TW201239948A - A method for making a substrate with micro-structure - Google Patents

A method for making a substrate with micro-structure Download PDF

Info

Publication number
TW201239948A
TW201239948A TW100112869A TW100112869A TW201239948A TW 201239948 A TW201239948 A TW 201239948A TW 100112869 A TW100112869 A TW 100112869A TW 100112869 A TW100112869 A TW 100112869A TW 201239948 A TW201239948 A TW 201239948A
Authority
TW
Taiwan
Prior art keywords
substrate
layer
carbon nanotube
epitaxial
epitaxial layer
Prior art date
Application number
TW100112869A
Other languages
Chinese (zh)
Other versions
TWI464778B (en
Inventor
Yang Wei
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Publication of TW201239948A publication Critical patent/TW201239948A/en
Application granted granted Critical
Publication of TWI464778B publication Critical patent/TWI464778B/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for making a plate having micro-structures. The method includes following steps of: providing a substrate having an epitaxial growth surface; placing a carbon nanotube layer on the epitaxial growth surface, wherein the carbon nanotube layer has a plurality of openings; epitaxial growing a plurality of epitaxial grains on the epitaxial growth surface from the plurality of openings; and removing the carbon nanotube layer to obtain a plate having micro-structures. The method is simple and low cost.

Description

201239948 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種具有奈米微構造基板的製傷方法。 【先前技術】 [0002] 在先前技術中’製作各種半導體設備時,常需要製作具 有數十奈米到數百奈米的微細構造的奈米圖形。 U。具有所 述微細構造的奈米圖形的製作方法主要有光或電子束的 光刻方法。 〇 [0003]為了適應積體電路技術的迅猛發展,在先前的光學光刻 技術上努力突破解析度極限的同時,下一代光刻技術在 最近幾年内獲得大量的研究。例如,深紫外光刻技術採 用波長13~14nm的光源和精度極高的反射式光學系統有 效降低了折射系統中強烈的光吸收,但製造方法繁雜、 造價昂貴的光刻系統,限制了該技術的應用。 [0004] 上世紀九十年代以來,一種新的奈米圖形的製作製造方 法得到了發展(請參見Ch〇U S Y,Krauss p R,Ren_ storm P. Imprint of sub 25 nin vias and trenches in polymers. Appl. Phys. Lett., 1995,67(21): 3114_3116)。所述製作奈米圖形的新 技術,在本領域中被稱作奈米壓印或者奈米壓印平板印 刷術。奈米麗印是指採用繪有奈米圖形的模板,將基板 上的光阻(resist)薄膜壓印奈米圖形,再對基板上的 奈米圖形進行處理,如刻蝕、剝離等,最終製成具有奈 米構造的圖形和半導體器件。以奈米壓印技術形成奈米 圖案的方法’通過採用具有奈米圖形的硬性模板壓印光 100112869 表單編號A0101 第3頁/共51頁 1002021432-0 201239948 阻層形成奈米圖案,而不需要依賴任何輻射曝光形成。 所以,奈米壓印技術可以消除在常規的光刻方法中所必 須的比如對光的波長的限制,以及在光阻和基底内粒子 的反向散射,和光干涉等限制條件,以實現更高的解析 度。因此,相對於光刻技術,奈米壓印技術具有製作成 本低、簡單易行、效率高的優點,具有廣泛的應用前景 〇 [0005] [0006] 由於奈米壓印技術通過機械方式使聚合物光阻變形’而 不疋通過改變平板印刷術的光阻的化學性能實現。因此 ’奈米壓印技術對聚合物光阻具有較高的要求,即該聚 合物光阻應為熱塑型或光固化型,且具有良好的成膳性 ,模量高,保持形變能力,且固化後容易脫模,使得模 板與先阻分離後,該光阻仍然可以保留在基底。先前技 術中,奈米壓印的光阻主要有,矽橡膠系列,環氧樹脂 系列,丙烯酸酯系列,聚苯乙烯系列等。 1998年6月30日公告的美國專利5 772 9〇5,公開了一 種聚甲基丙稀酸曱醋(PMMA)作為奈米壓印光阻的技術 方案’通過將聚甲基丙烯酸甲s旨在石夕片上旋轉洗鑄成膜 ’再採用熱壓的方法在基底上形成奈米圖形。所公開的 奈米壓印的方法要求加熱奈米壓印光阻(約使之 產生塑1±形變’然後再將奈米屋印光阻冷卻(低於_八 的玻壤化轉變溫度Tg ’約mt:)固化成型後,除去模板 從而形成奈米級圖形。但是,由於聚甲基丙烯酸甲酯的 玻璃化轉變溫度較高,使得該方法中的加熱溫度過高, 使得該奈米壓印光阻的力學穩定性降低,與模板的黏附 100112869 表單編號A0101 第4頁/共51頁 1002021432-0 201239948 性強,難以脫模,得到的圖形不平整,使獲得的奈米圖 形的解析度較低。先前技術中,為了提高奈米圖形的解 析度,在壓印之前,常常需要對模板進行預處理,但是 模板的預處理過程繁雜,因此提高了奈米壓印的製造方 法複雜度,以及成本,該方法不利於實際應用。 【發明内容】 [0007] 綜上所述,提供一種製程簡單,成本低廉,且不會對基 底表面造成污染的具有奈米微構造基板的製備方法實為 必要。 [0008] 一種具有奈米微構造基板的製備方法,其包括以下步驟 :提供一基底,該基底具有一支持外延層生長的外延生 長面;於所述基底的外延生長面設置一奈米碳管層;在 基底的外延生長面垂直生長外延層,所述外延層為由奈 米碳管層中的奈米碳管間隔的非連續性的外延層;以及 ,去除所述奈米礙管層,得到表面具有奈米微構造的基 板。 〇 [0009] 一種具有奈米微構造基板的製備方法,其包括以下步驟 :提供一基底,該基底具有一支持外延層生長的外延生 長面;於所述基底的外延生長面設置第一奈米碳管層; 在基底的外延生長面生長一連續的第一外延層並覆蓋第 一奈米碳管層;於所述連續的第一外延層表面設置第二 奈米碳管層;於所述連續的第一外延層表面垂直生長一 第二外延層,所述第二外延層為由奈米碳管層中的奈米 碳管間隔的非連續性的外延層;以及去除所述連續的第 一外延層表面設置的所述第一奈米碳管層,得到一具有 100112869 表單編號A0101 第5頁/共51頁 1002021432-0 201239948 奈米微構造基板。 [0010] 一種具有奈米微構造基板的製備方法,其包括以下步驟 .提供一基底,該基底具有一支持外延層生長的外延生 長面;於所述基底的外延生長面設置—奈米碳管層;在 基底的外延生長面生長一連續的外延層並覆蓋所述奈米 碳管層;於所述連續的外延層的表面設置一奈米碳管層 ;於所述連續的外延層的表面垂直生長外延層,該外延 層為由奈米碳管層中的奈米碳管間隔的非連續性的外延 層;去除所述連續的外延層表面設置的奈米碳管層;剝 離移除基底及所述基底的外延生長面設置的奈米碳管層 ,得到具有奈米微構造基板。 [0011] 與先前技術相比,由於在所述基底的外延生長面設置一 奈米碳管層而獲得圖形化的掩模的方法製程簡單、成本 低廉,大大降低了外延構造的製備成本,同時降低了對 環境的污染。進一步,所述包括奈米碳管層的外延構造 使得外延構造具有廣泛用途。 【實施方式】 [0012] 以下將結合附圖詳細說明本發明實施例提供的具有奈米 微構造基板的製備方法。 [0013] 請參閱圖1,本發明實施例提供一種具有奈米微構造基板 10的製備方法,其具體包括以下步驟: [0014] S11 :提供一基底100 ’且該基底具有一支持外延層 生長的外延生長面101 ; [0015] S12 :於所述基底100的外延生長面101設置一奈米碳管 100112869 表單編號A0101 第6頁/共51頁 1002021432-0 201239948 層 102 ; [0016] S13 :在基底100的外延生長面1〇1垂直生長外延層1〇4 ; _7] S14 .去除所述奈米破管層,得到具有奈米微構造 108的具有奈米微構造基板10 ^ [0018]步驟S11中,所述基底1〇〇提供了生長外延層1〇4的外延 生長面101。所述基底1〇〇的外延生長面1〇1是分子平滑 的表面,且去除了氧或碳等雜質。所述基底1〇〇可為單層 或複數層構造。當所述基底1〇〇為單層構造時,該基底 ) 100可為一單晶構造體,且具有一晶面作為外延層丨〇4的 外延生長面101。所述單層構造的基底100的材料可為 SOI(silicon on insulator,絕緣基底上的石夕)、201239948 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a method of injuring a nano-structured substrate. [Prior Art] [0002] In the prior art, when various semiconductor devices are fabricated, it is often required to fabricate a nano-structure having a fine structure of several tens of nanometers to several hundreds of nanometers. U. A method of fabricating a nano pattern having the fine structure mainly includes a photolithography method of light or electron beam. 〇 [0003] In order to adapt to the rapid development of integrated circuit technology, while the previous optical lithography technology strives to break through the resolution limit, the next generation lithography technology has gained a lot of research in recent years. For example, deep ultraviolet lithography uses a light source with a wavelength of 13 to 14 nm and a highly accurate reflective optical system to effectively reduce the strong light absorption in the refractive system, but the lithography system, which is complicated in manufacturing methods and expensive, limits the technology. Applications. [0004] Since the 1990s, a new method of making and manufacturing nano-patterns has been developed (see Ch〇USY, Krauss p R, Ren_storm P. Imprint of sub 25 nin vias and trenches in polymers. Appl Phys. Lett., 1995, 67(21): 3114_3116). The new technique for making nanopatterns is known in the art as nanoimprint or nanoimprint lithography. Nano-printing refers to the use of a template with a nano-pattern to imprint a resist film on a substrate with a nano-pattern, and then process the nano-pattern on the substrate, such as etching, stripping, etc., and finally A pattern and a semiconductor device having a nanostructure are fabricated. A method of forming a nano pattern by nanoimprint technology 'by using a rigid template imprinted light having a nano pattern 100112869 Form No. A0101 Page 3 / 51 page 1002021432-0 201239948 Resisting layer forms a nano pattern without Rely on any radiation exposure. Therefore, nanoimprint technology can eliminate the limitations such as the wavelength of light required in conventional photolithography methods, as well as backscattering of particles in the photoresist and substrate, and optical interference constraints to achieve higher Resolution. Therefore, compared with lithography, nanoimprint technology has the advantages of low manufacturing cost, simplicity, and high efficiency, and has broad application prospects. [0005] [0007] Because nanoimprint technology mechanically aggregates The resistance of the photoresist is not achieved by changing the chemical properties of the photoresist of lithography. Therefore, 'nano imprint technology has high requirements for polymer photoresist, that is, the polymer photoresist should be thermoplastic or photocurable, and has good feeding ability, high modulus and maintaining deformation ability. And after curing, it is easy to demold, so that after the template is separated from the first resistance, the photoresist can still remain on the substrate. In the prior art, the photoresists of nanoimprinting mainly include bismuth rubber series, epoxy resin series, acrylate series, polystyrene series and the like. U.S. Patent No. 5,772, filed on Jun. 30, 1998, the disclosure of which is incorporated herein to The nano-pattern is formed on the substrate by spin-molding on the Shi Xi tablet. The disclosed method of nanoimprinting requires heating a nanoimprint resist (about causing a plastic 1±deformation) and then cooling the nano-house printing photoresist (below a glass transition temperature Tg of _eight). Mt:) After solidification molding, the template is removed to form a nano-scale pattern. However, since the glass transition temperature of polymethyl methacrylate is high, the heating temperature in the method is too high, so that the nano-imprinted light The mechanical stability of the resistance is reduced, and the adhesion to the template is 100112869. Form number A0101 Page 4 / 51 page 1002021432-0 201239948 Strong, difficult to demould, resulting in uneven graphics, resulting in lower resolution of the obtained nano graphics In the prior art, in order to improve the resolution of the nano-pattern, it is often necessary to pre-treat the template before imprinting, but the pre-processing of the template is complicated, thereby improving the complexity of the manufacturing method of the nanoimprint and the cost. The method is not conducive to practical application. SUMMARY OF THE INVENTION [0007] In summary, the invention provides a nanometer micro with a simple process, low cost, and no pollution to the surface of the substrate. A method for preparing a substrate is necessary. [0008] A method for fabricating a nano-microstructure substrate, comprising the steps of: providing a substrate having an epitaxial growth surface supporting epitaxial layer growth; Forming a carbon nanotube layer on the epitaxial growth surface; vertically growing an epitaxial layer on the epitaxial growth surface of the substrate, the epitaxial layer being a discontinuous epitaxial layer separated by a carbon nanotube in the carbon nanotube layer; and, removing The nano tube layer is obtained to obtain a substrate having a nano microstructure on the surface. [0009] A method for preparing a nano-micro structure substrate, comprising the steps of: providing a substrate having a supporting epitaxial layer growth An epitaxial growth surface; a first carbon nanotube layer disposed on the epitaxial growth surface of the substrate; a continuous first epitaxial layer on the epitaxial growth surface of the substrate and covering the first carbon nanotube layer; a second carbon nanotube layer is disposed on the surface of the first epitaxial layer; a second epitaxial layer is vertically grown on the surface of the continuous first epitaxial layer, and the second epitaxial layer is formed by a carbon nanotube layer a non-continuous epitaxial layer in which the carbon nanotubes are spaced apart; and removing the first carbon nanotube layer disposed on the surface of the continuous first epitaxial layer to obtain a form having a surface number of A1101 51 pages 1002021432-0 201239948 nano-microstructured substrate. [0010] A method for preparing a nano-microstructured substrate, comprising the steps of: providing a substrate having an epitaxial growth surface supporting epitaxial layer growth; The epitaxial growth surface of the substrate is provided with a carbon nanotube layer; a continuous epitaxial layer is grown on the epitaxial growth surface of the substrate and covers the carbon nanotube layer; and a nano carbon is disposed on the surface of the continuous epitaxial layer a tube layer; an epitaxial layer is vertically grown on a surface of the continuous epitaxial layer, the epitaxial layer being a discontinuous epitaxial layer separated by a carbon nanotube in the carbon nanotube layer; removing the continuous epitaxial layer surface setting a carbon nanotube layer; the carbon nanotube layer provided on the epitaxial growth surface of the substrate and the substrate is peeled off to obtain a nano-structured substrate. [0011] Compared with the prior art, the method for obtaining a patterned mask by providing a carbon nanotube layer on the epitaxial growth surface of the substrate is simple in process and low in cost, and the preparation cost of the epitaxial structure is greatly reduced, and at the same time Reduced pollution to the environment. Further, the epitaxial structure including the carbon nanotube layer makes the epitaxial structure have a wide range of uses. [Embodiment] A method for fabricating a nano-microstructure substrate provided by an embodiment of the present invention will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1, an embodiment of the present invention provides a method for fabricating a nano-microstructure substrate 10, which specifically includes the following steps: [0014] S11: providing a substrate 100' and the substrate has a supporting epitaxial layer growth Epitaxial growth surface 101; [1215] S12: a carbon nanotube 100112869 is disposed on the epitaxial growth surface 101 of the substrate 100. Form No. A0101 Page 6 / 51 page 1002021432-0 201239948 Layer 102; [0016] S13: The epitaxial layer 1〇4 is vertically grown on the epitaxial growth surface 1〇1 of the substrate 100; _7] S14. The nano tube-breaking layer is removed to obtain a nano-structured substrate having a nano-microstructure 108. [0018] In step S11, the substrate 1 〇〇 provides an epitaxial growth surface 101 for growing the epitaxial layer 1〇4. The epitaxial growth surface 1〇1 of the substrate 1 is a molecularly smooth surface, and impurities such as oxygen or carbon are removed. The substrate 1〇〇 may be a single layer or a plurality of layers. When the substrate 1 is a single layer structure, the substrate 100 may be a single crystal structure having a crystal plane as the epitaxial growth surface 101 of the epitaxial layer 丨〇4. The material of the single-layer structure substrate 100 may be SOI (silicon on insulator),

