TW201240137A - Method for making an epitaxial structure - Google Patents

Method for making an epitaxial structure Download PDF

Info

Publication number
TW201240137A
TW201240137A TW100112852A TW100112852A TW201240137A TW 201240137 A TW201240137 A TW 201240137A TW 100112852 A TW100112852 A TW 100112852A TW 100112852 A TW100112852 A TW 100112852A TW 201240137 A TW201240137 A TW 201240137A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
epitaxial
layer
substrate
nanotube layer
Prior art date
Application number
TW100112852A
Other languages
Chinese (zh)
Other versions
TWI466321B (en
Inventor
Yang Wei
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Publication of TW201240137A publication Critical patent/TW201240137A/en
Application granted granted Critical
Publication of TWI466321B publication Critical patent/TWI466321B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The invention relates to a method for making an epitaxial structure. The method includes the following steps: providing a substrate having an epitaxial growth surface; placing a carbon nanotube layer on the epitaxial growth surface; epitaxially growing an epitaxial layer on the epitaxial growth surface; removing the carbon nanotube layer. The method is simple, low-cost and free for contamination.

Description

201240137 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種外延結構體之製備方法。 [先前技術] [0002] 外延結構體,尤其異質外延結構體為製作半導體器件的 主要材料之一。例如,近年來,製備發光二極體(LED) 之氮化鎵外延片成為研究的熱點。 [0003] 所述氮化鎵外延結構體係指在一定條件下,將氮化鎵材 料分子,有規則排列,定向生長在藍寶石基底上。當氮 化鎵外延結構體應用於發光二極體中時,為了提高發光 二極體之出光率,通常在氮化鎵外延結構體中設置微結 構以提高氮化鎵外延結構體對光之出光率。 [0004] 然而,先前技術通常採用光刻等微電子方法在藍寶石基 底表面形成溝槽從而構成非平整外延生長面從而形成微 結構。該方法不但複雜,成本較高,而且會對藍寶石基 底外延生長面造成污染,從而影響外延結構體的質量。 〇 .【發明内容】 [0005] 綜上所述,提供一種方法簡單,成本低廉,且不會對基 底表面造成污染之外延結構體的製備方法實為必要。 [0006] —種外延結構體之製備方法,其具體包括以下步驟:提 供一基底,該基底具有一支持外延層生長之外延生長面 ;在所述基底的外延生長面設置一奈米碳管層;在基底 的外延生長面生長外延層形成一初級外延結構體;去除 該初級外延結構體中之奈米碳管層。 100112852 表單編號A0101 第3頁/共45頁 1002021412-0 201240137 [0007] 與先前技術相比,本發明提供之外延結構體之製備方法 簡單、成本低廉,大大降低了外延結構體之製備成本, 同時降低了對環境之污染。進一步,通過去除奈米碳管 層使外延結構體中具有微結構,提高了該外延結構體的 出光率,從而使該外延結構體具有廣泛用途。 【實施方式】 [0008] 請參閱圖1,本發明實施例提供一種外延結構體10的製備 方法,其具體包括以下步驟: [0009] S10 :提供一基底100,該基底100具有一支持外延層104 生長之外延生長面101 ; [0010] S20 :在所述基底100之外延生長面101設置一奈米碳管 層 102 ; [0011] S30 :在基底100之外延生長面101生長外延層104形成一 初級外延結構體108 ; [0012] S40 :去除該初級外延結構體108中的奈米碳管層102。201240137 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a method of preparing an epitaxial structure. [Prior Art] [0002] An epitaxial structure, particularly a heteroepitaxial structure, is one of main materials for fabricating a semiconductor device. For example, in recent years, GaN epitaxial wafers for preparing light-emitting diodes (LEDs) have become a research hotspot. [0003] The gallium nitride epitaxial structure system refers to that the gallium nitride material molecules are regularly arranged and oriented on a sapphire substrate under certain conditions. When the gallium nitride epitaxial structure is applied to the light emitting diode, in order to improve the light extraction rate of the light emitting diode, a microstructure is usually disposed in the gallium nitride epitaxial structure to improve the light emission of the gallium nitride epitaxial structure. rate. [0004] However, the prior art generally forms a trench on the surface of the sapphire substrate by a microelectronic method such as photolithography to form a non-planar epitaxial growth face to form a microstructure. This method is not only complicated, but also costly, and it will pollute the epitaxial growth surface of the sapphire substrate, thus affecting the quality of the epitaxial structure. SUMMARY OF THE INVENTION [0005] In summary, it is necessary to provide a method for preparing a structure which is simple in method, low in cost, and does not cause contamination on the surface of the substrate. [0006] A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having a support epitaxial layer growth extension surface; and providing a carbon nanotube layer on the epitaxial growth surface of the substrate Forming an epitaxial layer on the epitaxial growth surface of the substrate to form a primary epitaxial structure; removing the carbon nanotube layer in the primary epitaxial structure. 100112852 Form No. A0101 Page 3 of 45 1002021412-0 201240137 [0007] Compared with the prior art, the present invention provides a simple and low-cost preparation method for the extended structure, which greatly reduces the preparation cost of the epitaxial structure. Reduced pollution to the environment. Further, by removing the carbon nanotube layer to have a microstructure in the epitaxial structure, the light-emitting rate of the epitaxial structure is improved, so that the epitaxial structure has a wide range of uses. [0008] Referring to FIG. 1 , an embodiment of the present invention provides a method for fabricating an epitaxial structure 10, which specifically includes the following steps: [0009] S10: providing a substrate 100 having a supporting epitaxial layer 104: growing the outer growth surface 101; [0010] S20: providing a carbon nanotube layer 102 on the outer growth surface 101 of the substrate 100; [0011] S30: growing the epitaxial layer 104 on the growth surface 101 of the substrate 100 A primary epitaxial structure 108; [0012] S40: removing the carbon nanotube layer 102 in the primary epitaxial structure 108.

