TW201239949A - A substrate with micro-structure and method for making the same - Google Patents

A substrate with micro-structure and method for making the same Download PDF

Info

Publication number
TW201239949A
TW201239949A TW100112849A TW100112849A TW201239949A TW 201239949 A TW201239949 A TW 201239949A TW 100112849 A TW100112849 A TW 100112849A TW 100112849 A TW100112849 A TW 100112849A TW 201239949 A TW201239949 A TW 201239949A
Authority
TW
Taiwan
Prior art keywords
layer
carbon nanotube
substrate
epitaxial
epitaxial layer
Prior art date
Application number
TW100112849A
Other languages
Chinese (zh)
Other versions
TWI442451B (en
Inventor
Yang Wei
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Publication of TW201239949A publication Critical patent/TW201239949A/en
Application granted granted Critical
Publication of TWI442451B publication Critical patent/TWI442451B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to a substrate with micro-structure and a method for making the same. The method includes following steps: providing a substrate with a surface for epitaxial growth; growing a buffer layer on the surface; disposing a carbon nanotube layer on the buffer layer; growing an epitaxial layer on the buffer layer; and removing the substrate.

Description

201239949 * 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種具有微構造的基板及其製備方法。 [先前技術] [0002] 以GaN及InGaN,AlGaN為主的氮化物形成的具有微構造 的基板為近年來備受關注的半導體結構,其連績可變之 直接帶隙,優異之物理化學穩定性,高飽和電子移動率 等特性,使之成為雷射器,發光二極體等光電子器件和 微電子器件的優選半導體結構。 〇 _]由於GaN等本身生長技術之限制,先前技術巾大面積之201239949 * VI. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD [0001] The present invention relates to a substrate having a microstructure and a method of fabricating the same. [Prior Art] [0002] A micro-structured substrate formed of a nitride mainly composed of GaN, InGaN, or AlGaN is a semiconductor structure that has been attracting attention in recent years, and has a direct band gap with variable performance, and excellent physical and chemical stability. Characteristics such as high saturation electron mobility make it a preferred semiconductor structure for optoelectronic devices and microelectronic devices such as lasers and light-emitting diodes. 〇 _] Due to the limitations of GaN and other growth techniques, the prior art towel has a large area.

GaN半導體層大多生長在藍寶石等其他基底上。由於氮化 鎵和藍寶石基底之晶格常數不同,從而導致氮化鎵外延 層存在較多錯位缺陷(dislOCati〇n defect)。先前技 術提供-種改善上述不足之方法,其制非平整之藍寶 石基底外延生長氮化鎵。然,先前技術通常採用光刻等 微電子製造方法在藍寶石基底表面形成溝槽從而構成非 〇 彳整外延生長面。該方法不但製造過程複雜,成本較高 ,而且會對藍寶石基底外延生長面造成污染,從而影響 外延結構之品質。 【發明内容】 [0004] 有黎於此,提供-種製造方法簡單,成本低廉,且不會 對基底表面造成污染的具有微構造的基板的製備方法及 -種應用廣泛的具有微構造的基板實為必要。 [0005] -種具有微構造的基板的製備方法,其包括以下步驟: 100112849 提供-藍寶石基底,所述藍寶石基底具有—外延生長面 表單編號A0101 第3頁/共41頁 1002021407-0 201239949 [0006] [0007] [0008] [0009] [0010] 100112849 ;在所述基底的外延生長面生長一低溫GaN緩衝層;在所 述緩衝層遠離基底的表面設置一奈米碳管層;在所述緩 衝層遠離基底的表面生長一GaN外延層;及去除所述基底 〇 一種具有微構造的基板的製備方法,其包括以下步驟: 提供一基底,所述基底具有一外延生長面;在所述基底 的外延生長面上生長一緩衝層;在所述緩衝層表面設置 一奈米碳管層;在所述設置有奈米碳管層的緩衝層表面 上生長外延層;及去除所述基底。 —種具有微構造的基板,其包括一半導體外延層及一奈 米碳管層,所述半導體外延層一表面具有複數凹槽以形 成一圖案化表面,所述奈米碳管層設置於該半導體外延 層的圖案化的表面,並嵌入該半導體外延層中。 與先前技術相比,本發明提供之具有微構造的基板及其 製備方法採用奈米碳管層作為掩模的方式生長外延層, 大大降低了具有微構造的基板的製備成本,並且所述奈 米碳管層具有良好的導電性,使得所述具有微構造的基 板具有廣泛用途。 【實施方式】 以下將結合附圖詳細說明本發明實施例提供的具有微構 造的基板及其製備方法。 請參照圖1,本發明第一實施例提供一種具有微構造的基 板10的製備方法,具體包括一下步驟: S11,提供一基底1〇〇,且該基底100具有一支持外延生 表單編號A0101 第4頁/共41頁 002021407^ [0011] 201239949 長的外延生長面101 ; 12 在基底1〇〇的外延生長面ι〇ΐ生長一緩衝層1 〇 41 ; [0013] Sl3 ’在所述緩衝層1〇41的表面設置一奈米碳管層1〇2 ; [〇〇14] Sl4 ’在設置有奈米碳管層102的緩衝層1041表面生長_ 外延層104 ; []S15,去除所述基底,得到所述具有微構造的基板1〇 0 [0016]Most of the GaN semiconductor layers are grown on other substrates such as sapphire. Due to the different lattice constants of the gallium nitride and sapphire substrates, there are many dislocation defects in the gallium nitride epitaxial layer. The prior art provides a method for improving the above-mentioned deficiencies by epitaxially growing gallium nitride on a non-flat sapphire substrate. However, the prior art generally uses a microelectronic fabrication method such as photolithography to form a trench on the surface of the sapphire substrate to form a non-tanned epitaxial growth surface. The method not only has a complicated manufacturing process, but also has high cost, and pollutes the epitaxial growth surface of the sapphire substrate, thereby affecting the quality of the epitaxial structure. SUMMARY OF THE INVENTION [0004] There is a method for preparing a micro-structured substrate which is simple in manufacturing method, low in cost, and does not cause contamination on the surface of the substrate, and a widely used micro-structured substrate. It is really necessary. [0005] A method for preparing a substrate having a microstructure, comprising the steps of: 100112849 providing a sapphire substrate having an epitaxial growth surface form number A0101 Page 3 of 41 page 1002021407-0 201239949 [0006] [0009] [0010] 100112849; growing a low temperature GaN buffer layer on the epitaxial growth surface of the substrate; providing a carbon nanotube layer on the surface of the buffer layer away from the substrate; Forming a GaN epitaxial layer from the surface of the buffer layer; and removing the substrate, a method for preparing a microstructured substrate, comprising the steps of: providing a substrate, the substrate having an epitaxial growth surface; a buffer layer is grown on the epitaxial growth surface of the substrate; a carbon nanotube layer is disposed on the surface of the buffer layer; an epitaxial layer is grown on the surface of the buffer layer provided with the carbon nanotube layer; and the substrate is removed. a micro-structured substrate comprising a semiconductor epitaxial layer and a carbon nanotube layer, wherein a surface of the semiconductor epitaxial layer has a plurality of grooves to form a patterned surface, and the carbon nanotube layer is disposed on the substrate A patterned surface of the semiconductor epitaxial layer and embedded in the semiconductor epitaxial layer. Compared with the prior art, the micro-structured substrate provided by the present invention and the preparation method thereof use the carbon nanotube layer as a mask to grow the epitaxial layer, which greatly reduces the preparation cost of the micro-structured substrate, and the nai The carbon nanotube layer has good electrical conductivity, making the micro-structured substrate have a wide range of uses. [Embodiment] Hereinafter, a substrate having a microstructure and a method for fabricating the same according to embodiments of the present invention will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 , a first embodiment of the present invention provides a method for fabricating a substrate 10 having a microstructure. The method further includes the following steps: S11, providing a substrate 1 〇〇, and the substrate 100 having a supporting epitaxial form number A0101 4 pages/total 41 pages 002021407^ [0011] 201239949 long epitaxial growth surface 101; 12 a buffer layer 1 〇41 is grown on the epitaxial growth surface of the substrate 1〇〇; [0013] Sl3 'in the buffer layer The surface of 1〇41 is provided with a carbon nanotube layer 1〇2; [〇〇14] Sl4′ is grown on the surface of the buffer layer 1041 provided with the carbon nanotube layer 102 _ epitaxial layer 104; [] S15, removing the Substrate, the substrate having the microstructure is obtained [0016]

100112849 在步驟S11中,所述基底1〇〇提供了外延層1〇4之外延生 長面101。所述基底1〇〇的外延生長面1〇1為分子平滑之 表面’且去除了氧或碳等雜質。所述基底丨〇〇可為單層或 複數層結構。當所述基底1〇〇為單層結構時,該基底1〇〇 可為一單晶結構體,且具有一晶面作為外延層1〇4的外延 生長面101。所述單層結構的基底丨00的材料可為GaAs、100112849 In step S11, the substrate 1〇〇 provides an extended epitaxial layer 101 outside the epitaxial layer 1〇4. The epitaxial growth surface 1〇1 of the substrate 1为 is a molecularly smooth surface' and impurities such as oxygen or carbon are removed. The substrate 丨〇〇 may be a single layer or a plurality of layers. When the substrate 1 is a single layer structure, the substrate 1〇〇 may be a single crystal structure and have a crystal plane as the epitaxial growth surface 101 of the epitaxial layer 1〇4. The material of the single layer structure of the substrate 丨00 may be GaAs,

GaN、Si、SOI(Silicon-On-Insulator)、AIN、SiC 、MgO、ZnO、LiGa〇2、LiA1〇2或^2〇3等。當所述基底 100為複數層結構時,其需要包括至少一層上述單晶結構 體,且該單晶結構體具有一晶面作為外延層叫的外延生 長面10卜所述基底100的材料可以根據所要生長的外延 層104來選擇,優選地,使所述基底1〇〇與外延層1〇4具 有相近的晶格常數及熱膨脹係數1述基底⑽的厚度、 大小和形狀不限’可根據實際需要選擇。所述基底⑽不 限於上述列舉之材料,只要„支持外延層丨咐長的外 延生長面m的基底州均屬於本發明的保護範圍。本實 施例中,所述基底100的材料為Ai 〇。 表單編號A0101 第5頁/共41頁 1002021407-0 201239949 [〇〇17]步驟S12中,所述緩衝層1041的生長方法可分別通過分子 束外延法(MBE)、化學束外延法(CBE)、減壓外延法 、低溫外延法、選擇外延法、液相沈積外延法(LpE)、 金屬有機氣相外延法(MOVPE)、超真空化學氣相沈積法 (UHVCVD)、氫化物氣相外延法(HVPE)、及金屬有機化 學氣相沈積法(MOCVD)等中的一種或複數種實現。所述 緩衝層 1041 的材料可為Si、GaAs、GaN、GaSb、InN、 InP、InAs、InSb、A1P、AlAs、AlSb、AIN、GaP、GaN, Si, SOI (Silicon-On-Insulator), AIN, SiC, MgO, ZnO, LiGa〇2, LiA1〇2 or ^2〇3, and the like. When the substrate 100 is a plurality of layers, it needs to include at least one layer of the above single crystal structure, and the single crystal structure has a crystal plane as an epitaxial layer called an epitaxial growth surface. The epitaxial layer 104 to be grown is selected, preferably, the substrate 1 〇〇 has an adjacent lattice constant and thermal expansion coefficient of the epitaxial layer 1 〇 4, and the thickness, size and shape of the substrate (10) are not limited. Need to choose. The substrate (10) is not limited to the materials listed above, as long as the base state of the epitaxial growth surface m supporting the epitaxial layer is within the protection range of the present invention. In the embodiment, the material of the substrate 100 is Ai 〇. Form No. A0101 Page 5 of 41 1002021407-0 201239949 [〇〇17] In step S12, the growth method of the buffer layer 1041 can be respectively performed by molecular beam epitaxy (MBE), chemical beam epitaxy (CBE), Decompression epitaxy, low temperature epitaxy, selective epitaxy, liquid phase deposition epitaxy (LpE), metal organic vapor phase epitaxy (MOVPE), ultra-vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy One or more of HVPE), metal organic chemical vapor deposition (MOCVD), etc. The material of the buffer layer 1041 may be Si, GaAs, GaN, GaSb, InN, InP, InAs, InSb, A1P, AlAs, AlSb, AIN, GaP,

SiC 、 SiGe 、 GaMnAs 、 GaAlAs 、 GalnAs 、 GaAIN 、 GalnN ' AlInN 、 GaAsP 、 InGaN 、 AlGalnN 、 AlGalnP 、GaP: Zn或GaP: N。當緩衝層l〇41的材料與基底loo的 材料不同時,所述生長方法稱為異質外延生長。當該緩 衝層1041的材料可以與基底100的材料相同時,所述生長 方法稱為同質外延生長。 [0018]本發明第一實施例中,採用MOCVD工藝進行外延生長緩衝 層1041。其中,採用高純氨氣(κυρ作為氮的源氣,採用 氫氣(h2)作載氣,採用三甲基鎵(TMGa)或三乙基鎵 (TEGa)、三甲基銦(TMIn)、三甲基鋁(TMA1)作為Ga源 、In源和A1源。所述緩衝層1〇41的生長具體包括以下步 驟: [0019]首先,將藍寶石基底100置入反應室,加熱到11〇〇。匚 ~1200 C,並通入H2、\或其混合氣體作為載氣,高溫烘 烤200秒〜1〇〇〇秒。 [0020]SiC, SiGe, GaMnAs, GaAlAs, GalnAs, GaAIN, GalnN 'AlInN, GaAsP, InGaN, AlGalnN, AlGalnP, GaP: Zn or GaP: N. When the material of the buffer layer 104 is different from the material of the substrate loo, the growth method is called heteroepitaxial growth. When the material of the buffer layer 1041 can be the same as the material of the substrate 100, the growth method is called homoepitaxial growth. In the first embodiment of the present invention, the epitaxial growth buffer layer 1041 is performed by an MOCVD process. Among them, high-purity ammonia gas (κυρ is used as the source gas of nitrogen, hydrogen gas (h2) is used as carrier gas, and trimethylgallium (TMGa) or triethylgallium (TEGa), trimethylindium (TMIn), and three are used. Methyl aluminum (TMA1) is used as a Ga source, an In source, and an A1 source. The growth of the buffer layer 1〇41 specifically includes the following steps: [0019] First, the sapphire substrate 100 is placed in a reaction chamber and heated to 11 Torr.匚~1200 C, and pass H2, \ or its mixed gas as carrier gas, and bake at high temperature for 200 seconds~1 sec. [0020]