LiGa〇2、LiAl〇2、Al2〇3、Si、GaAs、GaN、GaSb、LiGa〇2, LiAl〇2, Al2〇3, Si, GaAs, GaN, GaSb,

InN、InP、InAs、InSb、A1P、AlAs、AlSb、AIN、InN, InP, InAs, InSb, A1P, AlAs, AlSb, AIN,

GaP、SiC、SiGe、GaMnAs、GaAlAs、GalnAs、GaAIN 、GalnN、AlInN、GaAsP、InGaN、AlGalnN、Ah GalnP、GaP:Zn或GaP:N等。當所述基底100為複數層 構造時,其需要包括至少一層所述單晶構造體,且該單 晶構造體具有一晶面作為外延層104的外延生長面101。 所述基底100的材料可根據所要生長的外延層104來選擇 ,優選地,使所述基底100與外延層104具有相近的晶格 常數以及熱膨脹係數。所述基底1〇〇的厚度、大小和形狀 不限,可根據實際需要選擇。所述基底100不限於所述列 舉的材料,只要具有支持外延層104生長的外延生長面 101的基底100均屬於本發明的保護範圍》 100112869 表單編號 A0101 第 7 頁/共 51 頁 1002021432-0 201239948 [0019] 步驟S12中,所述奈米碳管層102為包括複數奈米碳管的 連續的整體構造。所述奈米碳管層102與所述基底1〇〇的 外延生長面101接觸設置。所述奈米碳管層102中複數奈 米碳管沿著基本平行於奈米碳管層102表面的方向延伸。 當所述奈米碳管層102設置於所述基底1〇〇的外延生長面 101時,所述奈米碳管層102中複數奈米碳管的延伸方向 基本平行於所述基底100的外延生長面101。所述奈米碳 管層的厚度為1奈米〜100微米,或1奈米〜1微米,或1奈 米~200奈米,優選地厚度為10奈米~1〇〇奈米。所述奈米 碳管層102為一圖形化的奈米碳管層1〇2。所述“圖形化 ’’是指所述奈米碳管層10 2具有複數開口 1 〇 5,該複數開 口 105從所述奈米碳管層1〇2的厚度方向貫穿所述奈米碳 管層102。當所述奈米碳管層1〇2覆蓋所述基底1〇0的外 延生長面101設置時,從而使所述基底1〇〇的外延生長面 101對應該開口 105的部份暴露以便於生長外延層1〇4。 所述開口 105可為微孔或間隙。所述開口 1 〇 5的尺寸為J 〇 奈米〜500微米,所述尺寸是指所述微孔的孔徑或所述間 隙的寬度方向的間距。所述開口 1〇5的尺寸為10奈米 〜300微米、或1〇奈米~120微米、或1〇奈米~8〇微米、或 10奈米〜10微米。開口1〇5的尺寸越小,有利於在生長外 延層的過程中減少位錯缺陷的產生,以獲得高品質的外 延層104。優選地,所述開口 105的尺寸為1〇奈米〜1〇微 米。進一步地’所述奈米碳管層102的佔空比為 1:1〇0〜100:1 ’ 或 1:10~10:1,或 ,或 1 :4~4: 1。優選地,所述佔空比為丨:4〜4: 1。所謂“佔空 比”指該奈米碳管層102設置於基底100的外延生長面 100112869 表單編號A0101 第8頁/共51頁 1002021432-0 201239948 [0020] ❹ [0021] [0022]Ο [0023] 1 0 1後’該外延生長面1 〇 1被奈米碳管層1 〇 2佔據的部份 與通過開口 105暴露的部份的面積比。 進一步地’所述“圖形化”是指所述奈米碳管層1〇2中複 數奈米碳管的排列方式是有序的、有規則的。例如,所 述奈米碳管層102中複數奈米碳管的軸向均基本平行於所 述基底100的外延生長面1〇1且基本沿同一方向延伸。或 者,所述奈米碳管層102中複數奈米碳管的軸向可有規律 性地基本沿兩個以上方向延伸。或者,所述奈米碳管層 102中複數奈米碳管的轴向沿著基底1 〇〇的一晶向延伸或 與基底100的一晶向成一定角度延伸。上述奈米碳管層 102中沿同一方向延伸的相鄰的奈米碳管通過凡得瓦力 (van der Waals force)首尾相連。 於所述奈米碳管層102具有如前所述的開口 1〇5的前提下 ,所述奈米碳管層102中複數奈米碳管也可無序排列、無 規則排列。 優選地,所述奈米碳管層1〇2設置於所述基底1〇〇的整個 外延生長面101。所述奈米碳管層1〇2中的奈米碳管可為 單壁奈米碳管、雙壁奈米唉管或多壁奈米碳管中的一種 或複數種,其長度和直徑可根據需要選擇。 所述奈米碳管層1G2用作生長外延層叫的掩模^所謂“ 掩模”是指該奈米碳管㈣2用於遮擔所述基底1〇〇的部 份外延生長©1(H ’且暴露部份外延生長面iQl,從而使 得外延層104僅從所述外延生長面m暴露的部份生長。 由於奈ift碳管層1G2具有複數開口 1Q5,所以該奈米破管 100112869 表單編號A0101 第9頁/共51頁 1002021432-0 201239948 層102形成一圖形 底⑽的外延生長面lnl, 層102設置於基 延生長面1()1的方後’獲數奈米碳管沿著平行於外 述基底m的外延=由於所述奈米碳管㈣2於所 得G1形成複數開D1G5,從而使 付所返基底1〇〇的外 災 。可以理解,相對Μ 上具有—圖形化的掩模 Λ ^ ;光刻等微電子方法,通i§ + 破管層⑽掩模進行外延生長的方_„。 a^ 、生長的方法間早、成本低廉,不 易=基底m的外延生長讀引入污染,而且綠色環保 〇以大大降低了外延構造的製備成本。 [0024] [0025] 可以理解,所述基底m和奈求碳管層1〇2共同構成了用 於生長外延構造的襯底。該襯底可用於生長不同材料的 外延層104。該外延層104的材料可以與基底1〇〇的材料 相同或不同。當該外延層104的材料與基底100的材料不 同時,所述生長方法稱為異質外延生長。當該外延層104 的材料與基底100的材料相同時,所述生長方法稱為同質 外延生長。 所述奈米碳管層102可以預先形成後直接舖設於所述美底 100的外延生長面101。所述奈米碳管層1〇2本身的比表 面積非常大’所以該奈米碳管層102本身具有較強的黏性 。因此,該奈米碳管層102可直接通過自身的黏性固定於 所述基底100的外延生長面101。所述奈米碳管層為 一宏觀構造,且所述奈米礙管層102為一個自支偉的構、& 。所謂“自支撐”指該奈米碳管層102不需要大面積的載 體支撐,而只要相對兩邊提供支撐力即能整體上懸空而 保持自身狀態,即將該奈米碳管層102置於(或固定於) 100112869 表單編號A0101 第10頁/共51頁 1002021432-0 201239948 間隔特定距離設置的兩個支推體上時,位於二支禮體之 間的奈米礙管層102能夠懸空保持自身狀態。由於奈米破 管層102為自支推構造,所述奈来碳管層1〇2不必要通過 複雜的化學方法形成在基底1〇〇的外延生長面ι〇ι。進〆 步優選地,所述奈米碳管層1〇2為複數奈米碳管組成的纯 奈米碳管構造。所謂‘‘純奈米琰管構造,,是指所述奈米 碳管層在整個製備過財無f任何化學修似酸化處理 ,不含有任何羧基等官能團修飾。 Ο [〇酬所述奈米碳管層102還可為一包括複數奈米碳管以及添加 材料的複合構造。所述添加材料包括石墨、石墨稀、碳 化石夕、I化獨、氮化石夕、二氧化石夕、無定形碳等中的一 種或複數種。魏添加材料還可包括金屬碳化物、金属 氧化物及金屬it化物等中的—種或複數種。所述添加材 料包覆於奈米破管層1〇2中奈米碳管的至少部份表面或設 置於奈米碳管唐102的開口 1〇5内。優選地,所述添加材 料包覆於奈Μ管的表面。由於’所述添加材料包覆於 〇 奈米碳管的表面,使得奈米碳管的直徑變大,從而使奈 来碳管之間的開口 105減小。所述添加材料可通過化學氣 相沈積(CVD)、物理氣相沈積(PVD)、磁控滅射等方 法形成於奈米碳管的表面。 [0027] 將所述奈米碳管層1〇2鋪設於所述基底1〇〇的外延生長面 101後還可包括一有機溶劑處理的步驟,以使奈米碳管廣 102與外延生長面1〇1更加緊密結合。該有機溶劑可選用 乙醇、甲醇、芮_、二氣乙烷和氣仿中一種或者幾種的 滿合。本實施例中的有機溶劑採用乙醇。該使用有機溶 100112869 表單煸號Α0101 第11頁/共51頁 1002021432-0 201239948 [0028] [0029] [0030] 100112869 劑處理的步驟可通過试管將有機溶劑滴落在奈米碳管層 102表面浸潤整個奈米碳管層102或將基底100和整個奈 米碳管層102—起浸入盛有有機溶劑的容器中浸潤。 所述奈米碳管層102也可通過化學氣相沈積(CVD)等方 法直接生長於所述基底100的外延生長面101或先生長於 矽基底表面’然後轉印到所述基底100的外延生長面101 〇 具體地’所述奈米碳管層102可包括奈米碳管膜或奈米碳 管線。所述奈米碳管層102可為一單層奈米碳管膜或複數 層疊設置的奈米碳管膜。所述奈米碳管層1〇2可包括複數 平行設置的奈米碳管線或複數交叉設置的奈米碳管線。 當所述奈米碳管層102為複數層疊設置的奈米碳管膜時, 奈米碳管膜的層數不宜太多,優選地,為2層〜1〇〇層。當 所述奈米碳管層102為複數平行設置的奈米碳管線時,相 鄰二奈米碳管線之間的距離為〇. 1微米〜200微米,優選地 ,為10微米〜100微米。所述相鄰二奈米碳管線之間的空 間構成所述奈米碳官層102的開口 105。相鄰二奈米碳管 線之間的間隙長度可以等於奈米破管線的長度。所述奈 米碳管膜或奈米碳管線可以直接鋪設在基底1〇〇的外延生 長面101構成所述奈米碳管層1〇2。通過控制奈米碳管膜 的層數或奈米碳管線之間的距離,可以控制奈米碳管層 102中開口 105的尺寸。 所述奈米碳管膜是由若干奈米碳管組成的自支撐構造。 所述若干奈米碳管為沿同一方向擇優取向延伸。所述擇 優取向是指在奈米碳管膜中大多數奈米碳管的整體延伸 表單編號A0101 第12頁/共51頁 1002021432-0 201239948 方向基本朝同-方向。而且,所述大多數奈米碳管的整 體延伸方向基本平行於奈米碳管膜的表面。進* 所述奈米破管膜中多數奈米碳管是通過凡得瓦力3相 連。具體地,所述奈米碳管膜中基本__方㈣伸= 大多數奈米碳管中每-奈米碳管與在延伸方向上相鄰的 奈米礙管通過凡得瓦力首尾相連。當然,所述奈米碳管 膜中存在少數隨機排列的奈米碳管,這些奈米碳其不會 對奈米碳管膜中大多數奈米碳管的整體取向排列構成明 顯影響。所述自支樓為奈米碳管膜不需要大面積的载體 〇 支撐’而只要相對兩邊提供支撐力即能整體上懸空而保 持自身膜狀狀態,即將該奈米碳管膜置於(或固定於) 間隔特定距離設置的二支撐體上時,位於二支撐體之間 的奈米碳管膜能夠懸空保持自身膜狀狀態。所述自支撐 主要通過奈米碳官膜中存在連續的通過凡得瓦力首尾相 連延伸排列的奈米碳管而實現。 [0031]具體地,所述奈米碳管膜中基本朝同一方向延伸的多數 Q 奈米碳管,並扑絕對的直線狀,可以適當的彎曲;或者 並非完全按照延伸方向上排列,可以適當的偏離延伸方 向。因此,不能排除奈米碳管膜的基本朝同一方向延伸 的多數奈米碳管中並列的奈米碳管之間可能存在部份接 觸0 [0032]請參閱圖2及圖3,具體地,所述奈米碳管膜包括複數連 續且定向延伸的奈米碳管片段143。該複數奈米碳管片段 143通過凡得瓦力首尾相連。每一奈米碳管片段包括 複數相互平行的奈米碳營145,該複數相互平行的奈米碳 100112869 表單編號 A0101 第 13 買/共 51 頁 1_21432_〇 201239948 管145通過凡得瓦力緊密結合。該奈米碳管片段143具有 任意的長度、厚度、均勻性及形狀。所述奈米碳管膜可 通過從一奈米碳管陣列中選定部份奈米碳管後直接拉取 獲得。所述奈米碳管膜的厚度為1奈米〜100微米,寬度與 拉取出該奈米碳管膜的奈米碳管陣列的尺寸有關,長度 不限。所述奈米碳管膜中相鄰的奈米碳管之間存在微孔 或間隙從而構成開口 105,且該微孔的孔徑或間隙的尺寸 小於10微米。優選地,所述奈米碳管膜的厚度為100奈米 ~10微米。該奈米碳管膜中的奈米碳管145沿同一方向擇 優取向延伸。所述奈米碳管膜及其製備方法具體請參見 申請人於2007年2月12日申請的,於2010年7月11日公告 的第1 3271 77號中華民國專利“奈米碳管薄膜結構及其製 備方法”。為節省篇幅,僅引用於此,但上述申請所有 技術揭露也應視為本發明申請技術揭露的一部份。 [0033] 請參閱圖4,當所述奈米碳管層包括層疊設置的複數層奈 米碳管膜時,相鄰兩層奈米碳管膜中的奈米碳管的延伸 方向形成一交叉角度α,且α大於等於0度小於等於90度 (0°S α $90° )。 [0034] 為減小奈米碳管膜的厚度,還可以進一步對該奈米碳管 膜進行加熱處理。為避免奈米碳管膜加熱時被破壞,所 述加熱奈米碳管膜的方法採用局部加熱法。其具體包括 以下步驟:局部加熱奈米碳管膜,使奈米碳管膜在局部 位置的部份奈米碳管被氧化;移動奈米碳管被局部加熱 的位置,從局部到整體實現整個奈米碳管膜的加熱。具 體地,可將該奈米碳管膜分成複數小的區域,採用由局 100112869 表單編號Α0101 第14頁/共51頁 1002021432-0 201239948 部到整體的方式,逐區域地加熱該奈米碳管膜。所述局 部加熱奈米碳管膜的方法可以有複數種,如鐳射加熱法 、微波加熱法等等。本實施例中,通過功率密度大於0. 1 xlO4瓦特/平方米的鐳射掃描照射該奈米碳管膜,由局部 到整體的加熱該奈米碳管膜。該奈米碳管膜通過鐳射照 射,在厚度方向上部份奈米碳管被氧化,同時,奈米碳 管膜中直徑較大的奈米碳管束被去除,使得該奈米碳管 膜變薄。 ο _5] 可以理解,上述鐳射掃描奈米碳管膜的方法不限,只要 能夠均勻照射該奈米碳管膜即可。鐳射掃描可以沿平行 奈米碳管膜中奈米碳管的排列方向逐行進行,也可以沿 垂直於奈米碳管膜中奈米碳管的排列方向逐列進行。具 有固定功率、固定波長的鐳射掃描奈米碳管膜的速度越 小,奈米碳管膜中的奈米碳管束吸收的熱量越多,對應 被破壞的奈米碳管束越多,鐳射處理後的奈米碳管膜的 厚度變小。但是,如果鐳射掃描速度太小,奈米碳管膜 ❹ 將吸收過多熱量而被燒毀。本實施例中,鐳射的功率密 度大於0. 053x1 012瓦特/平方米,鐳射光斑的直徑在1毫 米〜5毫米範圍内,鐳射掃描照射時間小於1. 8秒。優選地 ,雷射器為二氧化碳雷射器,該雷射器的功率為30瓦特 ,波長為10. 6微米,光斑直徑為3毫米,鐳射裝置與奈米 碳管膜的相對運動速度小於10毫米/秒。 [0036] 所述奈米碳管線可為非扭轉的奈米碳管線或扭轉的奈米 碳管線。所述非扭轉的奈米碳管線與扭轉的奈米碳管線 均為自支撐構造。具體地,請參閱圖5,該非扭轉的奈米 100112869 表單編號A0101 第15頁/共51頁 1002021432-0 201239948 碳管線包括複數沿平行於該非扭轉的奈米碳管線長度方 向延伸的奈米碳管。具體地,該非扭轉的奈米碳管線包 括複數奈米碳管片段,該複數奈米碳管片段通過凡得瓦 力首尾相連,每一奈米碳管片段包括複數相互平行並通 過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳 管線長度不限,直徑為0. 5奈米~ 100微米。非扭轉的奈米 碳管線為將奈米碳管膜通過有機溶劑處理得到。具體地 ,將有機溶劑浸潤所述奈米碳管膜的整個表面,在揮發 性有機溶劑揮發時產生的表面張力的作用下,奈米碳管 膜中的相互平行的複數奈米碳管通過凡得瓦力緊密結合 ,從而使奈米碳管膜收縮為一非扭轉的奈米碳管線。該 有機溶劑為揮發性有機溶劑,如乙醇、曱醇、丙酮、二 氣乙烷或氯仿,本實施例中採用乙醇。通過有機溶劑處 理的非扭轉的奈米碳管線與未經有機溶劑處理的奈米碳 管膜相比,比表面積減小,黏性降低。 [0037] 所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管 膜兩端沿相反方向扭轉獲得。請參閱圖6,該扭轉的奈米 碳管線包括複數繞該扭轉的奈米碳管線軸向螺旋延伸的 奈米碳管。具體地,該扭轉的奈米碳管線包括複數奈米 碳管片段,該複數奈米碳管片段通過凡得瓦力首尾相連 ,每一奈米碳管片段包括複數相互平行並通過凡得瓦力 緊密結合的奈米碳管。該奈米碳管片段具有任意的長度 、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限 ,直徑為0. 5奈米〜100微米。進一步地,可採用一揮發性 100112869 表單編號A0101 第16頁/共51頁 1002021432-0 有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑 揮發時產生的表面張力的作用下’處理後的扭轉的奈米 碳管線中相鄰的奈米碳管通過凡得瓦力緊密結合,使扭 轉的奈米碳管線的比表面積減小’密度及強度增大。 所述奈米碳管線及其製備方法請參見申請人於2002年11 月5日申請的,於2008年11月21日公告的第1303239號 中華民國專利,申請人:鴻海精密工業股份有限公司, 及於2005年12月16日申請的,於2009年7月21日公告的 第1 312337號中華民國專利,申請人:鴻海精密工業股份 有限公司。 步驟S13中,所述外延層104的生長方法可通過分子束外 延法(MBE )、化學束外延法(CBE )、減壓外延法、低 溫外延法、選擇外延法、液相沈積外延法(LPE)、金屬 有機氣相外延法(MOVPE)、超真空化學氣相沈積法( UHVCVD)、氫化物氣相外延法(HVPE)、以及金屬有機化 學氣相沈積法(MOCVD)等中的一種或複數種實現。 所述外延層104指通過外延法生長在基底1〇〇的外延生長 面1 01的單晶構造體◊所述外延層1〇4可為一半導體外延 層’且該半導體外延層的材料為GaMnAs、GaA1As、GaP, SiC, SiGe, GaMnAs, GaAlAs, GalnAs, GaAIN, GalnN, AlInN, GaAsP, InGaN, AlGalnN, Ah GalnP, GaP: Zn or GaP: N, and the like. When the substrate 100 is of a plurality of layers, it is required to include at least one of the single crystal structures, and the single crystal structure has a crystal plane as the epitaxial growth surface 101 of the epitaxial layer 104. The material of the substrate 100 may be selected according to the epitaxial layer 104 to be grown. Preferably, the substrate 100 and the epitaxial layer 104 have similar lattice constants and coefficients of thermal expansion. The thickness, size and shape of the substrate 1 are not limited and can be selected according to actual needs. The substrate 100 is not limited to the listed materials as long as the substrate 100 having the epitaxial growth surface 101 supporting the growth of the epitaxial layer 104 is within the scope of the present invention. 100112869 Form No. A0101 Page 7 of 51 1002021432-0 201239948 [0019] In step S12, the carbon nanotube layer 102 is a continuous overall structure including a plurality of carbon nanotubes. The carbon nanotube layer 102 is placed in contact with the epitaxial growth surface 101 of the substrate 1 . The plurality of carbon nanotubes in the carbon nanotube layer 102 extend in a direction substantially parallel to the surface of the carbon nanotube layer 102. When the carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 1 , the extending direction of the plurality of carbon nanotubes in the carbon nanotube layer 102 is substantially parallel to the epitaxy of the substrate 100 Growth face 101. The carbon nanotube layer has a thickness of from 1 nm to 100 μm, or from 1 nm to 1 μm, or from 1 nm to 200 nm, preferably from 10 nm to 1 nm. The carbon nanotube layer 102 is a patterned carbon nanotube layer 1〇2. The "patterned" means that the carbon nanotube layer 10 2 has a plurality of openings 1 〇 5 penetrating the carbon nanotubes from the thickness direction of the carbon nanotube layer 1 〇 2 a layer 102. When the carbon nanotube layer 1〇2 covers the epitaxial growth surface 101 of the substrate 1〇0, the epitaxial growth surface 101 of the substrate 1〇〇 is exposed to a portion corresponding to the opening 105. In order to grow the epitaxial layer 1 〇 4. The opening 105 may be a micropore or a gap. The size of the opening 1 〇 5 is J 〇 nanometer ~ 500 micrometers, and the size refers to the pore size or the pore of the micro pore. The spacing of the gaps in the width direction. The size of the openings 1〇5 is 10 nm to 300 μm, or 1 nm to 120 μm, or 1 nm to 8 μm, or 10 nm to 10 μm. The smaller the size of the opening 1〇5, the smaller the generation of dislocation defects during the growth of the epitaxial layer is obtained to obtain a high-quality epitaxial layer 104. Preferably, the size of the opening 105 is 1 〇 nanometer~ 1 〇 micron. Further 'the duty cycle of the carbon nanotube layer 102 is 1:1 〇 0~100:1 ' or 1:10~10:1, or Or 1:4~4: 1. Preferably, the duty ratio is 丨: 4~4: 1. The so-called "duty ratio" means that the carbon nanotube layer 102 is disposed on the epitaxial growth surface 100112869 of the substrate 100. No. A0101 Page 8 of 51 1002021432-0 201239948 [0020] [0022] [0023] After 1 0 1 'the epitaxial growth surface 1 〇 1 is occupied by the carbon nanotube layer 1 〇 2 The ratio of the area to the portion exposed through the opening 105. Further, the term "patterning" means that the arrangement of the plurality of carbon nanotubes in the carbon nanotube layer 1〇2 is ordered and For example, the axial directions of the plurality of carbon nanotubes in the carbon nanotube layer 102 are substantially parallel to the epitaxial growth surface 1〇1 of the substrate 100 and extend substantially in the same direction. Alternatively, the nanometer The axial direction of the plurality of carbon nanotubes in the carbon tube layer 102 may regularly extend substantially in more than two directions. Alternatively, the axial direction of the plurality of carbon nanotubes in the carbon nanotube layer 102 may be along the substrate 1 〇 A crystal orientation of the crucible extends or extends at an angle to a crystal orientation of the substrate 100. The adjacent carbon nanotube layers 102 are adjacent in the same direction The carbon nanotubes are connected end to end by a van der Waals force. Under the premise that the carbon nanotube layer 102 has an opening 1〇5 as described above, the carbon nanotube layer 102 has a plurality of The carbon nanotubes may also be randomly arranged and randomly arranged. Preferably, the carbon nanotube layer 1〇2 is disposed on the entire epitaxial growth surface 101 of the substrate 1〇〇. The carbon nanotube layer 1 The carbon nanotubes in the crucible 2 may be one or a plurality of single-walled carbon nanotubes, double-walled nano-tubes or multi-walled carbon nanotubes, and the length and diameter thereof may be selected as needed. The carbon nanotube layer 1G2 is used as a mask for growing an epitaxial layer. The so-called "mask" means that the carbon nanotube (4) 2 is used to cover a portion of the epitaxial growth of the substrate 1 (H) And exposing a portion of the epitaxial growth surface iQ1 such that the epitaxial layer 104 grows only from the exposed portion of the epitaxial growth surface m. Since the nanoscale carbon nanotube layer 1G2 has a plurality of openings 1Q5, the nanotube 100112869 form number A0101 Page 9 of 51 1002021432-0 201239948 The layer 102 forms an epitaxial growth surface ln1 of the pattern bottom (10), and the layer 102 is disposed on the side of the base growth surface 1()1 to obtain a number of carbon nanotubes along the parallel The epitaxy of the substrate m is described as follows: since the carbon nanotubes (4) 2 form a plurality of D1G5 in the obtained G1, the external disaster of the substrate 1 is restored. It can be understood that there is a pattern mask on the opposite side. Λ ^ ; lithography and other microelectronic methods, through the i§ + broken layer (10) mask for epitaxial growth _ „. a ^, growth method early, low cost, not easy = substrate m epitaxial growth read and introduce pollution And the environmental protection 〇 greatly reduces the preparation cost of the epitaxial structure. [0024] [002 5] It can be understood that the substrate m and the carbon nanotube layer 1〇2 together constitute a substrate for growing an epitaxial structure. The substrate can be used to grow epitaxial layers 104 of different materials. The material of the epitaxial layer 104 can be The material is the same as or different from the material of the substrate 1. When the material of the epitaxial layer 104 is different from the material of the substrate 100, the growth method is called heteroepitaxial growth. When the material of the epitaxial layer 104 is the same as the material of the substrate 100. The growth method is called homoepitaxial growth. The carbon nanotube layer 102 can be directly formed and laid directly on the epitaxial growth surface 101 of the beauty substrate 100. The ratio of the carbon nanotube layer 1〇2 itself The surface area is very large' so that the carbon nanotube layer 102 itself has a strong viscosity. Therefore, the carbon nanotube layer 102 can be directly fixed to the epitaxial growth surface 101 of the substrate 100 by its own adhesiveness. The carbon nanotube layer is a macroscopic structure, and the nano-tube layer 