably about. Incidentally, the latter T L4 ratio becomes 2, repeat the LMHML, in order to overlap with LL, in the final membrane design is because the ratio is 2, the basic idea T H4: T M4 : T L4 = 1: 1: 1. The reason why the general ratio is adopted here is based on the idea that the optical film thickness ratio is not largely changed because the stop band is narrowed when the ratio of T H4 and T M4 is increased.

また、阻止帯規定部32は上記繰り返し構造に対し、二つ以上の設計波長を適用して阻止帯の拡張を図る一般的な手法を用いることが良く、好適である。この場合、上記比率は、それぞれ設計上の中心波長ごとに設定されることになる。   Further, it is preferable that the stopband defining unit 32 uses a general method for extending the stopband by applying two or more design wavelengths to the repetitive structure. In this case, the ratio is set for each designed center wavelength.

近赤外光側阻止帯規定部は、広い範囲の近赤外域をカットするが、CCD、CMOS用途の近赤外線カットフィルターとしてはより長波長側までカットできることが好ましい。好ましくは900nm以上、より好ましくは1100nm以上であり、更に好ましくは1150nm以上をカットできることが好ましい。上記手法を用いた場合には、より長波長側まで阻止域を拡張しながら、入射角度が大きくなった際にリップルの発生を抑えることが可能となる。   The near-infrared light side stop band defining part cuts a wide near-infrared region, but it is preferable that the near-infrared cut filter for CCD and CMOS can be cut to a longer wavelength side. Preferably it is 900 nm or more, More preferably, it is 1100 nm or more, More preferably, it is preferable that 1150 nm or more can be cut. When the above method is used, it is possible to suppress the generation of ripples when the incident angle increases while extending the stop band to the longer wavelength side.

なお、近赤外光側阻止帯規定部は、必ずしも厳密に上記した基本単位の繰り返し構造となっている必要はない。例えば、近赤外光側阻止帯用低屈折率膜のように屈折率が小さいものの場合、光学膜厚が小さくなると成膜時の膜厚制御が困難となることから、例えば、複数の近赤外光側阻止帯用低屈折率膜の一部を省略し、これにより高屈折率膜と中屈折率膜とが多数連続する部分があっても構わない。   Note that the near-infrared light side stopband defining portion does not necessarily have a strictly repeating basic unit. For example, in the case of a film having a small refractive index such as a near-infrared light side stop band low refractive index film, it becomes difficult to control the film thickness at the time of film formation when the optical film thickness becomes small. A part of the low refractive index film for the outside light blocking band may be omitted, and there may be a portion where a large number of high refractive index films and medium refractive index films are continuous.

また、基本単位[LMHML]の繰り返し構造は、隣り合う基本単位の2つのLが連続するために[2LMHM]あるいは2つのLを1つのLと見なして[LMHM]とも表すことができるが、本発明における平均光学膜厚はあくまでも成膜された最終形態での状態を基準として算出されるものであり、同一物質からなる連続した膜は1つの膜として捉えて物理膜厚や層数を求め、これらを用いて平均光学膜厚を求める。   In addition, the repeating structure of the basic unit [LMHMML] can be expressed as [2LMHM] because two L's of adjacent basic units are continuous, or two L's are regarded as one L. The average optical film thickness in the invention is calculated based on the final state of the film formed to the last, and a continuous film made of the same material is regarded as one film to determine the physical film thickness and the number of layers. These are used to determine the average optical film thickness.

近赤外光側阻止帯用高屈折率膜、近赤外光側阻止帯用中屈折率膜としては、屈折率が2.0以上となる材料からなるものであれば特に限定されないが、例えば、TiO、Nb、Ta、またはこれらの複合酸化物からなるものが好適に挙げられる。近赤外光側阻止帯用高屈折率膜としては、屈折率が2.3以上のものが好ましく、屈折率が2.4以上のものがより好ましい。このようなものとしては、TiO(屈折率2.5)からなるものが好適に挙げられる。近赤外光側阻止帯用中屈折率膜としては、近赤外光側阻止帯用高屈折率膜の屈折率未満のものであれば特に限定されないが、屈折率が2以上2.3未満のものが好ましく、屈折率が2.2以下のものがより好ましい。このようなものとしては、Ta(屈折率2.2)からなるものが好適に挙げられる。 The high refractive index film for the near infrared light side stop band and the middle refractive index film for the near infrared light side stop band are not particularly limited as long as they are made of a material having a refractive index of 2.0 or more. , TiO 2 , Nb 2 O 5 , Ta 2 O 5 , or a composite oxide thereof may be preferably mentioned. As the high refractive index film for the near-infrared light side stop band, those having a refractive index of 2.3 or more are preferred, and those having a refractive index of 2.4 or more are more preferred. As such, the ones made of TiO 2 (refractive index 2.5) are preferably exemplified. The medium refractive index film for the near infrared light side stop band is not particularly limited as long as it is less than the refractive index of the high refractive index film for the near infrared light side stop band, but the refractive index is 2 or more and less than 2.3. The refractive index is preferably 2.2 or less. Such examples include are preferably exemplified those composed of Ta 2 O 5 (refractive index 2.2).

近赤外光側阻止帯用低屈折率膜としては、屈折率が1.7以下となる材料からなるものであれば特に限定されないが、例えば、SiO、MgF、Al、またはこれらの複合酸化物からなるものが好適に挙げられる。 The low refractive index film for the near-infrared light side stop band is not particularly limited as long as it is made of a material having a refractive index of 1.7 or less. For example, SiO 2 , MgF 2 , Al 2 O 3 , or The thing which consists of these complex oxides is mentioned suitably.

近赤外光側阻止帯規定部における近赤外光側阻止帯用中屈折率膜は、必ずしも単一の膜からなるものに限られず、例えば、近赤外光側阻止帯用高屈折率膜と同一の屈折率を有する膜と、近赤外光側阻止帯用低屈折率膜と同一の屈折率を有する膜とから構成される等価膜としてもよい。等価膜によれば、例えば、成膜装置における成膜可能な膜種が2種である場合にも、中屈折率膜を成膜できるために好ましい。   The medium refractive index film for the near infrared light side stop band in the near infrared light side stop band defining portion is not necessarily limited to a single film, for example, a high refractive index film for the near infrared light side stop band It is good also as an equivalent film | membrane comprised from the film | membrane which has the same refractive index, and the film | membrane which has the same refractive index as the low-refractive-index film for near-infrared light side stop bands. The equivalent film is preferable because, for example, a medium refractive index film can be formed even when there are two types of film that can be formed in the film forming apparatus.

以上のような光学多層膜3、すなわち、透過帯規定部31、阻止帯規定部32は、スパッタリング法、真空蒸着法、イオンビーム法、イオンプレーティング法、CVD法により形成することができ、特にスパッタリング法、真空蒸着法により形成することが好ましい。透過帯は、CCD、CMOS等の固体撮像素子の受光に利用される波長帯域であり、その位置精度が重要となる。スパッタリング法、真空蒸着法により形成することで、波長シフトを抑制し、位置精度を向上させることができる。   The optical multilayer film 3 as described above, that is, the transmission band defining portion 31 and the stop band defining portion 32 can be formed by sputtering, vacuum deposition, ion beam, ion plating, or CVD. It is preferable to form by a sputtering method or a vacuum evaporation method. The transmission band is a wavelength band used for light reception by a solid-state imaging device such as a CCD or CMOS, and its position accuracy is important. By forming by a sputtering method or a vacuum evaporation method, a wavelength shift can be suppressed and position accuracy can be improved.

