TW201245471A - Co-Si-BASED COPPER ALLOY SHEET - Google Patents

Co-Si-BASED COPPER ALLOY SHEET Download PDF

Info

Publication number
TW201245471A
TW201245471A TW101108257A TW101108257A TW201245471A TW 201245471 A TW201245471 A TW 201245471A TW 101108257 A TW101108257 A TW 101108257A TW 101108257 A TW101108257 A TW 101108257A TW 201245471 A TW201245471 A TW 201245471A
Authority
TW
Taiwan
Prior art keywords
pickling
polishing
comparative example
copper alloy
rolling
Prior art date
Application number
TW101108257A
Other languages
Chinese (zh)
Other versions
TWI450985B (en
Inventor
Kazutaka AOSHIMA
Original Assignee
Jx Nippon Mining & Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx Nippon Mining & Metals Corp filed Critical Jx Nippon Mining & Metals Corp
Publication of TW201245471A publication Critical patent/TW201245471A/en
Application granted granted Critical
Publication of TWI450985B publication Critical patent/TWI450985B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

To provide a Co-Si-based copper alloy sheet which has excellent solder wettability and undergoes the formation of fewer pinholes upon being soldered. A Co-Si-based copper alloy sheet containing 0.5-3.0 mass% of Co and 0.1-1.0 mass% of Si, with the remainder being Cu and unavoidable impurities, wherein a requirement represented by the following formula is fulfilled: [60 degrees specular glossiness G in the direction parallel to the rolling direction (RD)] - [60 degrees specular glossiness G in direction transverse to rolling direction (TD)] = 90%.

Description

201245471 -» 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種C0_Si系銅合金板。 【先前技術】 要求連接器等電氣.電子設備小型化,而開發有強度 優異之Co-Si系銅合金(卡遜合金)。然而,由於系 卡遜合金係自Co與Si使析出物生成,故需要於高溫之固 溶或時效處理,於其表面形成牢固之氧化皮膜,而使焊料 潤濕性劣化。又’由於卡遜合金中亦有於最終壓延後進行 弛力退火之步驟,其會使氧化皮膜進一步成長。因此,於 最終熱處理後進行酸洗而使氧化皮膜溶解,進而進行藉由 拋光(buff)研磨除去氧化皮膜之步驟(以下,稱作「^洗 拋光研磨」較合適)。 據此,開發出一種將表面粗糙度Ra規定為〇_2 以 下,且將Rt規定為2 μιΏ以下,並使焊料潤濕性提高之銅 合金材料(專利文獻1 )。 又,開發出一種若進行上述之酸洗拋光研磨,則因於 表面產生由拋光導致之壟狀凹凸而使焊料潤濕性降低,故 於精壓延前實施酸洗或脫脂處理,而使焊料潤濕性提高之 銅合金材料(專利文獻2 )。若於精壓延前進行酸洗或脫脂 處理,則於表示表面凹凸成分之度數分佈圖中波峰位置會 出現於較粗糙度曲線用之平均線(於度數分佈圖中零之位 置)更靠正側(凸成分),並會使焊料潤濕性或鍍敷性提高。 3 201245471 專利文獻1 :國際公開WO201 0/13790號公報 專利文獻2 :曰本專利第4413992號公報(〇〇13段落) 【發明内容】 然而’於專利文獻1所記載之技術之情形時,即便 焊料潤濕性為良好,材料表面之氧化皮膜亦無法去除乾 淨’或因於最終壓延前進行酸洗、研磨,故若因壓延造 成異物壓入的話’會產生針孔(pinhole )(部分未附著焊 料之區域)。若針孔變多則易產生焊接不良,尤其是若於 將卡遜合金成形為端子時附有焊料之部分產生針孔則會 導致焊接不良。 又,於專利文獻2所記載之技術之情形時,因於精壓 延前必須進行酸洗或脫脂處理,故步驟變得複雜,生產力 會變差。又’ g] CG_Si系卡遜合金之氧化皮膜非常堅固,故 僅以酸洗不易使其脫落,且因專利文獻 2所記載之技術為201245471 -» VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a C0_Si-based copper alloy sheet. [Prior Art] Co-Si copper alloy (Carson alloy) having excellent strength has been developed to miniaturize electrical and electronic equipment such as connectors. However, since the Caesar alloy is formed of precipitates from Co and Si, it is required to be solid-solved or aged at a high temperature to form a strong oxide film on the surface, which deteriorates solder wettability. Further, since the Carson alloy also has a step of performing relaxation annealing after final rolling, it causes the oxide film to further grow. Therefore, after the final heat treatment, pickling is performed to dissolve the oxide film, and a step of removing the oxide film by buff polishing (hereinafter referred to as "washing and polishing" is preferable). As a result, a copper alloy material having a surface roughness Ra of 〇 2 or less and an Rt of 2 μm or less and improved solder wettability has been developed (Patent Document 1). Further, when the above-described pickling polishing is performed, the solder wettability is reduced due to the ridge-like irregularities caused by polishing on the surface, so that pickling or degreasing treatment is performed before the finish rolling, and the solder is wetted. A copper alloy material having improved wettability (Patent Document 2). If the pickling or degreasing treatment is carried out before the finish rolling, the peak position in the degree distribution map indicating the surface unevenness component appears on the average line of the roughness curve (zero position in the degree distribution map). (Convex component), which improves solder wettability or plating properties. In the case of the technique described in Patent Document 1, even if it is in the case of the technique described in Patent Document 1, even if it is in the case of the technique described in Patent Document 1, the patent document 1 is disclosed in Japanese Laid-Open Patent Publication No. 4,131,992. The solder wettability is good, and the oxide film on the surface of the material cannot be removed cleanly. Or it is pickled and ground before the final rolling. Therefore, if foreign matter is pressed in due to rolling, a pinhole will be generated (partially unattached). Area of solder). If the number of pinholes is increased, soldering defects are likely to occur, and in particular, if a pinhole is formed in a portion where solder is formed when the Carson alloy is formed into a terminal, soldering failure may result. Further, in the case of the technique described in Patent Document 2, since the pickling or the degreasing treatment must be performed before the finish pressing, the steps become complicated and the productivity is deteriorated. Moreover, the oxide film of the CG_Si-based Carson alloy is very strong, so it is not easy to be peeled off by pickling only, and the technique described in Patent Document 2 is

膜,而易使針孔產生。Membrane, and easy to make pinholes.

Co-Si系銅合金板βCo-Si copper alloy plate β

酸洗拋光研磨, 之拋光輪進行足夠次數之最終熱處理後之 來除去材料表面之氧化皮膜或藉由壓延而 4 201245471 ^入=異物’並且藉由使表面為具有 面,使焊料潤濕性優異,且針孔會減少。、千丨月 C。·。為5達=之目的,本發明…系銅合金板係含有 LO . 0.5〜3.0 質量 %、s " 及無法避免之雜質構成:且一Pickling and polishing, the polishing wheel is subjected to a sufficient number of final heat treatments to remove the oxide film on the surface of the material or by calendering, and by making the surface have a surface, the solder is excellent in wettability. And the pinhole will be reduced. , Millennium. C. ·. For the purpose of 5 达, the invention is a copper alloy plate containing LO. 0.5~3.0 mass %, s " and unavoidable impurities: and

面光澤度厂堅延直= 延之平^向之6〇度鏡 (TD)) )^9〇%〇 直角方向之6〇度鏡面光澤度GSurface gloss factory firm straight = Yan Zhiping ^ 6 〇 〇 镜 (TD)) ) ^ 〇 〇 〇 直 直 直 镜 镜 镜 镜 镜 镜 镜 镜 镜