102 is a self-supporting structure. "self-supporting" means that the carbon nanotube layer 102 does not require a large area of carrier support. As long as the support is provided on opposite sides That is, the whole can be suspended to maintain its state, that is, the carbon nanotube layer 102 is placed (or fixed) 100112869 Form No. A0101 Page 10 / Total 51 Page 1002021432-0 201239948 Two pushers arranged at a certain distance In the upper case, the nano-tube layer 102 located between the two rituals can be suspended to maintain its own state. Since the nano-tube layer 102 is a self-supporting structure, the carbon nanotube layer 1〇2 does not have to pass through the complex The chemical method is formed on the epitaxial growth surface of the substrate 1 〇. Preferably, the carbon nanotube layer 1〇2 is a pure carbon nanotube structure composed of a plurality of carbon nanotubes. The so-called "pure nanotube structure" means that the carbon nanotube layer is chemically treated in the entire preparation process, and does not contain any functional group modification such as a carboxyl group. Ο [The nanocarbon tube layer 102 can also be a composite structure comprising a plurality of carbon nanotubes and an additive material. The additive material includes one or a plurality of graphite, graphite thin, carbon carbide, I, nitridane, oxidized stone, amorphous carbon, and the like. The Wei addition material may also include one or a plurality of metal carbides, metal oxides, metal metal compounds, and the like. The additive material is coated on at least a portion of the surface of the nanotube in the nanotube layer 1〇2 or in the opening 1〇5 of the carbon nanotube 102. Preferably, the additive material is coated on the surface of the naphthalene tube. Since the additive material is coated on the surface of the carbon nanotube, the diameter of the carbon nanotube is made larger, thereby reducing the opening 105 between the carbon nanotubes. The additive material may be formed on the surface of the carbon nanotube by chemical vapor deposition (CVD), physical vapor deposition (PVD), magnetron extinction or the like. [0027] After the carbon nanotube layer 1〇2 is laid on the epitaxial growth surface 101 of the substrate 1 , an organic solvent treatment step may be further included to make the carbon nanotubes 102 and the epitaxial growth surface. 1〇1 is more closely integrated. The organic solvent may be selected from one or more of ethanol, methanol, hydrazine, di-ethane and gas. The organic solvent in this embodiment employs ethanol. The organic solvent 100112869 form nickname 1010101 page 11 / 51 page 1002021432-0 201239948 [0028] [0030] 100112869 The step of the agent treatment can drop the organic solvent on the surface of the carbon nanotube layer 102 through the test tube The entire carbon nanotube layer 102 is wetted or the substrate 100 and the entire carbon nanotube layer 102 are immersed in a container containing an organic solvent to be infiltrated. The carbon nanotube layer 102 may also be directly grown on the epitaxial growth surface 101 of the substrate 100 by a chemical vapor deposition (CVD) method or the epitaxial growth of the substrate 100 and then transferred to the substrate 100. The face 101 〇 specifically 'the carbon nanotube layer 102 may include a carbon nanotube film or a nano carbon line. The carbon nanotube layer 102 can be a single layer of carbon nanotube film or a plurality of laminated carbon nanotube films. The carbon nanotube layer 1〇2 may comprise a plurality of carbon nanotube lines arranged in parallel or a plurality of nano carbon lines arranged in a cross. When the carbon nanotube layer 102 is a carbon nanotube film provided in a plurality of layers, the number of layers of the carbon nanotube film is not too high, and preferably, it is a layer of 2 to 1 layer. When the carbon nanotube layer 102 is a plurality of carbon nanotubes arranged in parallel, the distance between the adjacent two nanocarbon lines is from 1 μm to 200 μm, preferably from 10 μm to 100 μm. The space between the adjacent two nanocarbon lines constitutes the opening 105 of the nanocarbon layer 102. The length of the gap between the adjacent two carbon nanotube lines may be equal to the length of the nano broken line. The carbon nanotube film or the nanocarbon line may be directly laid on the epitaxial growth surface 101 of the substrate to constitute the carbon nanotube layer 1〇2. The size of the opening 105 in the carbon nanotube layer 102 can be controlled by controlling the number of layers of the carbon nanotube film or the distance between the carbon nanotubes. The carbon nanotube membrane is a self-supporting structure composed of a number of carbon nanotubes. The plurality of carbon nanotubes extend in a preferred orientation along the same direction. The preferred orientation refers to the overall extension of most of the carbon nanotubes in the carbon nanotube film. Form No. A0101 Page 12 of 51 1002021432-0 201239948 The direction is substantially the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Most of the carbon nanotubes in the nanotube membrane are connected by van der Waals 3 . Specifically, the carbon nanotube film has a basic __ square (four) extension = each of the carbon nanotubes in each of the carbon nanotubes is adjacent to the nano tube in the extending direction, and is connected end to end by van der Waals force . Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube membrane, which do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube membrane. The self-supporting building is a carbon nanotube film that does not require a large-area carrier ' support', and as long as the supporting force is provided on both sides, it can be suspended as a whole to maintain its own membranous state, that is, the carbon nanotube film is placed ( Or when it is fixed on two supports arranged at a certain distance, the carbon nanotube film located between the two supports can be suspended to maintain its own film state. The self-supporting is mainly achieved by the presence of a continuous carbon nanotube in the nano carbon film which is continuously extended by van der Waals. [0031] Specifically, most of the Q carbon nanotubes extending substantially in the same direction in the carbon nanotube film are absolutely straight and can be appropriately bent; or are not arranged in the extending direction, and may be appropriately The deviation extends in the direction. Therefore, it cannot be excluded that there may be partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes extending substantially in the same direction. [0032] Please refer to FIG. 2 and FIG. 3, specifically, The carbon nanotube membrane comprises a plurality of continuous and oriented elongated carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each nano carbon tube segment includes a plurality of mutually parallel nano carbon camps 145, the plurality of mutually parallel nano carbon 100112869 Form No. A0101 No. 13 Buy/Total 51 Pages 1_21432_〇201239948 Tube 145 is tightly coupled by Van der Waals . The carbon nanotube segments 143 have any length, thickness, uniformity, and shape. The carbon nanotube film can be obtained by directly drawing a part of a carbon nanotube from an array of carbon nanotubes. The carbon nanotube film has a thickness of from 1 nm to 100 μm, and the width is related to the size of the carbon nanotube array in which the carbon nanotube film is taken out, and the length is not limited. There are micropores or gaps between adjacent carbon nanotubes in the carbon nanotube film to form an opening 105, and the pore size or gap of the micropore is less than 10 microns. Preferably, the carbon nanotube film has a thickness of from 100 nm to 10 μm. The carbon nanotubes 145 in the carbon nanotube film extend in a preferred orientation in the same direction. For details of the carbon nanotube film and the preparation method thereof, please refer to the patent No. 1 3271 77 of the Republic of China patent "Nano carbon nanotube film structure" filed on February 12, 2010 by the applicant. And its preparation method". In order to save space, only the above is cited, but all the technical disclosures of the above application should also be considered as part of the technical disclosure of the present application. [0033] Referring to FIG. 4, when the carbon nanotube layer includes a plurality of laminated carbon nanotube films stacked in a stack, the extending direction of the carbon nanotubes in the adjacent two carbon nanotube films forms a cross. The angle α, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees (0°S α $90° ). [0034] In order to reduce the thickness of the carbon nanotube film, the carbon nanotube film may be further subjected to heat treatment. In order to prevent the carbon nanotube film from being destroyed upon heating, the method of heating the carbon nanotube film adopts a local heating method. Specifically, the method comprises the steps of: locally heating the carbon nanotube film, so that a part of the carbon nanotube film is oxidized at a local position; and moving the carbon nanotube to be locally heated, from the local to the whole Heating of the carbon nanotube film. Specifically, the carbon nanotube film can be divided into a plurality of small regions, and the carbon nanotubes are heated region by region by means of the form 100112869 Form No. 1010101, page 14 / 51 pages 1002021432-0 201239948. membrane. The method of locally heating the carbon nanotube film may be plural, such as laser heating, microwave heating, or the like. In this embodiment, the carbon nanotube film is irradiated by a laser scan having a power density of more than 0.1 x 10 4 watts per square meter, and the carbon nanotube film is heated from a partial to a whole. The carbon nanotube film is irradiated by laser, and some of the carbon nanotubes are oxidized in the thickness direction, and at the same time, the larger diameter carbon nanotube bundle in the carbon nanotube film is removed, so that the carbon nanotube film becomes thin. ο _5] It is understood that the above method of scanning the carbon nanotube film is not limited as long as the carbon nanotube film can be uniformly irradiated. The laser scan can be performed row by row along the arrangement direction of the carbon nanotubes in the parallel carbon nanotube film, or column by column along the direction perpendicular to the arrangement of the carbon nanotubes in the carbon nanotube film. The smaller the speed of the laser-scanned carbon nanotube film with fixed power and fixed wavelength, the more heat absorbed by the carbon nanotube bundle in the carbon nanotube film, the more the corresponding carbon nanotube bundle is destroyed, after laser treatment The thickness of the carbon nanotube film becomes small. However, if the laser scanning speed is too small, the carbon nanotube film ❹ will absorb too much heat and be burned. 5秒。 In this embodiment, the laser power is greater than 0. 053x1 012 watts / square meter, the diameter of the laser spot is in the range of 1 mm to 5 mm, the laser scanning exposure time is less than 1.8 seconds. Preferably, the laser is a carbon dioxide laser having a power of 30 watts, a wavelength of 10.6 micrometers, a spot diameter of 3 mm, and a relative movement speed of the laser device and the carbon nanotube film of less than 10 mm. /second. [0036] The nanocarbon line may be a non-twisted nanocarbon line or a twisted nanocarbon line. The non-twisted nanocarbon line and the twisted nanocarbon line are both self-supporting structures. Specifically, referring to FIG. 5, the non-twisted nanometer 100112869 Form No. A0101 Page 15 of 51 1002021432-0 201239948 The carbon pipeline includes a plurality of carbon nanotubes extending along the length of the non-twisted nanocarbon pipeline. . Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by a van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through a van der Waals force. Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The non-twisted nano carbon line is not limited in length, and has a diameter of 0.5 nm to 100 μm. The non-twisted nano carbon line is obtained by treating the carbon nanotube membrane with an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and the mutually parallel complex carbon nanotubes in the carbon nanotube film pass through the surface tension generated by the volatilization of the volatile organic solvent. The wattage is tightly combined to shrink the carbon nanotube membrane into a non-twisted nanocarbon pipeline. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dioxane or chloroform, and ethanol is used in this embodiment. The non-twisted nanocarbon line treated by the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which is not treated with the organic solvent. [0037] The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to Figure 6, the twisted nanocarbon line includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon line. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals, and each of the carbon nanotube segments includes a plurality of parallel and through van der Waals Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〜100微米。 The twisted nano carbon line length is not limited, the diameter is 0. 5 nanometers ~ 100 microns. Further, the twisted nanocarbon line can be treated with an organic solvent using a volatile 100112869 Form No. A0101 Page 16 of 51 1002021432-0. Under the action of surface tension generated by the volatilization of volatile organic solvents, the adjacent carbon nanotubes in the treated reversed carbon nanotubes are tightly bonded by van der Waals to make the specific surface area of the twisted nanocarbon pipeline. Reduce 'density and strength increase. For the nano carbon pipeline and its preparation method, please refer to the Republic of China patent No. 1303239, filed on November 5, 2008, filed by the applicant on November 5, 2002. Applicant: Hon Hai Precision Industry Co., Ltd. And the application for the Republic of China patent No. 1 312337, which was filed on December 16, 2005, was filed on July 21, 2009. Applicant: Hon Hai Precision Industry Co., Ltd. In step S13, the growth method of the epitaxial layer 104 can be performed by molecular beam epitaxy (MBE), chemical beam epitaxy (CBE), vacuum deuteration, low temperature epitaxy, selective epitaxy, liquid deposition epitaxy (LPE). , one or more of metal organic vapor phase epitaxy (MOVPE), ultra-vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy (HVPE), and metal organic chemical vapor deposition (MOCVD) Implementation. The epitaxial layer 104 refers to a single crystal structure grown by epitaxial growth on the epitaxial growth surface 101 of the substrate 1 . The epitaxial layer 1 〇 4 may be a semiconductor epitaxial layer ' and the material of the semiconductor epitaxial layer is GaMnAs , GaA1As,