其次’繼續通入載氣,並降溫到500°c〜65(rc,通入三曱 基鎵或三乙基鎵及氨氣,低溫生長GaN層,所述低溫GaN 100112849 表單編號A0101 第6頁/共41頁 1002021407-0 201239949 [0021] Ο [0022]Secondly, 'continue to pass the carrier gas and cool down to 500 ° c ~ 65 (rc, pass through trimethyl gallium or triethyl gallium and ammonia, low temperature growth of GaN layer, the low temperature GaN 100112849 form number A0101 page 6 / Total 41 pages 1002021407-0 201239949 [0021] Ο [0022]

層作為繼續生長外延層104的緩衝層1041,其厚度10奈 米〜50奈米。由於GaN外延層104與藍寶石基底100之間具 有不同的晶格常數,因此所述緩衝層1041用於減少外延 層104生長過程中的晶格失配,降低生長的外延層104的 位元錯密度。 在步驟S13中,所述奈米碳管層102設置在所述緩衝層 1041遠離基底100的表面。所述奈米碳管層102與所述緩 衝層1041接觸設置。所述奈米碳管層102包括複數奈米碳 管,該複數奈米碳管沿著基本平行於奈米碳管層102表面 的方向延伸。當所述奈米碳管層102設置於所述緩衝層 1041表面時,所述奈米碳管層102中複數奈米碳管的延伸 方向基本平行於緩衝層1041表面。奈米碳管層102具有複 數開口 105,通過該複數開口 105,所述緩衝層1041部份 暴露出來。 所述奈米碳管層102為包括複數奈米碳管之連續的整體結 構。所述奈米碳管層102為一宏觀結構。進一步的,所述 奈米碳管層102為一自支撐結構。所謂“自支撐”指該奈 米碳管層102不需要大面積的載體支撐,而只要相對兩邊 提供支撐力即能整體上懸空而保持自身狀態,即將該奈 米碳管層102置於(或固定於)間隔特定距離設置的兩個 支撐體上時,位於二支撐體之間的奈米碳管層102能夠懸 空保持自身狀態。由於奈米碳管層102為自支撐結構,所 述奈米碳管層102可直接通過鋪設的方法設置在所述緩衝 層1041的表面,無需複雜的步驟即可在所述緩衝層1041 的表面形成均勻的奈米碳管層102,方法簡單可控,有利 100112849 表單編號A0101 第7頁/共41頁 1002021407-0 201239949 於實現大規模量產。優選地,所述奈米碳管層1〇2為複數 奈米碳管組成的純奈米碳管結構。所謂“純奈米碳管結 構”為指所述奈米碳管層在整個製備過程中無需任何化 學修飾或酸化處理,不含有任何羧基等官能團修飾。所 述奈米*反管層102中複數奈米碳管沿著基本平行於奈米碳 管層102表面的方向延伸。 [0023] 當所述奈米碳管層102設置於所述緩衝層1〇41時,所述奈 米碳管層102中複數奈米碳管的延伸方向基本平行於所述 緩衝層1041。所述奈米碳管層的厚度為i奈米〜1〇〇微米 ,或1奈米〜1微米,或1奈米〜200奈米,優選地厚度為】〇 奈米〜100奈米。所述奈米碳管層1〇2為一圖案化的奈米碳 官層102。所述“圖案化”為指所述奈米碳管層1〇2具有 複數開口 105,該複數開口 1〇5從所述奈米碳管層1〇2的 厚度方向貫穿所述奈米碳管層1〇2。所述開口 1〇5可為微 孔或間隙。所述開口 105的尺寸為1〇奈米〜5〇〇微米,所 述尺寸為指所述微孔的孔徑或所述間隙的寬度方向的間 距。所述開口 105的尺寸為1〇奈米〜300微米、或1〇奈米 〜120微米、或1〇奈米〜80微米、或1〇奈米〜1〇微米。開口 105的尺寸越小’有利於在生長外延層ι〇4的過程中減少 錯位缺陷的產生,以獲得高品質的外延層1〇4。優選地, 所述開口 105的尺寸為1〇奈米〜10微米。進一步地,所述 奈米碳管層102的佔空比為ι··ι〇〇~ι〇0:ι,或noqo:;! ,或1:2、2:1,或1:4〜4:1。優選地,所述佔空比為 1 : 4〜4:1。所謂‘佔空比”指該奈米碳管層1 〇 2設置於緩 衝層1041後,該奈米碳管層ι〇2在緩衝層1〇41佔據的部 100112849 表單編號A0101 第8頁/共41頁 1002021407-0 201239949 份與緩衝層1041通過開口 1〇5暴露的部份的面積比 [0024] Ο [0025] [0026] Ο 進-步地’所述“圖案化”為指所述奈米碳管層10 數奈米碳管的洲方式騎序的、有規料^如2中複 述奈米碳管層102中複數奈米碳管的軸向均基本、’〜’所 述緩衝層1041且基本沿同—方向延伸。 平订於所 犹考,所述奈米 碳管層102中複數奈米碳管的軸向可有規律性地基本产兩 個以上方向延伸。上述奈米碳管層1〇2中沿同一方向延: 的相鄰的奈米碳管通過凡得瓦力(van de Waals force)首尾相連。 在所述奈米碳官層102具有如前所述的開口 1〇5的前提下 ,所述奈米碳管層102中複數奈米碳管也可無序排列、無 規則排列。所述奈米碳管層1〇2中的奈米碳管可為單壁奈 米碳管、雙壁奈米碳管或多妓米碳管中的一種或複數 種,其長度和直控可根據需要選擇。 所述奈米碳管層102用作生長外延層1〇4中的掩模。所謂 “掩模A指外延層104生長到奈来碳管層1〇2所在的高 度後,僅從所述奈米碳管層102的開口 1Q5處向外生長。 由於奈米碳管層1G2具有複數開〇1()5,所以該奈米碳管 層1〇2形成-圖案化的掩模。當奈米碳管層1〇2設置於緩 衝唐1〇41後’複數奈米碳管可沿著平行於緩衝層1〇41表 面的方向延伸。 所述奈米碳㈣1Q2還可‘包括複數奈錢管及添加材 料的複合結構層。所述添加材料包括石墨、石墨稀、碳 化球、氮化蝴II化發、二氧切、無定形碳等中的一 100112849 表單煸號A0101 第9頁/共41 頁 1002021407-0 [0027] 201239949 種或複數種。所述添加材料還可包括金屬碳化物、金屬 氧化物及金屬氮化物等中的—種或複數種。所述添加材 料包覆於奈米碳管層1()2中奈米碳管的至少部份表面或設 置於奈米碳管層1〇2的開σ 1()5内。優選地,所述添加材又 料包覆於奈米碳管的表面。由於,所述添加材料包覆於 奈米碳管的表面,使得奈米碳管的直徑變大,從而使奈 米碳管之_開口 1〇5減小。所述添加材料可以通過化學 氣相沈積(CVD)、物理氣相沈積(PVD)、磁控濺射等 方法形成於奈米碳管的表面。 [0028] [0029] 進一步地,在將所述奈米碳管層102鋪設在所述緩衝層 1041表面後,可進一步用有機溶劑處理所述奈米碳管層 102,利用有機溶劑揮發過程中產生的表面張力,可使奈 米碳管層102中相鄰的奈米碳管部份聚集成束,並進一步 使奈米故管層102中的奈米碳管與所述緩衝層緊密接 觸,以增加所述奈米碳管層102的機械強度與附著穩定性 。5亥有機溶劑可選用乙醇、甲醇、丙嗣、二氣乙烧和氣 仿中一種或者幾種的混合。本實施例中的有機溶劑採用 乙醇。該使用有機溶劑處理的步驟可通過試管將有機溶 劑滴落在奈米礙管層10 2表面浸潤整個奈米碳管層1 〇 2或 將整個奈米碳管層102浸入盛有有機溶劑的容器中浸潤。 具體地’所述奈米礙管層102可以包括奈米碳管膜或奈米 碳管線。所述奈米碳管層102可為一單層奈米碳管膜或複 數層疊設置的奈米碳管膜。所述奈米碳管層102可包括複 數平行設置的奈米碳管線'複數交又設置的奈米碳管線 或複數碳納奈米管線任意排列組成的網狀結構。當所述 100112849 表單編號A0101 第10頁/共41頁 1002021407-0 201239949 Ο [0030] 奈米碳管層102為複數層疊設置的奈米碳管膜時,奈米碳 管膜的層數不宜太多,優選地,為2層~100層。當所述奈 米碳管層102為複數平行設置的奈米碳管線時,相鄰兩個 奈米碳管線之間的距離為0. 1微米〜200微米,優選地,為 10微米~1 00微米。所述相鄰兩個奈米碳管線之間的空間 構成所述奈米碳管層102的開口 105。所述奈米碳管膜或 奈米碳管線均可為自支撐結構,可以直接鋪設在緩衝層 1041表面構成所述奈米碳管層102。通過控製奈米碳管膜 的層數或奈米碳管線之間的距離,可以控製奈米碳管層 102中開口105的尺寸。The layer serves as a buffer layer 1041 for continuing to grow the epitaxial layer 104, and has a thickness of 10 nm to 50 nm. Since the GaN epitaxial layer 104 and the sapphire substrate 100 have different lattice constants, the buffer layer 1041 serves to reduce lattice mismatch during the growth of the epitaxial layer 104, and reduce the bit error density of the grown epitaxial layer 104. . In step S13, the carbon nanotube layer 102 is disposed on a surface of the buffer layer 1041 away from the substrate 100. The carbon nanotube layer 102 is placed in contact with the buffer layer 1041. The carbon nanotube layer 102 includes a plurality of carbon nanotubes extending in a direction substantially parallel to the surface of the carbon nanotube layer 102. When the carbon nanotube layer 102 is disposed on the surface of the buffer layer 1041, the plurality of carbon nanotubes in the carbon nanotube layer 102 extend substantially parallel to the surface of the buffer layer 1041. The carbon nanotube layer 102 has a plurality of openings 105 through which the buffer layer 1041 is partially exposed. The carbon nanotube layer 102 is a continuous overall structure comprising a plurality of carbon nanotubes. The carbon nanotube layer 102 is a macrostructure. Further, the carbon nanotube layer 102 is a self-supporting structure. By "self-supporting", the carbon nanotube layer 102 does not require a large area of carrier support, but can maintain its own state by simply providing a supporting force on both sides, that is, placing the carbon nanotube layer 102 (or When fixed to two supports disposed at a certain distance apart, the carbon nanotube layer 102 located between the two supports can be suspended to maintain its own state. Since the carbon nanotube layer 102 is a self-supporting structure, the carbon nanotube layer 102 can be directly disposed on the surface of the buffer layer 1041 by a laying method, and the surface of the buffer layer 1041 can be disposed without complicated steps. The formation of a uniform carbon nanotube layer 102 is simple and controllable, and is advantageous for mass production in a large-scale mass production of 100112849 Form No. A0101, Page 7 of 41, 1002021407-0 201239949. Preferably, the carbon nanotube layer 1〇2 is a pure carbon nanotube structure composed of a plurality of carbon nanotubes. The term "pure carbon nanotube structure" means that the carbon nanotube layer does not require any chemical modification or acidification treatment throughout the preparation process, and does not contain any functional group modification such as a carboxyl group. The plurality of carbon nanotubes in the nano-reverse layer 102 extend in a direction substantially parallel to the surface of the carbon nanotube layer 102. [0023] When the carbon nanotube layer 102 is disposed on the buffer layer 1〇41, the plurality of carbon nanotubes in the carbon nanotube layer 102 extend substantially parallel to the buffer layer 1041. The carbon nanotube layer has a thickness of from 1 nm to 1 μm, or from 1 nm to 1 μm, or from 1 nm to 200 nm, preferably from 〇 nm to 100 nm. The carbon nanotube layer 1〇2 is a patterned nanocarbon layer 102. The "patterning" means that the carbon nanotube layer 1 〇 2 has a plurality of openings 105 penetrating the carbon nanotubes from the thickness direction of the carbon nanotube layer 1 〇 2 Layer 1〇2. The opening 1〇5 may be a micro hole or a gap. The size of the opening 105 is 1 〇 nanometer to 5 〇〇 micrometer, and the size refers to the aperture of the micro hole or the pitch of the gap in the width direction. The size of the opening 105 is from 1 nanometer to 300 micrometers, or from 1 nanometer to 120 micrometers, or from 1 nanometer to 80 micrometers, or from 1 nanometer to 1 micrometer. The smaller the size of the opening 105 is, it is advantageous to reduce the occurrence of misalignment defects during the growth of the epitaxial layer ι 4 to obtain a high-quality epitaxial layer 1 〇 4. Preferably, the size of the opening 105 is from 1 nanometer to 10 micrometers. Further, the duty ratio of the carbon nanotube layer 102 is ι··ι〇〇~ι〇0:ι, or noqo:;!, or 1:2, 2:1, or 1:4~4 :1. Preferably, the duty ratio is 1: 4 to 4:1. The term "duty cycle" means that the carbon nanotube layer 1 〇 2 is disposed after the buffer layer 1041, and the carbon nanotube layer ι 2 is occupied by the buffer layer 1 〇 41. The part number is A1121. Page 41, 1002021407-0, 201239949 The area ratio of the portion exposed to the buffer layer 1041 through the opening 1〇5 [0024] [0025] [0026] The patterning described in the 'step' refers to the The carbon nanotube layer 10 is a number of carbon nanotubes in the state of the way of riding, and there are specifications. For example, the intermediate carbon nanotubes in the carbon nanotube layer 102 are all in the axial direction, and the buffer layer is '~'. 1041 and extending substantially in the same direction. In the above, the axial direction of the plurality of carbon nanotubes in the carbon nanotube layer 102 can be regularly extended in two or more directions. Adjacent carbon nanotubes extending in the same direction in the tube layer 1〇2 are connected end to end by a van de Waals force. The nanocarbon layer 102 has an opening 1 as described above. Under the premise of 〇5, the plurality of carbon nanotubes in the carbon nanotube layer 102 may also be randomly arranged and randomly arranged. The carbon nanotube layer 1〇2 The carbon nanotube tube may be one or a plurality of single-walled carbon nanotubes, double-walled carbon nanotubes or multi-millimeter carbon tubes, and the length and direct control thereof may be selected according to requirements. As a mask in the growth epitaxial layer 1〇4, the phrase “mask A refers to the epitaxial layer 104 grown to the height at which the carbon nanotube layer 1〇2 is located, only from the opening 1Q5 of the carbon nanotube layer 102. Grow outward. Since the carbon nanotube layer 1G2 has a plurality of openings 1 () 5, the carbon nanotube layer 1 〇 2 forms a patterned mask. When the carbon nanotube layer 1〇2 is disposed in the buffer of the Tang 1〇41, the plurality of carbon nanotubes may extend in a direction parallel to the surface of the buffer layer 1〇41. The nanocarbon (4) 1Q2 may also include a composite structural layer comprising a plurality of nylon tubes and an additive material. The additive material includes a graphite, a graphite thinner, a carbonized sphere, a nitrided hair, a dioxic cut, an amorphous carbon, and the like. 100112849 Form No. A0101 Page 9 / Total 41 Page 1002021407-0 [0027] 201239949 Kind or plural. The additive material may further include one or more of metal carbides, metal oxides, metal nitrides, and the like. The additive material is coated on at least a part of the surface of the carbon nanotube in the carbon nanotube layer 1 () 2 or in the opening σ 1 () 5 of the carbon nanotube layer 1 〇 2 . Preferably, the additive material is coated on the surface of the carbon nanotube. Since the additive material is coated on the surface of the carbon nanotube, the diameter of the carbon nanotube is made larger, so that the opening 1〇5 of the carbon nanotube is reduced. The additive material may be formed on the surface of the carbon nanotube by chemical vapor deposition (CVD), physical vapor deposition (PVD), magnetron sputtering or the like. [0029] Further, after the carbon nanotube layer 102 is laid on the surface of the buffer layer 1041, the carbon nanotube layer 102 may be further treated with an organic solvent, and the organic solvent is used for volatilization. The generated surface tension causes the adjacent carbon nanotubes in the carbon nanotube layer 102 to be partially bundled, and further the carbon nanotubes in the nanotube layer 102 are in close contact with the buffer layer. To increase the mechanical strength and adhesion stability of the carbon nanotube layer 102. The organic solvent of 5 kel can be selected from one or a combination of ethanol, methanol, propylene carbonate, ethylene bromide and gas. The organic solvent in this embodiment is ethanol. The step of treating with an organic solvent may immerse the organic solvent in a test tube to wet the entire carbon nanotube layer 1 〇 2 on the surface of the nanotube layer 10 2 or immerse the entire carbon nanotube layer 102 in a container containing an organic solvent. Infiltration. Specifically, the nano-tube layer 102 may include a carbon nanotube film or a nanocarbon line. The carbon nanotube layer 102 can be a single layer of carbon nanotube film or a plurality of stacked carbon nanotube films. The carbon nanotube layer 102 may comprise a plurality of parallel carbon nanotubes disposed in parallel with a plurality of carbon nanotubes or a plurality of carbon nanotubes. When the 100112849 Form No. A0101 Page 10 / Total 41 Page 1002021407-0 201239949 Ο [0030] When the carbon nanotube layer 102 is a plurality of stacked carbon nanotube membranes, the number of layers of the carbon nanotube film should not be too More preferably, it is from 2 layers to 100 layers. When the carbon nanotube layer 102 is a plurality of carbon nanotubes arranged in parallel, the distance between adjacent two nanocarbon lines is 0.1 micron to 200 micrometers, preferably 10 micrometers to 1 00. Micron. The space between the adjacent two nanocarbon lines constitutes the opening 105 of the carbon nanotube layer 102. The carbon nanotube film or the nano carbon line may be a self-supporting structure, and the carbon nanotube layer 102 may be directly formed on the surface of the buffer layer 1041. The size of the opening 105 in the carbon nanotube layer 102 can be controlled by controlling the number of layers of the carbon nanotube film or the distance between the carbon nanotubes.