較佳為堡延平古A 較粗趟度Ra(RD)以.G7叩。 ::”延平行方向之表面粗縫度咖) 佈::佳為於表示屋延直角方向之表面凹凸成分之度;分 佈圖中波峰位置 度數刀 (凹成分側)。 粗‘度曲線用之平均線更靠負側 較佳為進一步含有2_〇質量%以下之選自自Μ"。、 二:1、(:Γ、V、Nb、M。、Zr、B、Ag、Be、Zn、Sn、密 。金(mlseh metal)及p構成之群中的i種或2種以上。 根據本發明,可獲得一種焊料潤隸優異、且焊接時 之針孔較少之Co-Si系銅合金板。 【實施方式】 |下,對本發明實施形態之〜Si系銅合金板進行說 。再者,於本發明中所謂%若無特別說明,則表示質量%。 —又,所明表面粗糙度Ra係指JIS B〇6〇i ( 2〇〇1年)所 ,弋之中心線平均粗糙度’所謂表面粗糙度Rz係指該爪 所規定之最大高度。 201245471 首先’參照圖l,對本發明之技術思想進行說明。圖1 表示本發明實施形態之Co_Si系銅合金板製造步驟之一例。 首先’將最終熱處理後之銅合金板2導入酸洗槽4進 订酸洗’而於壓延平行方向(RC))及壓延直角方向(td ) 大致均勻地將氧化皮膜溶解而使厚度變薄。因此,酸洗後 壓延平行方向之60度鏡面光澤度g(RD)及壓延直角方向 之60度鏡面光澤度G(TD)大致相同,該等之差為{G(rd) -G ( TD) }与 〇 (參照圖 1 ( a))。 其次’若使用拋光輪6研磨酸洗後之銅合金板,則會 附有由拋光輪.造成之拋光痕跡之傷痕。於作為拋光輪6之 旋轉方向的壓延平行方向(RD)中,由於伴隨進行材料表 面之研磨,以酸洗無法溶解之氧化皮膜會自材料表面消 失,故材料表面變得平滑且G (RD)變大。另一方面,即 便於壓延直角方向(TD)上亦進行材料表面之研磨,但由 於TD方向之材料表面形成有由拋光輪造成之拋光痕跡之 傷痕,故表面平滑之程度並無較大變化,且G ( td)並無 較大變化。因此,可判斷:若{G(RD) _g(td)丨〉〇,且 {G ( RD ) .G ( TD ) } $ 9G%,則進行拋光研磨會充分地除 去氧化皮膜,且焊料潤濕性會提高,焊接時之針孔會減少。 雖並未對{G( RD)TD) 卜up I山& ^ u W 之上限作出特別規定,但4〇〇% 以下較為實用。 *再者,60度鏡面光澤度反映特定面積之材料表面狀 態。另一方面,表面粗齡房楚C丄 祖化度(Ra羊)反映特定直線上之材 料表面狀態。因此認為:60彦鐘面氺.,罢Λ ± 度鏡面先澤度較表面粗糙度會 201245471 更佳地反映局部存在於材料表面之氧化皮膜或異物等的 態。 再者,拋光輪6為圓筒狀,其表面附著有研磨粒。而 且,以使拋光輪6於銅合金板2之通板方向(圖丨之自左 向右)順向地旋轉而使拋光輪6之研磨粒削過銅合金板2 之表面。因此,進行拋光研磨使氧化皮膜之除去程度可利 用研磨粒之粒徑(粒度)、銅合金板2之通板次數、通板速 度(線速度)、拋光輪6之旋轉次數等進行調整。 又,較佳為壓延平行方向之表面粗糙度Ra(RD)為〇.〇7 μηι以下。於Ra ( RD )為〇 〇7㈣以下之情形時會有沾 焊料時間C zero cross time )變小之情形。 於本發明中,亦可規定壓延直角方向之表面凹凸成分 之度數分佈圖中的波峰位置。此處,表面凹凸成分之度數 分佈圖與專利文獻2記載相同,為將橫軸設為自粗糙度曲 線用之平均線起的高度,而將縱軸設為頻度(測定資料數) 而繪製之圖。又,於本發明中,自粗糙度曲線用之平均線 起的向度以0.05 μιη為間隔(刻度)來設定橫軸,並將每個 s亥間隔之測定資料數作為頻度進行合計,並繪製。再者,「粗 键度曲線用之平均線」係由JIS_B〇6〇1所規定。 度數分佈圖具體而言以如以下方式作成。(1 )首先, 治著試樣之壓延直角方向,測定「自粗糙度曲線用之平均 線起的高度」°即,因可於每個表面位置獲得自粗糙度曲線 用之平均線起的高度資料(以下,稱作「測定資料」較合 適)’故可根據所得之測定資料求得波峰位置等,並且對測 7 201245471 定資料進行數值處理而算出Ra、RZQ(2)將自「粗糙度曲 線用之平均線」起的高度隔出〇 〇5 μηι間隔。(3 )於每個上 述0.〇5 μηι間隔計數該測定資料數(度數)。 再者’測定資料係以標準長度1.25 mm、截止(cutoff) 值25 mm (依照JIS_B0601 )、掃描速度〇丨mm/sec測定。 測定係使用小阪研究所公司製造之表面粗糙度測定機 (Surfcorder SE3400 ),且測定長度為K25 mm,測定資料 數為75 00點。 上述波峰位置之具體之測定方法亦與專利文獻2記載 相同’且於所得測定資料中’以將自「粗糙度曲線用之平 均線」起的高度大於0者設為上(正)之成分,將小於〇 者分類為下(負)之成分而對度數分佈進行繪製。若將橫 軸作為自「粗糙度曲線用之平均線」起的高度(μιη 且將 每0.05 μηι合計之測定資料數作為頻度而作為縱軸而重新 繪製’則可獲得圖2及圖3 (對應於專利文獻2之圖3)。 於圖2及圆3 ’若拉線至橫軸之自「粗糙度曲線用之平均線」 起的高度為Ομιη之位置,則可判別頻度之波峰位置為凹成 分(負側)、凸成分(正側)、(亦或為〇 )。 此處,如以下之方式進行上述「波峰位置」之判別。 首先,於頻度·自粗糙度曲線用之平均線起的高度之圖(參 照圖2、圖3 )中,將值最高之頻度設為P1,並將值次高之 頻度設為P2。而且,(1 )所謂波峰位置為凹成分(負側) 係指pi與P2兩者均位於負側之情形、或Ρ2/ρι<99%& 位於負側之情形。(2)所謂波峰位置為凸成分(正側)係 8 201245471 ==者。:位於正r情形、… 之情形(作除去2所明波蜂位置為0係指P2㈣99% …者均位=::2兩者均位於負側之情形、… %正側之情形以外)。 自粗糙度曲線用之平均線起 係指粗糖度曲線用之平均線。 %度為Gp之線 於正斑“根據測《3次之結果分別求得之波峰位置分散 作凸:Λ 2次測定中波峰處於上(正)成分,則視 作凸成分側。 為頻”二基於/述之實施例4之實際測定資料,以縱軸 ‘::/。 k軸為自粗糙度曲線用之平均線起的高度 (Mm )重新繪製之圖表。 又,圖3係基於下述實施例18之實際測定資料,以縱 為頻度( ./〇)、橫軸為自粗梭度曲線用之平均線起的高度 (μηι)重新繪製之圖表。 於圖3之情形時,可知於表面凹凸成分之度數分佈圖 中波峰位置較粗糙度曲線用之平均線更靠正側(凸成分 側)’於圖2之情形時,可知上述波峰位置較祕度曲線用 之平均線更靠負側(凹成分側)。即,於本發明(例如圖2、 實施例4)中,即便波峰位置位於負側(凹成分側),潤滿 特性亦為良好,濶濕特性並不由波峰位置來決定。再者, 實施例18藉由變更酸洗時之酸洗液,使波峰位置變為正。 上述表面粗糖度Ra、Rz之測定方法與專利文獻2記載 相同,以標準長度丨.25 mm、截止值25爪爪(依照 201245471 JIS-B060 1 )、掃描速度 〇· 1 mm/sec 測定、a, m ^ 〗疋。測定係使用小阪 研九所公司製造之表面粗糙度測定 機(Surfcorder SE3400 ) ’測定長為1.25 mm且測定資料鮮 負才4數為7500點。再 者’對表面粗糙度Ra、Rz進行3次測定 ^ 並取其平均值。 其次,對本發明之Co-Si系銅合金板发 巫双〈再他規定及組成 進行說明。 <組成> 0 · 1〜1.0質量%且剩餘 含有Co : 0.5〜3_0質量%、Si : 部分為Cu及無法避免之雜質。 若Co及Si之含量較上述範圍少,則使c〇2Si之析出強 化不足,無法實現強度之提南。另一方面,若c〇及&之 含量超過上述範圍,則使導電性劣化,亦使熱加工性劣化。Preferably, the Yan Yanping A is thicker than the coarseness Ra (RD) by .G7叩. ::"The surface of the parallel direction is rough." Cloth:: is the degree of the surface unevenness of the room in the direction of the right angle; the peak position of the curve in the distribution diagram (the concave component side). The average line is preferably on the negative side, and further preferably contains 2% to 〇% by mass or less selected from the group consisting of "Μ", 2: 1, (: Γ, V, Nb, M., Zr, B, Ag, Be, Zn, According to the present invention, it is possible to obtain a Co-Si-based copper alloy which is excellent in solder flow and has less pinholes during soldering. [Embodiment] The following is a description of the "Si-based copper alloy sheet according to the embodiment of the present invention." In the present invention, the % is % unless otherwise specified. - Further, the surface roughness is as follows. Ra refers to JIS B〇6〇i (2〇〇1), and the center line average roughness of the crucible 'the so-called surface roughness Rz refers to the maximum height specified by the claw. 201245471 First, referring to FIG. 1, the present invention is The technical idea will be described. Fig. 1 shows a manufacturing step of a Co_Si-based copper alloy sheet according to an embodiment of the present invention. An example: First, 'the copper alloy plate 2 after the final heat treatment is introduced into the pickling tank 4 to pick up the pickling', and in the rolling parallel direction (RC)) and the rolling orthogonal direction (td), the oxide film is dissolved substantially uniformly to change the thickness. Therefore, the 60-degree specular gloss g(RD) in the parallel direction after pickling and the 60-degree specular gloss G(TD) in the right-angle direction are approximately the same, and the difference is {G(rd) - G ( TD) } and 〇 (refer to Figure 1 (a)). Secondly, if the copper alloy plate after pickling is polished by the polishing wheel 6, it will be attached with a scratch of the polishing trace caused by the polishing wheel. In the rolling parallel direction (RD) in the direction of rotation, the oxide film which cannot be dissolved by pickling disappears from the surface of the material due to the polishing of the surface of the material, so that the surface of the material becomes smooth and G (RD) becomes large. On the other hand, even if the surface of the material is polished in the direction of the right angle of the rolling (TD), since the surface of the material in the TD direction is formed with a scratch of the polishing trace caused by the polishing wheel, the degree of smoothness of the surface does not largely change, and G (td) has not changed much. Therefore, Break: If {G(RD) _g(td)丨>〇, and {G ( RD ) .G ( TD ) } $ 9G%, polishing and polishing will sufficiently remove the oxide film, and the solder wettability will be improved. The pinholes during welding will be reduced. Although the upper limit of {G( RD)TD) Bu I I & ^ u W is not specified, it is more practical than 4〇〇%. * Furthermore, 60 degrees The specular gloss reflects the surface state of the material in a specific area. On the other hand, the surface roughness (Ra sheep) reflects the surface state of the material on a specific line. Therefore, it is considered that: 60 钟 clock face 氺., Λ Λ 度 镜 镜 先 先 先 先 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 Further, the polishing wheel 6 has a cylindrical shape, and abrasive grains adhere to the surface thereof. Further, the polishing wheel 6 is rotated in the direction of the through-plate of the copper alloy plate 2 (from the left to the right) to cut the abrasive grains of the polishing wheel 6 over the surface of the copper alloy plate 2. Therefore, the degree of removal of the oxide film by polishing and polishing can be adjusted by using the particle size (particle size) of the abrasive grains, the number of passes of the copper alloy plate 2, the plate speed (linear velocity), the number of rotations of the polishing wheel 6, and the like. Further, it is preferable that the surface roughness Ra (RD) in the rolling parallel direction is 〇.〇7 μηι or less. When Ra ( RD ) is 〇 ( 7 (4) or less, there is a case where the soldering time C zero cross time becomes small. In the present invention, the peak position in the power distribution map of the surface unevenness component in the direction perpendicular to the rolling direction may be specified. Here, the degree distribution map of the surface unevenness component is the same as that described in Patent Document 2, and the horizontal axis is the height from the average line for the roughness curve, and the vertical axis is plotted as the frequency (measurement data number). Figure. Further, in the present invention, the horizontal axis is set at intervals of 0.05 μm from the average line of the roughness curve, and the number of measured data per s of the interval is totaled as frequency and plotted. . Furthermore, the "average line for the coarseness curve" is defined by JIS_B〇6〇1. The degree distribution map is specifically produced as follows. (1) First, the direction perpendicular to the rolling direction of the sample is measured, and the "height from the average line for the roughness curve" is measured, that is, the height from the average line for the roughness curve can be obtained at each surface position. The data (hereinafter referred to as "measurement data" is appropriate)" Therefore, the peak position and the like can be obtained from the obtained measurement data, and the data of the measurement data of 201245471 can be calculated to calculate Ra and RZQ (2) from "roughness". The height of the curve is separated by a height of μ5 μηι. (3) The number of measurements (degrees) is counted at intervals of 0. 〇 5 μηι. Further, the measurement data was measured with a standard length of 1.25 mm, a cutoff value of 25 mm (according to JIS_B0601), and a scanning speed of 〇丨mm/sec. The surface roughness measuring machine (Surfcorder SE3400) manufactured by Kosaka Research Co., Ltd. was used for the measurement, and the measurement length was K25 mm, and the number of measurement data was 75 00. The specific measurement method of the above-described peak position is also the same as that described in Patent Document 2, and in the obtained measurement data, the component having a height greater than 0 from the "average line for roughness curve" is set to the upper (positive) component. The degree distribution is plotted by classifying less than 〇 as the lower (negative) component. When the horizontal axis is taken as the height from the "average line for the roughness curve" (μιη and the number of measurement data totaled at 0.05 μm is used as the frequency and redrawn as the vertical axis), FIG. 2 and FIG. 3 can be obtained. In Fig. 2 and the circle 3', if the height from the "average line for the roughness curve" from the line to the horizontal axis is Ομιη, the peak position of the frequency can be determined as concave. Component (negative side), convex component (positive side), (or ytterbium). Here, the above-mentioned "peak position" is determined as follows. First, the average line from the frequency/self-roughness curve is used. In the height map (see Fig. 2 and Fig. 3), the frequency with the highest value is P1, and the frequency of the next highest value is P2. Moreover, (1) the peak position is the concave component (negative side) Refers to the case where both pi and P2 are on the negative side, or Ρ2/ρι<99%& is on the negative side. (2) The so-called peak position is convex component (positive side) system 8 201245471 ==. In the case of positive r, ... (for the removal of 2, the location of the bee bee is 0 means P2 (four) 99% ... The mean =::2 is located on the negative side, ... outside the case of the % positive side.) The average line from the roughness curve refers to the average line used for the crude sugar curve. The % is the line of Gp. The positive spot "is based on the measurement of the results of the three times, the peak position is dispersed as convex: Λ The peak in the second measurement is in the upper (positive) component, then it is regarded as the convex component side. The frequency is based on / described in the example The actual measurement data of 4 is plotted on the vertical axis '::/. The k-axis is a re-rendered height (Mm) from the average line of the roughness curve. Further, Fig. 3 is based on the actual measurement of the following Example 18. The data is plotted on the vertical frequency (./〇) and the horizontal axis is the height (μηι) from the average line of the rough shuttle curve. In the case of Fig. 3, the degree distribution of the surface irregularities is known. In the case where the peak position is closer to the positive side (convex component side) than the average line of the roughness curve in the figure, it can be seen that the peak position is closer to the negative side (the concave component side) than the average line of the sharpness curve. That is, even in the present invention (for example, FIG. 2 and Embodiment 4), even the peak position On the negative side (concave component side), the wettability was also good, and the wettability was not determined by the peak position. Further, in Example 18, the peak position was made positive by changing the pickling liquid during pickling. The method for measuring the surface roughness saccharides Ra and Rz is the same as that described in Patent Document 2, and is measured by a standard length of 2525 mm, a cutoff value of 25 claws (according to 201245471 JIS-B060 1 ), a scanning speed of 〇·1 mm/sec, and a. , m ^ 〗 疋. The measurement system uses the surface roughness measuring machine (Surfcorder SE3400) manufactured by Kosaka Kenji Co., Ltd. 'The measurement length is 1.25 mm and the measured data is only 4,500 points. Further, the surface roughness Ra and Rz were measured three times and the average value thereof was taken. Next, the Co-Si-based copper alloy sheet of the present invention will be described in terms of its specifications and composition. <Composition> 0 · 1 to 1.0% by mass and the remainder contains Co: 0.5 to 3_0% by mass, Si: Part is Cu and unavoidable impurities. When the content of Co and Si is less than the above range, the precipitation strengthening of c〇2Si is insufficient, and the increase in strength cannot be achieved. On the other hand, when the content of c〇 and & exceeds the above range, the electrical conductivity is deteriorated and the hot workability is deteriorated.