近赤外線カットフィルター1は、例えば、デジタルスチルカメラ、デジタルビデオカメラ、監視カメラ、車載用カメラ、ウェブカメラ等の撮像装置や自動露出計等における視感度補正フィルターとして用いられる。デジタルスチルカメラ、デジタルビデオカメラ、監視カメラ、車載用カメラ、ウェブカメラ等の撮像装置においては、例えば、撮像レンズと固体撮像素子との間に配置される。自動露出計においては、例えば受光素子の前面に配置される。   The near-infrared cut filter 1 is used, for example, as a visibility correction filter in an imaging device such as a digital still camera, a digital video camera, a surveillance camera, an in-vehicle camera, a web camera, or an automatic exposure meter. In an imaging apparatus such as a digital still camera, a digital video camera, a surveillance camera, an in-vehicle camera, or a web camera, for example, it is disposed between an imaging lens and a solid-state imaging device. In the automatic exposure meter, for example, it is arranged in front of the light receiving element.

撮像装置では、固体撮像素子の前面から離れた位置に近赤外線カットフィルター1を配置してもよいし、固体撮像素子、または固体撮像素子のパッケージに直接貼着してもよいし、固体撮像素子を保護するカバーを近赤外線カットフィルター1としてもよい。また、モアレや偽色を低減するための水晶やニオブ酸リチウム等の結晶を使用したローパスフィルタに直接貼着してもよい。   In the imaging apparatus, the near-infrared cut filter 1 may be disposed at a position away from the front surface of the solid-state image sensor, or may be directly attached to the solid-state image sensor or the package of the solid-state image sensor. The near infrared cut filter 1 may be a cover that protects the light. Further, it may be directly attached to a low-pass filter using a crystal such as quartz or lithium niobate for reducing moire and false color.

図2は、固体撮像素子を有する撮像装置の一実施形態を概略的に示す断面図である。撮像装置5は、例えば、固体撮像素子51、カバーガラス52、レンズ群53、絞り54、およびこれらを固定する筐体55を有する。   FIG. 2 is a cross-sectional view schematically showing an embodiment of an imaging apparatus having a solid-state imaging element. The imaging device 5 includes, for example, a solid-state imaging device 51, a cover glass 52, a lens group 53, a diaphragm 54, and a housing 55 that fixes them.

レンズ群53は、固体撮像素子51の撮像面側に配置され、例えば、第1のレンズL1、第2のレンズL2、第3のレンズL3、および第4のレンズL4を有する。絞り54は、第3のレンズL3と第4のレンズL4との間に配置される。カバーガラス52は、固体撮像素子51のレンズ群53側に配置され、外部環境から固体撮像素子51を保護する。固体撮像素子51は、レンズ群53を通過した光を電気信号に変換する電子部品であり、例えばCCDやCMOS等である。固体撮像素子51、カバーガラス52、レンズ群53、および絞り54は、光軸xに沿って配置される。   The lens group 53 is disposed on the imaging surface side of the solid-state imaging device 51, and includes, for example, a first lens L1, a second lens L2, a third lens L3, and a fourth lens L4. The stop 54 is disposed between the third lens L3 and the fourth lens L4. The cover glass 52 is disposed on the lens group 53 side of the solid-state image sensor 51 and protects the solid-state image sensor 51 from the external environment. The solid-state imaging device 51 is an electronic component that converts light that has passed through the lens group 53 into an electrical signal, and is, for example, a CCD or a CMOS. The solid-state image sensor 51, the cover glass 52, the lens group 53, and the stop 54 are disposed along the optical axis x.

撮像装置5では、被写体側より入射した光は、第1のレンズL1、第2のレンズL2、第3のレンズL3、絞り54、第4のレンズL4、およびカバーガラス52を通って固体撮像素子51に入射する。この入射した光を固体撮像素子51が電気信号に変換し、画像信号として出力する。   In the imaging device 5, light incident from the subject side passes through the first lens L 1, the second lens L 2, the third lens L 3, the diaphragm 54, the fourth lens L 4, and the cover glass 52, and the solid-state imaging device. 51 is incident. The solid-state image sensor 51 converts the incident light into an electric signal and outputs it as an image signal.

近赤外線カットフィルター1は、例えば、カバーガラス52、レンズ群53、すなわち第1のレンズL1、第2のレンズL2、第3のレンズL3、もしくは第4のレンズL4として用いられる。言い換えれば、近赤外線カットフィルター1の光学多層膜3は、従来の撮像装置のカバーガラスやレンズ群を透明基板2とし、この透明基板2の表面に設けられる。撮像装置5のカバーガラス52やレンズ群53に近赤外線カットフィルター1を適用することで、吸収タイプの色ガラスフィルターに近い分光特性を得ることができる。   The near-infrared cut filter 1 is used as, for example, a cover glass 52 and a lens group 53, that is, a first lens L1, a second lens L2, a third lens L3, or a fourth lens L4. In other words, the optical multilayer film 3 of the near-infrared cut filter 1 is provided on the surface of the transparent substrate 2 using the cover glass or lens group of a conventional imaging device as the transparent substrate 2. By applying the near-infrared cut filter 1 to the cover glass 52 and the lens group 53 of the imaging device 5, spectral characteristics close to those of an absorption type color glass filter can be obtained.

以下、実施例を参照してより具体的に説明する。
なお、例1〜6が本発明の近赤外線カットフィルターの実施例に該当し、例7、8が比較例に該当する。また、例9は、参考例となるものであり、近赤外線カットガラスを用いた理想的な近赤外線カットフィルター(吸収タイプの色ガラスフィルター)を示したものである。
Hereinafter, more specific description will be given with reference to examples.
Examples 1 to 6 correspond to examples of the near-infrared cut filter of the present invention, and Examples 7 and 8 correspond to comparative examples. Example 9 is a reference example, and shows an ideal near-infrared cut filter (absorption type colored glass filter) using a near-infrared cut glass.

(例1)
近赤外線カットフィルターは、透明基材の一方の主面に光学多層膜として透過帯規定部のみを有する構成とした。ここで、透明基材は、無色透明ガラス(ショット社製、商品名:D263T、厚み:1mm)とした。また、透過帯規定部は、表1に示すような構成とした。なお、表2に、基本部のTH1、TL1、TH1/TL1、調整部(調整部(1)+調整部(2))のTH2、TL2、およびTH2/TL2を示す。
(Example 1)
The near-infrared cut filter was configured to have only a transmission band defining portion as an optical multilayer film on one main surface of the transparent substrate. Here, the transparent base material was colorless and transparent glass (manufactured by Schott, trade name: D263T, thickness: 1 mm). Further, the transmission band defining part has a structure as shown in Table 1. In Table 2, T H1 , T L1 , T H1 / T L1 of the basic part, T H2 , T L2 , and T H2 / T L2 of the adjusting part (adjusting part (1) + adjusting part (2)) are shown. Show.

Figure 0005973747
Figure 0005973747

Figure 0005973747
Figure 0005973747

この近赤外線カットフィルターについて、光学シミュレーションにより、入射角θが0度のときの分光透過率、および入射角θが30度のときの分光透過率を求めた。図3に、近赤外線カットフィルターの結果を示す。また、図4、5に、それぞれ、基本部、調整部(調整部(1)+調整部(2))のみを設けたときの結果を示す。なお、紫外光側半値波長シフト量、近赤外光側半値波長シフト量、近赤外光側平均シフト量は、マイナスを付しているものは、短波長側にシフトしていることを示し、プラスを付しているものは、長波長側にシフトしていることを示す。   With respect to this near-infrared cut filter, the spectral transmittance when the incident angle θ was 0 degrees and the spectral transmittance when the incident angle θ was 30 degrees were determined by optical simulation. FIG. 3 shows the result of the near infrared cut filter. 4 and 5 show the results when only the basic unit and the adjustment unit (adjustment unit (1) + adjustment unit (2)) are provided, respectively. In addition, the ultraviolet light side half-value wavelength shift amount, near-infrared light side half-value wavelength shift amount, and near-infrared light side average shift amount are negative, indicating that they are shifted to the short wavelength side. Those with a plus indicate that they are shifted to the longer wavelength side.