所述奈米碳管膜為由若干奈米碳管組成的自支撐結構。 所述若干奈米碳管為沿同一方向擇優取向延伸。所述擇 優取向為指在奈米碳管膜中大多數奈米碳管的整體延伸 方向基本朝同一方向。而且,所述大多數奈米碳管的整 體延伸方向基本平行於奈米碳管膜的表面。進一步地, 所述奈米碳管膜中多數奈米碳管為通過凡得瓦力首尾相 連。具體地,所述奈米碳管膜中基本朝同一方向延伸的 大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的 奈米碳管通過凡得瓦力首尾相連。當然,所述奈米碳管 膜中存在少數隨機排列的奈米碳管,這些奈米碳管不會 對奈米碳管膜中大多數奈米碳管的整體取向排列構成明 顯影響。所述自支撐為奈米碳管膜不需要大面積的載體 支撐,而只要相對兩邊提供支撐力即能整體上懸空而保 持自身膜狀狀態,即將該奈米碳管膜置於(或固定於) 間隔特定距離設置的兩個支撐體上時,位於兩個支撐體 100112849 表單編號Α0101 第11頁/共41頁 1002021407-0 201239949 之間的奈米碳管膜能夠懸空保持自身膜狀狀態。所述自 支撐主要通過奈米碳管膜中存在連續的通過凡得瓦力首 尾相連延伸排列的奈米碳管而實現。 [0031] 具體地,所述奈米碳管膜中基本朝同一方向延伸的複數 奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者 並非完全按照延伸方向上排列,可以適當的偏離延伸方 向。因此,不能排除奈米碳管膜的基本朝同一方向延伸 的多數奈米碳管中並列的奈米碳管之間可能存在部份接 觸。 [0032] 請參閱圖2及圖3,具體地,所述奈米碳管膜包括複數連 續且定向延伸之奈米碳管片段143。該複數奈米碳管片段 143通過凡得瓦力首尾相連。每一奈米碳管片段143包括 複數相互平行的奈米碳管145,該複數相互平行的奈米碳 管145通過凡得瓦力緊密結合。該奈米碳管片段143具有 任意的長度、厚度、均勻性及形狀。所述奈米碳管膜可 通過從一奈米碳管陣列中選定部份奈米碳管後直接拉取 獲得。所述奈米碳管膜的厚度為1奈米〜100微米,寬度與 拉取出該奈米碳管膜的奈米碳管陣列的尺寸有關,長度 不限。所述奈米碳管膜中相鄰的奈米碳管之間存在微孔 或間隙從而構成開口 105,且該微孔的孔徑或間隙的尺寸 小於10微米。優選地,所述奈米碳管膜的厚度為100奈米 〜10微米。該奈米碳管膜中的奈米碳管145沿同一方向擇 優取向延伸。所述奈米碳管膜及其製備方法具體請參見 申請人於2007年2月12日申請的,於2010年7月11日公告 的第1327177號中華民國專利“奈米碳管薄膜結構及其製 100112849 表單編號A0101 第12頁/共41頁 1002021407-0 201239949 備方法”。為節省篇幅,僅引用於此,但上述申請所有 技術揭露也應視為本發明申請技術揭露的一部份。 [0033] 請參閲圖4,當所述奈米碳管層包括層疊設置的複數層奈 米碳管膜時,相鄰兩層奈米碳管膜中的奈米碳管的延伸 方向形成一交叉角度α,且α大於等於0度小於等於90度 (0。各 α $90。)》 [0034] ΟThe carbon nanotube membrane is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes extend in a preferred orientation along the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube membrane are connected end to end by van der Waals force. Specifically, each of the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film is connected end to end with a vanadium force in the extending direction. Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube membrane, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube membrane. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) When the two supports are placed at a certain distance, the carbon nanotube film located between the two supports 100112849 Form No. Α0101 Page 11 / Total 41 Page 1002021407-0 201239949 can be suspended to maintain its own membranous state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end of the van der Waals force in the carbon nanotube film. [0031] Specifically, the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear and may be appropriately bent; or are not completely aligned in the extending direction, and may be appropriately deviated Extend the direction. Therefore, it is not possible to exclude partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotube membranes extending substantially in the same direction. Referring to FIG. 2 and FIG. 3, in particular, the carbon nanotube film includes a plurality of continuous and oriented extended carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of carbon nanotubes 145 which are parallel to each other, and the plurality of mutually parallel carbon nanotubes 145 are tightly bonded by van der Waals force. The carbon nanotube segments 143 have any length, thickness, uniformity, and shape. The carbon nanotube film can be obtained by directly drawing a part of a carbon nanotube from an array of carbon nanotubes. The carbon nanotube film has a thickness of from 1 nm to 100 μm, and the width is related to the size of the carbon nanotube array in which the carbon nanotube film is taken out, and the length is not limited. There are micropores or gaps between adjacent carbon nanotubes in the carbon nanotube film to form an opening 105, and the pore size or gap of the micropore is less than 10 microns. Preferably, the carbon nanotube film has a thickness of from 100 nm to 10 μm. The carbon nanotubes 145 in the carbon nanotube film extend in a preferred orientation in the same direction. For details of the carbon nanotube film and the preparation method thereof, please refer to the patent document "Nano Carbon Tube Film" of the Republic of China No. 1327177, which was filed on February 12, 2010 by the applicant. Form 100112849 Form No. A0101 Page 12 of 41 Page 1002021407-0 201239949 Preparation Method. In order to save space, only the above is cited, but all the technical disclosures of the above application should also be considered as part of the technical disclosure of the present application. [0033] Referring to FIG. 4, when the carbon nanotube layer includes a plurality of laminated carbon nanotube films stacked in a stack, the extending direction of the carbon nanotubes in the adjacent two carbon nanotube films forms a The angle α is crossed, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees (0. Each α $90.) [0034] Ο