[0013] 步驟S10中,所述基底100提供了外延層104的外延生長 面101。所述基底100之外延生長面101係分子平滑之表 面,且去除了氧或碳等雜質。所述基底100可為單層或複 數結構。當所述基底100為單層結構時,該基底100可為 一單晶結構體,且具有一晶面作為外延層104之外延生長 面101。所述單層結構的基底100之材料可為GaAs、GaN 、Si ' SO I (s i1i con on insulator) ' AIN ' SiC ' MgO、ZnO、LiGa09、LiAlOgiAlgOq等。當所述基底 100為複數結構時,其需要包括至少一層上述單晶結構體 100112852 表單編號A0101 第4頁/共45頁 1002021412-0 201240137 ,δ亥早晶結構體具有一晶面作為外延層的外延生長 面1 01。所述基底100的材料可根據所要生長的外延層 1〇4來選擇’優選地,使所述基底1〇〇與外延層104具有 相近的晶格常數及熱膨脹係數。所述基底的厚度、大 小及形狀不限,可根據實際需要選擇。所述基底1〇〇不限 於上述列舉的材料,只要具有支持外延層104生長的外延 生長面101的基底1〇〇均屬於本發明的保護範圍。 [0014] Ο [0015] 梦驟S20中,所述奈米碳管層102為包括複數奈米碳管的 連續的整體結構。所述奈米碳管層1〇2為一自支推結構, 所述奈米碳管層1〇2直接鋪設在所述基底1〇〇的外延生長 面101並與所述基底100接觸設置。 ❹ 所述奈求碳管層為一連續的整體結構。所述奈米碳管層 102中複數奈米碳管沿着基本平行於奈米碳管層ι〇2表面 的方向延伸。當所述奈米碳管層102設置於所述基底1〇〇 的外延生長面101時,所述奈米碳管層102中複數奈米碳 管的延伸方向基本平行於所述基底100的外延生長面101 。所述奈米碳管層102的厚度為】奈米~100微米,或1奈 米〜1微米,或1奈米〜200奈米,優選地厚度為1〇奈米 〜100奈米。所述奈米碳管層1〇2為一圖形化的奈米碳管層 102。所述“圖形化”係指所述奈米碳管層102具有複數 開口 105,該複數開口 1〇5從所述奈米碳管層1〇2的厚度 方向貫穿所述奈米碳管層1〇2 ^當所述奈米碳管層1〇2覆 蓋所述基底10〇的外延生長面IQ〗設置時,從而使所述基 底10 0的外延生長面101對應該開口 10 5的部份暴露以利 於生長外延層104。所述開口 1〇5可為微孔或間隙。所述 100112852 表單編號Α0101 第5頁/共45頁 1002021412-0 201240137 開105的尺寸為1〇奈未〜5〇〇微米’所述尺寸係指所述 微孔的孔徑或所述間隙的寬度方向的間距。所述開口 105 的尺寸為1G奈米〜3GG微米、或1G奈米〜12G微米、或10奈 米〜8〇微米、或10奈米微米。開口105的尺寸越小, 有利於在生長外延層1 〇4的過程中減少錯位缺陷 (d1Sl〇cation defect)的產生,以獲得高質量的外延 層1〇4。優選地,所述開口 1〇5的尺寸為1〇奈米〜ι〇微米 。進一步地,所述奈米碳管層1〇2的佔空比為 1:100〜100:卜或1:10〜10:卜或1:2〜2:1,或 1:4〜4:1。優選地,所述佔空比為1:4~4:;^所謂“佔空 比”指該奈米碳管層1〇2設置於基底1〇〇的外延生長面 101後,該外延生長面101被奈米碳管層1〇2佔據的部份 與通過開口 105暴露的部份的面積比。 [0016]進-步地’所述“圖形化,,係指所述奈米碳管層1〇2中複 數奈米碳管的排列方式係有序的、有規則的。例如,所 述奈米碳管層102中複數奈米碳管的轴向均基本平行於所 述基底100的外延生長面101且基本沿同一方向延伸。或 者,所述奈米碳管層102中複數奈米碳管的轴向可有規律 性地基本沿二以上方向延伸。或者,所述奈米碳管層1〇2 中複數奈米碳管的軸向沿着基底丨00的一晶向延伸或與基 底100的一晶向成一定角度延伸。上述奈米碳管層1〇2中 沿同一方向延伸的相鄰的奈米碳管通過凡得瓦力(van der Waals force)首尾相連。 [0017]在所述奈米碳管層1〇2具有如前所述的開口 1〇5的前提下 ,所述奈采碳管層102中複數奈来碳管也可無序排列、無 100112852 表單編號A0101 第6頁/共45頁 1002021412-0 201240137 規則排列。 [0018] 所述奈米碳管軸設置於所述基底剛的整個 -辟太長面101所返奈米碳管層102中的奈米碳管可為 ^奈《管、雙壁奈米破管❹衫米碳管中的一種 或複數種,其長度及直徑可根據需要選擇。 [0019] Ο 所述不米碳&層102用作生長外延層iQ4的掩模。所謂“ 掩模”係指該奈来碳管層m用於遮擋所述基底⑽的部 份外延生長面1G卜且暴露部份外延生長面iqi,從而使 得外延層Π)4健所料延生長面如㈣的部份生長。 由於奈米碳管層102具有複數開口 1〇5,所以該奈米碳管 層102形成-圖形化的掩模。#奈米碳管層⑽設置於基 底100的外延生長面1G1後,複數奈米碳管沿着平行於外 延生長面101的方向延伸。由於所述奈米碳管層1〇2在所 述基底100的外延生長面101形成複數開口 1〇5,從而使 得所述基底100的外延生長面101上具有一圖形化的掩模 €) 。可以理解’相對於光刻等微電子方法,通過設置奈米 碳管層102作為掩模進行外延生長的方法簡單、成本低廉 ’不易在基底100的延生長面101引入污染,而且綠色環 保,可大大降低了外延結構體10的製備成本。 [0020] 可以理解,所述基底100及奈米碳管層102共同構成了用 於生長外延結構的襯底。該襯底可用於生長不同材料的 外延層104,如半導體外延層、金屬外延層或合金外延層 。該襯底也可用於生長同質或異質外延層,從而得到一 同質外延結構體或異質外延結構體。 100112852 表單編號Α0101 第7頁/共45頁 1002021412-0 201240137 [0021] 所述奈米碳管層1〇2可預先形成後直接铺設在所述基底 100的外延生長面1〇1。所述奈米碳管層102為一宏觀結 構,且所述奈米碳管層102為一自支撐的結構。所謂‘‘自 支撐,,指該奈米碳管層102不需要大面積的載體支撐,而 只要相對兩邊提供支撐力即能整體上懸空而保持自身狀 態,即將該奈米破管層1 0 2置於(或固定於)間隔特定距 離設置的二支撐體上時,位於二支撐體之間的奈米碳管 層102能夠懸空保持自身狀態。由於奈米碳管層1〇2為自 支撐結構,所述奈米碳管層102不必要通過複雜的化學方 法形成在基底100的外延生長面101。進一步優選地,所 述奈米碳管層102為複數奈米碳管組成的純奈米碳管結構 。所謂“純奈米碳管結構”係指所述奈米碳管層102在整 個製備過程中無需任何化學修飾或酸化處理,不含有任 何羧基等官能團修飾。 [0022] 所述奈米碳管層1〇2還可為一包括複數奈米碳管及添加材 料的複合結構。所述添加材料包括石墨、石墨烯、碳化 矽、氮化硼、氮化矽、二氧化矽、無定形碳等中的—種 或複數種。所述添加材料還可包括金屬碳化物、金屬氧 化物及金屬氮化物等中的一種或複數種。所述添加材料 包覆於奈米碳管層102中奈米礙管的至少部份表面或設置 於奈米碳管層102的開口 105内。優選地,所述添加材料 包覆於奈米碳管的表面。由於,所述添加材料包覆於奈 米碳管的表面,使得奈㈣管的直彳,大,從而使奈: 碳管之間的開口 105減小。