図3にも示されるように、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯と近赤外光側阻止帯との間の帯域における透過率が80%となるときの波長は612nm、透過率が40%となるときの波長は663nmとなり、これらの絶対値での差(近赤外光側40〜80%波長差)は51nmとなる。また、近赤外光側平均シフト量は−8.4nm(短波長側に8.4nm)となる。   As shown in FIG. 3, the near-infrared cut filter has a transmittance of 80% in the band between the transmission band and the near-infrared light side stop band when the incident angle θ is 0 degree. Is 612 nm, the wavelength when the transmittance is 40% is 663 nm, and the difference between these absolute values (near infrared light side 40-80% wavelength difference) is 51 nm. Further, the near infrared light side average shift amount is −8.4 nm (8.4 nm on the short wavelength side).

なお、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯の紫外光側半値波長は415nm、近赤外光側半値波長は654nm、これらの絶対値での差(半値波長差)は239nmとなる。また、基本部については、紫外光側半値波長が422nm、紫外光側半値波長シフト量が−7nm、近赤外光側半値波長が656nm、近赤外光側半値波長シフト量が−14nm、調整部312については、紫外光側半値波長が418nm、紫外光側半値波長シフト量が−16nm、近赤外光側半値波長が699nm、近赤外光側半値波長シフト量が−33nmとなる。また、この近赤外線カットフィルターについては、阻止帯規定部、例えば後述するような実施例6の阻止帯規定部を併用することで、入射角θが0度のとき、400〜700nmの波長範囲に最大透過率が85%以上となる透過帯、750〜1000nmの波長範囲に最小透過率が1%以下となる近赤外光側阻止帯、および350〜400nmの波長範囲の少なくとも一部に最小透過率が1%以下となる紫外光側阻止帯を形成できる。   For the near-infrared cut filter, when the incident angle θ is 0 degree, the ultraviolet light side half-value wavelength of the transmission band is 415 nm, the near-infrared light side half-value wavelength is 654 nm, and the difference between these absolute values (half-value wavelength) Difference) is 239 nm. In addition, for the basic part, the ultraviolet light side half-value wavelength is 422 nm, the ultraviolet light side half-value wavelength shift amount is -7 nm, the near-infrared light side half-value wavelength is 656 nm, and the near-infrared light side half-value wavelength shift amount is -14 nm. For the part 312, the ultraviolet light side half-value wavelength is 418 nm, the ultraviolet light side half-value wavelength shift amount is −16 nm, the near-infrared light side half-value wavelength is 699 nm, and the near-infrared light side half-value wavelength shift amount is −33 nm. Moreover, about this near-infrared cut filter, by using together the stop-band prescription | regulation part, for example, the stop-band prescription | regulation part of Example 6 which is mentioned later, when incident angle (theta) is 0 degree, it is in the wavelength range of 400-700 nm. A transmission band with a maximum transmittance of 85% or more, a near-infrared light blocking band with a minimum transmittance of 1% or less in the wavelength range of 750 to 1000 nm, and a minimum transmission in at least a part of the wavelength range of 350 to 400 nm. An ultraviolet light side stop band having a rate of 1% or less can be formed.

(例2)
透過帯規定部の構成を表3に示す構成に変更した以外は例1と同様の近赤外線カットフィルターとした。なお、表4に、基本部のTH1、TL1、TH1/TL1、調整部(調整部(1)+調整部(2))のTH2、TL2、およびTH2/TL2を示す。
(Example 2)
A near-infrared cut filter similar to Example 1 was used except that the configuration of the transmission band defining portion was changed to the configuration shown in Table 3. In Table 4, T H1 , T L1 , T H1 / T L1 of the basic part, T H2 , T L2 , and T H2 / T L2 of the adjusting part (adjusting part (1) + adjusting part (2)) are shown. Show.

Figure 0005973747
Figure 0005973747

Figure 0005973747
Figure 0005973747

この近赤外線カットフィルターについて、光学シミュレーションにより、入射角θが0度のときの分光透過率、および入射角θが30度のときの分光透過率を求めた。図6に、近赤外線カットフィルターの結果を示す。また、図7、8に、それぞれ、基本部、調整部のみを設けたときの結果を示す。   With respect to this near-infrared cut filter, the spectral transmittance when the incident angle θ was 0 degrees and the spectral transmittance when the incident angle θ was 30 degrees were determined by optical simulation. FIG. 6 shows the result of the near infrared cut filter. 7 and 8 show the results when only the basic part and the adjustment part are provided, respectively.

図6にも示されるように、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯と近赤外光側阻止帯との間の帯域における透過率が80%となるときの波長は614nm、透過率が40%となるときの波長は665nmとなり、これらの絶対値での差(近赤外光側40〜80%波長差)は51nmとなる。また、近赤外光側平均シフト量は−7.8nmとなる。   As shown in FIG. 6, for this near-infrared cut filter, when the incident angle θ is 0 degree, the transmittance in the band between the transmission band and the near-infrared light side stop band is 80%. Is 614 nm, the wavelength when the transmittance is 40% is 665 nm, and the difference between these absolute values (near infrared light side 40-80% wavelength difference) is 51 nm. Moreover, the near-infrared light side average shift amount is −7.8 nm.

なお、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯の紫外光側半値波長は416nm、近赤外光側半値波長は653nm、これらの絶対値での差(半値波長差)は237nmとなる。また、基本部については、紫外光側半値波長が421nm、紫外光側半値波長シフト量が−7nm、近赤外光側半値波長が672nm、近赤外光側半値波長シフト量が−15nm、調整部312については、紫外光側半値波長が405nm、紫外光側半値波長シフト量が−13nm、近赤外光側半値波長が745nm、近赤外光側半値波長シフト量が−37nmとなる。また、この近赤外線カットフィルターについては、阻止帯規定部、例えば後述するような実施例6の阻止帯規定部を併用することで、入射角θが0度のとき、400〜700nmの波長範囲に最大透過率が85%以上となる透過帯、750〜1000nmの波長範囲に最小透過率が1%以下となる近赤外光側阻止帯、および350〜400nmの波長範囲の少なくとも一部に最小透過率が1%以下となる紫外光側阻止帯を形成できる。   For the near-infrared cut filter, when the incident angle θ is 0 degree, the ultraviolet light side half-value wavelength of the transmission band is 416 nm, the near-infrared light side half-value wavelength is 653 nm, and the difference between these absolute values (half-value wavelength) Difference) is 237 nm. In addition, for the basic part, the ultraviolet light side half-value wavelength is 421 nm, the ultraviolet light side half-value wavelength shift amount is −7 nm, the near-infrared light side half-value wavelength is 672 nm, and the near-infrared light side half-value wavelength shift amount is −15 nm. For the part 312, the ultraviolet light side half-value wavelength is 405 nm, the ultraviolet light side half-value wavelength shift amount is −13 nm, the near-infrared light side half-value wavelength is 745 nm, and the near-infrared light side half-value wavelength shift amount is −37 nm. Moreover, about this near-infrared cut filter, by using together the stop-band prescription | regulation part, for example, the stop-band prescription | regulation part of Example 6 which is mentioned later, when incident angle (theta) is 0 degree, it is in the wavelength range of 400-700 nm. A transmission band with a maximum transmittance of 85% or more, a near-infrared light blocking band with a minimum transmittance of 1% or less in the wavelength range of 750 to 1000 nm, and a minimum transmission in at least a part of the wavelength range of 350 to 400 nm. An ultraviolet light side stop band having a rate of 1% or less can be formed.