為減小奈米碳管膜的厚度,還可以進一步對該奈米碳管 膜進行加熱處理。為避免奈米碳管膜加熱時被破壞,所 述加熱奈米碳管膜的方法採用局部加熱法。其具體包括 以下步驟:局部加熱奈米碳管膜,使奈米碳管膜在局部 位置的部份奈米碳管被氧化;移動奈米碳管被局部加熱 的位置,從局部到整體實現整個奈米碳管膜的加熱。具 體地’可將該奈米碳管膜分成複數小的區域,採用由局 部到整體的方式,逐區域地加熱該奈米碳管膜》所述局 部加熱奈米碳管膜的方法可以有複數種,如鐳射加熱法 、微波加熱法等等。具體地,可通過功率密度大於〇. lx 1〇4瓦特/平方米的鐳射掃描照射該奈米碳管膜,由局部 到整體的加熱該奈米碳管膜。該奈米碳管膜通過鐳射照 射’在厚度方向上部份奈米碳管被氧化,同時,奈米碳 管膜中直徑較大的奈米碳管束被去除’使得該奈米碳管 膜變薄。 [0035] 可以理解,上述録射掃描奈*碳管膜的方法*限,只要 能夠均勻照射該奈米後管膜即可。錯射掃描可以沿平行 奈米碳管膜中奈米峻管㈣列方向逐行進行 ,也可以沿 垂直於奈米碳管膜中奈米碳管的排列方向逐列進行。具 100112849 表單編號A0101 第13 頁/共41頁 1002021407-0 201239949 有固定功率、固定波長的鐳射掃描奈米碳管膜的速度越 小,奈米碳管膜中的奈米碳管束吸收的熱量越多,對應 被破壞的奈米碳管束越多,鐳射處理後的奈米碳管膜的 厚度變小。然,如果鐳射掃描速度太小,奈米碳管膜將 吸收過多熱量而被燒毁。優選地,鐳射的功率密度可大 於0. 053xl012瓦特/平方米,鐳射光斑的直徑在1毫米〜5 毫米範圍内,鐳射掃描照射時間小於1. 8秒。優選地,雷 射器為二氧化碳雷射器,該雷射器的功率為30瓦特,波 長為10. 6微米,光斑直徑為3毫米,鐳射裝置與奈米碳管 膜的相對運動速度小於10毫米/秒。 [0036] 所述奈米碳管線可為非扭轉的奈米碳管線或扭轉的奈米 碳管線。所述非扭轉的奈米碳管線與扭轉的奈米碳管線 均為自支撐結構。具體地,請參閱圖5,該非扭轉的奈米 碳管線包括複數沿平行於該非扭轉的奈米碳管線長度方 向延伸的奈米碳管。具體地,該非扭轉的奈米碳管線包 括複數奈米碳管片段,該複數奈米碳管片段通過凡得瓦 力首尾相連,每一奈米碳管片段包括複數相互平行並通 過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳 管線長度不限,直徑為0. 5奈米〜100微米。非扭轉的奈米 碳管線為將上述圖2所述奈米碳管膜通過有機溶劑處理得 到。具體地,將有機溶劑浸潤所述奈米碳管膜的整個表 面,在揮發性有機溶劑揮發時產生的表面張力的作用下 ,奈米碳管膜中的相互平行的複數奈米碳管通過凡得瓦 力緊密結合,從而使奈米碳管膜收縮為一非扭轉的奈米 100112849 表單編號A0101 第14頁/共41頁 1002021407-0 201239949 [0037] ❹In order to reduce the thickness of the carbon nanotube film, the carbon nanotube film may be further heat treated. In order to prevent the carbon nanotube film from being destroyed upon heating, the method of heating the carbon nanotube film adopts a local heating method. Specifically, the method comprises the steps of: locally heating the carbon nanotube film, so that a part of the carbon nanotube film is oxidized at a local position; and moving the carbon nanotube to be locally heated, from the local to the whole Heating of the carbon nanotube film. Specifically, the method of dividing the carbon nanotube film into a plurality of small regions and heating the carbon nanotube film layer by region from a local to the whole manner may have a plurality of methods for locally heating the carbon nanotube film. Kinds, such as laser heating, microwave heating, etc. Specifically, the carbon nanotube film can be irradiated by a laser scan having a power density greater than l. lx 1 〇 4 watts/m 2 to heat the carbon nanotube film locally to the whole. The carbon nanotube film is irradiated by laser 'partially, the carbon nanotubes are oxidized in the thickness direction, and at the same time, the larger diameter carbon nanotube bundles in the carbon nanotube film are removed', so that the carbon nanotube film becomes thin. [0035] It can be understood that the above method of recording a scanning carbon nanotube film is limited as long as the nanotube film can be uniformly irradiated. The mis-scanning can be performed row by row in the direction of the column of the nanotubes in the parallel carbon nanotube film, or in the direction perpendicular to the arrangement of the nanotubes in the carbon nanotube film. With 100112849 Form No. A0101 Page 13 of 41 1002021407-0 201239949 The lower the speed of a fixed-power, fixed-wavelength laser-scanned carbon nanotube film, the more heat absorbed by the nanotube bundle in the carbon nanotube film More, the more the carbon nanotube bundles corresponding to the destruction, the smaller the thickness of the carbon nanotube film after the laser treatment. However, if the laser scanning speed is too small, the carbon nanotube film will absorb too much heat and be burned. 5秒。 The laser light irradiation time is less than 1.8 seconds. The laser light irradiation time is less than 1.8 seconds. Preferably, the laser is a carbon dioxide laser having a power of 30 watts, a wavelength of 10.6 micrometers, a spot diameter of 3 mm, and a relative movement speed of the laser device and the carbon nanotube film of less than 10 mm. /second. [0036] The nanocarbon line may be a non-twisted nanocarbon line or a twisted nanocarbon line. The non-twisted nanocarbon pipeline and the twisted nanocarbon pipeline are both self-supporting structures. Specifically, referring to Figure 5, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending in a direction parallel to the length of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by a van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through a van der Waals force. Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〜100微米。 The non-twisted nano carbon line length is not limited, the diameter is 0. 5 nanometers ~ 100 microns. The non-twisted nanocarbon line is obtained by treating the carbon nanotube film described in Fig. 2 above with an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and the mutually parallel complex carbon nanotubes in the carbon nanotube film pass through the surface tension generated by the volatilization of the volatile organic solvent. The wattage is tightly combined to shrink the carbon nanotube film into a non-twisted nano 100112849 Form No. A0101 Page 14 of 41 1002021407-0 201239949 [0037] ❹

[0038] [0039] 碳管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇 、丙酮、二氣乙烷或氣仿。通過有機溶劑處理的非扭轉 的奈米碳管線與未經有機溶劑處理的奈米碳管膜相比, 比表面積減小,黏性降低。 所述扭轉的奈米碳管線為採用一機械力將上述圖2所述奈 米碳管膜沿奈米碳管延伸方向的兩端依照相反方向扭轉 獲得。請參閱圖6,該扭轉的奈米碳管線包括複數繞該扭 轉的奈米碳管線軸向螺旋延伸的奈米碳管。具體地,該 扭轉的奈米碳管線包括複數奈米碳管片段,該複數奈米 碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包 括複數相互平行並通過凡得瓦力緊密結合的奈米碳管。 該奈米碳管片段具有任意的長度、厚度、均勻性及形狀 。該扭轉的奈米碳管線長度不限,直徑為0. 5奈米〜100微 米。進一步地,可採用一揮發性有機溶劑處理該扭轉的 奈米碳管線。在揮發性有機溶劑揮發時產生的表面張力 的作用下,處理後的扭轉的奈米碳管線中相鄰的奈米碳 管通過凡得瓦力緊密結合,使扭轉的奈米碳管線的比表 面積減小,密度及強度增大。 所述奈米碳管線及其製備方法請參見申請人於2002年11 月5日申請的,於2008年11月21日公告的第1303239號 中華民國專利,申請人:鴻海精密工業股份有限公司, 及於2005年12月16日申請的,於2009年7月21日公告的 第1 312337號中華民國專利,申請人:鴻海精密工業股份 有限公司。 可以理解,所述基底100、緩衝層1041和奈米碳管層102 100112849 表單編號A0101 第15頁/共41頁 1002021407-0 201239949 共同構成了用於生長外延層1〇4的襯底。 [0040] [0041] [0042] 步驟S14巾,所料關1()4的生長^法可以分別通過分 子束外延&CMBE)、化學束外延法(GBE)、減壓外延 法、低溫外延法、選擇外延法、液相沈積外延法αρΕ) 、金屬有機氣相外延法(_PE)、超真空化學氣相沈積 法(UHVCVD)、氫化物氣相外延法(HvpE)、及金屬有機 化學氣相沈積法(MOCVD)等中的一種或複數種實現,所 述外延層104的材料可以與緩衝層i〇41的材料相同或者不 同。 所述外延層104的生長的厚度可根據需要製備。具體地, 所述外延層104的生長的厚度可為〇, 5奈米〜丨毫米。例如 ,所述外延層1〇4的生長的厚度可為1〇〇奈米~5〇〇微米, 或200奈米〜200微米’或500奈米〜1〇〇微米。所述外延層 104的材料為半導體材料’如si、GaAs、GaN、GaSb、[0039] A carbon line. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, di-ethane or gas. The non-twisted nanocarbon line treated by the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which is not treated with the organic solvent. The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film shown in Fig. 2 in the direction in which the carbon nanotube is extended in the opposite direction by a mechanical force. Referring to Figure 6, the twisted nanocarbon line includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon line. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals, and each of the carbon nanotube segments includes a plurality of parallel and through van der Waals Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity and shape. 5纳米〜100微米。 The twisted nano carbon line length is not limited, the diameter is 0. 5 nanometers ~ 100 micrometers. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals to make the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength. For the nano carbon pipeline and its preparation method, please refer to the Republic of China patent No. 1303239, filed on November 5, 2008, filed by the applicant on November 5, 2002. Applicant: Hon Hai Precision Industry Co., Ltd. And the application for the Republic of China patent No. 1 312337, which was filed on December 16, 2005, was filed on July 21, 2009. Applicant: Hon Hai Precision Industry Co., Ltd. It can be understood that the substrate 100, the buffer layer 1041, and the carbon nanotube layer 102 100112849 form number A0101 page 15/41 page 1002021407-0 201239949 together constitute a substrate for growing the epitaxial layer 1〇4. [0042] [0042] Step S14, the growth method of the 1 () 4 can be passed through molecular beam epitaxy & CMBE), chemical beam epitaxy (GBE), decompression epitaxy, low temperature epitaxy Method, selective epitaxy, liquid phase deposition epitaxy αρΕ), metal organic vapor phase epitaxy (_PE), ultra-vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy (HvpE), and metal organic chemical gas One or more of the phase deposition methods (MOCVD) and the like may be implemented, and the material of the epitaxial layer 104 may be the same as or different from the material of the buffer layer i〇41. The thickness of the growth of the epitaxial layer 104 can be prepared as needed. Specifically, the thickness of the epitaxial layer 104 may be 〇, 5 nm to 丨 mm. For example, the thickness of the epitaxial layer 1〇4 may be from 1 nanometer to 5 nanometers, or from 200 nanometers to 200 micrometers or from 500 nanometers to 1 micrometer. The material of the epitaxial layer 104 is a semiconductor material such as Si, GaAs, GaN, GaSb,

InN、InP、InAs、InSb、A1P、AlAs、AlSb、AIN、InN, InP, InAs, InSb, A1P, AlAs, AlSb, AIN,

GaP 、 SiC 、 SiGe 、 GaMnAs 、 GaAlAs 、 GalnAs 、 GaAIN ' GalnN ' AlInN ' GaAsP ' InGaN ' AlGalnN ' Al-GalnP、GaP: Zn或GaP:N。可以理解,所述外延層104 的材料也可為金屬或合金等其他材料,只要保證所述材 料可用上述生長方法如MBE、CBE、MOVPE等方法生長即 〇 所述外延層104的製備方法為將設置有奈米碳管層102及 緩衝層1041的基底1〇〇的溫度保持在1〇〇〇°c~1100°C, 持續通入氨氣和載氣,同時通入三甲基鎵或三乙基鎵, 在高溫下生長出高品質之外延層104。具體的,所述外延 100112849 表單編號A0101 第16頁/共41頁 1002021407-0 201239949 層104的製備方法包括以下步驟 [0043] S141 :沿著基本垂直於所述緩衝層1 〇 41 並外延生長形成複數外延晶叔; 表面 戍核 [0044] S142 :所述複數外延晶粒沿著基本平行於 1041表面的方向外延生長形成—連續的夕所迷緩衡層 、、外延薄螟; [0045] S143 :所述外延薄膜沿著基本垂直於所述广 面的方向外延生長形成一外延層1〇4。 緩衝層1〇〇 表 [0046] Ο 在步驟S141,由於奈米碳管層1〇2設置於所'、 1041表面,因此外延晶粒僅從所述緩衝層 、衝層 41暴靈a 份生長,即外延晶粒從奈米碳管層102的開Q 的4 出來。 〇5處生長 [0047]GaP , SiC , SiGe , GaMnAs , GaAlAs , GalnAs , GaAIN ' GalnN ' AlInN ' GaAsP ' InGaN ' AlGalnN ' Al-GalnP, GaP: Zn or GaP: N. It can be understood that the material of the epitaxial layer 104 may also be other materials such as metal or alloy, as long as the material is grown by the above-mentioned growth methods such as MBE, CBE, MOVPE, etc., that is, the preparation method of the epitaxial layer 104 is The temperature of the substrate 1 provided with the carbon nanotube layer 102 and the buffer layer 1041 is maintained at 1 〇〇〇 ° c to 1100 ° C, and the ammonia gas and the carrier gas are continuously supplied while introducing trimethyl gallium or three Ethyl gallium grows a high quality outer layer 104 at elevated temperatures. Specifically, the epitax 100112849 Form No. A0101 Page 16 / Total 41 page 1002021407-0 201239949 The preparation method of the layer 104 includes the following steps [0043] S141: epitaxial growth along substantially perpendicular to the buffer layer 1 〇41 Complex epitaxial crystal; surface nucleus [0044] S142: the plurality of epitaxial grains are epitaxially grown along a direction substantially parallel to the surface of 1041 - a continuous gradual retardation layer, epitaxial thin layer; [0045] The epitaxial film is epitaxially grown along a direction substantially perpendicular to the broad surface to form an epitaxial layer 1〇4. Buffer layer 1 [ [0046] Ο In step S141, since the carbon nanotube layer 1〇2 is disposed on the surface of the '1041, the epitaxial grains are only grown from the buffer layer and the punch layer 41. That is, the epitaxial grains come out from the opening Q of the carbon nanotube layer 102. 〇5 growth [0047]