所述添加材料可通過化學氣相 沈積(CVD)、物理氣相沈積(PVD) 1控滅射等方法 100112852 表單編號A0101 第8頁/共45頁 ' 1002021412-0 201240137 [0023] Ο [0024] [0025][0013] In step S10, the substrate 100 provides an epitaxial growth surface 101 of the epitaxial layer 104. The outer surface 101 of the substrate 100 is a smooth surface of the molecule, and impurities such as oxygen or carbon are removed. The substrate 100 can be a single layer or a complex structure. When the substrate 100 has a single layer structure, the substrate 100 may be a single crystal structure and have a crystal plane as the epitaxial layer 104. The material of the single-layer structure substrate 100 may be GaAs, GaN, Si ' SO I (s i1i con on insulator) ' AIN ' SiC 'MgO, ZnO, LiGa09, LiAlOgiAlgOq, or the like. When the substrate 100 has a complex structure, it needs to include at least one layer of the above single crystal structure 100112852, Form No. A0101, Page 4 / Total 45, 1002021412-0 201240137, and the δ-Heil crystal structure has a crystal plane as an epitaxial layer. Epitaxial growth surface 01. The material of the substrate 100 may be selected according to the epitaxial layer 1 〇 4 to be grown. Preferably, the substrate 1 〇〇 has a lattice constant and a coefficient of thermal expansion similar to those of the epitaxial layer 104. The thickness, size and shape of the substrate are not limited and can be selected according to actual needs. The substrate 1 is not limited to the materials listed above, as long as the substrate 1 having the epitaxial growth surface 101 supporting the growth of the epitaxial layer 104 is within the scope of the present invention. [0015] In the dream S20, the carbon nanotube layer 102 is a continuous unitary structure including a plurality of carbon nanotubes. The carbon nanotube layer 1〇2 is a self-supporting structure, and the carbon nanotube layer 1〇2 is directly laid on the epitaxial growth surface 101 of the substrate 1 and is placed in contact with the substrate 100. ❹ The carbon nanotube layer is a continuous overall structure. The plurality of carbon nanotubes in the carbon nanotube layer 102 extend in a direction substantially parallel to the surface of the carbon nanotube layer ι2. When the carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 1 , the extending direction of the plurality of carbon nanotubes in the carbon nanotube layer 102 is substantially parallel to the epitaxy of the substrate 100 Growth surface 101. The carbon nanotube layer 102 has a thickness of from nanometer to 100 micrometers, or from 1 nanometer to 1 micrometer, or from 1 nanometer to 200 nanometers, preferably from 1 nanometer to 100 nanometers. The carbon nanotube layer 1〇2 is a patterned carbon nanotube layer 102. The “patterned” means that the carbon nanotube layer 102 has a plurality of openings 105 penetrating the carbon nanotube layer 1 from the thickness direction of the carbon nanotube layer 1〇2. 〇2 ^ when the carbon nanotube layer 1〇2 covers the epitaxial growth surface IQ of the substrate 10〇, thereby exposing the portion of the epitaxial growth surface 101 of the substrate 10 corresponding to the opening 105 In order to facilitate the growth of the epitaxial layer 104. The opening 1〇5 may be a micro hole or a gap. The 100112852 Form No. 1010101 Page 5 / Total 45 Page 1002021412-0 201240137 The size of the opening 105 is 1 〇 奈 〜 〜 5 〇〇 micron 'the size refers to the aperture of the micro hole or the width direction of the gap spacing. The opening 105 has a size of 1 G nm to 3 GG μm, or 1 G nm to 12 Gm, or 10 nm to 8 μm, or 10 nm. The smaller the size of the opening 105, the smaller the generation of the dislocation defect during the growth of the epitaxial layer 1 〇 4 to obtain a high quality epitaxial layer 1 〇 4 . Preferably, the size of the opening 1〇5 is from 1 nanometer to ι micrometer. Further, the duty ratio of the carbon nanotube layer 1〇2 is 1:100~100: Bu or 1:10~10: Bu or 1:2~2:1, or 1:4~4:1 . Preferably, the duty ratio is 1:4~4:; The so-called "duty ratio" means that the carbon nanotube layer 1〇2 is disposed on the epitaxial growth surface 101 of