(例3)
透過帯規定部の構成を表5に示す構成に変更した以外は例1と同様の近赤外線カットフィルターとした。なお、表6に、基本部のTH1、TL1、TH1/TL1、調整部(調整部(1)+調整部(2))のTH2、TL2、およびTH2/TL2を示す。
(Example 3)
A near-infrared cut filter similar to Example 1 was used except that the configuration of the transmission band defining portion was changed to the configuration shown in Table 5. In Table 6, T H1 , T L1 , T H1 / T L1 of the basic part, T H2 , T L2 , and T H2 / T L2 of the adjusting part (adjusting part (1) + adjusting part (2)) are shown. Show.

Figure 0005973747
Figure 0005973747

Figure 0005973747
Figure 0005973747

この近赤外線カットフィルターについて、光学シミュレーションにより、入射角θが0度のときの分光透過率、および入射角θが30度のときの分光透過率を求めた。図9に、近赤外線カットフィルターの結果を示す。また、図10、11に、それぞれ、基本部、調整部のみを設けたときの結果を示す。   With respect to this near-infrared cut filter, the spectral transmittance when the incident angle θ was 0 degrees and the spectral transmittance when the incident angle θ was 30 degrees were determined by optical simulation. FIG. 9 shows the result of the near infrared cut filter. 10 and 11 show the results when only the basic unit and the adjustment unit are provided, respectively.

図9にも示されるように、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯と近赤外光側阻止帯との間の帯域における透過率が80%となるときの波長は618nm、透過率が40%となるときの波長は667nmとなり、これらの絶対値での差(近赤外光側40〜80%波長差)は49nmとなる。また、近赤外光側平均シフト量は−13.7nmとなる。   As shown in FIG. 9, for this near-infrared cut filter, when the incident angle θ is 0 degree, the transmittance in the band between the transmission band and the near-infrared light side stop band is 80%. Is 618 nm, the wavelength when the transmittance is 40% is 667 nm, and the difference between these absolute values (near infrared light side 40-80% wavelength difference) is 49 nm. The near-infrared light side average shift amount is −13.7 nm.

なお、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯の紫外光側半値波長は417nm、近赤外光側半値波長は657nm、これらの絶対値での差(半値波長差)は240nmとなる。また、基本部については、紫外光側半値波長が428nm、紫外光側半値波長シフト量が−8nm、近赤外光側半値波長が665nm、近赤外光側半値波長シフト量が−14nm、調整部312については、紫外光側半値波長が378nm、紫外光側半値波長シフト量が−10nm、近赤外光側半値波長が780nm、近赤外光側半値波長シフト量が−34nmとなる。また、この近赤外線カットフィルターについては、阻止帯規定部、例えば後述するような実施例6の阻止帯規定部を併用することで、入射角θが0度のとき、400〜700nmの波長範囲に最大透過率が85%以上となる透過帯、750〜1000nmの波長範囲に最小透過率が1%以下となる近赤外光側阻止帯、および350〜400nmの波長範囲の少なくとも一部に最小透過率が1%以下となる紫外光側阻止帯を形成できる。   For the near-infrared cut filter, when the incident angle θ is 0 degree, the ultraviolet light side half-value wavelength of the transmission band is 417 nm, the near-infrared light side half-value wavelength is 657 nm, and the difference between these absolute values (half-value wavelength) The difference is 240 nm. Further, for the basic part, the ultraviolet light side half-value wavelength is 428 nm, the ultraviolet light side half-value wavelength shift amount is -8 nm, the near-infrared light side half-value wavelength is 665 nm, and the near-infrared light side half-value wavelength shift amount is -14 nm. For the part 312, the ultraviolet light side half-value wavelength is 378 nm, the ultraviolet light side half-value wavelength shift amount is −10 nm, the near-infrared light side half-value wavelength is 780 nm, and the near-infrared light side half-value wavelength shift amount is −34 nm. Moreover, about this near-infrared cut filter, by using together the stop-band prescription | regulation part, for example, the stop-band prescription | regulation part of Example 6 which is mentioned later, when incident angle (theta) is 0 degree, it is in the wavelength range of 400-700 nm. A transmission band with a maximum transmittance of 85% or more, a near-infrared light blocking band with a minimum transmittance of 1% or less in the wavelength range of 750 to 1000 nm, and a minimum transmission in at least a part of the wavelength range of 350 to 400 nm. An ultraviolet light side stop band having a rate of 1% or less can be formed.

(例4)
透過帯規定部の構成を表7に示す構成に変更した以外は例1と同様の近赤外線カットフィルターとした。なお、表8に、基本部のTH1、TL1、TH1/TL1、調整部(調整部(1)+調整部(2))のTH2、TL2、およびTH2/TL2を示す。
(Example 4)
A near-infrared cut filter similar to Example 1 was used except that the configuration of the transmission band defining portion was changed to the configuration shown in Table 7. In Table 8, T H1 , T L1 , T H1 / T L1 of the basic part, T H2 , T L2 , and T H2 / T L2 of the adjusting part (adjusting part (1) + adjusting part (2)) are shown. Show.

Figure 0005973747
Figure 0005973747

Figure 0005973747
Figure 0005973747

この近赤外線カットフィルターについて、光学シミュレーションにより、入射角θが0度のときの分光透過率、および入射角θが30度のときの分光透過率を求めた。図12に、近赤外線カットフィルターの結果を示す。また、図13〜15に、それぞれ、基本部、調整部(1)、調整部(2)のみを設けたときの結果を示す。   With respect to this near-infrared cut filter, the spectral transmittance when the incident angle θ was 0 degrees and the spectral transmittance when the incident angle θ was 30 degrees were determined by optical simulation. FIG. 12 shows the result of the near infrared cut filter. 13 to 15 show the results when only the basic unit, the adjustment unit (1), and the adjustment unit (2) are provided, respectively.

図12にも示されるように、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯と近赤外光側阻止帯との間の帯域における透過率が80%となるときの波長は609nm、透過率が40%となるときの波長は665nmとなり、これらの絶対値での差(近赤外光側40〜80%波長差)は56nmとなる。また、近赤外光側平均シフト量は−10.8nmとなる。   As shown also in FIG. 12, for this near-infrared cut filter, when the incident angle θ is 0 degree, the transmittance in the band between the transmission band and the near-infrared light side stop band is 80%. Is 609 nm, the wavelength when the transmittance is 40% is 665 nm, and the difference in absolute value thereof (near infrared light side 40-80% wavelength difference) is 56 nm. The near-infrared light side average shift amount is -10.8 nm.

なお、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯の紫外光側半値波長は416nm、近赤外光側半値波長は655nm、これらの絶対値での差(半値波長差)は239nmとなる。また、阻止帯規定部、例えば後述するような実施例6の阻止帯規定部を併用することで、入射角θが0度のとき、400〜700nmの波長範囲に最大透過率が85%以上となる透過帯、750〜1000nmの波長範囲に最小透過率が1%以下となる近赤外光側阻止帯、および350〜400nmの波長範囲の少なくとも一部に最小透過率が1%以下となる紫外光側阻止帯を形成できる。   For the near-infrared cut filter, when the incident angle θ is 0 degree, the ultraviolet light side half-value wavelength of the transmission band is 416 nm, the near-infrared light side half-value wavelength is 655 nm, and the difference between these absolute values (half-value wavelength) Difference) is 239 nm. Further, by using a stop band defining portion, for example, a stop band defining portion of Example 6 as described later, when the incident angle θ is 0 degree, the maximum transmittance is 85% or more in the wavelength range of 400 to 700 nm. A near-infrared light blocking band with a minimum transmittance of 1% or less in the wavelength range of 750 to 1000 nm, and an ultraviolet with a minimum transmittance of 1% or less in at least a part of the wavelength range of 350 to 400 nm. A light side stop band can be formed.