在步驟S142中,外延晶粒從奈米碳管層1〇2由^ 甲的開D 生長出來之後,基本沿著平行於緩衝層1041表面的 圍繞所述奈米碳管層102中的奈米碳管側向外% ^ 生長,铁 後逐漸連成一體,從而將所述奈米碳管層1〇2半& _ 述‘半包圍為指,由於奈来碳管的存在,所地^卜 所 104的表面形成複數凹槽103,所述奈米碳管層1〇2^ 於該凹槽103内,且所述凹槽103與缓衝層1〇41將所 米碳管層102包裹起來,所述奈米破管層1〇2中的部 米碳管與凹槽103的表面相接觸。所述複數凹槽ι〇3在外 延層104的表面形成一“圖案化”的結構,且所述外吳層 104的圖案化表面與圖案化奈米碳管層中的圖案基本才目同 1〇5 [0048] 100112849 步驟S15中,所述基底100的去除方法可為鐳射照射法 袅單編號A0101 第Π頁/共41頁 1〇〇2〇214〇7、〇 201239949 腐蝕法或溫差自剝離法。所述去除方法可根據基底100及 外延層104材料的不同進行選擇。 [0049] 本實施例中,所述基底100的去除方法為鐳射照射法。具 體的,所述去除方法包括以下步驟: [0050] S151,將所述基底100中未生長外延層1〇4的表面進行拋 光並清洗; [0051] S152,將經過表面清洗的基底100放置於一平臺(圖未示 )上,並利用錯射對所述基底100與外延層104進行掃描 照射; [0052] S153,將經鐳射照射後的基底1〇〇浸入溶液中去除所述基 底100,形成所述具有微構造的基板1〇。 [0053]在步驟S151中,所述拋光方法可為機械拋光法或化學拋 光法’使所述基底100的表面平整光滑,以減少後續鐳射 照射中鐳射的散射。所述清洗可用鹽酸、硫酸等沖洗所 述基底100的表面,從而去除表面的金屬雜質及油污等。 [0054] 在步驟S152中,所述鐳射從基底1〇〇拋光後的表面入射, 且入射方向基本垂直於所述基底1〇〇拋光後的表面,即基 本垂直於所述基底100與外延層1〇4的介面。所述鐳射之 波長不限,可根據緩衝層1041及基底1〇〇的材料選擇。具 體的,所述鐳射的能量小於基底1〇〇的帶隙能量,而大於 緩衝層1041的帶隙能量’從而鐳射能夠穿過基底1〇〇到達 緩衝層1041,在緩衝層1〇41與基底1〇〇的介面處進行鐳 射剝離。所述介面處的緩衝層1〇41對鐳射產生強烈的吸 收,從而使得介面處的緩衝層1〇41溫度快速升高而分解 100112849 表單編號A0101 第18頁/共41頁 1002021407-0 201239949 Ο [0055] Ο [0056] [0057] 。本實施例中所述外延層104為GaN,其帶隙能量為 3· 3ev ;基底100為藍寶石,其帶隙能量為9. 9ev ;所述 雷射器為KrF雷射器’發出的鐳射波長為248nm,其能量 為5ev,脈衝寬度為2〇〜40ns,能量密度為4〇〇〜 6〇〇mJ/cm2 ’光斑形狀為方形,其聚焦尺寸為〇. 5mmx 〇· 5mm ;掃描位置從所述基底1〇〇的邊緣位置開始,掃描 步長為0. 5mm/s。在掃描的過程中’所述GaN緩衝層1041 開始分解為〇3和\。可以理解,所述脈衝寬度、能量密 度、光斑形狀、聚焦尺寸及掃描步長可根據實際需求進 行調整;可根據緩衝層1041對特定波長的鐳射具有較強 的吸收作用選擇相應波長的鐳射》 由於所述GaN緩衝層1041對上述波長的鐳射具有很強的吸 收作用,因此,所述緩衝層1041的溫度快速升高而分解 ;而所述外延層104對上述波長的鐳射吸收較弱或不吸收 ,因此所述外延層104並不會被所述鐳射所破壞。可以理 解,對於不同的緩衝層1041可以選擇不同波長的鐳射’ 使緩衝層1041對鐳射具有很強之吸收作用。 所述鐳射照射的過程在一真空環境或保護性氣體環境進 行以防止在鐳射照射的過程中奈米碳管被氧化而破壞。 所述保護性氣體可為氮氣、氦氣或氬氣等惰性氣體° 在步驟S153中,可將鐳射照射後的基底100及外延層1〇4 浸入一酸性溶液中,以去除GaN分解後的Ga,從而實現基 底100與外延層104的剝離,形成所述具有微構造的基板 iO ^所述溶液可為鹽酸、硫酸、硝酸等可溶解Ga的溶劑 。由於緩衝層1041的存在,一方面,所述緩衝層1〇41設 100112849 表單編號A0101 第19頁/共41頁 1002021407-0 201239949 置在奈米碳管層102與基底100之間,將所述奈米碳管層 102中的奈米碳管與基底100隔離開,因此在剝離基底 100的過程中,所述奈米碳管不會直接吸附於基底100上 而從外延層104中剝離;另一方面,在鐳射照射緩衝層 1041的過程中,所述緩衝層1041受熱分解並經溶液溶解 後,奈米碳管層102會與所述緩衝層1041脫離,從而使得 所述奈米碳管保留於凹槽103中。進一步的,在緩衝層 1041受熱分解的過程中,緩衝層1041分解產生的氣體受 熱膨脹,會將奈米碳管層102推離所述缓衝層1041與基底 100,從而使得奈米碳管層102更容易與緩衝層1041分離 〇 [0058] 由於奈米碳管層102的存在,使外延層104與緩衝層1041 之間的接觸面積減小,從而減小了生長過程中外延層104 與缓衝層1041之間的應力。因此,在鐳射照射去除基底 100的過程中,使得緩衝層1041及基底100的剝離更加的 容易,也減小了對外延層1 0 4的損傷。 [0059] 如圖7及圖8所示,本發明進一步提供一種第一實施例製 備的具有微構造的基板10,所述具有微構造的基板10包 括一外延層104,所述外延層104具有一圖案化的表面, 一奈米碳管層102設置於所述外延層104圖案化的表面。 所述奈米碳管層102嵌入所述外延層104的所述表面。 [0060] 具體的,所述外延層104圖案化的表面具有複數凹槽103 ,所述奈米碳管層102中的奈米碳管設置於所述外延層 104的凹槽103中,從而使奈米碳管層102嵌入於所述外 延層104的表面。所述奈米碳管層102中的奈米碳管通過 100112849 表單編號A0101 第20頁/共41頁 1002021407-0 201239949 所述凹槽103部份暴露於該表面。所述具有微構造的基板 10為指所述外延層104-表面具有複數凹槽103形成的微 結構,所雜結職在_層1()4生長難t,外延層 1〇4從奈米碳管層102中的開口位置生長,之後圍繞奈米 碳管進行側向外延生長所形成,將基底1〇〇剝離後,在所 述外延層104的表面形成複數凹槽丨〇3。故本實施例中所 述微構造為外延層104的凹槽103。 [0061] ΟIn step S142, after the epitaxial grains are grown from the carbon nanotube layer 1〇2 from the opening D of the substrate, substantially along the surface of the carbon nanotube layer 102 surrounding the surface of the buffer layer 1041. The carbon tube side is outwardly grown by % ^, and the iron is gradually integrated into one body, so that the carbon nanotube layer is 1 〇 2 half & _ _ semi-enclosed as the finger, due to the existence of the carbon nanotubes, The surface of the pad 104 forms a plurality of grooves 103, the carbon nanotube layer 1 is disposed in the groove 103, and the groove 103 and the buffer layer 1〇41 wrap the carbon nanotube layer 102 As a result, the carbon nanotubes in the nanotube breaking layer 1〇2 are in contact with the surface of the groove 103. The plurality of grooves ι 3 form a "patterned" structure on the surface of the epitaxial layer 104, and the patterned surface of the outer layer 104 is substantially identical to the pattern in the patterned carbon nanotube layer. 1125 [0048] 100112849 In step S15, the method for removing the substrate 100 may be a laser irradiation method, single number A0101, page 1/3, total 41 pages, 1〇〇2〇214〇7, 〇201239949, corrosion method or temperature difference self-peeling law. The removal method can be selected according to the material of the substrate 100 and the epitaxial layer 104. [0049] In this embodiment, the method for removing the substrate 100 is a laser irradiation method. Specifically, the removing method includes the following steps: [0050] S151, polishing and cleaning the surface of the substrate 100 where the epitaxial layer 1〇4 is not grown; [0051] S152, placing the surface-cleaned substrate 100 on a substrate (not shown), and scanning and irradiating the substrate 100 and the epitaxial layer 104 by using a misalignment; [0052] S153, immersing the substrate 1 after laser irradiation into a solution to remove the substrate 100, The substrate 1 having the microstructure is formed. [0053] In step S151, the polishing method may be a mechanical polishing method or a chemical polishing method to flatten the surface of the substrate 100 to reduce scattering of laser light in subsequent laser irradiation. The cleaning may be performed by rinsing the surface of the substrate 100 with hydrochloric acid, sulfuric acid or the like to remove metal impurities, oil stains and the like on the surface. [0054] In step S152, the laser is incident from the polished surface of the substrate 1 , and the incident direction is substantially perpendicular to the polished surface of the substrate 1 , ie, substantially perpendicular to the substrate 100 and the epitaxial layer. 1〇4 interface. The wavelength of the laser is not limited and may be selected according to the materials of the buffer layer 1041 and the substrate 1〇〇. Specifically, the energy of the laser is less than the band gap energy of the substrate 1 ,, and is greater than the band gap energy of the buffer layer 1041 so that the laser can pass through the substrate 1 〇〇 to reach the buffer layer 1041 at the buffer layer 1 〇 41 and the substrate Laser peeling was performed at the interface of 1 inch. The buffer layer 1〇41 at the interface strongly absorbs the laser, so that the temperature of the buffer layer 1〇41 at the interface is rapidly increased and decomposed 100112849. Form No. A0101 Page 18/41 Page 1002021407-0 201239949 Ο [ 0055] [0057] [0057]. In this embodiment, the epitaxial layer 104 is GaN, and the band gap energy is 3·3 ev; the substrate 100 is sapphire, and the band gap energy is 9. 9 ev; the laser is a laser wavelength emitted by the KrF laser device. It is 248nm, its energy is 5ev, the pulse width is 2〇~40ns, and the energy density is 4〇〇~6〇〇mJ/cm2. The spot shape is square, its focusing size is 〇. 5mmx 〇· 5mm; scanning position is from 5毫米/斯。 The starting step of the substrate 1 开始, scanning step length of 0. 5mm / s. The GaN buffer layer 1041 begins to decompose into 〇3 and \ during scanning. It can be understood that the pulse width, the energy density, the spot shape, the focus size and the scanning step length can be adjusted according to actual needs; the laser of the corresponding wavelength can be selected according to the buffer layer 1041 to have a strong absorption of the laser of a specific wavelength. The GaN buffer layer 1041 has a strong absorption effect on the laser of the above wavelength, and therefore, the temperature of the buffer layer 1041 rapidly rises and decomposes; and the epitaxial layer 104 has weak or no absorption of the laser light of the above wavelength. Therefore, the epitaxial layer 104 is not destroyed by the laser. It can be understood that lasers of different wavelengths can be selected for different buffer layers 1041 to make the buffer layer 1041 have a strong absorption effect on the laser. The laser irradiation process is carried out in a vacuum environment or a protective gas atmosphere to prevent the carbon nanotubes from being destroyed by oxidation during the laser irradiation. The protective gas may be an inert gas such as nitrogen, helium or argon. In step S153, the substrate 100 and the epitaxial layer 1〇4 after laser irradiation may be immersed in an acidic solution to remove Ga after decomposition of GaN. Thereby, the substrate 100 and the epitaxial layer 104 are peeled off to form the micro-structured substrate iO. The solution may be a solvent capable of dissolving Ga such as hydrochloric acid, sulfuric acid or nitric acid. Due to the presence of the buffer layer 1041, on the one hand, the buffer layer 1 〇 41 is set to 100112849. Form No. A0101, page 19 / 41 pages 1002021407-0 201239949 is disposed between the carbon nanotube layer 102 and the substrate 100, The carbon nanotubes in the carbon nanotube layer 102 are isolated from the substrate 100. Therefore, during the process of peeling off the substrate 100, the carbon nanotubes are not directly adsorbed on the substrate 100 and are peeled off from the epitaxial layer 104; In one aspect, during the laser irradiation of the buffer layer 1041, after the buffer layer 1041 is thermally decomposed and dissolved by the solution, the carbon nanotube layer 102 is detached from the buffer layer 1041, so that the carbon nanotubes are retained. In the groove 103. Further, during the thermal decomposition of the buffer layer 1041, the gas generated by the decomposition of the buffer layer 1041 is thermally expanded, and the carbon nanotube layer 102 is pushed away from the buffer layer 1041 and the substrate 100, thereby making the carbon nanotube layer 102 is more easily separated from the buffer layer 1041. [0058] Due to the presence of the carbon nanotube layer 102, the contact area between the epitaxial layer 104 and the buffer layer 1041 is reduced, thereby reducing the epitaxial layer 104 during the growth process. The stress between the layers 1041. Therefore, in the process of removing the substrate 100 by laser irradiation, the peeling of the buffer layer 1041 and the substrate 100 is made easier, and the damage to the epitaxial layer 104 is also reduced. As shown in FIG. 7 and FIG. 8 , the present invention further provides a micro-structured substrate 10 prepared by the first embodiment. The micro-structured substrate 10 includes an epitaxial layer 104, and the epitaxial layer 104 has A patterned surface, a carbon nanotube layer 102 is disposed on the patterned surface of the epitaxial layer 104. The carbon nanotube layer 102 is embedded in the surface of the epitaxial layer 104. [0060] Specifically, the surface patterned by the epitaxial layer 104 has a plurality of grooves 103, and the carbon nanotubes in the carbon nanotube layer 102 are disposed in the grooves 103 of the epitaxial layer 104, thereby A carbon nanotube layer 102 is embedded in the surface of the epitaxial layer 104. The carbon nanotubes in the carbon nanotube layer 102 are partially exposed to the surface by the surface of the groove 103 by 100112849 Form No. A0101 Page 20 of 41 1002021407-0 201239949. The micro-structured substrate 10 refers to the microstructure of the epitaxial layer 104 having a plurality of grooves 103 formed on the surface, and the mixed structure is difficult to grow in the layer 1 () 4, and the epitaxial layer 1 〇 4 is from the nano layer. The opening in the carbon tube layer 102 is grown, and then formed by lateral epitaxial growth around the carbon nanotube. After the substrate 1 is peeled off, a plurality of grooves 3 are formed on the surface of the epitaxial layer 104. Therefore, the microstructures described in this embodiment are the grooves 103 of the epitaxial layer 104. [0061] Ο