the substrate 1〇〇, and the epitaxial growth surface The area ratio of the portion occupied by the carbon nanotube layer 1〇2 to the portion exposed through the opening 105. [0016] The above-mentioned "patterning" means that the arrangement of the plurality of carbon nanotubes in the carbon nanotube layer 1〇2 is ordered and regular. For example, the nai The axial direction of the plurality of carbon nanotubes in the carbon nanotube layer 102 is substantially parallel to the epitaxial growth surface 101 of the substrate 100 and extends substantially in the same direction. Alternatively, the plurality of carbon nanotubes in the carbon nanotube layer 102 The axial direction may extend substantially in two or more directions. Or, the axial direction of the plurality of carbon nanotubes in the carbon nanotube layer 1〇2 extends along a crystal orientation of the substrate 丨00 or with the substrate 100. A crystal orientation extends at an angle. Adjacent carbon nanotubes extending in the same direction in the above carbon nanotube layer 1〇2 are connected end to end by a van der Waals force. Under the premise that the carbon nanotube layer 1〇2 has the opening 1〇5 as described above, the plurality of carbon nanotubes in the carbon nanotube layer 102 may also be disorderly arranged, without 100112852 Form No. A0101 No. 6 Page / Total 45 pages 1002021412-0 201240137 Regular arrangement. [0018] The carbon nanotube shaft is disposed on the entire base of the substrate The carbon nanotubes in the nano-carbon nanotube layer 102 of the long surface 101 can be one or a plurality of tubes, double-walled nano-tubes, and the length and diameter can be selected according to requirements. [0019] The non-carbon & layer 102 is used as a mask for growing the epitaxial layer iQ4. The so-called "mask" means that the carbon nanotube layer m is used to block partial epitaxial growth of the substrate (10). The surface 1G is exposed and a part of the epitaxial growth surface iqi is exposed, so that the epitaxial layer grows as a part of (4). Since the carbon nanotube layer 102 has a plurality of openings 1〇5, the nanometer is The carbon tube layer 102 forms a patterned mask. The #nano carbon tube layer (10) is disposed on the epitaxial growth surface 1G1 of the substrate 100, and the plurality of carbon nanotubes extend in a direction parallel to the epitaxial growth surface 101. The carbon nanotube layer 1〇2 forms a plurality of openings 1〇5 on the epitaxial growth surface 101 of the substrate 100 such that the epitaxial growth surface 101 of the substrate 100 has a patterned mask. Epitaxial growth by using the carbon nanotube layer 102 as a mask with respect to a microelectronic method such as photolithography The method is simple and low-cost, and it is difficult to introduce pollution on the growth surface 101 of the substrate 100, and the environmental protection can greatly reduce the preparation cost of the epitaxial structure 10. [0020] It can be understood that the substrate 100 and the carbon nanotube layer 102 collectively constitutes a substrate for growing epitaxial structures. The substrate can be used to grow epitaxial layers 104 of different materials, such as semiconductor epitaxial layers, metal epitaxial layers or alloy epitaxial layers. The substrate can also be used to grow homogenous or heteroepitaxial layers. The layer is such that a homoepitaxial structure or a heteroepitaxial structure is obtained. 