GalnAs 、 GaAs 、 SiGe 、 InP 、 si 、 AIN 、 GaN 、 GalnN 、GalnAs, GaAs, SiGe, InP, si, AIN, GaN, GalnN,

AlInN ' GaAIN或AlGalnN。所述外延層i〇4可為一金屬 外延層,且該金屬外延層的枒料為鋁、鉑、銅或銀。所 述外延層104可為一合金外延層,且該合金外延層的材料 為MnGa、CoMnGa或C〇2MnGa 〇所述外延層1〇4的材料可 與所述基底100的材料相同,此時可以生長同質外延層 表單編號A0101 第Π頁/共51買 1002 201239948 104,所述外延層104的材料也可以與所述基底100的材 料不相同,此時可以生長異質外延層。 [0041] 步驟S13中,沿著基本垂直於所述基底100的外延生長面 101方向成核並外延生長形成複數外延晶粒1 042。所述複 數外延晶粒1042於所述基底100的外延生長面101通過該 奈米礙管層102的開口 105暴露的部份開始生長’且其生 長方向基本垂直於所述基底100的外延生長面101,即該 步驟中複數外延晶粒1 042進行縱向外延生長,在相鄰外 延晶粒1 042之間形成溝槽103。於所述溝槽103中設置有 奈米碳管層102,具體地,所述奈米碳管層102中的奈米 碳管分別分佈在溝槽103内。所述不連續的複數外延晶粒 1042整體為所述外延層104。可通過控制外延晶粒1042 生長的時間來控制所述外延層104的厚度,從而使所述外 延層104形成具有複數溝槽103的構造。 [0042] 本發明第一實施例中,所述基底100為氮化鎵(GaN)基板 片,所述奈米碳管層102為一單層奈米碳管膜,所述奈米 碳管膜中基本朝同一方向延伸的大多數奈米碳管中每一 奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力 首尾相連。本實施採用MOCVD法進行外延生長氮化鎵外延 層104。其中,採用高純氨氣(NH3)作為氮的源氣,採用 氫氣(H2)作載氣,採用三甲基鎵(TMGa)或三乙基鎵 (TEGa)、三甲基銦(TMIn)、三甲基鋁(TMA1)作為Ga源 、:In源和A1源。具體包括以下步驟包括:AlInN 'GaAIN or AlGalnN. The epitaxial layer i 〇 4 may be a metal epitaxial layer, and the metal epitaxial layer is made of aluminum, platinum, copper or silver. The epitaxial layer 104 may be an alloy epitaxial layer, and the material of the epitaxial layer of the alloy is MnGa, CoMnGa or C〇2MnGa. The material of the epitaxial layer 1〇4 may be the same as the material of the substrate 100. Growing homoepitaxial layer form number A0101 page / 51 buy 1002 201239948 104, the material of the epitaxial layer 104 may also be different from the material of the substrate 100, in which case a heteroepitaxial layer may be grown. [0041] In step S13, a plurality of epitaxial grains 1042 are formed by nucleation and epitaxial growth along a direction substantially perpendicular to the epitaxial growth surface 101 of the substrate 100. The plurality of epitaxial grains 1042 are grown on a portion of the epitaxial growth surface 101 of the substrate 100 exposed through the opening 105 of the nanotube layer 102 and grow in a direction substantially perpendicular to an epitaxial growth surface of the substrate 100. 101, that is, in the step, the plurality of epitaxial grains 1042 are longitudinally epitaxially grown, and a trench 103 is formed between the adjacent epitaxial grains 104. A carbon nanotube layer 102 is disposed in the trench 103. Specifically, the carbon nanotubes in the carbon nanotube layer 102 are respectively distributed in the trench 103. The discontinuous complex epitaxial grains 1042 are entirely the epitaxial layer 104. The thickness of the epitaxial layer 104 can be controlled by controlling the time during which the epitaxial grains 1042 grow, thereby forming the epitaxial layer 104 into a configuration having a plurality of trenches 103. [0042] In the first embodiment of the present invention, the substrate 100 is a gallium nitride (GaN) substrate sheet, and the carbon nanotube layer 102 is a single-layer carbon nanotube film, and the carbon nanotube film Each of the carbon nanotubes in the majority of the carbon nanotubes extending in the same direction and the carbon nanotubes adjacent in the extending direction are connected end to end by the van der Waals force. In this embodiment, the gallium nitride epitaxial layer 104 is epitaxially grown by the MOCVD method. Among them, high-purity ammonia (NH3) is used as the source gas of nitrogen, hydrogen (H2) is used as the carrier gas, and trimethylgallium (TMGa) or triethylgallium (TEGa) or trimethylindium (TMIn) is used. Trimethylaluminum (TMA1) acts as a Ga source, an In source, and an A1 source. Specifically, the following steps include:

[0043] 首先,將氮化鎵基底100置入反應室,加熱到1100°C ~ 1 200°C,並通入H2、\或其混合氣體作為載氣,高溫烘 100112869 表單編號A0101 第18頁/共51頁 1002021432-0 201239948 拷2〇〇秒〜1000秒,對基底100進行高溫淨化處理。 其次,繼續同入載氣,將反應室的溫度保持在1 000°c ~ll00°c,使反應室壓強保持在100托〜300托,通入三甲 ;^嫁或二乙基嫁以及氨氣,生長複數GaN外延晶粒1042, 其高度為10奈米〜50奈米。從而形成由該複數GaN外延晶 粒1 042構成的外延層104。在此,將鋪設有奈米碳管層 1〇2的氮化鎵(GaN)基底100上生長有外延層104的該構 造體整體定義為具有微構造的母基板。 [〇〇45] 少驟S14中’去除奈米碳管層102方法可為:離子體刻蝕 法、超聲法、錄射加熱法或者加熱爐加熱法等。可通過 所述方法將奈米碳管層102中的奈米碳管被物理刻蝕去除 或使奈米碳管發生氧化反應生成氣體被去除。 [0046] 採用等離子蝕刻法去除奈米碳管層的方法包括以下步 騨: [〇〇47] 少驟S141 ;將具有微構造的母基板放入一真空腔體; [0048] #驟5142 ;在真空腔體中通入反應氣體,形成該反應氣 體的電漿,使該電漿與奈米碳管層102反應。 [0049] 步驟S142具體包括以下步驟:步驟(一),將該反應離子 刻蝕機的真空腔體中抽成真空;步驟(二),在反應離子 刻蝕機的真空腔體中通入反應氣體,該反應氣體可選擇 為氧氣、氫氣或四氟化碳等;步驟(三),於所述真空腔 體中通過輝光放電反應產生反應氣體的電漿,並與奈米 碳管層102進行反應。 100112869 表單編號A0101 第19頁/共51頁 1〇〇2〇21432~〇 201239948 [0050] 於所述步驟(三)中,反應氣體通過輝光放電形成電漿, 該電漿包括帶電荷的離子及電子。依據反應氣體的不同 ,該電漿包括氧電漿、氫電漿或四氟化碳電漿等常用的 電漿。優選地,該反應氣體為氧氣,該電漿為氧電漿。 由於該電漿具有較好的流動性,通過適當控制真空腔内 氣體壓強和反應時間,電漿可滲透至的溝槽103。因此, 電漿進入所述外延層104的溝槽103中撞擊奈米碳管表面 對奈米碳管進行物理刻姓,或者通過與奈米碳管層1 0 2中 的碳原子反應生成二氧化碳等易揮發的反應產物對奈米 碳管層102進行化學刻蝕。所述反應時間不易太短,否則 奈米碳管層102與電漿反應不充分,無法達到去除奈米碳 管層102的目的。所述輝光放電反應的功率可為20〜300 瓦,優選為150瓦。反應氣體流量為10~ 100標準狀態毫 升/分鐘(seem),優選為50sccm。真空腔體内氣體壓強 為1~100帕,優選為10帕。電漿與奈米碳管反應時間為 10秒~1小時,優選為15秒〜15分鐘。 [0051] 所述通過在氧氣環境中進行鐳射加熱去除奈米碳管層102 的方法具體包括以下步驟: [0052] 步驟S422 ;提供一鐳射裝置,從該鐳射裝置發射雷射光 束照射至該具有微構造的母基板中的奈米碳管層102的表 面。 [0053] 步驟S424 ;在含有氧氣的環境中,使雷射光束與所述具 有微構造的母基板中的奈米碳管層102進行相對運動從而 使雷射光束掃描該奈米碳管層1 〇2及外延層1 04。 100112869 表單編號A0101 第20頁/共51頁 1002021432-0 201239948 [0054] 在步驟S422中,鐳射裝置包括固體雷射器、液體雷射器 、氣體雷射器及半導體雷射器。鐳射的功率密度大於 0.053xl012瓦特/平方米,光斑的直徑在1毫米〜5毫米範 圍内,鐳射的照射時間小於1. 8秒。本實施例中,鐳射裝 置140為二氧化碳雷射器,該雷射器的功率為30瓦特,波 長為10. 6微米,光斑的直徑為3毫米。優選地,所述雷射 光束垂直入射照射至母基板中的奈米碳管層102的表面。 [0055] 所述鐳射裝置包括至少一個雷射器,當該鐳射裝置包括 _ 一個雷射器時,該鐳射裝置照射形成一個光斑,該光斑 ❹ 的直徑為1毫米~5毫米。當該鐳射裝置包括複數雷射器時 ,該鐳射裝置照射形成一個連續的鐳射掃描區,該鐳射 掃描區為由複數連續的鐳射光斑組成的條帶狀光斑,該 條帶狀光斑的寬度為1毫米〜5毫米,長度大於等於奈米碳 管層102的寬度。 [0056] 步驟S424可以通過以下兩種方法實現: [0057] 方法一:固定具有微構造的母基板,然後移動鐳射裝置 C) ^ 照射該具有微構造的母基板,其具體包括以下步驟:固 定具有微構造的母基板;提供一可移動的鐳射裝置;以 及移動該鐳射裝置掃描該具有微構造的母基板中的奈米 碳管層102及外延層104的表面。 [0058] 方法二:固定鐳射裝置,移動具有微構造的母基板使鐳 射照射該具有微構造的母基板中的奈米碳管層102及外延 層104的表面,其具體包括以下步驟:提供一固定的鐳射 裝置,該鐳射裝置在一固定區域形成一鐳射掃描區;提 100112869 表單編號A0101 第21買/共51頁 1002021432-0 201239948 供具有微構造的母基板’使該具有微構造的母基板中的 奈米碳管層102及外延層〗的表面以一定的速度經過^ 錯射掃描區。 [0059] 步驟S424 t雷射光束直接照射在奈米碳管層1〇2上°由於 奈米碳管對鐳射具有良好的吸收特性,且奈米碳管層102 中的奈米碳管將會吸收熱量而被燒蚀,可以通過控制該 具有微構造的母基板的移動速度或該鐳射掃描區的移動 速度,來控制鐳射照射奈米碳管層102的時間,從而控制 奈米碳管層102中奈米碳管所吸收的能量,使得該奈米碳 管層102中的奈米碳管被氧化成二氧化碳氣體。可以理解 ’對於具有固定功率密度、固定波長的鐳射裝置,奈米 碳管層102通過鐳射掃描區的速度越小,奈米碳管層1〇2 被照射得時間越長,奈米碳管層1〇2中的奈米碳管束吸收 的能量越多’奈米碳管層1〇2就越容易被燒蝕。本實施例 中,雷射器與奈米碳管層1〇2的相對運動速度為毫米/ 秒。可以理解,所述鐳射掃描奈米碳管層102的方法不限 ,只要能夠均句照射該奈米碳管層102即可。鐳射掃描可 以沿平行奈米碳管層102中奈米碳管的排列方向逐行進行 ,也可以沿垂直於奈米碳管層102中奈米碳管的排列方向 逐列進行。 闺所述在氧氣魏下通過加紐加熱去除所述奈米碳管層 102的方法具體包括以下步驟: 曰 [0061]步驟S432,提供一加熱爐。 剛4加鱗的構造秘只要可以提供均自蚊地的加熱[0043] First, the gallium nitride substrate 100 is placed in a reaction chamber, heated to 1100 ° C ~ 1 200 ° C, and passed H2, \ or its mixed gas as a carrier gas, high temperature drying 100112869 Form No. A0101 Page 18 / Total 51 pages 1002021432-0 201239948 Copy 2 seconds to 1000 seconds, the substrate 100 is subjected to high temperature purification treatment. Secondly, continue to carry the carrier gas, keep the temperature of the reaction chamber at 1 000 °c ~ ll00 °c, keep the pressure of the reaction chamber at 100 Torr ~ 300 Torr, and pass into the top three; ^ marry or diethyl marriage and ammonia The plurality of GaN epitaxial grains 1042 are grown and have a height of 10 nm to 50 nm. Thereby, an epitaxial layer 104 composed of the complex GaN epitaxial grains 1042 is formed. Here, the entire structure in which the epitaxial layer 104 is grown on the gallium nitride (GaN) substrate 100 on which the carbon nanotube layer 1 2 is laid is defined as a mother substrate having a microstructure. [〇〇45] The method of removing the carbon nanotube layer 102 in the small step S14 may be an ion etching method, an ultrasonic method, a recording heating method, or a heating furnace heating method. The carbon nanotubes in the carbon nanotube layer 102 can be physically etched by the method or the carbon nanotubes can be oxidized to form a gas to be removed. [0046] The method for removing a carbon nanotube layer by plasma etching comprises the following steps: [〇〇47] a small step S141; placing a mother substrate having a microstructure in a vacuum chamber; [0048] #STEP5142; A reaction gas is introduced into the vacuum chamber to form a plasma of the reaction gas, and the plasma is reacted with the carbon nanotube layer 102. [0049] Step S142 specifically includes the following steps: step (1), vacuuming the vacuum chamber of the reactive ion etching machine; and step (2), introducing a reaction into the vacuum chamber of the reactive ion etching machine a gas, the reaction gas may be selected from oxygen, hydrogen or carbon tetrafluoride; in step (3), a plasma of the reaction gas is generated by a glow discharge reaction in the vacuum chamber, and is performed with the carbon nanotube layer 102. reaction. 100112869 Form No. A0101 Page 19 of 51 1〇〇2〇21432~〇201239948 [0050] In the step (3), the reaction gas forms a plasma by glow discharge, and the plasma includes charged ions and electronic. Depending on the reaction gas, the plasma includes conventional plasma such as oxygen plasma, hydrogen plasma or carbon tetrafluoride plasma. Preferably, the reaction gas is oxygen, and the plasma is an oxygen plasma. Since the plasma has good fluidity, the plasma can penetrate into the grooves 103 by appropriately controlling the gas pressure and reaction time in the vacuum chamber. Therefore, the plasma enters the trench 103 of the epitaxial layer 104 and strikes the surface of the carbon nanotube to physically mark the carbon nanotube, or generates carbon dioxide by reacting with a carbon atom in the carbon nanotube layer 102. The volatile reaction product chemically etches the carbon nanotube layer 102. The reaction time is not too short, otherwise the carbon nanotube layer 102 is not sufficiently reacted with the plasma to achieve the purpose of removing the carbon nanotube layer 102. The glow discharge reaction may have a power of 20 to 300 watts, preferably 150 watts. The reaction gas flow rate is 10 to 100 standard conditions of milliliters per minute (seem), preferably 50 seem. The gas pressure in the vacuum chamber is from 1 to 100 Pa, preferably 10 Pa. The reaction time of the plasma with the carbon nanotubes is from 10 seconds to 1 hour, preferably from 15 seconds to 15 minutes. [0051] The method for removing the carbon nanotube layer 102 by laser heating in an oxygen environment specifically includes the following steps: [0052] Step S422; providing a laser device, and emitting a laser beam from the laser device to the The surface of the carbon nanotube layer 102 in the microstructured mother substrate. [0053] Step S424; in the environment containing oxygen, the laser beam is caused to move relative to the carbon nanotube layer 102 in the micro-structured mother substrate to scan the carbon nanotube layer 1 〇 2 and epitaxial layer 104. 100112869 Form No. A0101 Page 20 of 51 1002021432-0 201239948 [0054] In step S422, the laser device includes a solid laser, a liquid laser, a gas laser, and a semiconductor laser. 8秒。 The laser power density is greater than 0.053xl012 watts / square meter, the spot diameter is in the range of 1 mm to 5 mm, the laser irradiation time is less than 1.8 seconds. In this embodiment, the laser device 140 is a carbon dioxide laser having a power of 30 watts, a wavelength of 10.6 micrometers, and a spot diameter of 3 millimeters. Preferably, the laser beam is incident perpendicularly to the surface of the carbon nanotube layer 102 in the mother substrate. [0055] The laser device comprises at least one laser, and when the laser device comprises _ a laser, the laser device is illuminated to form a spot having a diameter of 1 mm to 5 mm. When the laser device comprises a plurality of lasers, the laser device is illuminated to form a continuous laser scanning zone, which is a strip-shaped spot composed of a plurality of consecutive laser spots, the strip-shaped spot having a width of 1 The mm is 5 mm and the length is greater than or equal to the width of the carbon nanotube layer 102. [0056] Step S424 can be implemented by the following two methods: [0057] Method 1: Fixing a mother substrate having a microstructure, and then moving the laser device C) ^ illuminating the mother substrate having the microstructure, which specifically includes the following steps: fixing a mother substrate having a microstructure; providing a movable laser device; and moving the laser device to scan a surface of the carbon nanotube layer 102 and the epitaxial layer 104 in the microstructured mother substrate. [0058] Method 2: Fixing the laser device, moving the mother substrate having the microstructure to irradiate the surface of the carbon nanotube layer 102 and the surface of the epitaxial layer 104 in the micro-structured mother substrate by laser, which specifically includes the following steps: providing a laser device a fixed laser device that forms a laser scanning area in a fixed area; drawing 100112869 Form No. A0101 No. 21 Buying/Total 51 Page 1002021432-0 201239948 Providing a mother substrate with a micro-structure to make the mother substrate with micro-structure The surface of the carbon nanotube layer 102 and the epitaxial layer in the middle passes through the mis-scanning scanning zone at a certain speed. [0059] Step S424 t the laser beam is directly irradiated on the carbon nanotube layer 1〇2. Since the carbon nanotube has good absorption characteristics for the laser, and the carbon nanotube in the carbon nanotube layer 102 will Absorbing heat to be ablated, and controlling the time of laser irradiation of the carbon nanotube layer 102 by controlling the moving speed of the micro-structured mother substrate or the moving speed of the laser scanning region, thereby controlling the carbon nanotube layer 102 The energy absorbed by the carbon nanotubes causes the carbon nanotubes in the carbon nanotube layer 102 to be oxidized to carbon dioxide gas. It can be understood that for a laser device with a fixed power density and a fixed wavelength, the smaller the speed of the carbon nanotube layer 102 passing through the laser scanning region, the longer the carbon nanotube layer 1〇2 is irradiated, and the carbon nanotube layer. The more energy absorbed by the carbon nanotube bundle in 1〇2, the more easily the carbon nanotube layer 1〇2 is ablated. In this embodiment, the relative movement speed of the laser and the carbon nanotube layer 1〇2 is mm/sec. It can be understood that the method of laser-scanning the carbon nanotube layer 102 is not limited as long as the carbon nanotube layer 102 can be irradiated uniformly. The laser scanning may be performed row by row along the arrangement direction of the carbon nanotubes in the parallel carbon nanotube layer 102, or may be performed column by column in the direction perpendicular to the arrangement of the carbon nanotubes in the carbon nanotube layer 102. The method for removing the carbon nanotube layer 102 by heating under the oxygen gas specifically includes the following steps: [0061] Step S432, a heating furnace is provided. Just 4 can be added to the structure of the secret as long as it can provide heating from the mosquito net