G 所述奈米碳管層102為一自支撐結構。該奈米碳管層包括 奈米碳管膜或奈米碳管線。本實施例中,所述奈米碳管 層102為一單層奈米碳管膜,該奈米碳管膜包括複數奈米 碳管,該複數奈米碳管的軸向沿同一方向擇優取向延伸 ,延伸方向相同的相鄰的奈米碳管通過凡得瓦力首尾相 連。在垂直於延伸方向的相鄰的奈米碳管之間部份間隔 設置存在微孔或間隙,從而構成開口 105。該奈米碳管層 1〇2具有複數開口丨〇5,所述外延層1〇4滲透延伸入所述 奈米碳管層102的複數開口 105 ’即所述奈米碳管層102 的複數開口 105中均滲透延伸出所述外延層104。所述開 口 105的尺寸為1〇奈米~3〇0微米、或10奈米〜12〇微米、 或10奈米〜80微米、或1〇奈米〜10微米。開口 105的尺寸 越小,有利於在生長外延層104的過程中減少錯位缺陷的 產生,以獲得高品質的外延層104。優選地,所述開口 105的尺寸為10奈米~10微米°所述外延層104表面具有 複數凹槽103,每個凹槽1 03内設置有一個奈米碳管或由 複數奈米碳管組成的一奈求板管束’設置在複數凹槽103 内的奈米碳管相互通過凡得瓦力連接構成所述奈米碳管 100112849 表單編號Λ0101 第21貢/共41頁 1002021407-0 201239949 層102。所述奈米碳管層102中的奈米碳管與所述凹槽 103内表面存在部份接觸,由於奈米碳管具有較強的吸附 作用,在凡得瓦力的作用下吸附於凹槽103中。 [0062] 進一步的,所述奈米碳管層102也可為複數平行且間隔設 置的奈米碳管線。所述外延層104的表面具有複數平行且 間隔設置的凹槽103,奈米碳管線——對應設置在所述外 延層104表面的凹槽103中。相鄰兩個奈米碳管線之間的 距離為0.1微米〜200微米,優選地,為10微米〜100微米 。所述相鄰兩個奈米碳管線之間的空間構成所述奈米碳 管層102的開口 105。開口 105的尺寸越小,有利於在生 長外延層104的過程中減少錯位缺陷的產生,以獲得高品 質的外延層104。 [0063] 進一步的,奈米碳管層102也可為複數交叉且間隔設置的 奈米碳管線,具體地,該複數奈米碳管線分別沿第一方 向與第二方向平行設置,所述第一方向與第二方向交叉 設置。所述外延層104的表面具有複數交叉設置的凹槽 103,所述奈米碳管線——對應設置於所述凹槽103中形 成網格結構。優選的,相交叉的兩個奈米碳管線相互垂 直。可以理解,所述奈米碳管線也可採用任意交叉方式 設置形成網格結構,只需使奈米碳管層102形成複數開口 105,從而所述外延層104能夠滲透並延伸出所述開口 105,對應所述網格結構形成複數凹槽103,從而形成一 圖案化的表面。 [0064] 本實施例提供的具有微構造的基板,由於所述奈米碳管 層直接暴露於外延層的表面,因此可以直接具有微構造 100112849 表單編號A0101 第22頁/共41頁 1002021407-0 201239949 的基板的大面積電極,從而可以改善異有微構造的基板 中的電場分佈及電流走向,“提高具有微構造的基板 的工作效率。 [0065]本發明第三實施例提供—種具有微構造的基板1㈣製備 方法,具體包括以下步驟: 剛S21,提供-基底1〇〇,且該基底1〇〇具有一支持外延層 104生長的外延生長面10}: [0067] S22,在基底1GG的外延生長面1Q1生長-緩衝層1〇41 ; 〇 [0068] S23,在所述緩衝層1041的遠離基底1〇〇的表面平鋪一奈 米碳管層102 ; [0069] S24,在設置有奈米碳管層1〇2的緩衝層1〇41表面生長外 延層104 ; [0070] S25,將基底浸入腐蝕溶液中,剝離所述基底1〇〇,得到 所述具有微構造的基板10。 Q [0071]本發明第二實施例的具有微構造的基板10的製備方法與 第一實施例的製備方法基本相同,其區別在於,本實施 例中所述基底100的材料為Sic,外延生長面101上生長 的緩衝層1041為A1N或TiN,外延層104為GaN,並且所 述去除方法為腐姓法。 [0072]具體的,在步驟S24中,將所述生長有外延層1〇4的基底 100浸入到相應的腐蝕溶液中,使得所述緩衝層1041在溶 液中溶解,從而實現基底100的分離。所述溶液可根據緩 衝層1041及外延層1〇4的材料進行選擇,即所述溶液可溶 100112849 表單編號A0101 第23頁/共41頁 1002021407-0 201239949 解緩衝層1041而不能溶解外延層i〇4。所述溶液可為 NaOH溶液、KOH溶液、NH4〇H溶液等,本實施例_,所述 溶液為K0H溶液。所述K0H溶液的品質濃度可為3〇%〜5〇% ,浸入時間為2分鐘〜1〇分鐘,使得K0H溶液浸入到外延 層104的凹槽103中,逐漸腐蝕掉A1N緩衝層,使得Sic基 底脫落。由於奈米碳管層1〇2中的奈米碳管與凹槽1〇3部 份接觸,奈米碳管具有較強的吸附作用,因此在緩衝層 1041腐蝕的過程中,所述a1N逐漸在K〇H溶液中溶解而從 奈米碳管表面脫離,從而使所述奈米碳管吸附於凹槽1〇3 中,得到所述具有微構造的基板1〇。可以理解,所述緩 衝層1041及溶液的材料不限於以上所舉,只要保證溶液 能夠溶解緩衝層1041而不能溶解外延層1〇4即可。如當所 述緩衝層為TiN時,所述溶液可為硝酸。 [0073] 進一步的,所述腐蝕法中,也可以直接將基底1〇〇溶解去 除,從而在溶解的過程中,所述緩衝層1〇41及基底1〇〇能 夠同時被溶解,使得奈米碳管層1〇2暴露於外延層1〇4的 表面。可以理解,如果直接將基底100溶解去除,也可以 省去生長緩衝屠的步驟。 [0074] 所述腐蝕法中,由於奈米碳管層1〇2的存在,奈米碳管層 102與緩衝層1 〇41之間存在複數凹槽或間隙,從而能夠使 相應的溶液均勻的分散到緩衝層1〇41中將缓衝層1〇41溶 解而實現快速的剝離,能夠更好保持所述具有微構造的 基板的剝離表面的平整和光滑。 [0075] 本發明第三實施例提供一種具有微構造的基板1〇的製備 方法,具體包括一下步驟: 100112849 表單編號A0101 第24頁/共41頁 1002021407-0 201239949 [0076] [0077] [0078] [0079] [0080] θ [0081] ❹ 100112849 S31,提供一基底100,且該基底100具有一支持外延層 104生長的外延生長面101 ; S32,在基底100的外延生長面101生長一緩衝層1041 ; S33,在所述緩衝層1041的遠離基底100的表面平鋪一奈 米碳管層102 ; S34,在設置有奈米碳管層102的緩衝層1041表面生長外 延層1 04 ; S35,對所述生長有外延層104的基底100降溫,剝離所 述基底100,得到所述具有微構造的基板10。 本發明第三實施例的具有微構造的基板10的製備方法與 第一實施例的半導體層的製備方法基本相同,其區別在 於,在步驟S35中,所述剝離方法為溫差分離法。所述溫 差分離法為在南溫生長GaN完成之後’將所述南溫的基底 100的溫度在2min〜20min的時間内,快速的降低到200 °C以下,利用外延層104與基底100之間的由於熱膨脹係 數的不同而產生的應力將二者分離。可以理解,該方法 中也可以通過給奈米碳管層102通入電流的方式加熱外延 層104與基底100,再降溫從而實現剝離。在剝離基底 100的過程中,所述奈米碳管層102中的奈米碳管吸附於 凹槽103中而不會脫落。這為因為一方面所述奈米碳管層 102為一整體結構,其與凹槽103之間存在接觸;另一方 面,所述奈米碳管層102中的奈米碳管嵌入外延層104中 ,凹槽103將奈米碳管半包圍起來;第三,所述基底100 可沿著平行於外延層104圖案化表面的方向剝離,使得奈 表單編號A0101 第25頁/共41頁 1002021407-0 201239949 米碳管保留於凹槽103中。進一步的,在所述外延層104 從基底100上分離之後,可包括一在外延層104的表面繼 續側向生長外延層的步驟。所述進一步生長外延層的步 驟可以減少在基底100分離的過程中,外延層104上產生 裂紋。 [0082] 如圖9所示,本發明第四實施例提供一種具有微構造的基 板20的製備方法,主要包括以下步驟: [0083] S41,提供一基底100,且該基底100具有一支持外延層 104生長的外延生長面101 ; [0084] S42,在基底100的外延生長面101生長一缓衝層1041 ; [0085] S43,在所述緩衝層1041的遠離基底100的表面平鋪一奈 米碳管層202 ; [0086] S44,在設置有奈米碳管層102的緩衝層1041表面生長外 延層1 04 ; [0087] S45,在所述外延層104遠離基底100的表面進一步設置 一奈米碳管層202 ; [0088] S46,在所述外延層104遠離基底100的表面進一步生長 一外延層2 0 4 ; [0089] S47,剝離所述基底100,得到所述具有微構造的基板20 〇 [0090] 本發明第四實施例提供的具有微構造的基板1 0的製備方 法與第一實施例基本相同,其不同在於,在所述外延層 104遠離緩衝層1041的表面進一步鋪設一奈米碳管層202 100112849 表單編號A0101 第26頁/共41頁 1002021407-0 201239949 的步驟S45,及進一步生長一外延層2〇4的步驟S46。所 述奈米碳管層2〇2與外延層1〇4接觸設置,並且所述外延 層2 04圍繞所述奈米碳管層2〇2中的奈米碳管生長,將奈 米石厌管層202夾持於外延層1〇4及外延層204之間,並使 奈米碳管嵌入所述外延層204中。由於奈米碳管的存在, 所述外延層2〇4靠近外延層104的表面形成複數凹槽1〇3 ’所述奈米碳管層202設置於該凹槽1〇3内。所述複數凹 槽103在外延層2〇4的表面形成一“圖案化”的結構,且 所述外延層204的圖案化表面與圖案化奈米碳管層2〇2中 的圖案基本相同。所述奈米碳管層202與外延層204分別 與所述奈米碳管層1〇2及外延層104的結構基本相同,所 述外延層204的材料可以與外延層1〇4相同或不同。可以 理解,還可以在所述外延層2〇4的表面繼續設置奈米碳管 層,並進一步生長外延層,從而形成具有複數外延層及 複數奈米碳管層的複合結構。所述複數外延層的材料可 以相同也可以不同,且複數奈米碳管層可以作為不同的 電極,使所述具有微構造的基板可以方便的應用於不同 的電子器件。 [0091]本發明提供的具有微結構的基板的製備方法,具有以下 有益效果.首先’所述奈米碳管層為一自支撐結構,因 此可直接通過鋪設的方法設置在所述緩衝層的表面,無 需複雜的步驟即可在所述緩衝層的表面形成均勻的奈来 碳管層,方法簡單可控,有利於實現大規模量產;其次 ,所述奈米碳管層為圖形化結構,其厚度、開口尺寸均 可達到奈米級,用來生長外延層時形成的外延晶粒具有 1002021407-0 100112849 表單編號A0101 第27頁/共41頁 201239949 更小的尺寸,有利於減少錯位缺陷的產生,以獲得高品 質的外延層;再次,由於奈米碳管層的存在,使得生長 的外延層與緩衝層之間的接觸面積減小,減小了生長過 程中外延層與缓衝層之間的應力,從而可以進一步生長 厚度較大的外延層,並可進一步提高外延層的品質;同 時,由於奈米碳管層具有複數開口,減小了外延層與緩 衝層之間的接觸面積,因此,在剝離基底的過程中,使 得基底的剝離更加的容易,也減小了對外延層的損傷。 [0092] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限製本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0093] 圖1為本發明第一實施例提供的具有微構造的基板之製備 方法的工藝流程圖。 [0094] 圖2為本發明第一實施例中採用的奈米碳管膜之掃描電鏡 照片。 [0095] 圖3為圖2中的奈米碳管膜中的奈米碳管片段之結構示意 圖。 [0096] 圖4為本發明採用的複數交叉設置的奈米碳管膜之掃描電 鏡照片。 [0097] 圖5為本發明採用的非扭轉的奈米碳管線之掃描電鏡照片 100112849 表單編號A0101 第28頁/共41頁 1002021407-0 201239949 [0098] 圖6為本發明採用的扭轉的奈米碳管線之掃描電鏡照片。 [0099] 圖7為本發明第一實施例提供的具有微構造的基板之示意 圖。 [0100] 圖8為圖7所示的具有微構造的基板沿線Μ - Μ之剖面示意 圖。 [0101] 圖9為本發明第四實施例提供的具有微構造的基板之製備 方法的工藝流程圖。 〇 [0102] 【主要元件符號說明】 具有微構造的基板:10,20 [0103] 基底:100 S [0104] 外延生長面:101 [0105] 奈米碳管層:102,202 [0106] 凹槽:103 [0107] 外延層:104,204 W [0108] 開口 : 105 [0109] 緩衝層:1041 [0110] 奈米碳管片段:143 [0111] 奈米碳管:145 100112849 表單編號A0101 第29頁/共41頁 1002021407-0G The carbon nanotube layer 102 is a self-supporting structure. The carbon nanotube layer comprises a carbon nanotube membrane or a nanocarbon pipeline. In this embodiment, the carbon nanotube layer 102 is a single-layer carbon nanotube film, and the carbon nanotube film includes a plurality of carbon nanotubes, and the axial direction of the plurality of carbon nanotubes is preferentially oriented in the same direction. The adjacent carbon nanotubes extending in the same direction are connected end to end by van der Waals force. A micro-hole or gap is provided at a portion of the interval between adjacent carbon nanotubes perpendicular to the extending direction to constitute the opening 105. The carbon nanotube layer 1〇2 has a plurality of openings 丨〇5, and the epitaxial layer 1〇4 penetrates into the plurality of openings 105′ of the carbon nanotube layer 102, that is, the plurality of carbon nanotube layers 102 The epitaxial layer 104 is infiltrated throughout the opening 105. The opening 105 has a size of 1 〇 nanometer to 3 〇 0 μm, or 10 nm to 12 〇 micrometers, or 10 nanometers to 80 micrometers, or 1 nanometer to 10 micrometers. The smaller the size of the opening 105, the less the generation of misalignment defects during the growth of the epitaxial layer 104, to obtain a high quality epitaxial layer 104. Preferably, the opening 105 has a size of 10 nm to 10 μm. The surface of the epitaxial layer 104 has a plurality of grooves 103, and each of the grooves 103 is provided with a carbon nanotube or a plurality of carbon nanotubes. The composition of the tube bundles 'the carbon nanotubes disposed in the plurality of grooves 103 are mutually connected by van der Waals to form the carbon nanotubes 100112849 Form No. 1010101 21 tribute / Total 41 pages 1002021407-0 201239949 Layer 102. The carbon nanotubes in the carbon nanotube layer 102 are in partial contact with the inner surface of the groove 103. Because of the strong adsorption of the carbon nanotubes, the carbon nanotubes are adsorbed to the concave surface by the van der Waals force. In the slot 103. [0062] Further, the carbon nanotube layer 102 may also be a plurality of parallel and spaced carbon nanotubes. The surface of the epitaxial layer 104 has a plurality of parallel and spaced grooves 103, which are correspondingly disposed in the grooves 103 of the surface of the epitaxial layer 104. The distance between adjacent two nanocarbon lines is from 0.1 micron to 200 micron, preferably from 10 micron to 100 micron. The space between the adjacent two nanocarbon lines constitutes the opening 105 of the carbon nanotube layer 102. The smaller the size of the opening 105, the less the generation of misalignment defects during the growth of the epitaxial layer 104, to obtain a high quality epitaxial layer 104. [0063] Further, the carbon nanotube layer 102 may also be a plurality of carbon nanotubes that are interdigitated and spaced apart. Specifically, the plurality of carbon nanotubes are respectively disposed in parallel with the second direction along the first direction. One direction is intersected with the second direction. The surface of the epitaxial layer 104 has a plurality of intersecting grooves 103, and the nanocarbon pipelines are disposed correspondingly in the grooves 103 to form a lattice structure. Preferably, the two nanocarbon lines intersecting each other are perpendicular to each other. It can be understood that the nano carbon pipeline can also be arranged in any intersecting manner to form a grid structure, and only the carbon nanotube layer 102 is formed into a plurality of openings 105, so that the epitaxial layer 104 can penetrate and extend out of the opening 105. A plurality of grooves 103 are formed corresponding to the mesh structure to form a patterned surface. [0064] The micro-structured substrate provided by this embodiment can directly have a micro-structure 100112849 because the carbon nanotube layer is directly exposed to the surface of the epitaxial layer. Form No. A0101 Page 22 / Total 41 Page 1002021407-0 The large-area electrode of the substrate of 201239949 can improve the electric field distribution and current direction in the substrate with different microstructures, and improve the working efficiency of the substrate with micro-structure. [0065] The third embodiment of the present invention provides The method for preparing the substrate 1(4) comprises the following steps: just S21, providing a substrate 1〇〇, and the substrate 1〇〇 has an epitaxial growth surface 10 supporting the growth of the epitaxial layer 104}: [0067] S22, at the substrate 1GG Epitaxial growth surface 1Q1 growth-buffer layer 1〇41; 〇[0068] S23, a carbon nanotube layer 102 is laid on the surface of the buffer layer 1041 away from the substrate 1〇〇; [0069] S24, in the setting The epitaxial layer 104 is grown on the surface of the buffer layer 1〇41 having the carbon nanotube layer 1〇2; [0070] S25, the substrate is immersed in an etching solution, and the substrate is peeled off to obtain the substrate 10 having the microstructure. Q [0071] This hair The manufacturing method of the micro-structured substrate 10 of the second embodiment is substantially the same as that of the first embodiment, except that the material of the substrate 100 in the embodiment is Sic, which is grown on the epitaxial growth surface 101. The buffer layer 1041 is A1N or TiN, the epitaxial layer 104 is GaN, and the removal method is a rot method. [0072] Specifically, in step S24, the substrate 100 on which the epitaxial layer 1〇4 is grown is immersed into In the corresponding etching solution, the buffer layer 1041 is dissolved in the solution, thereby achieving separation of the substrate 100. The solution may be selected according