100112852 Form No. Α0101 Page 7 of 45 1002021412-0 201240137 [0021] The carbon nanotube layer 1〇2 may be formed before being directly laid on the epitaxial growth surface 1〇1 of the substrate 100. The carbon nanotube layer 102 is a macrostructure, and the carbon nanotube layer 102 is a self-supporting structure. The so-called 'self-supporting' means that the carbon nanotube layer 102 does not need a large-area carrier support, and as long as the support force is provided on both sides, it can be suspended and maintained in its own state, that is, the nano-tube layer 1 0 2 When placed on (or fixed to) two supports spaced apart by a certain distance, the carbon nanotube layer 102 between the two supports can be suspended to maintain its own state. Since the carbon nanotube layer 1〇2 is a self-supporting structure, the carbon nanotube layer 102 does not have to be formed on the epitaxial growth surface 101 of the substrate 100 by a complicated chemical method. Further preferably, the carbon nanotube layer 102 is a pure carbon nanotube structure composed of a plurality of carbon nanotubes. By "pure carbon nanotube structure" is meant that the carbon nanotube layer 102 does not require any chemical modification or acidification during the entire preparation process and does not contain any functional groups such as carboxyl groups. [0022] The carbon nanotube layer 1〇2 may also be a composite structure including a plurality of carbon nanotubes and an additive material. The additive material includes one or a plurality of graphite, graphene, tantalum carbide, boron nitride, tantalum nitride, hafnium oxide, amorphous carbon, and the like. The additive material may further include one or a plurality of metal carbides, metal oxides, metal nitrides, and the like. The additive material is coated in at least a portion of the surface of the nanotube layer 102 or disposed within the opening 105 of the carbon nanotube layer 102. Preferably, the additive material is coated on the surface of the carbon nanotube. Since the additive material is coated on the surface of the carbon nanotube, the diameter of the naphthalene tube is large, so that the opening 105 between the naphthalene tubes is reduced. The additive material may be subjected to chemical vapor deposition (CVD), physical vapor deposition (PVD), controlled emission, etc. 100112852 Form No. A0101 Page 8 of 45 '1002021412-0 201240137 [0023] Ο [0024] [0025]

形成於奈米碳管的表面。 將所述奈米碳管層102鋪設在所述基底100的外延生長面 1 0 1後還可包括一有機溶劑處理的步驟,以使奈米碳管層 102與外延生長面101更加緊密結合。該有機溶劑可選用 乙醇、甲醇、丙酮、二氯乙烷及氯仿中一種或者幾種的 混合。本實施例中的有機溶劑採用乙醇。該使用有機溶 劑處理的步驟可通過試管將有機溶劑滴落在奈米碳管層 102表面浸潤整個奈米碳管層102或將基底100及整個奈 米碳管層102—起浸入盛有有機溶劑的容器中浸潤。 所述奈米碳管層102也可通過化學氣相沈積(CVD)等方 法直接生長在所述基底100的外延生長面101或先生長在 矽基底表面,然後轉印到所述基底100的外延生長面101 〇 具體地,所述奈米碳管層102可包括奈米碳管膜或奈米碳 管線。所述奈米碳管層102可為一單層奈米碳管膜或複數 疊設置的奈米碳管膜。所述奈米碳管層102可包括複數相 互平行且間隔設置的奈米碳管線。所述奈米碳管層102還 可包括複數交叉設置組成網狀結構的奈米碳管線。當所 述奈米碳管層102為複數疊設置的奈米碳管膜時,奈米碳 管膜的層數不宜太多,優選地,為2層~100層。當所述奈 米碳管層102為複數平行設置的奈米碳管線時,相鄰二奈 米碳管線之間的距離為0. 1微米~200微米,優選地,為 10微米〜100微米。所述相鄰二奈米碳管線之間的空間構 成所述奈米碳管層102的開口 105。相鄰二奈米碳管線之 間的間隙長度可等於奈米碳管線的長度。所述奈米碳管 100112852 表單編號Α0101 第9頁/共45頁 1002021412-0 201240137 膜或奈米碳管線可直接鋪設在基底100的外延生長面101 構成所述奈米碳管層102。通過控制奈米碳管膜的層數或 奈米碳管線之間的距離,可控制奈米碳管層1 02中開口 1 0 5的尺寸。 [0026] 所述奈米碳管膜係由若干奈米碳管組成的自支撐結構。 所述若干奈米碳管為沿同一方向擇優取向延伸。所述擇 優取向係指在奈米碳管膜中大多數奈米碳管的整體延伸 方向基本朝同一方向。而且,所述大多數奈米碳管的整 體延伸方向基本平行於奈米碳管膜的表面。進一步地, 所述奈米碳管膜中多數奈米碳管係通過凡得瓦力首尾相 連。具體地,所述奈米碳管膜中基本朝同一方向延伸的 大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的 奈米碳管通過凡得瓦力首尾相連。當然,所述奈米碳管 膜中存在少數隨機排列的奈米碳管,這些奈米碳管不會 對奈米碳管膜中大多數奈米碳管的整體取向排列構成明 顯影響。所述自支撐為奈米碳管膜不需要大面積的載體 支撐,而只要相對兩邊提供支撐力即能整體上懸空而保 持自身膜狀狀態,即將該奈米碳管膜置於(或固定於) 間隔特定距離設置的二支撐體上時,位於二支撐體之間 的奈米碳管膜能夠懸空保持自身膜狀狀態。所述自支撐 主要通過奈米碳管膜中存在連續的通過凡得瓦力首尾相 連延伸排列的奈米碳管而實現。 [0027] 具體地,所述奈米碳管膜中基本朝同一方向延伸的多數 奈米碳管,並非絕對的直線狀,可適當的彎曲;或者並 非完全按照延伸方向上排列,可適當的偏離延伸方向。 