(例5)
透過帯規定部の構成を表9に示す構成に変更した以外は例1と同様の近赤外線カットフィルターとした。なお、表10に、基本部のTH1、TL1、TH1/TL1、調整部(調整部(1)+調整部(2))のTH2、TL2、およびTH2/TL2を示す。
(Example 5)
A near-infrared cut filter similar to Example 1 was used except that the configuration of the transmission band defining portion was changed to the configuration shown in Table 9. In Table 10, T H1 , T L1 , T H1 / T L1 of the basic part, T H2 , T L2 , and T H2 / T L2 of the adjusting part (adjusting part (1) + adjusting part (2)) are shown. Show.

Figure 0005973747
Figure 0005973747

Figure 0005973747
Figure 0005973747

この近赤外線カットフィルターについて、光学シミュレーションにより、入射角θが0度のときの分光透過率、および入射角θが30度のときの分光透過率を求めた。図16に、近赤外線カットフィルターの結果を示す。また、図17、18に、それぞれ、基本部、調整部のみを設けたときの結果を示す。   With respect to this near-infrared cut filter, the spectral transmittance when the incident angle θ was 0 degrees and the spectral transmittance when the incident angle θ was 30 degrees were determined by optical simulation. FIG. 16 shows the result of the near infrared cut filter. 17 and 18 show the results when only the basic unit and the adjustment unit are provided, respectively.

図16にも示されるように、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯と近赤外光側阻止帯との間の帯域における透過率が80%となるときの波長は620nm、透過率が40%となるときの波長は664nmとなり、これらの絶対値での差(近赤外光側40〜80%波長差)は44nmとなる。また、近赤外光側平均シフト量は−9.2nmとなる。   As shown in FIG. 16, for this near-infrared cut filter, when the incident angle θ is 0 degree, the transmittance in the band between the transmission band and the near-infrared light side stop band is 80%. The wavelength when the transmittance is 620 nm and the transmittance is 40% is 664 nm, and the difference between these absolute values (near infrared light side 40-80% wavelength difference) is 44 nm. Moreover, the near-infrared light side average shift amount is −9.2 nm.

なお、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯の紫外光側半値波長は415nm、近赤外光側半値波長は656nm、これらの絶対値での差(半値波長差)は241nmとなる。また、基本部については、紫外光側半値波長が423nm、紫外光側半値波長シフト量が−7nm、近赤外光側半値波長が656nm、近赤外光側半値波長シフト量が−14nm、調整部312については、紫外光側半値波長が418nm、紫外光側半値波長シフト量が−16nm、近赤外光側半値波長が699nm、近赤外光側半値波長シフト量が−32nmとなる。また、この近赤外線カットフィルターについては、阻止帯規定部、例えば後述するような実施例6の阻止帯規定部を併用することで、入射角θが0度のとき、400〜700nmの波長範囲に最大透過率が85%以上となる透過帯、750〜1000nmの波長範囲に最小透過率が1%以下となる近赤外光側阻止帯、および350〜400nmの波長範囲の少なくとも一部に最小透過率が1%以下となる紫外光側阻止帯を形成できる。   For the near-infrared cut filter, when the incident angle θ is 0 degree, the ultraviolet light side half-value wavelength of the transmission band is 415 nm, the near-infrared light side half-value wavelength is 656 nm, and the difference between these absolute values (half-value wavelength) Difference) is 241 nm. Further, for the basic part, the ultraviolet light side half-value wavelength is 423 nm, the ultraviolet light side half-value wavelength shift amount is -7 nm, the near-infrared light side half-value wavelength is 656 nm, and the near-infrared light side half-value wavelength shift amount is -14 nm. For the part 312, the ultraviolet light side half value wavelength is 418 nm, the ultraviolet light side half value wavelength shift amount is −16 nm, the near infrared light side half value wavelength is 699 nm, and the near infrared light side half value wavelength shift amount is −32 nm. Moreover, about this near-infrared cut filter, by using together the stop-band prescription | regulation part, for example, the stop-band prescription | regulation part of Example 6 which is mentioned later, when incident angle (theta) is 0 degree, it is in the wavelength range of 400-700 nm. A transmission band with a maximum transmittance of 85% or more, a near-infrared light blocking band with a minimum transmittance of 1% or less in the wavelength range of 750 to 1000 nm, and a minimum transmission in at least a part of the wavelength range of 350 to 400 nm. An ultraviolet light side stop band having a rate of 1% or less can be formed.

また、この近赤外線カットフィルターについて、光学シミュレーションにより、入射角θが0度のときの分光透過率、および入射角θが45度のときの分光透過率を求めた。図16に、この近赤外線カットフィルターの結果を併せて示す。また、図17、18に、それぞれ、基本部、調整部のみを設けたときの結果を併せて示す。0度と45度の分光透過率の比較においては、基本部は比較的相似に近い形でシフトしているが、調整部は分光透過率の波形自体が大きく変形している。例5の近赤外線カットフィルターは、これを利用して特定波長域(630nm付近)での透過率変化を抑制している。つまり、このようにすることで、特定波長域の見かけ上の波長シフトを最小限に抑えることが可能である。   For this near-infrared cut filter, the spectral transmittance when the incident angle θ was 0 degrees and the spectral transmittance when the incident angle θ was 45 degrees were determined by optical simulation. FIG. 16 also shows the results of this near infrared cut filter. 17 and 18 also show the results when only the basic part and the adjustment part are provided, respectively. In comparison between the spectral transmittances of 0 degrees and 45 degrees, the basic portion is shifted in a relatively similar form, but the spectral transmittance waveform itself of the adjusting portion is greatly deformed. The near-infrared cut filter of Example 5 uses this to suppress a change in transmittance in a specific wavelength region (near 630 nm). That is, by doing so, it is possible to minimize the apparent wavelength shift in the specific wavelength region.

(例6)
近赤外線カットフィルターは、透明基材の一方の主面に透過帯規定部を有し、他方の主面に阻止帯規定部を有する構成とした。ここで、透明基材は、無色透明ガラス(ショット社製、商品名:D263T、厚み:0.3mm)とした。透過帯規定部の構成は、例5の透過帯規定部と同様とした。阻止帯規定部は、表11に示すような構成とした。
(Example 6)
The near-infrared cut filter has a transmission band defining portion on one main surface of the transparent substrate and a blocking band defining portion on the other main surface. Here, the transparent base material was colorless and transparent glass (manufactured by Schott, trade name: D263T, thickness: 0.3 mm). The configuration of the transmission band defining part was the same as the transmission band defining part of Example 5. The stop band defining portion was configured as shown in Table 11.

Figure 0005973747
Figure 0005973747

この近赤外線カットフィルターについて、光学シミュレーションにより、入射角θが0度のときの分光透過率、および入射角θが30度のときの分光透過率を求めた。図19に近赤外線カットフィルターの結果を示す。また、図20に、阻止帯規定部のみを設けたときの結果を示す。さらに、図21に後述する例9の結果との比較を示す。   With respect to this near-infrared cut filter, the spectral transmittance when the incident angle θ was 0 degrees and the spectral transmittance when the incident angle θ was 30 degrees were determined by optical simulation. FIG. 19 shows the result of the near infrared cut filter. FIG. 20 shows the results when only the stop band defining portion is provided. Furthermore, FIG. 21 shows a comparison with the results of Example 9 described later.