Co較佳之含量為k5〜2.5質量%、更佳之含量為丨刀〜二2 質量%。Si較佳之含量為〇·3〜〇 7質量。/〇、更佳之含量為 0.4〜0.55質量%。 c〇/Si質量比較佳為3_5〜5.0、更佳為3.8〜4.6»若Co/Si 質量比為該範圍,則可使C 〇 2 S i充分地析出。 較佳為進而含有合計2.0質量%以下之選自由Mn、 Mg、Ag、p、B、Zr、Fe、Ni、Cr、v、Nb、M〇、Be、ZnThe content of Co is preferably from k5 to 2.5% by mass, and more preferably from 丨2 to 2% by mass. The preferred content of Si is 〇·3~〇 7 mass. More preferably, the content is 0.4 to 0.55 mass%. The c〇/Si mass is preferably from 3 to 5 to 5.0, more preferably from 3.8 to 4.6. If the Co/Si mass ratio is in this range, C 〇 2 S i can be sufficiently precipitated. It is preferable to further contain a total of 2.0% by mass or less selected from the group consisting of Mn, Mg, Ag, p, B, Zr, Fe, Ni, Cr, v, Nb, M〇, Be, Zn.

Sn及密鈽合金構成之群中的1種或2種以上。若上述元素 之合計量超過2.0質量%,則下述之效果會飽和’並且生產 力會變差。但是,於上述元素之合計量未達0.001質量%時, 會使效果較小’故較佳為上述元素之合計量為0.001〜2.0 質量%、更佳為〇·01〜2.〇質量%、最位為〇.〇4〜2.0質量%。 10 201245471 此處,由於添加微量Mn、Mg、Ag及P,而以不損宝 導電率地改善強度、應力緩和特性等製品特性。該等元素 主要藉由朝向母相固溶而發揮上述效果,但藉由含有於第 二相粒子而會進一步發揮效果。 ,藉由添加B、Zr及Fe,亦可改善強度、導電率、應力 緩洋特I·生'•鑛敷性等製品特性。該等元素主要藉由朝向母 相固冷而發揮上述效果,但藉由含有於第二相粒子、或藉 由形成新組成之第一相粒子而會進一步發揮效果。One or two or more of the group consisting of Sn and a bismuth alloy. When the total amount of the above elements exceeds 2.0% by mass, the following effects are saturated and the productivity is deteriorated. However, when the total amount of the above elements is less than 0.001% by mass, the effect is small. Therefore, the total amount of the above elements is preferably 0.001 to 2.0% by mass, more preferably 〇·01 to 2. 〇% by mass, The most important position is 〇.〇4~2.0% by mass. 10 201245471 Here, by adding a small amount of Mn, Mg, Ag, and P, the product characteristics such as strength and stress relaxation characteristics are improved without impairing the electrical conductivity. These elements exert the above effects mainly by solid solution toward the mother phase, but further exert an effect by being contained in the second phase particles. By adding B, Zr and Fe, it is also possible to improve the properties of the product such as strength, electrical conductivity, stress, stress, and properties. These elements exert the above effects mainly by solid-cooling toward the mother phase, but further exert the effect by being contained in the second phase particles or by forming the first phase particles of a new composition.