100112852 表單編號A0101 第10頁/共45頁 1002021412-0 201240137 因此,不能排除奈米碳管膜的基本朝同一方向延伸的多 數奈米碳管中並列的奈米碳管之間可能存在部份接觸。 [0028] ΟFormed on the surface of the carbon nanotubes. Laying the carbon nanotube layer 102 on the epitaxial growth surface 110 of the substrate 100 may further include an organic solvent treatment step to more closely bond the carbon nanotube layer 102 to the epitaxial growth surface 101. The organic solvent may be selected from a mixture of one or more of ethanol, methanol, acetone, dichloroethane and chloroform. The organic solvent in this embodiment employs ethanol. The step of treating with an organic solvent may immerse the organic solvent on the surface of the carbon nanotube layer 102 through a test tube to infiltrate the entire carbon nanotube layer 102 or immerse the substrate 100 and the entire carbon nanotube layer 102 in an organic solvent. Infiltrated in the container. The carbon nanotube layer 102 may also be directly grown on the epitaxial growth surface 101 of the substrate 100 or on the surface of the ruthenium substrate by chemical vapor deposition (CVD) or the like, and then transferred to the epitaxial surface of the substrate 100. Growth Surface 101 Specifically, the carbon nanotube layer 102 may include a carbon nanotube membrane or a nanocarbon pipeline. The carbon nanotube layer 102 can be a single layer of carbon nanotube film or a plurality of stacked carbon nanotube films. The carbon nanotube layer 102 can include a plurality of nanocarbon lines that are parallel to each other and spaced apart. The carbon nanotube layer 102 may also include a plurality of carbon nanotube lines that are interdigitated to form a network structure. When the carbon nanotube layer 102 is a plurality of carbon nanotube films, the number of layers of the carbon nanotube film is not too high, and preferably, it is 2 to 100 layers. When the carbon nanotube layer 102 is a plurality of carbon nanotubes arranged in parallel, the distance between the adjacent two carbon nanotubes is from 0.1 μm to 200 μm, preferably from 10 μm to 100 μm. The space between the adjacent two nanocarbon lines constitutes an opening 105 of the carbon nanotube layer 102. The length of the gap between adjacent two nanocarbon lines may be equal to the length of the nanocarbon line. The carbon nanotubes 100112852 Form No. Α0101 Page 9 of 45 1002021412-0 201240137 A membrane or nanocarbon line can be directly laid on the epitaxial growth surface 101 of the substrate 100 to form the carbon nanotube layer 102. The size of the opening 105 in the carbon nanotube layer 102 can be controlled by controlling the number of layers of the carbon nanotube film or the distance between the carbon nanotubes. The carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes extend in a preferred orientation along the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube membrane are connected end to end by van der Waals force. Specifically, each of the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film is connected end to end with a vanadium force in the extending direction. Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube membrane, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube membrane. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) When the two supports are disposed at a certain distance apart, the carbon nanotube film located between the two supports can be suspended to maintain the self-membrane state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the van der Waals end-to-end extension in the carbon nanotube film. [0027] Specifically, a plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear and may be appropriately bent; or are not completely aligned in the extending direction, and may be appropriately deviated Extend the direction. 100112852 Form No. A0101 Page 10 of 45 1002021412-0 201240137 Therefore, it is not possible to exclude partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotube membranes extending in the same direction. . [0028] Ο