to the material of the buffer layer 1041 and the epitaxial layer 1〇4, that is, the solution is soluble 100112849 Form No. A0101 Page 23 / Total 41 Page 1002021407-0 201239949 The buffer layer 1041 is not dissolved and the epitaxial layer i〇4 is not dissolved. The solution may be a NaOH solution, a KOH solution, a NH4〇H solution or the like, this embodiment _, The solution is a K0H solution. The quality concentration of the K0H solution may be 3〇%~5〇%, and the immersion time is 2 minutes~1〇 minutes, so that the K0H solution is immersed in the groove 103 of the epitaxial layer 104, and gradually erodes away. A1N buffer layer makes The Sic substrate is detached. Since the carbon nanotubes in the carbon nanotube layer 1〇2 are in contact with the groove 1〇3, the carbon nanotubes have a strong adsorption effect, so during the corrosion of the buffer layer 1041, The a1N is gradually dissolved in the K〇H solution to be detached from the surface of the carbon nanotube, so that the carbon nanotube is adsorbed in the groove 1〇3, and the substrate 1 having the microstructure is obtained. It is to be understood that the material of the buffer layer 1041 and the solution is not limited to the above, as long as the solution is capable of dissolving the buffer layer 1041 and not dissolving the epitaxial layer 1〇4. When the buffer layer is TiN, the solution may be nitric acid. [0073] Further, in the etching method, the substrate 1〇〇 may be directly dissolved and removed, so that the buffer layer 1〇41 and the substrate 1〇〇 can be simultaneously dissolved during the dissolution process, so that the nanometer is made. The carbon tube layer 1〇2 is exposed to the surface of the epitaxial layer 1〇4. It will be appreciated that if the substrate 100 is directly dissolved and removed, the step of growth buffering can also be omitted. [0074] In the etching method, due to the presence of the carbon nanotube layer 1〇2, there are a plurality of grooves or gaps between the carbon nanotube layer 102 and the buffer layer 1〇41, so that the corresponding solution can be made uniform. Dispersing into the buffer layer 1〇41 dissolves the buffer layer 1〇41 to achieve rapid peeling, and it is possible to better maintain the smoothness and smoothness of the peeling surface of the micro-structured substrate. [0075] A third embodiment of the present invention provides a method for fabricating a substrate 1 having a microstructure, and specifically includes the following steps: 100112849 Form No. A0101 Page 24 / Total 41 Page 1002021407-0 201239949 [0076] [0078] [0080] θ [0081] ❹ 100112849 S31, a substrate 100 is provided, and the substrate 100 has an epitaxial growth surface 101 supporting the growth of the epitaxial layer 104; S32, a buffer is grown on the epitaxial growth surface 101 of the substrate 100. a layer 1041; S33, a carbon nanotube layer 102 is laid on the surface of the buffer layer 1041 away from the substrate 100; S34, an epitaxial layer is grown on the surface of the buffer layer 1041 provided with the carbon nanotube layer 102; S35 The substrate 100 on which the epitaxial layer 104 is grown is cooled, and the substrate 100 is peeled off to obtain the substrate 10 having the microstructure. The method of fabricating the microstructured substrate 10 of the third embodiment of the present invention is substantially the same as the method of fabricating the semiconductor layer of the first embodiment, and the difference is that, in step S35, the stripping method is a temperature difference separation method. The temperature difference separation method is to rapidly reduce the temperature of the south temperature substrate 100 to below 200 ° C in the time of 2 min to 20 min after the completion of the growth of the GaN at the south temperature, using the epitaxial layer 104 and the substrate 100. The stress due to the difference in thermal expansion coefficient separates the two. It can be understood that in the method, the epitaxial layer 104 and the substrate 100 can be heated by applying an electric current to the carbon nanotube layer 102, and then cooled to achieve peeling. In the process of peeling off the substrate 100, the carbon nanotubes in the carbon nanotube layer 102 are adsorbed in the grooves 103 without falling off. This is because on the one hand, the carbon nanotube layer 102 is a unitary structure, and there is contact with the groove 103; on the other hand, the carbon nanotubes in the carbon nanotube layer 102 are embedded in the epitaxial layer 104. In the middle, the groove 103 partially encloses the carbon nanotube; thirdly, the substrate 100 can be peeled off in a direction parallel to the patterned surface of the epitaxial layer 104, so that the form number A0101 page 25/41 page 1002021407- 0 201239949 The carbon nanotube remains in the groove 103. Further, after the epitaxial layer 104 is separated from the substrate 100, a step of continuously growing the epitaxial layer laterally on the surface of the epitaxial layer 104 may be included. The step of further growing the epitaxial layer can reduce cracking on the epitaxial layer 104 during the separation of the substrate 100. [0082] As shown in FIG. 9, a fourth embodiment of the present invention provides a method for fabricating a substrate 20 having a microstructure, which mainly includes the following steps: [0083] S41, a substrate 100 is provided, and the substrate 100 has a supporting epitaxial structure. The epitaxial growth surface 101 of the layer 104 is grown; [0084] S42, a buffer layer 1041 is grown on the epitaxial growth surface 101 of the substrate 100; [0085] S43, the surface of the buffer layer 1041 away from the substrate 100 is laid flat. a carbon nanotube layer 202; [0086] S44, an epitaxial layer 104 is grown on the surface of the buffer layer 1041 provided with the carbon nanotube layer 102; [0087] S45, a further layer is disposed on the surface of the epitaxial layer 104 away from the substrate 100. a carbon nanotube layer 202; [0088] S46, further growing an epitaxial layer 2 0 4 on the surface of the epitaxial layer 104 away from the substrate 100; [0089] S47, peeling the substrate 100 to obtain the micro-structured The substrate 20 is prepared in the same manner as the first embodiment, and the difference is that the epitaxial layer 104 is further laid away from the surface of the buffer layer 1041. One carbon nanotube layer 202 100112849 form Step S45 of No. A0101, page 26 of 41, 1002021407-0 201239949, and step S46 of further growing an epitaxial layer 2〇4. The carbon nanotube layer 2〇2 is disposed in contact with the epitaxial layer 1〇4, and the epitaxial layer 204 is grown around the carbon nanotubes in the carbon nanotube layer 2〇2, and the nano-stone is discolored. The tube layer 202 is sandwiched between the epitaxial layer 1〇4 and the epitaxial layer 204, and the carbon nanotubes are embedded in the epitaxial layer 204. Due to the presence of the carbon nanotubes, the epitaxial layer 2〇4 forms a plurality of recesses 1〇3' near the surface of the epitaxial layer 104. The carbon nanotube layer 202 is disposed in the recesses 1〇3. The plurality of recesses 103 form a "patterned" structure on the surface of the epitaxial layer 2?4, and the patterned surface of the epitaxial layer 204 is substantially the same as the pattern in the patterned carbon nanotube layer 2?. The carbon nanotube layer 202 and the epitaxial layer 204 are substantially the same as the structure of the carbon nanotube layer 1〇2 and the epitaxial layer 104, respectively, and the material of the epitaxial layer 204 may be the same as or different from the epitaxial layer 1〇4. . It can be understood that the carbon nanotube layer can be further disposed on the surface of the epitaxial layer 2〇4, and the epitaxial layer can be further grown to form a composite structure having a plurality of epitaxial layers and a plurality of carbon nanotube layers. The materials of the plurality of epitaxial layers may be the same or different, and the plurality of carbon nanotube layers may serve as different electrodes, so that the micro-structured substrate can be conveniently applied to different electronic devices. [0091] The method for preparing a microstructured substrate provided by the present invention has the following beneficial effects. First, the carbon nanotube layer is a self-supporting structure, and thus can be directly disposed on the buffer layer by a laying method. The surface can form a uniform carbon nanotube layer on the surface of the buffer layer without complicated steps, and the method is simple and controllable, which is advantageous for mass production; secondly, the carbon nanotube layer is a patterned structure. The thickness and opening size can reach the nanometer level, and the epitaxial grains formed when the epitaxial layer is grown have 1002021407-0 100112849. Form No. A0101 Page 27 / Total 41 Page 201239949 Smaller size, which is beneficial to reduce misalignment defects Produced to obtain a high-quality epitaxial layer; again, due to the presence of the carbon nanotube layer, the contact area between the grown epitaxial layer and the buffer layer is reduced, and the epitaxial layer and the buffer layer during growth are reduced. The stress between them can further grow the thicker epitaxial layer and further improve the quality of the epitaxial layer; at the same time, since the carbon nanotube layer has a plurality of openings, The contact area between the epitaxial layer and the buffer layer is small, and therefore, in the process of peeling off the substrate, peeling of the substrate is made easier, and damage to the epitaxial layer is also reduced. [0092] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0093] FIG. 1 is a process flow diagram of a method of fabricating a substrate having a microstructure in accordance with a first embodiment of the present invention. 2 is a scanning electron microscope photograph of a carbon nanotube film used in the first embodiment of the present invention. 3 is a schematic structural view of a carbon nanotube segment in the carbon nanotube film of FIG. 2. 4 is a scanning electron micrograph of a carbon nanotube film of a plurality of cross-settings used in the present invention. 5 is a scanning electron micrograph of a non-twisted nanocarbon pipeline used in the present invention 100112849 Form No. A0101 Page 28/41 Page 1002021407-0 201239949 [0098] FIG. 6 is a twisted nanometer used in the present invention. Scanning electron micrograph of the carbon pipeline. 7 is a schematic view of a substrate having a microstructure in accordance with a first embodiment of the present invention. 8 is a schematic cross-sectional view of the substrate having the microstructure shown in FIG. 7 taken along line Μ-Μ. 9 is a process flow diagram of a method for fabricating a substrate having a microstructure according to a fourth embodiment of the present invention. 〇[0102] [Description of main component symbols] Substrate with microstructure: 10,20 [0103] Substrate: 100 S [0104] Epitaxial growth surface: 101 [0105] Carbon nanotube layer: 102, 202 [0106] Concave Slot: 103 [0107] Epitaxial layer: 104, 204 W [0108] Opening: 105 [0109] Buffer layer: 1041 [0110] Carbon nanotube segment: 143 [0111] Carbon nanotube: 145 100112849 Form number A0101 29 pages / total 41 pages 1002021407-0