Ni、Cr、v、Nb、M〇、Be、Zn、Sn及密飾合金會將相 互特,補《’且不僅對強度、導電率,亦對如應力緩和特 f曲加工丨生鍍敷性或藉由鑄塊組織之微細化而實現 熱加工性之改善般的製造性進行改善。 再者,於不對本發明之合金之特性造成不良影響之範 圍,亦可添加本說明書未具體記载之元素。 其次,對本發明之Co-以系銅合金板之製造方法之一例 進行說明。首先,熱壓延由銅及必需之合金元素、進而包 含無法避免之雜質構成之鑄塊後,進行面削並冷壓延,且 於進行固溶處理後,進行時效處理而使析出。其_欠, 以最終冷•延而精加工為特定厚度,並視需要進一步 弛力退火,帛後進行酸洗且立刻進行抛光研磨。 固溶處理例如可於戰以上叫以下之範圍選 擇。又,時效處理例如可於伽。C〜㈣。c進行1〜2〇小時。 又,最終壓延加工度較料5〜5Q%、進㈣ 〜30%。本發明合金材之結絲徑並無㈣ 201245471 〜20 μιη以下。析出物之粒徑為5 nm〜10 μηι » [實施例] 對表1所示組成之錠(ingot)進行鑄造,於960°c以 進行熱壓延至厚度1 0 mm ’於面削表面之氧化皮後,進行 冷壓延’之後於700°C以上l〇〇〇°C以下進行固溶處理,最 後於4 0 0 C〜6 5 0 °C實施1〜2 0小時之時效處理。其次,於 加工率5 %〜40。/。以最終冷壓延而精加工為特定厚度,進而 於300〜600°C進行0.05〜3小時之弛力退火,最後以表i 所示之條件進行酸洗且立刻進行拋光研磨。再者,用於拋 光研磨前之酸洗的酸洗液為濃度2〇〜3〇質量%且pH== i以 下之稀硫酸、鹽酸或稀硝酸之水溶液,且將酸洗之浸漬時 間設為60〜1 80秒。拋光研磨所用之拋光輪材係使用利用 氧化鋁製之研磨粒,且使於尼龍不織布中含有氧化鋁。而 且,使用分別使拋光粗糙度(研磨粒之粒度)變化之拋光 輪材。研磨粒之粒度表示研磨粒每丨英吋之網眼數量,且 由JIS R6001所規定。例如,若粒度為1〇〇〇,則研磨粒之 平均粒徑為18〜14,5 μηι。再者,實施例18中,除了使用 濃度4〇〜則量%且ρΗ=ι以下之硝酸水溶液作為酸洗抛 光研磨之酸洗以外與其他實施例相同。 對如此所传之各試樣進行各特性之評價。 (1 ) Ra 及 Rz 根據JIS-B060 1 ( 2〇〇〖年),測定中心線平均粗糙度 及最大高度RZ°測定係對壓延平行方向(RD)及壓延直角 向(TD )刀別進行測定。測定中,設定標準長度為1.25 12 201245471 mm、截止值為0.25 mm (依照上述JIS ) '掃描速度為〇」 mm/sec,並使用小阪研究所公司製造之表面粗糙度測定機 (Surfcorder 5E3400 ),測定長度為丨.25 mm且將測定資料 數設為7500點。 (2 )度數分佈圖 對於C 1 )所得之壓延直角方向之測定資料,於測定資 料中,分類為自「粗糙度曲線用之平均線」起上(正)之 成分與下(負)之成分’將自粗糙度曲線用之平均線起的 高度以0.05 μηι作為刻度而繪製度數分佈。根據測定資料, 以縱軸為頻度(% )、橫軸為自粗糙度曲線用之平均線起的 高度(μη〇重新繪製,並獲得圖2及圖3。於圖2及圖3 中,若於橫軸之自粗糙度曲線用之平均線起的高度之〇卩m 上晝線,則可判別頻度之波峰為凹成分(負側)或凸成分 (正側)、(亦或為〇 )。 (3 )光澤度 60度鏡面光澤度係使用依照JIS Z8741之光澤度計(曰 本電色工業製造、商品名「PG_丨M」),分別於壓延平行方向 RD、及壓延直角方向TD上以入射角6〇度進行測定。 圖2係對於實施例4之實際測定資料,以縱軸為頻度 (% )、橫軸為自粗糙度曲線用之平均線起的高度(pm )而 重新繪製之圖表。 又’圖3係對於下述之實施例1 8之實際測定資料,以 縱軸為頻度(% )、橫軸為自粗糙度曲線用之平均線起的高 度(μπι )而重新繪製之圖表。 13 201245471 (3 )焊料特性 (3-1 )針孔數 所謂針孔數,係指不潤濕焊料,而於基底(銅合金材) 可觀察到的孔之數量。若針孔數變多則易產生焊接不良, 針孔數之試驗,於以10質量%之稀硫酸水溶液酸洗1〇 mm 寬之試樣後,將其以浸潰深度12 mm、浸潰速度25 mm/s、 /文潰時間1 0 sec浸潰於焊料浴而提拉時以光學顯微鏡(倍 率50倍)觀察正反面,計數目視觀察基底之針孔數量,將 5個以下設為良好。 焊料試驗係依照JIS_C60068_2_54而實施。焊料浴之組 成為錫 60 wt%、船 40 wt0/。, ,進而適量添加助熔劑(flux )Ni, Cr, v, Nb, M〇, Be, Zn, Sn, and the adhesive alloy will be mutually exclusive, complementing ''and not only for strength, electrical conductivity, but also for stress relief and special bending. Or, the manufacturability which improves the hot workability is improved by the miniaturization of an ingot structure. Further, elements not specifically described in the specification may be added to the range which does not adversely affect the characteristics of the alloy of the present invention. Next, an example of a method for producing a Co-based copper alloy sheet according to the present invention will be described. First, an ingot composed of copper and a necessary alloying element and further containing an unavoidable impurity is hot-rolled, and then subjected to surface-cutting and cold rolling, and after solution treatment, aging treatment is performed to precipitate. It is owed to a specific thickness by final cooling and extension, and further relaxation annealing is carried out as needed, followed by pickling and immediate polishing. The solution treatment can be selected, for example, in the range below the war. Also, the aging treatment can be, for example, gamma. C ~ (four). c is carried out for 1 to 2 hours. Moreover, the final calendering degree is 5~5Q%, and (4) to 30%. The wire diameter of the alloy material of the present invention is not (4) 201245471 to 20 μιη or less. The particle size of the precipitates was 5 nm to 10 μηι » [Examples] The ingots of the composition shown in Table 1 were cast and heat-rolled at 960 ° C to a thickness of 10 mm to oxidize the surface. After the skin is subjected to cold rolling, it is subjected to a solution treatment at 700 ° C or higher and 10 ° C or lower, and finally subjected to an aging treatment at 400 ° C to 65 ° C for 1 to 20 hours. Secondly, the processing rate is 5% to 40%. /. The film was finished to a specific thickness by final cold rolling, and further subjected to a relaxation annealing at 0.05 to 3 hours at 300 to 600 ° C, and finally subjected to pickling under the conditions shown in Table i and immediately subjected to polishing. Further, the pickling liquid used for pickling before polishing is an aqueous solution of dilute sulfuric acid, hydrochloric acid or dilute nitric acid having a concentration of 2 〇 to 3 〇 mass% and pH== i or less, and the pickling time of the pickling is set to 60~1 80 seconds. The polishing wheel used for the buffing is made of alumina-made abrasive grains, and the nylon non-woven fabric contains alumina. Further, a polishing wheel which changes the polishing roughness (particle size of the abrasive grains), respectively, is used. The particle size of the abrasive particles indicates the number of mesh per inch of the abrasive particles and is specified by JIS R6001. For example, if the particle size is 1 Å, the average particle diameter of the abrasive grains is 18 to 14, 5 μη. Further, in Example 18, the same manner as in the other examples was carried out except that an aqueous solution of nitric acid having a concentration of 4 Å to 5% by weight and ρ Η = 1 or less was used as pickling by pickling polishing. Each of the samples thus transmitted was evaluated for each characteristic. (1) Ra and Rz According to JIS-B060 1 (2〇〇〖year), the center line average roughness and the maximum height RZ° are measured. The parallel direction (RD) and the right angle (TD) are measured. . In the measurement, the standard length was set to 1.25 12 201245471 mm, the cutoff value was 0.25 mm (according to JIS above), the scanning speed was 〇 mm/sec, and the surface roughness measuring machine (Surfcorder 5E3400) manufactured by Kosaka Research Co., Ltd. was used. The measurement length was 丨.25 mm and the number of measurement data was set to 7500 points. (2) Degree distribution map The measurement data of the direction perpendicular to the rolling direction obtained by C 1 ) is classified into the composition of the upper (positive) component and the lower (negative) component from the "average line for the roughness curve" in the measurement data. 'Draw the degree distribution from the height from the average line of the roughness curve with a scale of 0.05 μm. According to the measurement data, the vertical axis is the frequency (%), and the horizontal axis is the height from the average line of the roughness curve (μη〇 is redrawn, and FIG. 2 and FIG. 3 are obtained. In FIG. 2 and FIG. 3, if On the horizontal axis of the horizontal axis from the average line from the roughness curve, the peak of the frequency can be determined as the concave component (negative side) or convex component (positive side), (or 〇) (3) Gloss 60 degree specular gloss is used in accordance with JIS Z8741 gloss meter (manufactured by Sakamoto Electric Co., Ltd., trade name "PG_丨M"), in the rolling parallel direction RD, and the rolling orthogonal direction TD The measurement was performed at an incident angle of 6 。. Fig. 2 is a comparison of the actual measurement data of Example 4, with the vertical axis as the frequency (%) and the horizontal axis as the height (pm) from the average line of the roughness curve. Fig. 3 shows the actual measurement data of the following Example 18, with the vertical axis as the frequency (%) and the horizontal axis as the height (μπι) from the average line of the roughness curve. Chart drawn. 13 201245471 (3) Solder characteristics (3-1) Number of pinholes The number of pinholes, Refers to the number of holes that can be observed on the substrate (copper alloy) without wetting the solder. If the number of pinholes is increased, it is easy to cause poor soldering. The number of pinholes is tested in 10% by mass aqueous solution of dilute sulfuric acid. After washing a 1 mm wide sample, it was immersed in a solder bath with a dipping depth of 12 mm, an impregnation speed of 25 mm/s, and a text collapse time of 10 sec. The number of the pinholes of the base is observed. The number of pinholes is preferably 5 or less. The solder test is carried out in accordance with JIS_C60068_2_54. The composition of the solder bath is 60 wt% of tin, 40 wt0/., and then added in an appropriate amount. Flux