請參閱圖2及圖3,具體地,所述奈米碳管膜包括複數連 續且定向延伸的奈米碳管片段143。該複數奈米碳管片段 143通過凡得瓦力首尾相連。每一奈米碳管片段143包括 複數相互平行的奈米碳管145,該複數相互平行的奈米碳 管145通過凡得瓦力緊密結合。該奈米碳管片段143具有 任意的長度、厚度、均勻性及形狀。所述奈米碳管膜可 通過從一奈米碳管陣列中選定部份奈米碳管後直接拉取 獲得。所述奈米碳管膜的厚度為1奈米〜100微米,寬度與 拉取出該奈米碳管膜的奈米碳管陣列的尺寸有關,長度 不限。所述奈米碳管膜中相鄰的奈米碳管之間存在微孔 或間隙從而構成開口 105,且該微孔的孔徑或間隙的尺寸 小於10微米。優選地,所述奈米碳管膜的厚度為100奈米 〜10微米。該奈米碳管膜中的奈米碳管145沿同一方向擇 優取向延伸。所述奈米碳管膜的結構及其製備方法請參 見范守善等人於2007年2月12日申請的,於2010年7月11 公告的第1327177號台灣公告專利申請“奈米碳管薄膜結 構及其製備方法”,申請人:鴻海精密工業股份有限公 司。為節省篇幅,僅引用此,但上述申請所有技術揭露 也應視為本發明申請技術揭露的一部分。 [0029] 請參閱圖4,當所述奈米碳管層包括層疊設置的複數奈米 碳管膜時,相鄰兩層奈米碳管膜中的奈米碳管的延伸方 向形成一交叉角度α,且α大於等於0度小於等於90度( 0。 a 90。)。 100112852 表單編號A0101 第11頁/共45頁 1002021412-0 201240137 [0030] 為減小奈米碳管膜的厚度,還可進一步對該奈米碳管膜 進行加熱處理。為避免奈米碳管膜加熱時被破壞,所述 加熱奈米碳管膜的方法採用局部加熱法。其具體包括以 下步驟:局部加熱奈米碳管膜,使奈米碳管膜在局部位 置的部份奈米碳管被氧化;移動奈米碳管被局部加熱的 位置,從局部到整體實現整個奈米碳管膜的加熱。具體 地,可將該奈米碳管膜分成複數小的區域,採用由局部 到整體的方式,逐區域地加熱該奈米碳管膜。所述局部 加熱奈米碳管膜的方法可有幾種,如鐳射加熱法、微波 加熱法等等。本實施例中,通過功率密度大於0. lxl〇4瓦 特/平方米的鐳射掃描照射該奈米碳管膜,由局部到整體 的加熱該奈米碳管膜。該奈米碳管膜通過鐳射照射,在 厚度方向上部份奈米碳管被氧化,同時,奈米碳管膜中 直徑較大的奈米碳管束被去除,使得該奈米碳管膜變薄 〇 [0031] 可以理解,上述鐳射掃描奈米碳管膜的方法不限,只要 能夠均勻照射該奈米碳管膜即可。鐳射掃描可沿平行奈 米碳管膜中奈米碳管的排列方向逐行進行,也可沿垂直 於奈米碳管膜中奈米碳管的排列方向逐列進行。具有固 定功率、固定波長的鐳射掃描奈米碳管膜的速度越小, 奈米碳管膜中的奈米碳管束吸收的熱量越多,對應被破 壞的奈米碳管束越多,鐳射處理後的奈米碳管膜的厚度 變小。然,如果鐳射掃描速度太小,奈米碳管膜將吸收 過多熱量而被燒毁。本實施例中,鐳射的功率密度為 0. 053x1 ο12瓦特/平方米,鐳射光斑的直徑在1毫米〜5毫 100112852 表單編號A0101 第12頁/共45頁 1002021412-0 201240137 米範圍内,鐳射掃描照射時間小於1. 8秒。優選地,雷射 器為二氧化碳雷射器,該雷射器的功率為30瓦特,波長 為10. 6微米,光斑直徑為3毫米,鐳射裝置140與奈米碳 管膜的相對運動速度小於10毫米/秒。 [0032] ΟReferring to Figures 2 and 3, in particular, the carbon nanotube membrane comprises a plurality of continuous and oriented elongated carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of carbon nanotubes 145 which are parallel to each other, and the plurality of mutually parallel carbon nanotubes 145 are tightly bonded by van der Waals force. The carbon nanotube segments 143 have any length, thickness, uniformity, and shape. The carbon nanotube film can be obtained by directly drawing a part of a carbon nanotube from an array of carbon nanotubes. The carbon nanotube film has a thickness of from 1 nm to 100 μm, and the width is related to the size of the carbon nanotube array in which the carbon nanotube film is taken out, and the length is not limited. There are micropores or gaps between adjacent carbon nanotubes in the carbon nanotube film to form an opening 105, and the pore size or gap of the micropore is less than 10 microns. Preferably, the carbon nanotube film has a thickness of from 100 nm to 10 μm. The carbon nanotubes 145 in the carbon nanotube film extend in a preferred orientation in the same direction. For the structure of the carbon nanotube film and the preparation method thereof, please refer to the patent application "Nano Carbon Tube Film Structure" of No. 1327177 published by Fan Shoushan et al. on July 12, 2007. And its preparation method", applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only this is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the technology of the present application. [0029] Referring to FIG. 4, when the carbon nanotube layer includes a plurality of stacked carbon nanotube films, the extending directions of the carbon nanotubes in the adjacent two carbon nanotube films form an intersection angle. α, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees (0. a 90.). 