Claims (1)

201239949 七、申請專利範圍: 1 · 一種具有微構造的基板的製備方法’其包括以下步驟·-提供一藍寶石基底’所述藍寶石基底具有一外延生長面; 在所述基底的外延生長面生長一低溫GaN緩衝層; 在所述缓衝層表面設置一奈米碳管層; 在所述緩衝層表面生長一GaN外延層;及 去除所述基底。 2.如申請專利範圍第1項所述之具有微構造的基板的製備方 法,其中,所述基底的去除方法為在·—真空環境或保護性 氣體環境利用鐳射對所述基底進行掃描照射使緩衝層分解 〇 3 .如申請專利範圍第2項所述之具有微構造的基板的製備方 法,其中,所述鐳射波長為248nm,脈衝寬度為20〜 40ns ’能量密度為400〜600mJ/cm2,光斑形狀為方形, 其聚焦尺寸為0. 5mmx0. 5mm,掃描步長為〇· 5mm/s。 4 . 一種具有微構造的基板的製備方法,其包括以下步驟: 提供一基底,所述基底具有一外延生長面; 在所述基底的外延生長面生長一緩衝層; 在緩衝層的表面設置一奈米碳管層; 在設置有奈米碳管層的緩衝層表面生長一外延層;及 去除所述基底。 5 .如申請專利範圍第4項所述之具有微構造的基板的製備方 法,其中,所述奈米碳官層為~連續的自支撐結構。 6 ·如申請專利範圍第4項所述之具有微構造的基板的製備方 法,其中,所述奈米碳管層與緩衝層接觸設置。 100112849 表單編號Α0101 第30頁/共41頁 1002021407-0 201239949 8 . 9 . Ο 10 . 11 . ❹ 12 . 13 . 如申請專利範圍第5項所述之具有微構造的基板的製備方 法,其中,所述奈米碳管層具有複數開口,所述外延層從 所述開口處外延生長。 如申請專利範圍第7項所述之具有微構造的基板的製備方 法,其中,所述緩衝層從奈米碳管層的開口中暴露出來, 外延層從所述緩衝層暴露的部份生長。 如申請專利範圍第4項所述之具有微構造的基板的製備方 法,其中,所述外延層在所述奈米碳管層周圍形成複數凹 槽,所述凹槽將所述奈米碳管層中的奈米碳管半包圍。 如申請專利範圍第4項所述之具有微構造的基板的製備方 法,其中,所述外延層的生長方法包括分子束外延法、化 學束外延法、減壓外延法、低溫外延法、選擇外延法、液 相沈積外延法、金屬有機氣相外延法、超真空化學氣相沈 積法、氫化物氣相外延法、及金屬有機化學氣相沈積法中 的一種或複數種。 如申請專利範圍第4項所述之具有微構造的基板的製備方 法,其中,所述基底的去除方法包括鐳射照射法、腐蝕法 及溫差分離法。 如申請專利範圍第4項所述之具有微構造的基板的製備方 法,其中,在去除基底之前進一步包括一在所述外延層遠 離基底的表面設置一奈米碳管層及在所述外延層遠離基底 的表面進一步生長外延層的步驟。 一種具有微構造的基板,其包括一半導體外延層及一奈米 碳管層,所述半導體外延層一表面具有複數凹槽以形成一 圖案化表面,所述奈米碳管層設置於該半導體外延層的圖 案化的表面,並嵌入該半導體外延層中。 100112849 表單編號A0101 第31頁/共41頁 1002021407-0 201239949 14 .如申請專利範圍第13項所述之具有微構造的基板,其中, 所述奈米碳管層中的奈米碳管設置於所述圖案化的表面的 凹槽中。 15 .如申請專利範圍第14項所述之具有微構造的基板,其中, 所述奈米碳管層部份暴露於所述圖案化的表面。 16 .如申請專利範圍第13項所述之具有微構造的基板,其中, 每個凹槽内設置有一奈米碳管或由複數奈米碳管組成的一 奈米碳管束,設置在複數凹槽内的奈米碳管相互通過凡得 瓦力連接構成所述奈米碳管層。 17 .如申請專利範圍第13項所述之具有微構造的基板,其中, 所述奈米碳管層具有複數開口,所述開口内均滲透有半導 體外延層。 18 .如申請專利範圍第13項所述之具有微構造的基板,其中, 所述奈米碳管層中的奈米碳管與所述凹槽内表面部份接觸 ,奈米碳管在凡得瓦力的作用下吸附於凹槽中。 100112849 表單編號A0101 第32頁/共41頁 1002021407-0201239949 VII. Patent application scope: 1 . A method for preparing a substrate having a microstructure, which comprises the following steps: providing a sapphire substrate having an epitaxial growth surface; growing on the epitaxial growth surface of the substrate a low temperature GaN buffer layer; a carbon nanotube layer disposed on the surface of the buffer layer; a GaN epitaxial layer grown on the surface of the buffer layer; and removing the substrate. 2. The method for preparing a microstructured substrate according to claim 1, wherein the substrate is removed by scanning the substrate with a laser in a vacuum environment or a protective gas atmosphere. The method for preparing a micro-structured substrate according to claim 2, wherein the laser wavelength is 248 nm, the pulse width is 20 to 40 ns, and the energy density is 400 to 600 mJ/cm 2 . The spot shape is a square, and the focus size is 0. 5mmx0. 5mm, and the scanning step is 〇·5mm/s. 4. A method of fabricating a microstructured substrate, comprising the steps of: providing a substrate having an epitaxial growth surface; growing a buffer layer on an epitaxial growth surface of the substrate; and disposing a surface on the buffer layer a carbon nanotube layer; an epitaxial layer is grown on the surface of the buffer layer provided with the carbon nanotube layer; and the substrate is removed. 5. The method of preparing a microstructured substrate according to claim 4, wherein the nanocarbon layer is a continuous self-supporting structure. 6. The method of preparing a microstructured substrate according to claim 4, wherein the carbon nanotube layer is disposed in contact with the buffer layer. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The carbon nanotube layer has a plurality of openings from which the epitaxial layer is epitaxially grown. The method of preparing a microstructured substrate according to claim 7, wherein the buffer layer is exposed from an opening of the carbon nanotube layer, and the epitaxial layer is grown from the exposed portion of the buffer layer. The method for preparing a microstructured substrate according to the fourth aspect of the invention, wherein the epitaxial layer forms a plurality of grooves around the carbon nanotube layer, the grooves to the carbon nanotubes The carbon nanotubes in the layer are half surrounded. The method for preparing a microstructured substrate according to the fourth aspect of the invention, wherein the method for growing the epitaxial layer comprises molecular beam epitaxy, chemical beam epitaxy, reduced pressure epitaxy, low temperature epitaxy, selective epitaxy One or more of a method, a liquid phase deposition epitaxy method, a metal organic vapor phase epitaxy method, an ultra-vacuum chemical vapor deposition method, a hydride vapor phase epitaxy method, and a metal organic chemical vapor deposition method. The method for preparing a substrate having a microstructure as described in claim 4, wherein the method for removing the substrate comprises a laser irradiation method, an etching method, and a temperature difference separation method. The method for preparing a microstructured substrate according to claim 4, further comprising: before the substrate is removed, a carbon nanotube layer disposed on the surface of the epitaxial layer away from the substrate; and the epitaxial layer The step of further growing the epitaxial layer away from the surface of the substrate. A micro-structured substrate comprising a semiconductor epitaxial layer and a carbon nanotube layer, wherein a surface of the semiconductor epitaxial layer has a plurality of grooves to form a patterned surface, and the carbon nanotube layer is disposed on the semiconductor The patterned surface of the epitaxial layer is embedded in the semiconductor epitaxial layer. The micro-structured substrate according to claim 13, wherein the carbon nanotubes in the carbon nanotube layer are disposed on the substrate of the micro-structure of the carbon nanotubes of claim 13; The groove of the patterned surface. 15. The microstructured substrate of claim 14, wherein the carbon nanotube layer is partially exposed to the patterned surface. The micro-structured substrate according to claim 13, wherein each of the grooves is provided with a carbon nanotube or a carbon nanotube bundle composed of a plurality of carbon nanotubes, and is disposed in a plurality of concave The carbon nanotubes in the tank are connected to each other by a van der Waals force to form the carbon nanotube layer. The microstructural substrate of claim 13, wherein the carbon nanotube layer has a plurality of openings, each of which is infiltrated with a semiconductor epitaxial layer. 18. The microstructured substrate of claim 13, wherein the carbon nanotubes in the carbon nanotube layer are in contact with the inner surface of the groove, and the carbon nanotubes are Adsorbed in the groove under the action of wattage. 100112849 Form No. A0101 Page 32 of 41 1002021407-0
TW100112849A 2011-03-29 2011-04-13 A substrate with micro-structure and method for making the same TWI442451B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110076876.0A CN102723413B (en) 2011-03-29 2011-03-29 Substrate with microstructure and preparation method thereof

Publications (2)

Publication Number Publication Date
TW201239949A true TW201239949A (en) 2012-10-01
TWI442451B TWI442451B (en) 2014-06-21

Family

ID=46949125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112849A TWI442451B (en) 2011-03-29 2011-04-13 A substrate with micro-structure and method for making the same

Country Status (3)

Country Link
JP (1) JP5379209B2 (en)
CN (1) CN102723413B (en)
TW (1) TWI442451B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611536B2 (en) 2013-11-27 2017-04-04 Tsinghua University Method for making nanostructures
US9634196B2 (en) 2013-11-27 2017-04-25 Tsinghua University Nanostructure layer and light emitting diode with the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934320B2 (en) * 1997-03-13 2007-06-20 日本電気株式会社 GaN-based semiconductor device and manufacturing method thereof
US6723165B2 (en) * 2001-04-13 2004-04-20 Matsushita Electric Industrial Co., Ltd. Method for fabricating Group III nitride semiconductor substrate
JP3803606B2 (en) * 2001-04-13 2006-08-02 松下電器産業株式会社 Method for manufacturing group III nitride semiconductor substrate
CN100480169C (en) * 2005-09-29 2009-04-22 上海交通大学 Micrographic treatment of carbon nanometer tubes
JP2008266064A (en) * 2007-04-19 2008-11-06 Nichia Corp Substrate for semiconductor element and its manufacturing method
JP5276852B2 (en) * 2008-02-08 2013-08-28 昭和電工株式会社 Method for manufacturing group III nitride semiconductor epitaxial substrate
CN101820036B (en) * 2009-02-27 2013-08-28 清华大学 Method for preparing light-emitting diode
JP2010232464A (en) * 2009-03-27 2010-10-14 Showa Denko Kk Group iii nitride semiconductor light emitting element, method of manufacturing the same, and laser diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611536B2 (en) 2013-11-27 2017-04-04 Tsinghua University Method for making nanostructures
US9634196B2 (en) 2013-11-27 2017-04-25 Tsinghua University Nanostructure layer and light emitting diode with the same

Also Published As

Publication number Publication date
CN102723413B (en) 2015-05-20
JP2012209531A (en) 2012-10-25
TWI442451B (en) 2014-06-21
JP5379209B2 (en) 2013-12-25
CN102723413A (en) 2012-10-10

Similar Documents

Publication Publication Date Title
US10622516B2 (en) Epitaxial structure and method for making the same
TWI473758B (en) Method for making epitaxial structure
TWI477666B (en) Method of making epitaxial structure with micro-structure
US9070794B2 (en) Method for making light emitting diode
US8981414B2 (en) Light emitting diode
TWI450416B (en) A method for making light-emitting diode
TW201241876A (en) A epitaxialstructure and method for making the same
TWI458672B (en) Epitaxial structure with micro-structure
US8435818B2 (en) Method for making light emitting diode
US9450142B2 (en) Method for making epitaxial structure
TWI557064B (en) Method of making light emitting diode
TWI546248B (en) Light emitting diode
TW201244159A (en) Light-emitting diode
TWI449659B (en) Method for making epitaxial structure
TWI438144B (en) A method for making a substrate with micro-structure
TW201239949A (en) A substrate with micro-structure and method for making the same
TWI487143B (en) Method for making light-emitting diode
TW201238887A (en) A method for making epitaxial structure
TWI426159B (en) Mask for growing epitaxial structure and method for using the same
TW201240137A (en) Method for making an epitaxial structure