235°C±3°C。 (3-2 )沾焊料時間(T2值)235 ° C ± 3 ° C. (3-2) soldering time (T2 value)

以下設马焊料潤濕性良好。The following is a good solder wettability.

沅拋无研磨者。例如,實施例9 於精塵延前進行酸洗拋光 14 201245471 研磨,進而於精壓延後亦進行酸洗拋光研磨。於精壓延前 之酸洗拋光研磨中酸洗所用之酸洗液與上述精壓延後之酸 洗拋光研磨所用之酸洗液相同。 A法:拋光研磨次數1次、通板速度40 m/min、拋光 粗糙度(研磨粒)1000粒度、拋光輪旋轉數500 rpm B法:拋光研磨次數3次、通板速度1〇 m/min、拋光 粗糙度(研磨粒)2000粒度、拋光輪旋轉數丨400 rpm 再者,對於一部分之試樣,於精壓延前,僅進行使其 浸潰於10%硫酸水溶液3 0秒之酸洗。又,對於一部分之試 樣’於精壓延前,僅進行使其浸潰於己烷3()秒之脫脂。又, 對於其他試樣’於精壓延前不進行任何處理。 15 201245471 【1<】 @5 旋轉次數 (/分鐘) 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1200 1400 1400 1400 j 1400 1400 1500 螺旋紋 粗縫度 (粒度) 2000 2000 2000 2000 2000 2000 2000 4000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 4000 /-N 培_ ·| 南街| 〇 ο Ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο o o 通板 次數 m m ΓΛ ΓΛ ΓΟ <Ν 寸 ΓΛ m CM ΓΟ rr» m v〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 曼造步驟 酸洗 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 弛力 退火 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Η ^ 名趟) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Η r -¾ ^ 1 1 • • I I • 1 Α法 Β法 僅酸洗 僅脫脂 I I 1 I 1 1 t 組成(wt%) 其他成分 1 1 1 i 1 1 I 1 I 1 I 1 I Μη : 0.1,Fe : 0.2,Mg : 0.05,Ni : 1.2 Cr : 0·1,V : 0.2,Nb : 0·1,Μο : 0.1,Zr : 0.1 Β : 0.05,Ag : 0.1,Ζη : 0.5,Sn : 0.4 s d α- d 俤 d <υ CQ 1 1 ίΛ d ΓΛ (N Ο Ο d Ο Ο Ο Ο Ο Ο ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο ο ο ο ο Ο ο Ο d 〇 〇 〇 o 〇 U 沄 d Ο *—· § (Ν Ο ΓΛ »* ^4 1 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 實施例10 實施例11 實施例12 實施例13 實施例14 實施例15 實施例16 實施例17 實施例18 實施例19 201245471 拋光研磨 t Λ-t- tfc Jv/ 1 狀符-人双 (/分鐘) 1400 1400 1400 1 1400 1400 1400 1400 1400 1400 200 〇 1 1 500 1 〇 vn 1 〇 500 1 JXj· «I·* .V*-* fir 似7〇租梅/义 (粒度) 2000 2000 2000 1 4000 4000 4000 500 500 500 2000 2000 1 1 2000 1 2000 1 2000 1000 1 •^低也/夂 (m/min ) % 〇 〇 1 〇 〇 »·* 〇 〇 〇 〇 〇 〇 〇 1 1 1 S 〇 1 1 通板次數 m 1 - <Ν — CN ΓΊ m m — 1 一 1 - 1 — — 1 拋光研磨 〇 〇 〇 1 〇 〇 〇 〇 〇 〇 〇 〇 1 1 〇 1 〇 1 〇 〇 1 纪造步驟 酸洗 〇 〇 〇 1 〇 〇 〇 〇 〇 〇 〇 〇 〇 1 〇 1 〇 1 〇 〇 1 弛力退火 〇 〇 〇 1 〇 〇 〇 〇 〇 〇 〇 〇 〇 1 〇 1 〇 1 〇 〇 1 加工壓延 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 W 喊 Η -¾ 1 1 1 1 1 1 1 1 1 1 1 1 1 ί A法 A法 僅脫脂 僅脫脂 僅酸洗 僅酸洗 1 I 組成(Wt°/o) .蛛 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.40 | 0.40 1 1 0.40 I 1 0.40 I | 0.40 I | 0.40 I | 0.40 I | 0.40 I I 0.40 I I 0.40 I 1 0.40 I 1 0.40 I 1 0.40 I i 0.40 1 0.40 1 1 0.40 I 0.40 0.40 0.40 0.40 0.40 〇 丨J ° | 1.50 I 1 1.50 I «μ· 1.50 1.50 No. 比較例1 ; 比較2 比較例3 比較例4 比較例5 比較例6 |比較例7 j 比較例8 比較例9 比較例10 比較例11 比較例12 比較例13 比較例i4 比較例15 比較例16 比較例17 比較例18 |比較例19 | 比較例20 比較例21 201245471 [表3]沅 throw no grinder. For example, in Example 9, the pickling is performed before the fine dust is applied. 14 201245471 Grinding, and further, pickling and polishing are performed after the finish pressing. The pickling liquid used for pickling in the pickling polishing slurry before the finish press is the same as the pickling liquid used for the pickling and polishing after the above-mentioned fine rolling. Method A: Polishing and grinding times 1 time, plate speed 40 m/min, polishing roughness (abrasive grain) 1000 grain size, polishing wheel rotation number 500 rpm B method: polishing grinding times 3 times, plate speed 1 〇 m/min Polishing roughness (abrasive grain) 2000 grain size, polishing wheel rotation number 丨400 rpm Further, for a part of the sample, only the acid pickling was performed by dipping in a 10% sulfuric acid aqueous solution for 30 seconds before the finish rolling. Further, for a part of the sample 'before the finish rolling, only the degreasing was performed by dipping it in hexane for 3 () seconds. Further, the other samples were not subjected to any treatment before the finish rolling. 15 201245471 [1<] @5 Number of rotations (/min) 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1200 1400 1400 1400 j 1400 1400 1500 Spiral rough seam (grain size) 2000 2000 2000 2000 2000 2000 2000 4000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 4000 /-N _ ·| South Street | 〇ο Ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ΓΛ m CM ΓΟ rr» mv 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇man made step pickling 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇 Relaxation annealing 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇Η ^ noun) 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇Η r - 3⁄4 ^ 1 1 • • II • 1 Α method 酸 method only pickling only defatted II 1 I 1 1 t composition (wt%) other components 1 1 1 i 1 1 I 1 I 1 I 1 I Μ η : 0.1, Fe : 0.2, Mg: 0.05, Ni: 1.2 Cr : 0·1, V : 0.2, Nb : 0 ·1, Μο : 0.1, Zr : 0.1 Β : 0.05, Ag : 0.1, Ζη : 0.5, Sn : 0.4 sd α- d 俤d < υ CQ 1 1 Λ Λ ΓΛ (N Ο Ο d Ο Ο Ο Ο Ο实施 Ο Ο Ο Ο Ο Ο ο ο 〇 〇 ο ο Ο 〇 〇 沄 沄 Ο — — 沄 沄 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Example 18 Example 19 201245471 Polishing and polishing t Λ-t- tfc Jv/ 1 character-human double (/min) 1400 1400 1400 1 1400 1400 1400 1400 1400 1400 200 〇1 1 500 1 〇vn 1 〇500 1 JXj· «I·* . V*-* fir like 7〇租梅/义(particle size) 2000 2000 2000 1 4000 4000 4000 500 500 500 2000 2000 1 1 2000 1 2000 1 2000 1000 1 •^low also/夂(m/min) % 〇〇 1 〇〇»·* 〇〇〇〇〇〇〇1 1 1 S 〇1 1 Pass times m 1 - <Ν — CN ΓΊ mm — 1 1-1 — 1 Polishing 〇〇〇 1 〇〇 〇〇 〇〇〇1 1 〇1 〇1 〇〇1 Process steps Pickling 〇〇〇1 〇〇〇〇〇〇〇〇〇1 〇1 〇1 〇〇1 Relaxation annealing 〇〇〇1 〇〇〇〇〇 〇〇〇〇1 〇1 〇1 〇〇1 Processing calender 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇W shouting 3-3⁄4 1 1 1 1 1 1 1 1 1 1 1 1 1 ί A method A method only degrease only degrease only pickling only pickling 1 I composition (Wt ° / o). Spider 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.40 | 0.40 1 1 0.40 I 1 0.40 I | 0.40 I | 0.40 I | 0.40 I | 0.40 II 0.40 II 0.40 I 1 0.40 I 1 0.40 I 1 0.40 I i 0.40 1 0.40 1 1 0.40 I 0.40 0.40 0.40 0.40 0.40 〇丨J ° | 1.50 I 1 1.50 I «μ· 1.50 1.50 No. Comparative Example 1; Comparison 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 | Comparative Example 7 j Comparative Example 8 Comparative Example 9 Comparative Example 10 Comparative Example 11 Comparative Example 12 Comparative Example 13 Comparative Example i4 Comparative Example 15 Comparative Example 16 Comparative Example 17 Comparative Example 18 | Comparative Example 19 | Comparative Example 20 Comparative Example 21 201245471 [Table 3]