100112869 表單編號A0101 第22頁/共51頁 1002021432-0 201239948 溫度即可。優選地所述加熱爐為一電阻爐 可為現有技術中的電阻爐。 所迷電阻爐 [0063] 步驟S432 ’將所述具有微構造的母基板放置於所述加熱 爐的内部,在氧氣環境下加熱所述具有微構造的母美板 [0064] 所述具有微構造的母基板中的奈米碳管層102吸收加熱爐 的熱量與氧氣發生反應而被燒蝕。電阻爐的加熱溫戶在 Ο 600SC以上’可確保奈米碳管獲得足夠的熱量與氧氣反應 。優選地,通過電阻爐將具有微構造的母基板加熱到 吣以上從而使奈米碳管層102去除。 [0065] Ο [0066] 本發明第一實施例中,在含氧環境下,通過二氧化.碳雷 射器照射具有微構造的母基板中的奈米碳管層的表面 ’鐘射照射在奈米碳管層的表面使奈米碳管層被燒姓掉 進而被去除’得到具有奈米微構造基板10。該二氧化碳 雷射器的功率為30瓦特,波長為1〇.6微米,光斑直徑為3 毫米,二氧化碳鐳射裝置與具有微構造的母基板的相對 運動速度小於10毫米/秒。 [0067] 100112869 本實施例中,基底100和外延層104為同質構造,即所述 外延層104為同質生長時,所述基底1〇〇與外延層1〇4的 介面幾乎不可分辨。所述具有奈米微構造基板1〇實際上 的構造為一層同質構造體。 請參閱圖7,本發明第二實施例提供一種具有奈米微構造 基板20的製備方法,其具體包括以下步驟: S10 :提供一基礎基底200,且該基礎基底2〇〇具有—支 表單編號Α0101 第23頁/共51頁 1002021432-0 [0068] 201239948 [0069] [0070] [0071] [0072] [0073] 持第外延層204生長的外延生長面2〇1 ; S20 .於所述基礎基底2〇〇的外延生長面設置一第一 奈米碳管層2〇2 ; S30 .在基礎基底2〇〇的外延生長面2〇1生長第一外延層 204 ; S40 .於所述第一外延層2〇4的遠離所述基礎基底2〇〇的 表面206設置一第二奈米碳管層2〇7; S50 .於所述第一外延層2〇4的遠離所述基礎基底2〇〇的 表面206垂直生長第二外延層209 ; S60 .去除第二奈米碳管層2〇7,得到具有奈米微構造基 板20。 [0074] 100112869100112869 Form No. A0101 Page 22 of 51 1002021432-0 201239948 Temperature is OK. Preferably, the heating furnace is a resistance furnace which may be a resistance furnace of the prior art. The electric resistance furnace [0063] step S432', placing the micro-structured mother substrate inside the heating furnace, heating the micro-structured mother board in an oxygen environment [0064] The carbon nanotube layer 102 in the mother substrate absorbs heat from the furnace and reacts with oxygen to be ablated. The heating furnace of the resistance furnace is above SC 600SC' to ensure that the carbon nanotubes get enough heat to react with oxygen. Preferably, the mother substrate having the microstructure is heated above the crucible by an electric resistance furnace to remove the carbon nanotube layer 102. [0065] In the first embodiment of the present invention, the surface of the carbon nanotube layer in the micro-structured mother substrate is irradiated by a carbon dioxide laser in an oxygen-containing environment. The surface of the carbon nanotube layer is such that the carbon nanotube layer is burned and then removed, and the nanostructured substrate 10 is obtained. The CO2 laser has a power of 30 watts, a wavelength of 1 〇.6 μm, and a spot diameter of 3 mm. The relative movement speed of the carbon dioxide laser device and the micro-structured mother substrate is less than 10 mm/sec. [0067] 100112869 In this embodiment, the substrate 100 and the epitaxial layer 104 are of a homogenous structure, that is, when the epitaxial layer 104 is homogenously grown, the interface between the substrate 1 and the epitaxial layer 1〇4 is almost indistinguishable. The structure having the nano-microstructure substrate 1 is actually a layer of homostructure. Referring to FIG. 7, a second embodiment of the present invention provides a method for fabricating a nano-microstructure substrate 20, which specifically includes the following steps: S10: providing a base substrate 200, and the base substrate has a form number Α0101 Page 23 / Total 51 page 1002021432-0 [0068] [0073] [0073] [0073] Epitaxial growth surface 2〇1; S20. a first carbon nanotube layer 2〇2 is disposed on the epitaxial growth surface of the substrate 2〇〇; S30. a first epitaxial layer 204 is grown on the epitaxial growth surface 2〇1 of the base substrate 2〇〇; S40. A second carbon nanotube layer 2〇7 is disposed on the surface 206 of the epitaxial layer 2〇4 away from the base substrate 2〇〇; S50. The first epitaxial layer 2〇4 is away from the base substrate 2〇 The surface 206 of the crucible is vertically grown with the second epitaxial layer 209; S60. The second carbon nanotube layer 2〇7 is removed to obtain a nano-structured substrate 20. [1124] 100112869