図19にも示されるように、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯と近赤外光側阻止帯との間の帯域における透過率が80%となるときの波長は625nm、透過率が40%となるときの波長は665nmとなり、これらの絶対値での差(近赤外光側40〜80%波長差)は40nmとなる。また、近赤外光側平均シフト量は−9.1nmとなる。また、図20にも示されるように、この阻止帯規定部については、入射角θが0度のとき、350〜400nmの波長範囲の少なくとも一部に平均透過率が5%以下となる紫外光側阻止帯、および800〜1000nmの波長範囲の少なくとも一部に平均透過率が3%以下となる近赤外光側阻止帯を有する。   As shown in FIG. 19, for this near-infrared cut filter, when the incident angle θ is 0 degree, the transmittance in the band between the transmission band and the near-infrared light side stop band is 80%. Is 625 nm, the wavelength when the transmittance is 40% is 665 nm, and the difference between these absolute values (near infrared light side 40-80% wavelength difference) is 40 nm. Moreover, the near-infrared light side average shift amount is −9.1 nm. Further, as shown in FIG. 20, for the stopband defining part, when the incident angle θ is 0 degree, the ultraviolet light whose average transmittance is 5% or less in at least a part of the wavelength range of 350 to 400 nm. It has a near-infrared light side stop band in which the average transmittance is 3% or less in at least a part of the side stop band and the wavelength range of 800 to 1000 nm.

なお、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯の紫外光側半値波長は416nm、近赤外光側半値波長は656nm、これらの絶対値での差(半値波長差)は240nmとなる。また、入射角θが0度のとき、400〜700nmの波長範囲に最大透過率が85%以上となる透過帯、750〜1000nmの波長範囲に最小透過率が1%以下となる近赤外光側阻止帯、および350〜400nmの波長範囲の少なくとも一部に最小透過率が1%以下となる紫外光側阻止帯を形成できる。   For the near-infrared cut filter, when the incident angle θ is 0 degree, the ultraviolet light side half-value wavelength of the transmission band is 416 nm, the near-infrared light side half-value wavelength is 656 nm, and the difference between these absolute values (half-value wavelength) The difference is 240 nm. Further, when the incident angle θ is 0 degree, the near-infrared light having a maximum transmittance of 85% or more in the wavelength range of 400 to 700 nm and the minimum transmittance of 1% or less in the wavelength range of 750 to 1000 nm. An ultraviolet light side stop band having a minimum transmittance of 1% or less can be formed in at least a part of the side stop band and the wavelength range of 350 to 400 nm.

(例7)
透過帯規定部の構成を表12に示す構成に変更した以外は例1と同様の近赤外線カットフィルターとした。なお、表13に、基本部のTH1、TL1、TH1/TL1、調整部のTH2、TL2、およびTH2/TL2を示す。
(Example 7)
A near-infrared cut filter similar to Example 1 was used except that the configuration of the transmission band defining portion was changed to the configuration shown in Table 12. Table 13 shows T H1 , T L1 , T H1 / T L1 of the basic part, T H2 , T L2 , and T H2 / T L2 of the adjustment part.

Figure 0005973747
Figure 0005973747

Figure 0005973747
Figure 0005973747

この近赤外線カットフィルターについて、光学シミュレーションにより、入射角θが0度のときの分光透過率、および入射角θが30度のときの分光透過率を求めた。図22に、近赤外線カットフィルターの結果を示す。また、図23、24に、それぞれ、基本部、調整部のみを設けたときの結果を示す。   With respect to this near-infrared cut filter, the spectral transmittance when the incident angle θ was 0 degrees and the spectral transmittance when the incident angle θ was 30 degrees were determined by optical simulation. FIG. 22 shows the result of the near infrared cut filter. 23 and 24 show the results when only the basic part and the adjustment part are provided, respectively.

図22にも示されるように、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯と近赤外光側阻止帯との間の帯域における透過率が80%となるときの波長は613nm、透過率が40%となるときの波長は669nmとなり、これらの絶対値での差(近赤外光側40〜80%波長差)は56nmとなる。また、近赤外光側平均シフト量は−14.4nmとなる。なお、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯の紫外光側半値波長は418nm、近赤外光側半値波長は657nm、これらの絶対値での差(半値波長差)は239nmとなる。   As shown in FIG. 22, the near-infrared cut filter has a transmittance of 80% in the band between the transmission band and the near-infrared light side stop band when the incident angle θ is 0 degree. Is 613 nm, the wavelength when the transmittance is 40% is 669 nm, and the difference between these absolute values (near infrared light side 40-80% wavelength difference) is 56 nm. Moreover, the near-infrared light side average shift amount is -14.4 nm. For the near-infrared cut filter, when the incident angle θ is 0 degree, the ultraviolet light side half-value wavelength of the transmission band is 418 nm, the near-infrared light side half-value wavelength is 657 nm, and the difference between these absolute values (half-value wavelength) Difference) is 239 nm.

(例8)
透過帯規定部の構成を表14に示す構成に変更した以外は例1と同様の近赤外線カットフィルターとした。なお、表15に、基本部のTH1、TM1、TH1/TM1、調整部のTH2、TL2、およびTH2/TL2を示す。ここで、TM1は、中屈折率膜としてのTa膜(屈折率2.2)の平均光学膜厚である。
(Example 8)
A near-infrared cut filter similar to Example 1 was used except that the configuration of the transmission band defining portion was changed to the configuration shown in Table 14. Table 15 shows the basic parts T H1 , T M1 , T H1 / T M1 , the adjustment parts T H2 , T L2 , and T H2 / T L2 . Here, T M1 is an average optical film thickness of a Ta 2 O 5 film (refractive index 2.2) as a medium refractive index film.

Figure 0005973747
Figure 0005973747

Figure 0005973747
Figure 0005973747

この近赤外線カットフィルターについて、光学シミュレーションにより、入射角θが0度のときの分光透過率、および入射角θが30度のときの分光透過率を求めた。図25に、近赤外線カットフィルターの結果を示す。   With respect to this near-infrared cut filter, the spectral transmittance when the incident angle θ was 0 degrees and the spectral transmittance when the incident angle θ was 30 degrees were determined by optical simulation. FIG. 25 shows the result of the near infrared cut filter.

図25にも示されるように、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯と近赤外光側阻止帯との間の帯域における透過率が80%となるときの波長は618nm、透過率が40%となるときの波長は668nmとなり、これらの絶対値での差(近赤外光側40〜80%波長差)は50nmとなる。また、近赤外光側平均シフト量は−16.1nmとなる。なお、この透過帯規定部については、入射角θが0度のとき、透過帯の紫外光側半値波長は416nm、近赤外光側半値波長は659nm、これらの絶対値での差(半値波長差)は243nmとなる。   As shown also in FIG. 25, for this near infrared cut filter, when the incident angle θ is 0 degree, the transmittance in the band between the transmission band and the near infrared light side stop band is 80%. Is 618 nm, the wavelength when the transmittance is 40% is 668 nm, and the difference between these absolute values (near infrared light side 40-80% wavelength difference) is 50 nm. Further, the near infrared light side average shift amount is −16.1 nm. For the transmission band defining portion, when the incident angle θ is 0 degree, the half band wavelength on the ultraviolet side of the transmission band is 416 nm, the half band wavelength on the near infrared side is 659 nm, and the difference between these absolute values (half band wavelength) Difference) is 243 nm.

(例9)
近赤外線カットフィルターは、透明基材の一方の主面に透過帯規定部を有し、他方の主面に阻止帯規定部を有する構成とした。ここで、透明基材は、近赤外線カットガラス(旭硝子社製、商品名:NF−50T、厚み:0.26mm)とした。透過帯規定部、阻止帯規定部は、それぞれ表16、17に示すような構成とした。なお、この近赤外線カットフィルターは、透明基材として近赤外線を吸収するものを用いるとともに、このような透明基材に対して最適な光学多層膜を設けたものであり、固体撮像素子に好適な特性を有するものの一例となるものである。
(Example 9)
The near-infrared cut filter has a transmission band defining portion on one main surface of the transparent substrate and a blocking band defining portion on the other main surface. Here, the transparent base material was near-infrared cut glass (Asahi Glass Co., Ltd., trade name: NF-50T, thickness: 0.26 mm). The transmission band defining portion and the stop band defining portion are configured as shown in Tables 16 and 17, respectively. The near-infrared cut filter uses a transparent substrate that absorbs near-infrared rays, and is provided with an optimal optical multilayer film for such a transparent substrate, which is suitable for a solid-state imaging device. It is an example of what has a characteristic.