No. 度數分佈 曲線峰 波位置 Ra (μΓη) Rz (μιτι) 光澤度G (60°) 焊制 -特性 RD TD RD TD RD TD G (RD) -G (TD) 針孔數 沾焊料 時間 (sec) 實施例1 - 0.05 0.08 0.42 0.6 299 191 108 0 1.61 實施例2 - 0.06 0.08 0.44 0.68 288 193 95 0 1.73 實施例3 - 0.05 0.08 0.43 0.65 288 192 96 0 1.65 實施例4 - 0.06 0.08 0.43 0.67 288 190 98 0 1.73 實施例5 - 0.05 0.08 0.44 0.66 293 192 101 0 1.62 實施例6 - 0.06 0.08 0.43 0.68 288 192 96 0 1.81 實施例7 - 0.06 0.08 0.54 0.71 288 193 95 4 1.87 實施例8 - 0.04 0.06 0.35 0.53 387 288 99 0 1.59 實施例9 - 0.06 0.08 0.42 0.68 288 189 99 1.72 實施例10 - 0.05 0.08 0.43 0.68 297 190 107 0 1.65 實施例11 - 0.06 0.08 0.42 0.68 287 190 97 1.82 實施例12 - 0.06 0,08 0.43 0.68 288 193 95 1.73 實施例13 - 0.08 0.10 0.52 0.68 274 174 100 4 1.87 實施例14 - 0.06 0.08 0.42 0.66 288 186 102 0 1.70 實施例15 - 0.05 0.08 0.43 0.67 294 188 106 0 1.61 實施例16 - 0.06 0.08 0.42 0.66 288 188 100 0 1.70 實施例17 - 0.06 0.09 0.43 0.67 288 179 109 0 1.71 實施例18 + 0.07 0.1 0.45 0.69 276 168 108 3 1.59 實施例19 - 0.04 0.06 0.23 0.37 384 280 104 0 1.20 比較例1 - 0.10 0.10 0.72 0.72 184 184 0 7 1.73 比較2 - 0.13 0.14 0.76 0.78 180 168 12 8 1.88 比較例3 - 0.10 0.09 0.71 0.70 186 168 18 7 1.80 比較例4 - 0.31 0.28 1.54 1.74 123 134 -11 42 2.81 比較例5 - 0.14 0.15 0.82 0.83 160 153 7 13 1.88 比較例6 - 0.10 0.12 0.69 0.73 175 170 5 9 1.87 比較例7 - 0.07 0.08 0.49 0.60 275 190 85 6 1.80 比較例8 - 0.34 0.38 2.38 2.42 120 100 20 11 2.64 比較例9 - 0.35 0.38 2.45 2.42 122 102 20 12 2.48 比較例10 - 0.34 0.38 2.38 2.48 121 100 21 11 2.43 比較例11 - 0.13 0.13 0.78 0.79 174 158 16 9 1.84 比較例12 - 0.10 0.11 0.68 0.71 184 175 9 6 1.87 比較例13 - 0.15 0.15 0.82 0.83 151 158 -7 21 2.50 比較例14 - 0.30 0.27 1.51 1.74 133 138 -5 20 1.87 比較例15 - 0.12 0.13 1.42 1.43 169 160 9 8 1.85 比較例16 + 0.30 0.28 1.52 1.86 130 145 -15 39 2.80 比較例17 - 0.13 0.13 1.42 1.42 155 155 0 12 1.85 比較例18 + 0.31 0.28 1.51 1.78 128 133 -5 28 2.45 比較例19 - 0.12 0.13 1.42 1.43 175 178 -3 10 1.87 比較例20 - 0.14 0.16 1.01 1.12 150 149 1 9 2.23 比較例21 - 0.06 0.05 0.4 0.37 261 280 -19 38 2.73 18 201245471 根據表1〜表3可知:於使用紋理(研磨粒)較細之拋 光輪進行充足次數之最終熱處理(他力退火)《之酸洗抛 光研磨之各實施例之情形時,焊料潤濕性優異,且針孔減 少。各實施例均為{(壓延平行方向之6〇度鏡面光澤度〇 (RD)) _ (壓延直角方向之60度鏡面光澤度G(TD)) } 一90/。可<為充分除去材料表面之氧化皮膜、異物之壓入 並且表面變得平滑。 再者,各實施例,於研磨粒為2〇〇〇粒度以上、通板次 數2次以上、通板速度10 mPm以下、旋轉次數1200轉/分 鐘以上之條件進行酸洗拋光研磨,當然可視製造裝置而變 化該專之最佳範圍。 另力面’於各比較例未充分地進行酸洗拋光研磨, 而無法充分地除去材料表面之氧化皮膜、或異物之壓入。 因此,於各比較例,{(壓延平行方向之60度鏡面光澤度g (RD)) _ (壓延直角方向之6〇度鏡面光澤度G(TD))) < 90 /。且針孔增加,氧化皮膜較多地殘存導致焊料潤濕性 劣化。 ’ '•玄等之劣化原因,於比較例1、2、丨5、丨7、丨9之情形 時可。^為是由於酸洗拋光研磨之通板速度超過20 mpm。 於比較例3、5、8、20之情形時,可認為是由於酸洗 拋光研磨之通板次數未達2次。再者,比較例2〇,於最終 壓延後以上述A法實施了酸洗研磨。 於比較例1 3之情形時,可認為原因是雖然進行了酸 洗’但未進行拋光研磨。 19 201245471 於比較例6、7之情形時,可認為是由於使酸洗拋光研 磨之研磨粒為4000粒度而導致研磨粒過細,因此幾乎無法 進行研磨’導致Ra ( RD )減少效果少。 於比較例11、12之情形時,可認為原因是酸洗拋光研 磨之旋轉數未達1200轉/分鐘。 於比較例9、1 〇之情形時,研磨粒過粗糙導致酸洗拋No. Degree distribution curve Peak wave position Ra (μΓη) Rz (μιτι) Gloss G (60°) Soldering-characteristics RD TD RD TD RD TD G (RD) -G (TD) Pinhole number Dip soldering time (sec Example 1 - 0.05 0.08 0.42 0.6 299 191 108 0 1.61 Example 2 - 0.06 0.08 0.44 0.68 288 193 95 0 1.73 Example 3 - 0.05 0.08 0.43 0.65 288 192 96 0 1.65 Example 4 - 0.06 0.08 0.43 0.67 288 190 98 0 1.73 Example 5 - 0.05 0.08 0.44 0.66 293 192 101 0 1.62 Example 6 - 0.06 0.08 0.43 0.68 288 192 96 0 1.81 Example 7 - 0.06 0.08 0.54 0.71 288 193 95 4 1.87 Example 8 - 0.04 0.06 0.35 0.53 387 288 99 0 1.59 Example 9 - 0.06 0.08 0.42 0.68 288 189 99 1.72 Example 10 - 0.05 0.08 0.43 0.68 297 190 107 0 1.65 Example 11 - 0.06 0.08 0.42 0.68 287 190 97 1.82 Example 12 - 0.06 0,08 0.43 0.68 288 193 95 1.73 Example 13 - 0.08 0.10 0.52 0.68 274 174 100 4 1.87 Example 14 - 0.06 0.08 0.42 0.66 288 186 102 0 1.70 Example 15 - 0.05 0.08 0.43 0.67 294 188 106 0 1.61 Example 16 - 0.06 0.08 0.42 0.66 288 188 100 0 1.70 Example 17 - 0.06 0.09 0.43 0.67 288 179 109 0 1.71 Example 18 + 0.07 0.1 0.45 0.69 276 168 108 3 1.59 Example 19 - 0.04 0.06 0.23 0.37 384 280 104 0 1.20 Comparative Example 1 - 0.10 0.10 0.72 0.72 184 184 0 7 1.73 Comparison 2 - 0.13 0.14 0.76 0.78 180 168 12 8 1.88 Comparative Example 3 - 0.10 0.09 0.71 0.70 186 168 18 7 1.80 Comparative Example 4 - 0.31 0.28 1.54 1.74 123 134 -11 42 2.81 Comparative Example 5 - 0.14 0.15 0.82 0.83 160 153 7 13 1.88 Comparative Example 6 - 0.10 0.12 0.69 0.73 175 170 5 9 1.87 Comparative Example 7 - 0.07 0.08 0.49 0.60 275 190 85 6 1.80 Comparative Example 8 - 0.34 0.38 2.38 2.42 120 100 20 11 2.64 Comparative Example 9 - 0.35 0.38 2.45 2.42 122 102 20 12 2.48 Comparative Example 10 - 0.34 0.38 2.38 2.48 121 100 21 11 2.43 Comparative Example 11 - 0.13 0.13 0.78 0.79 174 158 16 9 1.84 Comparative Example 12 - 0.10 0.11 0.68 0.71 184 175 9 6 1.87 Comparative Example 13 - 0.15 0.15 0.82 0.83 151 158 -7 21 2.50 Comparative Example 14 - 0.30 0.27 1.51 1.74 133 138 -5 20 1.87 Comparative Example 15 - 0.12 0.13 1.42 1.43 169 160 9 8 1.85 Comparative Example 16 + 0.30 0.28 1.52 1.86 130 145 -15 3 9 2.80 Comparative Example 17 - 0.13 0.13 1.42 1.42 155 155 0 12 1.85 Comparative Example 18 + 0.31 0.28 1.51 1.78 128 133 -5 28 2.45 Comparative Example 19 - 0.12 0.13 1.42 1.43 175 178 -3 10 1.87 Comparative Example 20 - 0.14 0.16 1.01 1.12 150 149 1 9 2.23 Comparative Example 21 - 0.06 0.05 0.4 0.37 261 280 -19 38 2.73 18 201245471 According to Table 1 to Table 3, it is known that the polishing wheel with fine texture (abrasive grain) is used for a sufficient number of final heat treatments (he In the case of the respective examples of the pickling and polishing, the solder wettability is excellent and the pinholes are reduced. Each of the examples is {(6-degree specular gloss 〇 (RD) in the parallel direction of rolling) _ (60-degree specular gloss G (TD) in the direction of the right angle) } 90/. It is possible to sufficiently remove the oxide film and the foreign matter from the surface of the material and to smooth the surface. In addition, in each of the examples, pickling polishing is performed under the conditions that the abrasive grains have a particle size of 2 Å or more, the number of times of the plate is 2 or more, the plate speed is 10 mPm or less, and the number of rotations is 1200 rpm or more. The device is adapted to the best range of the application. In the other comparative examples, the pickling and polishing were not sufficiently performed, and the oxide film on the surface of the material or the press-in of the foreign matter could not be sufficiently removed. Therefore, in each comparative example, {(60-degree specular gloss g (RD)) in the parallel direction of rolling _ (6-degree specular gloss G (TD) in the direction of the right angle)) < 90 /. Further, the pinholes increase, and the oxide film remains excessively, resulting in deterioration of solder wettability. The reason for the deterioration of ''Xuan et al.') is in the case of Comparative Examples 1, 2, 丨5, 丨7, 丨9. ^ is due to the pickling and polishing of the plate speed exceeds 20 mpm. In the case of Comparative Examples 3, 5, 8, and 20, it was considered that the number of passes through the pickling and polishing was less than 2 times. Further, in Comparative Example 2, pickling and polishing were carried out by the above-described A method after the final rolling. In the case of Comparative Example 1, 3, it can be considered that the reason was that although the pickling was performed, the polishing was not performed. 19 201245471 In the case of Comparative Examples 6 and 7, it is considered that since the abrasive grains subjected to pickling polishing are 4000 grains and the abrasive grains are too fine, polishing is hardly performed, resulting in less Ra (RD) reduction effect. In the case of Comparative Examples 11 and 12, the reason was considered to be that the number of rotations of the pickling polishing was less than 1200 rpm. In the case of Comparative Example 9, 1 ,, the abrasive grains are too rough to cause pickling and polishing.