步驟S10中,所述基礎基底2〇〇提供了第一外延層204的 外延生長面201。所述基礎基底2〇〇的外延生長面201是 分子平滑的表面,且去除了氧或碳等雜質。所述基礎基 底200可為單層或複數層構造。當所述基礎基底200為單 層構造時,該基礎基底200可為一單晶構造體,且具有一 晶面作為第一外延層204的外延生長面201。所述單層構 造的基礎基底200的材料可為GaAs、GaN、Si、SOI (silicon on insulator ’ 絕緣襯底上的石夕)、AIN、 SiC、Mg〇、ZnO、LiGa〇2、LiAl〇24Al2〇3等。當所述 基礎基底200為複數層構造時,其需要包括至少一層所述 單晶構造體,且該單晶構造體具有一晶面作為第一外延 層204的外延生長面201。所述基礎基底200的材料可根 據所要生長的第一外延層204來選擇,優選地,使所述基 表單編號A_1 第24頁/共51 S 1〇〇: 201239948 [0075] 0 [0076] [0077] Ο 100112869 礎基底200與第一外延層204具有相近的晶格常數以及熱 膨脹係數。所述基礎基底200的厚度、大小和形狀不限, 可根據實際需要選擇。所述基礎基底2〇〇不限於所述列舉 的材料,只要具有支持第一外延層204生長的外延生長面 201的基礎基底200均屬於本發明的保護範圍。 S20中’所述第一奈米碳管層202的構造、設置方式、形 成方法以及材料等均與第一實施例的所述奈米碳管層相 同,因此在此不再進行贅述。 步驟S30中,所述第一外延層204的生長方法可以通過分 子束外延法(ΜΒΕ)、化學束外延法(CBE)、減壓外延 法、低溫外延法、選擇外延法、液相沈積外延法(LpE) 、金屬有機氣相外延法(M0VPE)、超真空化學氣相沈積 法(UHVCVD)、氫化物氣相外延法(HVpE)、以及金屬有 機化學氣相沈積法(MOCVD)等中的一種或複數種實現。 所述第一外延層204是指通過外延法生長在基礎基底2〇〇 的外延生長面201的單晶構造體,其材料不同於基礎基底 200,所以也可稱為異質外延層。所述第一外延層的 生長的厚度可根據需要製備。具體地,所述第一外延層 204的生長厚度可為〇. 5奈米〜丨毫米。例如,所述第一外 延層204的生長的厚度可為1〇〇奈米〜5〇〇微米或2〇〇奈 米〜200微米,或500奈米〜1〇〇微米。所述第一外延層204 可為-半導體外延層,且該半導體外延層的材料為__ nAs、GaAlAs、GalnAs、GaAs、SiGe、InP、Si、A1N、GaN、GaInN、A1InN、GaAIN或AlGalnN » 所述第一 外延層2G4可為-金屬外延層,且該金屬外延層的材料為 表箪編號A0101 第25頁/共51頁 1002021432-0 201239948 [0078] [0079] [0080] [0081] [0082] [0083] 100112869 銘、鉑、銅或銀。所述第一外延層2〇4可為—合金外延層 ’且該合金外延層的#料紙Ga、⑽·献。施以。曰 請參閱圖8 ’具體地’所述第-外延層204的生長過程具 體包括以下步驟: 531 :沿著基本垂直於所述基礎基底_的外延生長面 201方向成核並外延生長形成複數外延晶粒2〇42 ; 532 :所述複數外延晶粒2_沿著基本平行於所述基礎基 底200的外延生長面2G1方向外延生長形成—連續的外延 薄膜2044 ; 533 .所述外延薄膜2〇44沿著基本垂直於所述基礎基底 200的外延生長面2〇1方向外延生長形成一連續的第—外 延層204。 步驟S31中’所述複數外延晶粒2〇42於所述基礎基底2〇〇 的外延生長面201通過該第一奈米碳管層2〇2的開口 2〇5 暴露的部份開始生長,且其生長方向基本垂直於所述基 礎基底200的外延生長面2〇1,即該步驟中複數外延晶粒 2042進行縱向外延生長。 步驟S32中’通過控制生長條件使所述複數外延晶粒2〇42 所述基礎基底200的外延生長面201的方 向同質外延生長蓮連成一體將所述第一奈米碳管層202覆 蓋。即’該步驟中所述複數外延晶粒2042進行側向外延 生長直接合槪’並最終在奈米碳管周圍形成複數孔洞203 將奈米礙%•包園。優選地,奈米碳管與包圍該奈米碳管 的第一外延層2〇4間隔設置。所述孔洞的形狀與第一奈米 表單編號A0101 第26頁/共51頁 1002021432-0 201239948 [0084] Ο [0085] Ο [0086] [0087] 碳管層202中的奈米碳管的排列方向有關。當第一奈米碳 管層202為單層奈米碳管膜或複數平行設置的奈米礙管線 時’所述複數孔洞203為基本平行設置的溝槽。當第一奈 米碳管層202為複數層交又設置的奈米碳管膜或複數交叉 設置的奈米碳管線時’所述複數孔洞2〇3為交叉設置的溝 槽網路。 步驟S33中’由於所述第一奈米碳管層202的存在,使得 外延晶粒2042與基礎基底200之間的晶格位錯在形成連續 的外延薄膜2044的過程中停止生長。因此,該步驟的第 一外延層204相當於在沒有缺陷的外延薄膜2044表面進行 同質外延生長。所述第一外延層204具有較少的缺陷。 本發明第一實施例中,所述基礎基底200為一藍寶石( Al2〇3)基板片’所述第一奈米碳管層202為一單層奈米 碳管膜,所述奈米碳管膜中基本朝同一方向延伸的大多 數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米 碳管通過凡得瓦力首尾相連。本實施採用MOCVD法進行外 延生長。其中,採用高純氨氣(NHQ)作為氮的源氣,採用 0 氫氣(H2)作載氣,採用三曱基鎵(TMGa)或三乙基鎵 (TEGa)、三、曱基銦(TMIn)、三曱基鋁(TMA1)作為Ga源 、In源和A1源。具體包括以下步驟: 首先,將藍寶石基礎基底200置入反應室,加熱到ll〇〇°C ~1200°C,並通入H2、\或其混合氣體作為載氣,高溫烘 烤200秒-1 000秒。 其次,繼續同入載氣,並降溫到500°C〜650°C,通入三甲 100112869 表單編號A0101 第27頁/共51頁 1002021432-0 201239948 基鎵或三乙基鎵以及氨氣,生長GaN低溫緩衝層2045 ( 參閱圖7及圖8),其厚度10奈米~50奈米。 [0088] 然後,停止通入三甲基鎵或三乙基鎵,繼續通入氨氣和 載氣,同時將溫度升高到1100°C〜 1 200°C,並恒溫保持 30秒~300秒,進行退火。 [0089] 最後,將基礎基底200的溫度保持在1 000°C〜1100°C,繼 續通入氨氣和載氣,同時重新通入三甲基鎵或三乙基鎵 ,在高溫下完成GaN的侧向外延生長過程,並生長出高品 質的GaN外延層。 [0090] 樣品生長完畢後,分別用掃描電子顯微鏡(SEM)和透射電 子顯微鏡(TEM)對樣品進行觀察和測試。請參閱圖9和圖 10,本實施例製備的外延構造體中,第一外延層僅從基 底的外延生長面沒有奈米碳管層的位置開始生長,然後 連成一體。所述第一外延層與基底接觸的表面形成複數 孔洞,所述奈米碳管層設置於該孔洞内,且與第一外延 層間隔設置。具體地,從所述圖9中可以清楚其看到GaN 外延層和藍寶石基底之間的介面,其中,深色部份為GaN 外延層,淺色部份為藍寶石基底。所述GaN外延層與藍寶 石基底接觸的表面具有一排孔洞。從所述圖10中可以看 到,每個孔洞内設置有奈米碳管。所述孔洞内的奈米碳 管設置於藍寶石基底表面,且與形成孔洞的GaN外延層間 隔設置。 [0091] S40中,於所述第一外延層204的遠離所述基礎基底200 的表面206設置所述第二奈米碳管層207。S40中,所述 100112869 表單編號A0101 第28頁/共51頁 1002021432-0 201239948 第二奈米碳管層207的構造、設置方式、形成方法以及材 料等均與第—實施例的所述奈米碳管層相同,因此在此 不再進行贅述。 [0092] 本實施例中,所述第二奈米碳管層207為複數平行且間隔 設置的奈米碳管線,相鄰的奈米碳管線之間形成微孔。 [0093] 所述奈米碳管線可為非扭轉的奈米碳管線或扭轉的奈米 碳官線。具體地,所述非扭轉的奈米碳管線包括複數沿 該非扭轉的奈米碳管線長度方向延伸的奈米碳管。所述 〇 扭轉的奈米碳管線包括複數繞該扭轉的奈米碳管線軸向 螺旋延伸的奈求碳管。 [0094] s5〇中’於所述第一外延層2〇4的遠離所述基礎基底200 的表面206垂直生長第二外延層209的方法與第一實施例 的S13的步驟完全相同,在此不再進行贅述。所述第二外 延層209的材料構造構造均與第一實施例的S13的步驟中 生長的氮化鎵第一外延層204相同。 [0095] 所述第二外延層209由複數不連續的GaN外延晶粒1042構 成。 [0096] S60中’去除第二奈米碳管層2〇7的方法與第一實施例的 S14的步驟完全相同,在此不再進行贅述。 [0097] 請參閱圖11,本發明第三實施例提供一種具有奈米微構 造基板30,的製備方法,其包括以下步驟: [0098] S100 :提供一基礎基底2〇〇,且該基礎基底200具有一支 持第一外延層2〇4生長的外延生長面201 ; 100112869 表單編號A0101 第29頁/共51頁 1002021432-0 201239948 [0099] S2〇〇 :於所述基礎基底2〇〇的外延生長面2〇1設置一第一 奈米碳管層202 ; [0100] S300 ’在基礎基底20Q的外延生長面生長第一外延層 204 ; [0101] S400 .於所述第一外延層2〇4的遠離所述基礎基底的 表面206設置一第二奈米碳管層207 ; _2] S5GG ·於所述第—外延層2Q4的遠離所述基礎基底的 表面206垂直生長第二外延層209 ; 闺湖G :去除第二奈㈣管層2()7 ; _] S7()().剝離移除基礎基底200及第-奈来碳管層202,得 到相對的兩個表面均具有奈米微構造208的具有奈米微構 造基板30〇 [0105] 本實施例提供具有奈米微構造基板的製備方法與第二實 施例的具有奈米微構造基板的製備方法基本相同,其區 別在於,去除第二奈米碳管層2〇7之後進一步包括一去除 基礎基底200及第一奈米碳管層2〇2的步驟。因此,在此 不再贅述與第二實施例相同的步驟,僅說明S700的具體 步驟。 [0106] 步驟S700中,所述基礎基底200的剝離方法可為鐳射照射 法、腐蝕法或溫差自剝離法。所述剝離方法可根據基礎 基底200以及第一外延層2〇4材料的不同進行選擇。本實 施例中’所述基礎基底200的剝離方法為鐳射照射法。具 體的’所述鐺射照射剝離方法包括以下步驟: 100112869 表單編號A0101 第30頁/共51頁 1002021432-0 201239948 [0107] [0108] [0109] 〇 [0110] [0111] ο S701,對所述基礎基底2〇〇的未生長第一外延層2〇4的表 面進行拋光並清洗; S702,將經過表面清洗的基礎基底2〇〇放置於—平臺(圖 未示)上,並利用鐳射對所述基礎基底2〇〇與第—外延層 2 0 4進行掃描照射; S703,將經鐳射照射後的基礎基底2〇〇及第一外延層2〇4 浸入溶液中去除所述基礎基底2〇〇及第一奈米碳管層2〇2 ’形成所述具有奈米微構造基板3〇。 在步驟S701中,所述拋光方法可為機械拋光法或化學拋 光法,使所述基礎基底200的未生長第一外延層204的表 面平整光滑’以減少後續鐳射照射中鐳射的散射。所述 清洗可用鹽酸、硫酸等沖洗所述基礎基底200的未生長第 一外延層204的表面,從而去除所述基礎基底200表面的 金屬雜質以及油污等。 在步驟S702中,所述鐳射從基礎基底200拋光後的表面入 射,且入射方向基本垂直於所述基礎基底200拋光後的表 面,即基本垂直於所述基礎基底2〇〇與第一外延層204的 介面。所述鐳射的波長不限,可根據缓衝層2045以及基 礎基底200的材料選擇。具體的,所述鐳射的能量小於基 礎基底200的帶隙能量,而大於緩衝層2045的帶隙能量, 從而鐳射能夠穿過基礎基底200到達缓衝層2045 ’在緩衝 層2045與基礎基底200的介面處進行鐳射剝離。所述介面 處的緩衝層2045對鐳射產生強烈的吸收,從而使得介面 處的緩衝層2045溫度快速升高而分解。本實施例中所述 100112869 表單編號Α0101 第31頁/共51頁 1002021432-0 201239948 外延層Π)4為⑽,其帶隙能量為3.3ev;基底刚為藍寶 石,其帶隙能量為9.9ev ;所述雷射器為KrF雷射器,發 出的鐳射波長為248測,其能量為5ev,_寬度為2〇〜 40ns,能量密度為400〜6〇〇mj/Cm2,光斑形狀為方形 ,其聚焦尺寸為0· 5m_. 5_ ;掃描位置從所述基礎基 底200的邊緣位置開始,掃描步長為〇 5mm/s。在掃描的 過程中,所述步驟S30的步驟S33中生長的所述㈣低^ 緩衝層2045開始分解為(ja和N2。可以理解,所述脈衝寬 度、能量密度、光斑形狀、聚焦尺寸以及掃描步長可根 據實際需求進行調整;可根據緩衝層2〇45對特定波長的 鐳射具有較強的吸收作用選擇相應波長的鐳射 [0112] [0113] [0114] 由於所述低溫緩衝層2045對上述波長的鐳射具有很強的 吸收作用,因此,所述低溫緩衝層2〇45的溫度快速升高 而分解;而所述第一外延層2〇4對上述波長的鐳射吸收較 弱或不吸收,因此所述第一外延層2〇4並不會被所述鐳射 所破壞。可以理解,對於不同的緩衝層2〇45可以選擇不 同波長的鐳射,使低溫緩衝層2 〇 4 5對錯射具有很強的吸 收作用。 所述鐳射照射的過程在一真空環境或保護性氣體環境進 行以防止在鐳射照射的過程中奈米碳管被氧化而破壞。 所述保護性氣體可為氮氣、氦氣或氬氣等惰性氣體。 在步驟S703中’可將鐳射輻射後的基礎基底2〇〇、第一外 延層204以及其中間設置的第一奈米碳管層2〇2浸入一酸 性溶劑中’以去除分解後的Ga,從而實現將基礎基底2〇〇 從第一外延層204上的剝離移除,在剝離移除基礎基底 100112869 表單編號A0101 第32頁/共51頁 1002021432-0 201239948 [0115] Ο [0116] [0117] 〇 [0118] [0119] [0120] 100112869 2〇〇¥ ’點敷於基礎基底2〇〇表面的第一奈米碳管層202 也會被一併移除掉。從而得到圖u所示的相對的兩個表 面均具有奈米微構造的具有奈米微構造基板30。所述溶 劑可為鹽酸、硫酸、硝酸等可溶解(^的溶劑。 由於第一奈米碳管層202的存在,從而減小了生長過程中 第—外延層204與基礎基底200之間的應力,在鐳射照射 剝離基礎基底200的過程中,使得基礎基底2〇〇的剝離更 加的容易’也減小了對外延層的損傷。 本發明採用奈米碳管層作為掩模設置於所述外延生長面 生長外延層具有以下有以效果: 第,本發明提供了一種外延生長奈米級微構造基板的 方法’該$法通過設置-奈米碳管層作為掩模的方法在 基底的表面直接生長形成孔洞狀微構造,製程簡單、成 本低。克服了現有技術⑽及奈米壓印等方法成本高製 造方法複雜等的技術問題。 第一’本發明方法製備的外延構造體在應用於製造發光 -極體時’形成在外延層表面的奈米級微構造可有效提 南發光二極體出光效率,同時無需_基底有利於簡化 製造方法。 第奈米碳管層為自支推構造,可以直接铺設在基底 表面,方法簡單,有利於大規模產業化製造。 — 第四’本發明的方法可實現製構造體,該同 質構造體内具有複數奈米級微孔構造分佈在 一個平面内 或相互平行且間隔的複數平面内,在半導體技術領域等 表單編號A0101 第33頁/共51頁 1002021432-0 201239948 複數領域具有廣泛的應用前景。 [0121] [0122] [0123] [0124] [0125] [0126] [0127] [0128] [0129] [0130] 100112869 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限製本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明第一實施例提供的具有奈米微構造基板的製 備方法的製造方法流程圖。 圖2為本發明採用的奈米碳管膜的掃描電鏡照片。 圖3為圖2中的奈米碳管膜中的奈米碳管片段的構造示意 圖。 圖4為本發明採用的複數層交叉設置的奈米碳管膜的掃描 電鏡照片。 圖5為本發明採用的非扭轉的奈米碳管線的掃描電鏡照片 〇 圖6為本發明實施例中採用的扭轉的奈米碳管線的掃描電 鏡照片。 圖7為本發明第二實施例提供的具有奈米微構造基板的製 備方法的製造方法流程圖。 圖8為本發明第二實施例提供的外延層生長過程示意圖。 圖9為本發明第二實施例製備的外延構造截面的掃描電鏡 照片。 表單編號A0101 第34頁/共51頁 1002021432-0 201239948 [0131] 圖1 0為本發明第二實施例製備的外延構造介面處的透射 [0132] 電鏡照片。 圖11為本發明第三實施例提供的具有奈米微構造基板的 製備方法的製造方法流程圖。 [0133] 【主要元件符號說明】 具有奈米微構造基板:10、20、30 [0134] 基底:100 [0135] [0136] 基礎基底:200 外延生長面:101、201 [0137] 奈米碳管層:102 [0138] 溝槽:103 [0139] 外延層:1 0 4 [0140] 外延晶粒:1042 [0141] 〇 微構造:108、208 [0142] 第一奈米碳管層:202 [0143] 第二奈米碳管層:207 [0144] 孔洞:203 [0145] 第一外延層:204 [0146] 第二外延層:209 [0147] 開口 : 105、205 100112869 表單編號A0101 第35頁/共51頁 1002021432-0 201239948 [0148] 表面:206 [0149] 外延晶粒:2042 [0150] 外延薄膜:2044 [0151] 緩衝層:2045 [0152] 奈米碳管片段:143 [0153] 奈米碳管:145 100112869 表單編號A0101 第36頁/共51頁 1002021432-0In step S10, the base substrate 2 is provided with an epitaxial growth surface 201 of the first epitaxial layer 204. The epitaxial growth surface 201 of the base substrate 2 is a molecularly smooth surface, and impurities such as oxygen or carbon are removed. The base substrate 200 can be a single layer or a plurality of layers. When the base substrate 200 has a single layer structure, the base substrate 200 may be a single crystal structure and have a crystal plane as the epitaxial growth surface 201 of the first epitaxial layer 204. The material of the base substrate 200 of the single-layer structure may be GaAs, GaN, Si, SOI (silicon on insulator ' on the insulating substrate), AIN, SiC, Mg 〇, ZnO, LiGa 〇 2, LiAl 〇 24 Al 2 〇 3 and so on. When the base substrate 200 is of a plurality of layers, it is required to include at least one layer of the single crystal structure, and the single crystal structure has a crystal plane as the epitaxial growth surface 201 of the first epitaxial layer 204. The material of the base substrate 200 may be selected according to the first epitaxial layer 204 to be grown, preferably, the base form number A_1 page 24 / 51 S 1〇〇: 201239948 [0075] 0 [0076] [ 0077] Ο 100112869 The base substrate 200 has a similar lattice constant and a coefficient of thermal expansion as the first epitaxial layer 204. The thickness, size and shape of the base substrate 200 are not limited and may be selected according to actual needs. The base substrate 2 is not limited to the listed materials, as long as the base substrate 200 having the epitaxial growth surface 201 supporting the growth of the first epitaxial layer 204 is within the scope of the present invention. The structure, arrangement, formation method, material, and the like of the first carbon nanotube layer 202 in S20 are the same as those of the carbon nanotube layer of the first embodiment, and thus will not be described herein. In step S30, the growth method of the first epitaxial layer 204 may be performed by molecular beam epitaxy (ΜΒΕ), chemical beam epitaxy (CBE), vacuum deuteration, low temperature epitaxy, selective epitaxy, liquid deposition epitaxy (LpE), metal organic vapor phase epitaxy (M0VPE), ultra-vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy (HVpE), and metal organic chemical vapor deposition (MOCVD) Or a plurality of implementations. The first epitaxial layer 204 refers to a single crystal structure grown by epitaxial growth on the epitaxial growth surface 201 of the base substrate 2, which material is different from the base substrate 200, and thus may also be referred to as a heteroepitaxial layer. The thickness of the growth of the first epitaxial layer can be prepared as needed. Specifically, the growth thickness of the first epitaxial layer 204 may be 0.5 nm to 丨 mm. For example, the thickness of the first epitaxial layer 204 may be from 1 nanometer to 5 nanometers or from 2 nanometers to 200 micrometers, or from 500 nanometers to 1 micrometer. The first epitaxial layer 204 may be a semiconductor epitaxial layer, and the material of the semiconductor epitaxial layer is __nAs, GaAlAs, GalnAs, GaAs, SiGe, InP, Si, A1N, GaN, GaInN, A1InN, GaAIN or AlGalnN » The first epitaxial layer 2G4 may be a metal epitaxial layer, and the material of the metal epitaxial layer is No. A0101, page 25/51, 1002021432-0 201239948 [0078] [0080] [0081] 0082] [0083] 100112869 Ming, platinum, copper or silver. The first epitaxial layer 2〇4 may be an alloy epitaxial layer' and the material of the epitaxial layer of the alloy is Ga, (10). Give. 'refer to FIG. 8 'specifically' the growth process of the epitaxial layer 204 specifically includes the following steps: 531: nucleation and epitaxial growth along a direction substantially perpendicular to the epitaxial growth surface 201 of the base substrate _ to form a complex epitaxy a crystal grain 2〇42; 532: the plurality of epitaxial grains 2_ are epitaxially grown along a direction substantially parallel to the epitaxial growth surface 2G1 of the base substrate 200 to form a continuous epitaxial film 2044; 533. The epitaxial film 2〇 44 is epitaxially grown in a direction substantially perpendicular to the epitaxial growth surface 2〇1 of the base substrate 200 to form a continuous first epitaxial layer 204. In step S31, the complex epitaxial grains 2〇42 are grown on the exposed surface 201 of the base substrate 2 through the exposed portion 2〇5 of the first carbon nanotube layer 2〇2, And the growth direction thereof is substantially perpendicular to the epitaxial growth surface 2〇1 of the base substrate 200, that is, the plurality of epitaxial grains 2042 are longitudinally epitaxially grown in this step. In step S32, the first carbon nanotube layer 202 is covered by controlling the growth conditions such that the plurality of epitaxial grains 2〇42 are uniformly grown in the direction of the epitaxial growth surface 201 of the base substrate 200. That is, in the step, the plurality of epitaxial grains 2042 are laterally epitaxially grown to directly merge and finally form a plurality of holes 203 around the carbon nanotubes. Preferably, the carbon nanotubes are spaced apart from the first epitaxial layer 2〇4 surrounding the carbon nanotubes. The shape of the hole and the first nanometer form number A0101 page 26/51 page 1002021432-0 201239948 [0084] 008 [0086] [0087] The arrangement of the carbon nanotubes in the carbon tube layer 202 Direction related. When the first carbon nanotube layer 202 is a single-layer carbon nanotube film or a plurality of parallel-lined nano-barrier lines, the plurality of holes 203 are substantially parallel grooves. When the first carbon nanotube layer 202 is a plurality of layers of a carbon nanotube film or a plurality of interdigitated carbon nanotubes, the plurality of holes 2 〇 3 are intersecting groove networks. In step S33, due to the presence of the first carbon nanotube layer 202, lattice dislocations between the epitaxial grains 2042 and the base substrate 200 stop growing during the formation of the continuous epitaxial film 2044. Therefore, the first epitaxial layer 204 of this step corresponds to homoepitaxial growth on the surface of the epitaxial film 2044 having no defects. The first epitaxial layer 204 has fewer defects. In the first embodiment of the present invention, the base substrate 200 is a sapphire (Al2〇3) substrate sheet. The first carbon nanotube layer 202 is a single-layer carbon nanotube film, and the carbon nanotube tube. Each of the carbon nanotubes in the majority of the carbon nanotubes extending substantially in the same direction in the film and the carbon nanotubes adjacent in the extending direction are connected end to end by van der Waals force. This embodiment uses the MOCVD method for epitaxial growth. Among them, high purity ammonia (NHQ) is used as the source gas of nitrogen, and 0 hydrogen (H2) is used as the carrier gas, and trimethyl gallium (TMGa) or triethyl gallium (TEGa) and tris-decyl indium (TMIn) are used. ), triammonium aluminum (TMA1) as a Ga source, an In source, and an A1 source. Specifically, the following steps are included: First, the sapphire base substrate 200 is placed in a reaction chamber, heated to ll 〇〇 ° C to 1200 ° C, and H2, \ or a mixed gas thereof is introduced as a carrier gas, and baked at a high temperature for 200 sec-1 000 seconds. Secondly, continue to carry the same