Figure 0005973747
Figure 0005973747

Figure 0005973747
Figure 0005973747

この近赤外線カットフィルターについて、光学シミュレーションにより、入射角θが0度のときの分光透過率、および入射角θが30度のときの分光透過率を求めた。図26に、近赤外線カットフィルターの結果を示す。   With respect to this near-infrared cut filter, the spectral transmittance when the incident angle θ was 0 degrees and the spectral transmittance when the incident angle θ was 30 degrees were determined by optical simulation. FIG. 26 shows the result of the near infrared cut filter.

図26にも示されるように、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯と近赤外光側阻止帯との間の帯域における透過率が80%となるときの波長は596nm、透過率が40%となるときの波長は662nmとなり、これらの絶対値での差(近赤外光側40〜80%波長差)は66nmとなる。また、近赤外光側平均シフト量は−5.6nmとなる。なお、この近赤外線カットフィルターについては、入射角θが0度のとき、透過帯の紫外光側半値波長は416nm、近赤外光側半値波長は646nm、これらの絶対値での差(半値波長差)は230nmとなる。   As shown also in FIG. 26, for this near-infrared cut filter, when the incident angle θ is 0 degree, the transmittance in the band between the transmission band and the near-infrared light side stop band is 80%. Is 596 nm, the wavelength when the transmittance is 40% is 662 nm, and the difference in absolute value (near infrared light side 40-80% wavelength difference) is 66 nm. Moreover, the near-infrared light side average shift amount is −5.6 nm. For the near-infrared cut filter, when the incident angle θ is 0 degree, the ultraviolet light side half-value wavelength of the transmission band is 416 nm, the near-infrared light side half-value wavelength is 646 nm, and the difference between these absolute values (half-value wavelength) The difference is 230 nm.

以上の結果をまとめて表18に示す。   The results are summarized in Table 18.

Figure 0005973747
Figure 0005973747

例1〜6の近赤外線カットフィルターによれば、透過率変化のなだらかさを表す指標となる近赤外光側40〜80%波長差を比較的に大きくできるとともに、近赤外光側平均シフト量を14nm以下といった低い値に抑制できる。これにより、例えば例9に示すような理想的な近赤外線カットフィルター(吸収タイプの色ガラスフィルター)に近い特性とすることができる。一方、例7、8の近赤外線カットフィルターによれば、透過率変化のなだらかさを表す指標となる近赤外光側40〜80%波長差は比較的に大きくできるが、近赤外光側平均シフト量は14nmを超える値となる。   According to the near-infrared cut filters of Examples 1 to 6, the near-infrared light side average shift can be made relatively large, while the near-infrared light side 40 to 80% wavelength difference serving as an index representing the smoothness of the transmittance change can be increased. The amount can be suppressed to a low value such as 14 nm or less. Thereby, it can be set as the characteristic close | similar to an ideal near-infrared cut off filter (absorption type colored glass filter) as shown in Example 9, for example. On the other hand, according to the near-infrared cut filter of Examples 7 and 8, the near-infrared light side 40-80% wavelength difference, which is an index indicating the smoothness of the transmittance change, can be relatively large, but the near-infrared light side The average shift amount exceeds 14 nm.

1…近赤外線カットフィルター、2…透明基板、3…光学多層膜、31…透過帯規定部、5…撮像装置、32…阻止帯規定部、51…固体撮像素子、52…カバーガラス、53…レンズ群、54…絞り、55…匡体、311…基本部、312…調整部   DESCRIPTION OF SYMBOLS 1 ... Near-infrared cut filter, 2 ... Transparent substrate, 3 ... Optical multilayer film, 31 ... Transmission band prescription | regulation part, 5 ... Imaging device, 32 ... Stop band prescription | regulation part, 51 ... Solid-state image sensor, 52 ... Cover glass, 53 ... Lens group: 54 ... Aperture, 55 ... Housing, 311 ... Basic part, 312 ... Adjusting part

Claims (4)