光研磨面粗糙,且使{(壓延平行方向之6〇度鏡面光澤度G (RD))-(壓延直角方向之6〇度鏡面光澤度) < 90%並導致針孔增加’沾焊料時間變差^此情形可認為是 由於使酸洗拋光研磨之研磨粒為5〇〇粒度,因此研磨粒過 於粗糙所致。 於比較例4 14、1 6、1 8、2 1之情形時,可認為是由 ,因此未除去表面之氧 延之表面狀態。再者, 於最終壓延後未進行酸洗拋光研磨 化皮膜、異物之壓入而維持原本壓 比較例21除了使最終壓延之輥之粗縫度變細以外係與各實 施例相同地製造。 再者’於比較例1 6、1 8之情形時,因於精壓延前進行 了處理(酸洗或脫脂),且未進行酸洗拋光研磨,故波峰位 置較粗糙度曲線用之平均線(於表示表面之凹凸成分之度 數分佈圖中之零之位置)更靠正側(凸成分側)。即,心 比較例表示專利文獻2之銅合金板。 又,於比較例4、13、16、21之情形時,沾焊料時間 超過2.0秒,且焊料潤濕性亦劣化,該理由可認為是由於未 進打1纟酸洗及拋光研磨’ &氧化皮膜較多殘存於金屬表 20 201245471 面。(再者,比較例1 6相當於專利文獻2記載之條件) 【圖式簡單說明】 圖1係表示本發明實施形態之Co-Si系銅合金板製造步 驟之一例。 圖2係實施例4之表面凹凸成分之度數分佈圖。 圖3係實施例1 8之表面之凹凸成分之度數分佈圖。 明 說 號 符 件 元 L , 主 2 銅合金板 4 酸洗槽 6 拋光輪 Ra 表面粗縫度 Rz 表面粗縫度 TD 壓延直角方向 RD 壓延平行方向 PI 頻度 P2 頻度 21The light-polished surface is rough and makes {(6-degree specular gloss G (RD) in the parallel direction of rolling) - (6-degree specular gloss in the direction of the right angle) < 90% and leads to an increase in pinholes The difference is considered to be due to the fact that the abrasive grains subjected to pickling polishing are 5 Å in size, and thus the abrasive grains are too rough. In the case of Comparative Example 4, 14, 16, 18, and 2, it was considered that the surface state of the surface of the oxygen was not removed. Further, after the final rolling, the pickling and polishing of the film and the pressing of the foreign matter were carried out to maintain the original pressure. Comparative Example 21 was produced in the same manner as in the respective examples except that the roughness of the roll to be finally rolled was reduced. In addition, in the case of Comparative Example 1 6 and 18, since the treatment was carried out before the finish pressing (pickling or degreasing), and the pickling and polishing were not performed, the peak position was used as the average line for the roughness curve ( The position of the zero in the power distribution map indicating the unevenness of the surface is more on the positive side (the convex component side). That is, the core comparative example shows the copper alloy sheet of Patent Document 2. Further, in the case of Comparative Examples 4, 13, 16, and 21, the soldering time exceeded 2.0 seconds, and the solder wettability was also deteriorated, which is considered to be due to the fact that the pickling and polishing were not performed. Oxide film remains on the metal surface 20 201245471. (Comparative Example 1 6 corresponds to the conditions described in Patent Document 2) [Brief Description of the Drawings] Fig. 1 is a view showing an example of a manufacturing process of a Co-Si-based copper alloy sheet according to an embodiment of the present invention. Fig. 2 is a graph showing the degree distribution of the surface unevenness component of Example 4. Fig. 3 is a graph showing the degree distribution of the uneven component on the surface of Example 18. Ming said No. Symbol L , Main 2 Copper alloy plate 4 Pickling tank 6 Polishing wheel Ra Surface rough seam Rz Surface rough seam TD Calendering right angle direction RD Calendering parallel direction PI frequency P2 Frequency 21

Claims (1)