carrier gas, and cool down to 500 ° C ~ 650 ° C, access to the top three 100112869 Form No. A0101 Page 27 / Total 51 page 1002021432-0 201239948 Based gallium or triethyl gallium and ammonia, grow GaN The low temperature buffer layer 2045 (see FIGS. 7 and 8) has a thickness of 10 nm to 50 nm. [0088] Then, the passage of trimethylgallium or triethylgallium is stopped, the ammonia gas and the carrier gas are continuously introduced, and the temperature is raised to 1100 ° C to 1 200 ° C, and the temperature is maintained for 30 seconds to 300 seconds. , annealing. [0089] Finally, the temperature of the base substrate 200 is maintained at 1 000 ° C to 1100 ° C, and the ammonia gas and the carrier gas are continuously introduced, and at the same time, trimethylgallium or triethylgallium is re-introduced, and GaN is completed at a high temperature. The lateral epitaxial growth process and the growth of a high quality GaN epitaxial layer. [0090] After the samples were grown, the samples were observed and tested by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Referring to FIG. 9 and FIG. 10, in the epitaxial structure prepared in this embodiment, the first epitaxial layer is grown only from the position where the epitaxial growth surface of the substrate has no carbon nanotube layer, and then integrated. The surface of the first epitaxial layer in contact with the substrate forms a plurality of holes, and the carbon nanotube layer is disposed in the hole and spaced apart from the first epitaxial layer. Specifically, it can be clearly seen from FIG. 9 that the interface between the GaN epitaxial layer and the sapphire substrate is seen, wherein the dark portion is a GaN epitaxial layer and the light portion is a sapphire substrate. The surface of the GaN epitaxial layer in contact with the sapphire substrate has a row of holes. As can be seen from Fig. 10, a carbon nanotube is disposed in each of the holes. The carbon nanotubes in the holes are disposed on the surface of the sapphire substrate and are spaced apart from the GaN epitaxial layer forming the holes. [0091] In S40, the second carbon nanotube layer 207 is disposed on a surface 206 of the first epitaxial layer 204 away from the base substrate 200. In S40, the 100112869 Form No. A0101 Page 28/51 Page 1002021432-0 201239948 The structure, arrangement, formation method and materials of the second carbon nanotube layer 207 are the same as those of the first embodiment. The carbon tube layers are the same, so they are not described here. In this embodiment, the second carbon nanotube layer 207 is a plurality of parallel and spaced nanocarbon pipelines, and micropores are formed between adjacent nanocarbon pipelines. [0093] The nanocarbon line may be a non-twisted nanocarbon line or a twisted carbon carbon line. Specifically, the non-twisted nanocarbon line includes a plurality of carbon nanotubes extending along the length of the non-twisted nanocarbon line. The twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon pipeline. [0094] The method of vertically growing the second epitaxial layer 209 on the surface 206 of the first epitaxial layer 2〇4 away from the base substrate 200 is exactly the same as the step S13 of the first embodiment, where No more details are given. The material construction configuration of the second epitaxial layer 209 is the same as that of the gallium nitride first epitaxial layer 204 grown in the step of S13 of the first embodiment. [0095] The second epitaxial layer 209 is composed of a plurality of discrete GaN epitaxial grains 1042. [0096] The method of removing the second carbon nanotube layer 2〇7 in S60 is exactly the same as the step of S14 of the first embodiment, and details are not described herein again. [0097] Referring to FIG. 11, a third embodiment of the present invention provides a method for fabricating a nano-microstructure substrate 30, which includes the following steps: [0098] S100: providing a base substrate 2, and the base substrate 200 has an epitaxial growth surface 201 supporting the growth of the first epitaxial layer 2〇4; 100112869 Form No. A0101 Page 29/51 Page 1002021432-0 201239948 [0099] S2〇〇: Extension of the base substrate 2〇〇 The growth surface 2〇1 is provided with a first carbon nanotube layer 202; [0100] S300′ grows a first epitaxial layer 204 on the epitaxial growth surface of the base substrate 20Q; [0101] S400. The first epitaxial layer 2〇 a second carbon nanotube layer 207 is disposed on the surface 206 away from the base substrate; _2] S5GG. The second epitaxial layer 209 is vertically grown on the surface 206 of the first epitaxial layer 2Q4 away from the base substrate;闺湖G: remove the second nai (four) tube layer 2 () 7; _] S7 () (). Peel off the base substrate 200 and the first - Nai carbon tube layer 202, to obtain the opposite two surfaces have nano Microstructure 208 having a nano-microstructure substrate 30[0105] This embodiment provides a substrate having a nano-microstructure The preparation method is basically the same as the preparation method of the nano-structured substrate of the second embodiment, except that the removal of the second carbon nanotube layer 2〇7 further includes a removal of the base substrate 200 and the first nanocarbon. The step of the tube layer 2〇2. Therefore, the same steps as those of the second embodiment will not be described herein, and only the specific steps of the S700 will be described. [0106] In step S700, the peeling method of the base substrate 200 may be a laser irradiation method, an etching method, or a temperature difference self-peeling method. The stripping method can be selected depending on the base substrate 200 and the material of the first epitaxial layer 2〇4. In the present embodiment, the peeling method of the base substrate 200 is a laser irradiation method. The specific method of the radiant irradiation peeling comprises the following steps: 100112869 Form No. A0101 Page 30/51 Page 1002021432-0 201239948 [0107] [0109] 〇[0110] [0111] ο S701, Polishing and cleaning the surface of the base substrate 2 without growing the first epitaxial layer 2〇4; S702, placing the surface-cleaned base substrate 2〇〇 on a platform (not shown), and using a laser pair The base substrate 2〇〇 and the first epitaxial layer 204 are scanned and irradiated; S703, the base substrate 2〇〇 and the first epitaxial layer 2〇4 after laser irradiation are immersed in the solution to remove the base substrate 2〇 The tantalum and the first carbon nanotube layer 2〇2' form the nanostructured substrate 3〇. In step S701, the polishing method may be a mechanical polishing method or a chemical polishing method to smooth the surface of the base substrate 200 where the first epitaxial layer 204 is not grown to reduce the scattering of laser light in subsequent laser irradiation. The cleaning may wash the surface of the base substrate 200 where the first epitaxial layer 204 is not grown by hydrochloric acid, sulfuric acid, or the like, thereby removing metal impurities, oil stains, and the like on the surface of the base substrate 200. In step S702, the laser is incident from the polished surface of the base substrate 200, and the incident direction is substantially perpendicular to the polished surface of the base substrate 200, that is, substantially perpendicular to the base substrate 2 and the first epitaxial layer. 204 interface. The wavelength of the laser is not limited and may be selected according to the material of the buffer layer 2045 and the base substrate 200. Specifically, the energy of the laser is smaller than the band gap energy of the base substrate 200 and larger than the band gap energy of the buffer layer 2045, so that the laser can pass through the base substrate 200 to reach the buffer layer 2045' at the buffer layer 2045 and the base substrate 200. Laser stripping at the interface. The buffer layer 2045 at the interface strongly absorbs the laser light, so that the temperature of the buffer layer 2045 at the interface is rapidly increased to decompose. In the present embodiment, 100112869 Form No. 1010101 Page 31/51 Page 1002021432-0 201239948 Epitaxial layer Π) 4 is (10), its band gap energy is 3.3 ev; the base is just sapphire, and its band gap energy is 9.9 ev; The laser is a KrF laser, and the emitted laser has a wavelength of 248, the energy is 5 ev, the width is 2 〇 to 40 ns, the energy density is 400 〇〇 6 〇〇 mj/cm 2 , and the spot shape is square. The focus size is 0·5m_. 5_; the scanning position starts from the edge position of the base substrate 200, and the scanning step size is 〇5 mm/s. During the scanning process, the (four) low buffer layer 2045 grown in step S33 of step S30 starts to be decomposed into (ja and N2. It can be understood that the pulse width, energy density, spot shape, focus size, and scanning The step size can be adjusted according to actual needs; the laser having a corresponding wavelength can be selected according to the buffer layer 2〇45 to have a strong absorption effect on the laser of a specific wavelength [0112] [0114] Since the low temperature buffer layer 2045 is opposite to the above The laser of the wavelength has a strong absorption effect, and therefore, the temperature of the low temperature buffer layer 2〇45 is rapidly increased to be decomposed; and the first epitaxial layer 2〇4 has weak or no absorption of the laser light of the above wavelength, Therefore, the first epitaxial layer 2〇4 is not destroyed by the laser. It can be understood that lasers of different wavelengths can be selected for different buffer layers 2〇45, so that the low temperature buffer layer 2 〇45 5 has a misalignment. Strong absorption. The laser irradiation process is carried out in a vacuum environment or a protective gas atmosphere to prevent the carbon nanotubes from being destroyed by oxidation during laser irradiation. It is an inert gas such as nitrogen, helium or argon. In step S703, the base substrate 2〇〇 after the laser irradiation, the first epitaxial layer 204, and the first carbon nanotube layer 2〇2 disposed therebetween may be immersed. 'In an acidic solvent' to remove the decomposed Ga, thereby removing the peeling of the base substrate 2〇〇 from the first epitaxial layer 204, removing the base substrate 10042869 in the peeling. Form No. A0101 Page 32 of 51 page 1002021432 -0 201239948 [0115] 〇 [0117] [0118] [0119] [0120] 100112869 2〇〇¥ 'The first carbon nanotube layer 202 applied to the surface of the base substrate 2〇〇 will also be The nano-structured substrate 30 having the nano-structures shown in Fig. u having a nano-structure is obtained. The solvent may be a solvent such as hydrochloric acid, sulfuric acid or nitric acid. Due to the presence of the first carbon nanotube layer 202, the stress between the first epitaxial layer 204 and the base substrate 200 during the growth process is reduced, and the base substrate 2 is made during the laser irradiation to peel off the base substrate 200. The peeling of the cockroach is much easier 'also reduces the extension The present invention provides a method for epitaxially growing a nano-scale microstructured substrate by using the carbon nanotube layer as a mask on the epitaxial growth surface growth epitaxial layer. The method directly forms a hole-like microstructure on the surface of the substrate by setting the nanocarbon tube layer as a mask, and has a simple process and low cost. The method of the prior art (10) and nano imprinting is overcome, and the manufacturing method is complicated. The technical problem of the first method is as follows: The first epitaxial structure prepared by the method of the present invention is applied to the surface of the epitaxial layer when the epitaxial structure is applied to manufacture the light-emitting body, thereby effectively improving the light-emitting efficiency of the south-emitting diode without The substrate is advantageous for simplifying the manufacturing method. The carbon nanotube layer is a self-supporting structure and can be directly laid on the surface of the substrate. The method is simple and is advantageous for large-scale industrial manufacturing. - Fourth 'The method of the present invention can realize a structure in which a plurality of nano-scale microporous structures are distributed in a plane or in a plurality of planes parallel to each other and spaced apart, in the field of semiconductor technology, etc. Form No. A0101 Page 33 of 51 1002021432-0 201239948 The plural field has broad application prospects. [0128] [0128] [0130] [0130] 100112869 In summary, the present invention has indeed met the requirements of the invention patent, and patented according to law. Application. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a manufacturing method of a method for preparing a nano-micro structure substrate according to a first embodiment of the present invention. 2 is a scanning electron micrograph of a carbon nanotube film used in the present invention. Fig. 3 is a schematic view showing the configuration of a carbon nanotube segment in the carbon nanotube film of Fig. 2. Figure 4 is a scanning electron micrograph of a carbon nanotube film disposed at a plurality of layers in the present invention. Figure 5 is a scanning electron micrograph of a non-twisted nanocarbon line employed in the present invention. Figure 6 is a scanning electron micrograph of a twisted nanocarbon line used in an embodiment of the present invention. Fig. 7 is a flow chart showing a manufacturing method of a method for preparing a nano-micro structure substrate according to a second embodiment of the present invention. FIG. 8 is a schematic diagram of a growth process of an epitaxial layer according to a second embodiment of the present invention. Figure 9 is a scanning electron micrograph of a cross section of an epitaxial structure prepared in accordance with a second embodiment of the present invention. Form No. A0101 Page 34 of 51 1002021432-0 201239948 [0010] FIG. 10 is a transmission electron micrograph at an epitaxial construction interface prepared in accordance with a second embodiment of the present invention. Figure 11 is a flow chart showing a method of fabricating a method for fabricating a nano-microstructured substrate according to a third embodiment of the present invention. [Explanation of main component symbols] Nano-structured substrate: 10, 20, 30 [0134] Substrate: 100 [0136] Base substrate: 200 Epitaxial growth surface: 101, 201 [0137] Nano carbon Tube layer: 102 [0138] Trench: 103 [0139] Epitaxial layer: 1 0 4 [0140] Epitaxial grain: 1042 [0141] 〇 Microstructure: 108, 208 [0142] First carbon nanotube layer: 202 Second carbon nanotube layer: 207 [0144] Hole: 203 [0145] First epitaxial layer: 204 [0146] Second epitaxial layer: 209 [0147] Opening: 105, 205 100112869 Form No. A0101 No. 35 Page / Total 51 pages 1002021432-0 201239948 [0148] Surface: 206 [0149] Epitaxial grain: 2042 [0150] Epitaxial film: 2044 [0151] Buffer layer: 2045 [0152] Carbon nanotube segment: 143 [0153] Carbon nanotubes: 145 100112869 Form number A0101 Page 36 / Total 51 pages 1002021432-0