透明基板と、前記透明基板の少なくとも一方の主面に設けられ、屈折率が2.0以上の高屈折率膜および屈折率が1.7以下の低屈折率膜を有する光学多層膜とを備える近赤外線カットフィルターであって、
前記光学多層膜は、前記透明基板の一方の主面に設けられ、透過帯の形状を主として規定する透過帯規定部と、前記透明基板の他方の主面に設けられ、近赤外光側阻止帯および紫外光側阻止帯の形状を主として規定する阻止帯規定部とを有し、
前記透過帯規定部は、基本部と、前記基本部の少なくとも一方の主面に設けられる調整部とを有し、
前記基本部は、屈折率が2.0以上の基本部用高屈折率膜と屈折率が1.7以下の基本部用低屈折率膜との交互積層構造を有し、前記基本部用高屈折率膜と前記基本部用低屈折率膜との合計層数が10層以上、前記基本部用高屈折率膜の平均光学膜厚をTH1、前記基本部用低屈折率膜の平均光学膜厚をTL1としたとき、TH1/TL1が2以上であり、
前記調整部は、前記基本部の一方の主面または両主面に設けられ、屈折率が2.0以上の調整部用高屈折率膜と屈折率が1.7以下の調整部用低屈折率膜との交互積層構造を有し、前記調整部用高屈折率膜と前記調整部用低屈折率膜との合計層数が10層以上、前記調整部用高屈折率膜の平均光学膜厚をTH2、前記調整部用低屈折率膜の平均光学膜厚をTL2としたとき、TH2/TL2が1.5以下であり、
垂直入射条件での分光特性において、400〜700nmの波長範囲の少なくとも一部に最大透過率が85%以上となる透過帯、750〜1000nmの波長範囲の少なくとも一部に最小透過率が1%以下となる近赤外光側阻止帯、および350〜400nmの波長範囲の少なくとも一部に最小透過率が1%以下となる紫外光側阻止帯を有し、前記透過帯の紫外光側半値波長と近赤外光側半値波長との差が200nm以上、前記透過帯と前記近赤外光側阻止帯との間における透過率が80%となるときの波長と透過率が40%となるときの波長との絶対値での差が20〜100nm、垂直入射条件と30度入射条件との分光特性の比較において、前記透過帯と前記近赤外光側阻止帯との間における透過率が20〜80%となる部分の絶対値での平均波長シフト量が14nm以下であることを特徴とする近赤外線カットフィルター。
A transparent substrate; and an optical multilayer film provided on at least one main surface of the transparent substrate and having a high refractive index film having a refractive index of 2.0 or more and a low refractive index film having a refractive index of 1.7 or less. A near-infrared cut filter,
The optical multilayer film is provided on one main surface of the transparent substrate, and the transmission band defining portion for mainly defining the shape of transparently strip, provided on the other main surface of the transparent substrate, a near-infrared light side the zone of inhibition and ultraviolet light side blocking band shape having a predominantly and stopband defining portion for defining,
The transmission band defining part has a basic part and an adjusting part provided on at least one main surface of the basic part,
The basic part has an alternate laminated structure of a high refractive index film for a basic part having a refractive index of 2.0 or more and a low refractive index film for a basic part having a refractive index of 1.7 or less. The total number of layers of the refractive index film and the basic portion low refractive index film is 10 or more, the average optical film thickness of the basic portion high refractive index film is T H1 , and the average optical thickness of the basic portion low refractive index film is When the film thickness is T L1 , T H1 / T L1 is 2 or more,
The adjusting portion is provided on one main surface or both main surfaces of the basic portion, and the adjusting portion high refractive index film having a refractive index of 2.0 or more and the adjusting portion low refraction having a refractive index of 1.7 or less. An average optical film of the high refractive index film for the adjustment part, the total number of layers of the high refractive index film for the adjustment part and the low refractive index film for the adjustment part being 10 or more. When the thickness is T H2 and the average optical film thickness of the low refractive index film for adjusting part is T L2 , T H2 / T L2 is 1.5 or less,
In spectral characteristics under normal incidence conditions, the transmission band has a maximum transmittance of 85% or more in at least part of the wavelength range of 400 to 700 nm, and the minimum transmittance is 1% or less in at least part of the wavelength range of 750 to 1000 nm. A near-infrared light side stop band, and an ultraviolet light side stop band having a minimum transmittance of 1% or less in at least part of the wavelength range of 350 to 400 nm, When the difference between the near-infrared light side half-value wavelength is 200 nm or more and the transmittance between the transmission band and the near-infrared light side stop band is 80% and the transmittance is 40% The difference in absolute value with respect to the wavelength is 20 to 100 nm, and the transmittance between the transmission band and the near-infrared light side stop band is 20 to 20 in comparison of the spectral characteristics between the normal incidence condition and the 30 degree incidence condition. The absolute value of the part that becomes 80% Near infrared cut filter, wherein a mean wavelength shift amount is 14nm or less.
請求項1記載の近赤外線カットフィルターにおいて、
前記透過帯規定部は、垂直入射条件および30度入射条件の分光特性において、前記調整部の紫外線側半値波長が前記基本部の紫外線側半値波長よりも紫外線側にあり、前記調整部の赤外線側半値波長が前記基本部の赤外線側半値波長よりも赤外線側にあり、
垂直入射条件の分光特性において、前記調整部の赤外線側半値波長と前記基本部の赤外線側半値波長との絶対値での差が20nm以上である近赤外線カットフィルター。
The near-infrared cut filter according to claim 1,
The transmission band defining portion is configured such that, in the spectral characteristics under normal incidence conditions and 30 degree incidence conditions, the half-value wavelength on the ultraviolet side of the adjustment unit is closer to the ultraviolet side than the half-value wavelength on the ultraviolet side of the basic unit. The half-value wavelength is on the infrared side than the infrared side half-value wavelength of the basic part,
A near-infrared cut filter in which the difference in absolute value between the infrared half-value wavelength of the adjustment unit and the infrared half-value wavelength of the basic unit is 20 nm or more in the spectral characteristics under normal incidence conditions.
請求項1または2記載の近赤外線カットフィルターにおいて、
前記阻止帯規定部は、垂直入射条件での分光特性において、350〜400nmの波長範囲の少なくとも一部に平均透過率が5%以下となる紫外光側阻止帯、および800〜1000nmの波長範囲の少なくとも一部に平均透過率が3%以下となる近赤外光側阻止帯を有する近赤外線カットフィルター。
The near-infrared cut filter according to claim 1 or 2,
The stopband defining portion has an ultraviolet light side stopband having an average transmittance of 5% or less in at least a part of a wavelength range of 350 to 400 nm and a wavelength range of 800 to 1000 nm in spectral characteristics under normal incidence conditions. A near-infrared cut-off filter having a near-infrared light side blocking band having an average transmittance of 3% or less at least partially.
請求項1乃至3のいずれか1項記載の近赤外線カットフィルターにおいて、
前記高屈折率膜は、TiO、Nb、Ta、またはこれらの複合酸化物からなり、前記低屈折率膜は、SiO、MgF、Al、またはこれらの複合酸化物からなる近赤外線カットフィルター。
In the near-infrared cut filter according to any one of claims 1 to 3,
The high refractive index film is made of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , or a complex oxide thereof, and the low refractive index film is made of SiO 2 , MgF 2 , Al 2 O 3 , or these Near-infrared cut filter made of complex oxide.
JP2012041392A 2012-02-28 2012-02-28 Near-infrared cut filter Active JP5973747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041392A JP5973747B2 (en) 2012-02-28 2012-02-28 Near-infrared cut filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041392A JP5973747B2 (en) 2012-02-28 2012-02-28 Near-infrared cut filter

Publications (2)

Publication Number Publication Date
JP2013178338A JP2013178338A (en) 2013-09-09
JP5973747B2 true JP5973747B2 (en) 2016-08-23

Family

ID=49270037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041392A Active JP5973747B2 (en) 2012-02-28 2012-02-28 Near-infrared cut filter

Country Status (1)

Country Link
JP (1) JP5973747B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014034386A1 (en) * 2012-08-29 2016-08-08 旭硝子株式会社 Near-infrared cut filter
WO2020025483A1 (en) * 2018-07-30 2020-02-06 Ams Ag Filter assembly, detector, and method of manufacture of a filter assembly

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993025B2 (en) * 2012-10-26 2016-09-14 京セラ株式会社 Optical filter member and imaging apparatus including the same
CN104823086B (en) 2012-11-30 2017-08-15 旭硝子株式会社 Near infrared ray cut-off filter
JP6247033B2 (en) * 2013-07-02 2017-12-13 光伸光学工業株式会社 IR cut filter
JP6103152B2 (en) 2015-01-14 2017-03-29 旭硝子株式会社 Near-infrared cut filter and solid-state imaging device
JP6954400B2 (en) * 2015-10-08 2021-10-27 Jsr株式会社 Optical filter and image sensor using optical filter
CN109975905B (en) * 2017-12-28 2022-06-24 Agc株式会社 Near infrared cut-off filter
CN112717281B (en) * 2021-01-14 2022-07-08 重庆翰恒医疗科技有限公司 Medical robot platform and control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029027A (en) * 2001-07-19 2003-01-29 Tokai Kogaku Kk Near ir ray cut filter
JP2004354735A (en) * 2003-05-29 2004-12-16 Daishinku Corp Light ray cut filter
JP2006011408A (en) * 2004-05-24 2006-01-12 Olympus Corp Optical element and optical equipment
JP2007183525A (en) * 2005-12-07 2007-07-19 Murakami Corp Dielectric multilayer film filter
WO2013015303A1 (en) * 2011-07-28 2013-01-31 旭硝子株式会社 Optical member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014034386A1 (en) * 2012-08-29 2016-08-08 旭硝子株式会社 Near-infrared cut filter
WO2020025483A1 (en) * 2018-07-30 2020-02-06 Ams Ag Filter assembly, detector, and method of manufacture of a filter assembly

Also Published As

Publication number Publication date
JP2013178338A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5973747B2 (en) Near-infrared cut filter
JP6003895B2 (en) Near-infrared cut filter
JP6206410B2 (en) Near-infrared cut filter
JP6241419B2 (en) Near-infrared cut filter
KR102061477B1 (en) Near-infrared cut-off filter
JP6119747B2 (en) Near-infrared cut filter
JP6034785B2 (en) Optical member
US20150116832A1 (en) Optical component
JP6383980B2 (en) Near-infrared cut filter
CN109975905B (en) Near infrared cut-off filter
JP2015227963A (en) Optical filter and manufacturing method therefor
JP6542511B2 (en) Band pass filter
JP6136661B2 (en) Near-infrared cut filter
JP6467895B2 (en) Optical filter
JP2019120942A (en) Near infrared cut filter
JP2015165265A (en) Optical filter and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160715

R150 Certificate of patent or registration of utility model

Ref document number: 5973747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250