201245471 七申5月專利範圍: 種Co-Si系鋼合金板,係含有Co: 0.5〜3.0質量%、 Si 0·1〜1.0質量%且剩餘部分由cu及無法避免之雜質構 成,且 {(壓延平行方向之60度鏡面光澤度G(RD))-(麼 延直角方向之60度鏡面光澤度g(TD) ) 90%。 2.如申請專利範圍第1項之Co-Si系銅合金板,其中, 壓延平行方向之表面粗糙度Ra(RD) $ 0.07 //m。 士申明專利範圍第2項之Co-Si系銅合金板,其中, 壓延平行方向之表面粗糙度Rz(RD) $0.50 #m。 4.如申請專利範圍第1至3項中任一項之Co_si系鋼合 金板其中,於表示壓延直角方向之表面凹凸成分之度數 分佈圖中波峰位置位於較粗糙度曲線用之平均線更靠負側 (凹成分側)。 5.如申請專利範圍第丨至4項中任一項之c〇_si 金板’其進-步含有2.〇質量%以下之選自由Mn、Fe, Ni、Cr'V、Nb、Mo、Zr、B、Ag、Be、Zn、Sn、密鈽 金及P構成之群中的1種或2種以上。 22201245471 Qishen May patent range: Co-Si steel alloy plate containing Co: 0.5~3.0% by mass, Si 0·1~1.0% by mass and the remainder consisting of cu and unavoidable impurities, and {( 60 degree specular gloss G(RD) of the calendering parallel direction - (60 degrees specular gloss g(TD) in the direction of the right angle) 90%. 2. The Co-Si-based copper alloy sheet according to the first aspect of the patent application, wherein the surface roughness Ra(RD) of the rolling parallel direction is 0.07 //m. The invention discloses a Co-Si copper alloy plate according to item 2 of the patent scope, wherein the surface roughness Rz(RD) of the rolling parallel direction is $0.50 #m. 4. The Co_si-based steel alloy sheet according to any one of claims 1 to 3, wherein the peak position in the degree distribution map indicating the surface unevenness in the direction perpendicular to the rolling direction is located on the average line of the roughness curve. Negative side (concave component side). 5. The c〇_si gold plate of any one of the scopes of the fourth to fourth claims is selected from the group consisting of Mn, Fe, Ni, Cr'V, Nb, Mo. One or two or more of the group consisting of Zr, B, Ag, Be, Zn, Sn, thief, and P. twenty two
TW101108257A 2011-03-28 2012-03-12 Co-Si copper alloy plate TWI450985B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070183A JP4831552B1 (en) 2011-03-28 2011-03-28 Co-Si copper alloy sheet

Publications (2)

Publication Number Publication Date
TW201245471A true TW201245471A (en) 2012-11-16
TWI450985B TWI450985B (en) 2014-09-01

Family

ID=45418147

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101108257A TWI450985B (en) 2011-03-28 2012-03-12 Co-Si copper alloy plate

Country Status (7)

Country Link
US (1) US20140065441A1 (en)
EP (1) EP2679341B1 (en)
JP (1) JP4831552B1 (en)
KR (1) KR101569262B1 (en)
CN (1) CN103429388B (en)
TW (1) TWI450985B (en)
WO (1) WO2012132805A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612691B (en) * 2013-09-02 2018-01-21 Furukawa Electric Co Ltd Substrate for lead frame for optical semiconductor device, manufacturing method thereof, lead frame for optical semiconductor device therefor, method for manufacturing the same, and optical semiconductor device
TWI743689B (en) * 2019-03-28 2021-10-21 日商Jx金屬股份有限公司 Copper alloys, copper elongation products and electronic machine parts

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6126791B2 (en) 2012-04-24 2017-05-10 Jx金属株式会社 Cu-Ni-Si copper alloy
KR20160117210A (en) 2015-03-30 2016-10-10 제이엑스금속주식회사 Cu-Ni-Si BASED ROLLED COPPER ALLOY AND METHOD FOR MANUFACTURING THE SAME
JP6177299B2 (en) * 2015-11-04 2017-08-09 Jx金属株式会社 Metal mask material and metal mask
US20170208680A1 (en) * 2016-01-15 2017-07-20 Jx Nippon Mining & Metals Corporation Copper Foil, Copper-Clad Laminate Board, Method For Producing Printed Wiring Board, Method For Producing Electronic Apparauts, Method For Producing Transmission Channel, And Method For Producing Antenna
JP2019065361A (en) * 2017-10-03 2019-04-25 Jx金属株式会社 Cu-Ni-Sn-BASED COPPER ALLOY FOIL, EXTENDED COPPER ARTICLE, ELECTRONIC DEVICE COMPONENT, AND AUTO FOCUS CAMERA MODULE
JP7169149B2 (en) * 2017-10-20 2022-11-10 住友化学株式会社 Separator for non-aqueous electrolyte secondary battery
CN112695219A (en) * 2020-12-11 2021-04-23 中南大学 Method for improving strength and conductivity of Cu-Cr-Nb alloy for smelting and casting

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306162A (en) * 1988-05-31 1989-12-11 Nippon Steel Corp Method and device for continuously polishing metallic foil
JP3263818B2 (en) * 1991-11-20 2002-03-11 株式会社チップトン Dry barrel polishing method and dry media for rough to medium finishing
JPH1112714A (en) * 1997-06-25 1999-01-19 Dowa Mining Co Ltd Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof
CN1237131C (en) * 2001-11-29 2006-01-18 东洋纺绩株式会社 Polyester mulching film
JP4378502B2 (en) * 2004-02-25 2009-12-09 Dowaメタルテック株式会社 Heat sink for semiconductor device and manufacturing method thereof
TWI272135B (en) * 2005-01-31 2007-02-01 Kobe Steel Ltd Precoated metal sheet and process for producing the same
JP2006231451A (en) * 2005-02-24 2006-09-07 Nitto Shinko Kk Method and device for manufacturing resin continuous plate containing glass fiber
JP2008091040A (en) * 2006-09-29 2008-04-17 Nikko Kinzoku Kk Copper alloy foil for roughening treatment, and copper alloy foil material
JP4413992B2 (en) 2007-10-03 2010-02-10 古河電気工業株式会社 Copper alloy sheet for electrical and electronic parts
JP2009291890A (en) * 2008-06-05 2009-12-17 Nicca Chemical Co Ltd Barrel polishing detergent
JP5224415B2 (en) * 2008-07-31 2013-07-03 古河電気工業株式会社 Copper alloy material for electric and electronic parts and manufacturing method thereof
WO2010016428A1 (en) * 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
EP2351862B1 (en) * 2008-10-22 2014-11-26 Furukawa Electric Co., Ltd. Copper alloy sheet, electric and electronic parts, and copper alloy sheet manufacturing method
JP4972115B2 (en) * 2009-03-27 2012-07-11 Jx日鉱日石金属株式会社 Rolled copper foil
JP4629154B1 (en) * 2010-03-23 2011-02-09 Jx日鉱日石金属株式会社 Copper alloy for electronic materials and manufacturing method thereof
JP4677505B1 (en) * 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612691B (en) * 2013-09-02 2018-01-21 Furukawa Electric Co Ltd Substrate for lead frame for optical semiconductor device, manufacturing method thereof, lead frame for optical semiconductor device therefor, method for manufacturing the same, and optical semiconductor device
TWI743689B (en) * 2019-03-28 2021-10-21 日商Jx金屬股份有限公司 Copper alloys, copper elongation products and electronic machine parts

Also Published As

Publication number Publication date
JP2012201963A (en) 2012-10-22
WO2012132805A1 (en) 2012-10-04
US20140065441A1 (en) 2014-03-06
KR101569262B1 (en) 2015-11-13
JP4831552B1 (en) 2011-12-07
CN103429388A (en) 2013-12-04
EP2679341A4 (en) 2014-12-24
TWI450985B (en) 2014-09-01
EP2679341B1 (en) 2016-07-27
CN103429388B (en) 2016-10-05
EP2679341A1 (en) 2014-01-01
KR20130122667A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
TW201245471A (en) Co-Si-BASED COPPER ALLOY SHEET
JP4410835B2 (en) Aluminum alloy thick plate and manufacturing method thereof
WO2011068135A1 (en) Copper alloy sheet and process for producing same
JP4948678B2 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP6639908B2 (en) Copper alloy wire and method of manufacturing the same
JP5610643B2 (en) Cu-Ni-Si-based copper alloy strip and method for producing the same
KR101335201B1 (en) Copper alloy for electronic material and method of manufacture for same
WO2018143177A1 (en) Aluminum alloy magnetic disk substrate and method for producing same
WO2010047373A1 (en) Copper alloy material, electric and electronic parts, and copper alloy material manufacturing method
TW200927960A (en) Copper alloy sheet material for electric and electronic parts
JP5961371B2 (en) Ni-Co-Si copper alloy sheet
WO2015099098A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
TWI774682B (en) Copper alloy rolling material, method for producing the same, and electrical and electronic parts
TW201303045A (en) Rolled copper foil, process for producing same, and copper-clad laminate
TW201721658A (en) Silver alloyed copper wire
JP6196757B2 (en) Corson alloy and manufacturing method thereof
US20130004793A1 (en) Copper alloy for electronic material and method of manufacture for same
WO2020110544A1 (en) Aluminum alloy substrate for magnetic discs and method for manufacturing same, magnetic disc aluminum alloy base and method for manufacturing same, and magnetic disc and method for manufacturing same
JP5508326B2 (en) Co-Si copper alloy sheet
JP2013119640A (en) Co-Si-BASED COPPER ALLOY SHEET
WO2023033038A1 (en) Terminal material having plating film and copper sheet for terminal material
CN115418525A (en) Copper alloy, copper-clad laminate and electronic device component
JP2014128814A (en) Manufacturing method of steel plate excellent in chemical convertibility and corrosion resistance after coating