Claims (1)

201239948 七、申請專利範圍: 1 種具有奈米微構造基板的製備方法,其包括以下步驟: 提供一基底,該基底具有一支持外延層生長的外延生長面 於所述基底的外延生長面設置一奈米碳管層; 在基底的外延生長面垂直生長外延層,所述外延層為由奈 米碳管層中的奈米碳管間隔的非連續性的外延層;以及, 去除所述奈米碳管層,得到表面具有奈米微構造的基板。 〇 2 ·如申請專利範圍第丨項所述之具有奈米微構造基板的製備 方法,其中,所述外延層為一同質外延層。 3 .如申請專利範圍第丨項所述之具有奈米微構造基板的製備 方法,其中,所述基底為一單晶構造體,且所述基底的材 料為SOI、LiGa〇2、LiAl〇2、Al2〇3、Si、GaAs、GaN、 GaSb、InN、InP、InAs、InSb、A1P、AlAs、AlSb、 AIN、GaP、SiC、SiGe、GaMnAs、GaAlAs、GalnAs、 GaAIN、GalnN、AlInN、GaAsP、InGaN、AlGalnN、 ❹ AlGaInP、GaP:Zn 或GaP:N。 4 .如申請專利範圍第i項所述之具有奈米微構造基板的製備 方法,其中,所述在基底的外延生長面設置一奈米碳管層 的方法為將奈米碳管膜或奈米碳管線直接鋪設於所述基底 的外延生長面作為奈米碳管層。 5 .如申請專利範圍第丨項所述之具有奈米微構造基板的製備 方法,其中,所述奈米碳管層中具有複數開口,所述外延 層從所述基底的外延生長面通過該開口暴露的部份垂直生 長。 100112869 表單編號A0101 第37頁/共51頁 1002021432-0 201239948 8 10 11 如申請專利範圍第5項所 疋之具有奈米微構造基板的製備 、所述外延層生長時,沿著基本垂直於所述基 長面方向成核並外延生長形成複數外延晶粒。 如申Μ專利範圍第i項所述 ,, , 之具有奈米微構造基板的製備 方法,其中,所述基底的外 延生長面為分子平滑的表面, 在生長外延層之前進—步 去除雜質的步驟。 洗所述基底的外延生長面 如申請專利範圍第i項所 古、1 ^ , 又具有奈米微構造基板的製備 方法,其中,所述奈米碳營 包括採用有機溶劑處理所置在外延生長面後進一步 緊密地貼_所料延碳管層,使奈米碳管層更 王長面的步驟。 如申請專利範圍第i項所 方法,其中,所述外延層的在奈米微構造基板的製備 彳、生長方法包括分子束外延法、 化予采外延去、減壓外延 液相沈積外料、金屬h、低溫外縣、選擇外延法、 屬有機氣相外延法、趙真空化學氣相 沈積法、氫化物氣相外 卜U超真工化子孔相 法中的-種或複數種。’ 、M及金屬有機化學氣相沈積 如申請專利範圍第丨項&amp; 方半,且由 _ 〈具有奈米微構造基板的製備 万法其中,所述奈米碜 、招罄斗、好^ 增的去除方法為離子體刻蝕法 超聲法、鐳射加熱法或 接曰士太, 熟爐加熱法。 微構造基板的製備方法― g一基底,該基底具有外料生㈣外延生長面 f 於所述基底的外延生長面設置第一奈米碳管層; 在基底的外延生長面生長〆連續的第—外延層並覆蓋第一 奈米碳管層; 100112869 表單編號A0101 第38頁/共51頁 1002021432-0 201239948 12 . G 13 . 14 . G 15 100112869 於所述連續的第一外延層表面設置第二奈米碳管層; 於所述連續的第-外延層表面垂直生長—第二外延層,所 述第二外延層為由奈米碳管層中的奈米碳管間隔的非連續 性的外延層;以及 去除所述連續的第-外延層表面設置的所述第一奈米碳管 層,得到一具有奈米微構造基板。 如申请專利範圍第11項所述之具有奈米微構造基板的製備 方法,其中’所述第二外延層的材料為SGI、LiGa〇2、 LiA102、Al2〇3、Si、GaAs、GaN、GaSb、InN、InP、 InAs、InSb、A1P、AlAs、AlSb、A1N、GaP、Sic、 SiGe 、 GaMnAs 、 GaAlAs 、 GalnAs 、 GaA1N 、 GaInN 、 AlInN、GaAsP、InGaN、AlGalnN、AlGalnP、GaP:Zn 或GaP:N 。 如申請專利範圍第11項所述之具有奈米微構造基板的製備 方法,其中,所述第一外延層為—異質外延層,所述第二 外延層為同質外延層。 如申請專利範圍第11項所述之具有奈米微構造基板的製備 方法,其中,生長第一外延層的生長方法具體包括以下步 驟: 沿著基本垂直於所述基底的外延生長面方向成核並外延生 長形成複數外延晶粒; 所述複數外延晶粒沿著基本平行於所述基底的外延生長面 方向外延生長形成一連續的外延薄膜;以及, 所述外延薄膜沿著基本垂直於所述基底的外延生長面方向 外廷生長形成一連續的第一外延層。 一種具有奈米微構造基板的製備方法,其包括以下步驟: 表單編號A0101 第39頁/共51頁 1002021432-0 201239948 提供一基底,該基底具有一支持外延層生長的外延生長面 於所述基底的外延生長面設置一奈米碳管層; 在基底的外延生長面生長一連續的外延層並覆蓋所述奈米 碳管層; 於所述連續的外延層的表面設置一奈米碳管層; 於所述連續的外延層的表面垂直生長外延層,該外延層為 由奈米碳管層中的奈米碳管間隔的非連續性的外延層; 去除所述連續的外延層表面設置的奈米碳管層; 剝離移除基底及所述基底的外延生長面設置的奈米碳管層 ,得到具有奈米微構造基板。 16 .如申請專利範圍第15項所述之具有奈米微構造基板的製備 方法,其中,所述剝離移除基底的方法為鐳射照射法、腐 蝕法或溫差分離法。 17 .如申請專利範圍第15項所述之具有奈米微構造基板的製備 方法,其中,所述鐳射剝離法包括以下步驟: 拋光並清洗所述基底未生長外延層的表面; 將經過表面清洗的基底放置於一平臺上,並利用鐳射對所 述基底進行掃描; 將經鐳射照射後的基底浸入一溶液中腐蝕,使基底從連續 的外延層上剝離。 100112869 表單編號A0101 第40頁/共51頁 1002021432-0201239948 VII. Patent application scope: A preparation method for a nano-micro structure substrate, comprising the steps of: providing a substrate having an epitaxial growth surface supporting epitaxial layer growth on the epitaxial growth surface of the substrate a carbon nanotube layer; an epitaxial layer vertically grown on the epitaxial growth surface of the substrate, the epitaxial layer being a discontinuous epitaxial layer separated by a carbon nanotube in the carbon nanotube layer; and removing the nanocarbon The tube layer is obtained as a substrate having a nano microstructure on its surface. The method for producing a nano-microstructure substrate according to the invention of claim 2, wherein the epitaxial layer is a homoepitaxial layer. 3. The method of claim 4, wherein the substrate is a single crystal structure, and the material of the substrate is SOI, LiGa〇2, LiAl〇2. , Al2〇3, Si, GaAs, GaN, GaSb, InN, InP, InAs, InSb, A1P, AlAs, AlSb, AIN, GaP, SiC, SiGe, GaMnAs, GaAlAs, GalnAs, GaAIN, GalnN, AlInN, GaAsP, InGaN , AlGalnN, ❹ AlGaInP, GaP: Zn or GaP: N. 4. The method for preparing a nano-microstructure substrate according to the invention of claim 1, wherein the method of providing a carbon nanotube layer on the epitaxial growth surface of the substrate is a carbon nanotube film or a naphthalene film. The carbon carbon pipeline is directly laid on the epitaxial growth surface of the substrate as a carbon nanotube layer. 5. The method of claim 4, wherein the carbon nanotube layer has a plurality of openings therein, the epitaxial layer passing through the epitaxial growth surface of the substrate The exposed portion of the opening grows vertically. 100112869 Form No. A0101 Page 37/51 Page 1002021432-0 201239948 8 10 11 As in the preparation of the nano-structured substrate according to Item 5 of the patent application, when the epitaxial layer is grown, it is substantially perpendicular to the The base is nucleated in the long face direction and epitaxially grown to form a plurality of epitaxial grains. The method for preparing a nano-micro-structure substrate, wherein the epitaxial growth surface of the substrate is a molecularly smooth surface, and the impurity is further removed before the epitaxial layer is grown, as described in claim i. step. The epitaxial growth surface of the substrate is washed, as in the patent application scope, item i, and has a preparation method of a nano-micro structure substrate, wherein the nano carbon camp includes an organic solvent treatment for epitaxial growth. After the surface, the step of further extending the carbon tube layer to make the carbon nanotube layer more long. The method of claim i, wherein the preparation of the epitaxial layer on the nano-microstructure substrate comprises a molecular beam epitaxy method, a chemical extraction epitaxy, a reduced-pressure epitaxial liquid deposition external material, Metal h, low temperature outside the county, selective epitaxy method, organic vapor phase epitaxy method, Zhao vacuum chemical vapor deposition method, hydride gas phase, U-realization, pore-phase method, or a plurality of species. ', M and metal organic chemical vapor deposition as claimed in the scope of the second paragraph &amp; square half, and by _ <the preparation of nano-microstructured substrate, the nano- 碜, 罄 罄, good ^ The addition method is an ion etching method, an ultrasonic method, a laser heating method or a connection with a gentleman, a cooked furnace heating method. Method for preparing micro-structure substrate - g-substrate, the substrate has an outer material (four) epitaxial growth surface f, a first carbon nanotube layer is disposed on the epitaxial growth surface of the substrate; and a continuous growth surface is grown on the epitaxial growth surface of the substrate - an epitaxial layer covering the first carbon nanotube layer; 100112869 Form No. A0101 Page 38 of 51 1002021432-0 201239948 12 . G 13 . 14 . G 15 100112869 Setting the surface of the continuous first epitaxial layer a second carbon nanotube layer; vertically growing on the surface of the continuous first epitaxial layer - a second epitaxial layer, the second epitaxial layer being a discontinuous epitaxial spacer separated by a carbon nanotube in the carbon nanotube layer And removing the first carbon nanotube layer disposed on the surface of the continuous first epitaxial layer to obtain a substrate having a nano microstructure. The method for preparing a nano-micro structure substrate according to claim 11, wherein the material of the second epitaxial layer is SGI, LiGa〇2, LiA102, Al2〇3, Si, GaAs, GaN, GaSb. , InN, InP, InAs, InSb, A1P, AlAs, AlSb, A1N, GaP, Sic, SiGe, GaMnAs, GaAlAs, GalnAs, GaA1N, GaInN, AlInN, GaAsP, InGaN, AlGalnN, AlGalnP, GaP: Zn or GaP: N . The method of fabricating a nano-microstructure substrate according to claim 11, wherein the first epitaxial layer is a hetero-epitaxial layer, and the second epitaxial layer is a homoepitaxial layer. The method for preparing a nano-micro structure substrate according to claim 11, wherein the method for growing the first epitaxial layer comprises the following steps: nucleating along an epitaxial growth surface substantially perpendicular to the substrate And epitaxially growing to form a plurality of epitaxial grains; the plurality of epitaxial grains are epitaxially grown along a direction substantially parallel to an epitaxial growth surface of the substrate to form a continuous epitaxial film; and the epitaxial film is substantially perpendicular to the The epitaxial growth plane of the substrate grows to form a continuous first epitaxial layer. A method for fabricating a nano-microstructured substrate, comprising the steps of: Form No. A0101, Page 39/51, 1002021432-0 201239948, providing a substrate having an epitaxial growth surface supporting epitaxial layer growth on the substrate a carbon nanotube layer is disposed on the epitaxial growth surface; a continuous epitaxial layer is grown on the epitaxial growth surface of the substrate and covers the carbon nanotube layer; and a carbon nanotube layer is disposed on the surface of the continuous epitaxial layer Forming an epitaxial layer perpendicularly on a surface of the continuous epitaxial layer, the epitaxial layer being a discontinuous epitaxial layer separated by a carbon nanotube in the carbon nanotube layer; removing the surface of the continuous epitaxial layer a carbon nanotube layer; peeling off the substrate and the carbon nanotube layer provided on the epitaxial growth surface of the substrate to obtain a substrate having a nano-micro structure. The method for producing a nano-microstructured substrate according to claim 15, wherein the method of peeling off the substrate is a laser irradiation method, a corrosion method or a temperature difference separation method. The method for producing a nano-microstructure substrate according to claim 15, wherein the laser lift-off method comprises the steps of: polishing and cleaning a surface of the substrate on which the epitaxial layer is not grown; The substrate is placed on a platform and the substrate is scanned by laser; the laser-irradiated substrate is immersed in a solution for etching to peel the substrate from the continuous epitaxial layer. 100112869 Form No. A0101 Page 40 of 51 1002021432-0
TW100112869A 2011-03-29 2011-04-13 A method for making a substrate with micro-structure TWI464778B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110076886.4A CN102719888B (en) 2011-03-29 2011-03-29 There is the preparation method of nano-micro structure substrate

Publications (2)

Publication Number Publication Date
TW201239948A true TW201239948A (en) 2012-10-01
TWI464778B TWI464778B (en) 2014-12-11

Family

ID=46945745

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112869A TWI464778B (en) 2011-03-29 2011-04-13 A method for making a substrate with micro-structure

Country Status (3)

Country Link
JP (1) JP5783881B2 (en)
CN (1) CN102719888B (en)
TW (1) TWI464778B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952984B (en) * 2014-03-27 2017-11-14 清华大学 The preparation method of epitaxial structure
CN107723790B (en) * 2016-08-12 2020-07-07 上海新昇半导体科技有限公司 Epitaxial equipment, equipment manufacturing method and epitaxial method
CN108132582B (en) * 2016-12-01 2020-06-09 清华大学 Photoetching mask plate
CN110459461B (en) * 2019-07-31 2021-09-17 烯湾科城(广州)新材料有限公司 Cleaning method of silicon substrate
CN110491772B (en) * 2019-07-31 2021-10-01 烯湾科城(广州)新材料有限公司 Cleaning method of silicon substrate
CN110491773B (en) * 2019-07-31 2021-10-01 烯湾科城(广州)新材料有限公司 Cleaning method of silicon substrate
CN112647057A (en) * 2020-11-13 2021-04-13 中国科学院金属研究所 Method for preparing silicon carbide tube by adopting chemical vapor deposition process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139445B2 (en) * 1997-03-13 2001-02-26 日本電気株式会社 GaN-based semiconductor growth method and GaN-based semiconductor film
JP3788104B2 (en) * 1998-05-28 2006-06-21 住友電気工業株式会社 Gallium nitride single crystal substrate and manufacturing method thereof
JP2008266064A (en) * 2007-04-19 2008-11-06 Nichia Corp Substrate for semiconductor element and its manufacturing method
KR100921789B1 (en) * 2007-10-24 2009-10-15 주식회사 실트론 Method for preparing compound semiconductor substrate
JP5347340B2 (en) * 2008-06-04 2013-11-20 株式会社豊田中央研究所 Resonant tunnel diode manufacturing method
CN101378104A (en) * 2008-09-19 2009-03-04 苏州纳维科技有限公司 Semiconductor foreign substrate and growing method thereof
TWI384535B (en) * 2008-12-30 2013-02-01 Univ Nat Chunghsing Epitaxial substrate
TWI380480B (en) * 2009-03-06 2012-12-21 Hon Hai Prec Ind Co Ltd Method for manufacturing light emitting diode

Also Published As

Publication number Publication date
JP5783881B2 (en) 2015-09-24
CN102719888A (en) 2012-10-10
TWI464778B (en) 2014-12-11
JP2012206927A (en) 2012-10-25
CN102719888B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
TWI477666B (en) Method of making epitaxial structure with micro-structure
TWI469391B (en) Light emitting diode
JP6219905B2 (en) Semiconductor thin film structure and method for forming the same
TWI501420B (en) Light emitting diode
TWI464903B (en) Epitaxial base, method of making the same and application of epitaxial base for growing epitaxial layer
TW201239948A (en) A method for making a substrate with micro-structure
US8900977B2 (en) Method for making epitaxial structure
CN103367121B (en) The preparation method of epitaxial structure
US9953832B2 (en) Epitaxial base
TWI458672B (en) Epitaxial structure with micro-structure
TWI598288B (en) Epitaxial structure
JP2009054882A (en) Manufacturing method of light emitting device
TWI431667B (en) A epitaxialstructure and method for making the same
US20130285016A1 (en) Epitaxial structure
US8859402B2 (en) Method for making epitaxial structure
US9570293B2 (en) Method for making epitaxial base
TWI444326B (en) Method for making light-emitting diode
CN103378235B (en) Light-emitting diode
TWI438144B (en) A method for making a substrate with micro-structure
TWI557064B (en) Method of making light emitting diode
KR20180118681A (en) Compound semiconductor substrate, pellicle film, and method for manufacturing compound semiconductor substrate
TWI449659B (en) Method for making epitaxial structure
TW201239949A (en) A substrate with micro-structure and method for making the same
TW201240137A (en) Method for making an epitaxial structure