100112852 Form No. A0101 Page 11 of 45 1002021412-0 201240137 [0030] To reduce the thickness of the carbon nanotube film, the carbon nanotube film can be further heat treated. In order to prevent the carbon nanotube film from being destroyed upon heating, the method of heating the carbon nanotube film employs a local heating method. Specifically, the method comprises the steps of: locally heating the carbon nanotube film, so that a part of the carbon nanotube film is oxidized at a local position; and moving the carbon nanotube to be locally heated, from the local to the whole Heating of the carbon nanotube film. Specifically, the carbon nanotube film can be divided into a plurality of small regions, and the carbon nanotube film is heated region by region in a partial to overall manner. There are several methods for locally heating the carbon nanotube film, such as laser heating, microwave heating, and the like. In this embodiment, the carbon nanotube film is irradiated by a laser scan having a power density greater than 0.1 lx 〇 4 watts/m 2 , and the carbon nanotube film is heated from a partial to a whole. The carbon nanotube film is irradiated by laser, and some of the carbon nanotubes are oxidized in the thickness direction, and at the same time, the larger diameter carbon nanotube bundle in the carbon nanotube film is removed, so that the carbon nanotube film becomes Thin enamel [0031] It can be understood that the above method of scanning the carbon nanotube film is not limited as long as the carbon nanotube film can be uniformly irradiated. The laser scanning can be carried out row by row along the arrangement direction of the carbon nanotubes in the parallel carbon nanotube film, or can be carried out column by column in the direction perpendicular to the arrangement of the carbon nanotubes in the carbon nanotube film. The lower the speed of the laser-scanned carbon nanotube film with fixed power and fixed wavelength, the more heat absorbed by the carbon nanotube bundle in the carbon nanotube film, the more the corresponding carbon nanotube bundle is destroyed, after laser treatment The thickness of the carbon nanotube film becomes small. However, if the laser scanning speed is too small, the carbon nanotube film will absorb too much heat and be burned. In this embodiment, the power density of the laser is 0. 053x1 ο12 watts/m2, and the diameter of the laser spot is 1 mm~5 milli100112852 Form No. A0101 Page 12/45 pages 1002021412-0 201240137 meters, laser scanning The irradiation time is less than 1.8 seconds. Preferably, the laser is a carbon dioxide laser having a power of 30 watts, a wavelength of 10.6 micrometers, a spot diameter of 3 mm, and a relative movement speed of the laser device 140 and the carbon nanotube film is less than 10 Mm/s. [0032] Ο

所述奈米碳管線可為非扭轉的奈米碳管線或扭轉的奈米 碳管線。所述非扭轉的奈米碳管線與扭轉的奈米碳管線 均為自支撐結構。具體地,請參閱圖5,該非扭轉的奈米 碳管線包括複數沿平行於該非扭轉的奈米碳管線長度方 向延伸的奈米碳管。具體地,該非扭轉的奈米碳管線包 括複數奈米碳管片段,該複數奈米碳管片段通過凡得瓦 力首尾相連,每一奈米碳管片段包括複數相互平行並通 過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳 管線長度不限,直徑為0. 5奈米~100微米。非扭轉的奈米 碳管線為將奈米碳管膜通過有機溶劑處理得到。具體地 ,將有機溶劑浸潤所述奈米碳管膜的整個表面,在揮發 性有機溶劑揮發時產生的表面張力的作用下,奈米碳管 膜中的相互平行的複數奈米碳管通過凡得瓦力緊密結合 ,從而使奈米碳管膜收縮為一非扭轉的奈米碳管線。該 有機溶劑為揮發性有機溶劑,如乙醇、曱醇、丙酮、二 氣乙烷或氣仿,本實施例中採用乙醇。通過有機溶劑處 理的非扭轉的奈米碳管線與未經有機溶劑處理的奈米碳 管膜相比,比表面積減小,黏性降低。 所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管 膜兩端沿相反方向扭轉獲得。請參閱圖6,該扭轉的奈米 100112852 表單編號A0101 第13頁/共45頁 1002021412-0 [0033] 201240137 碳管線包括複數繞該扭轉的奈米碳管線軸向螺旋延伸的 奈米碳管。具體地,該扭轉的奈米碳管線包括複數奈米 碳管片段,該複數奈米碳管片段通過凡得瓦力首尾相連 ,每一奈米碳管片段包括複數相互平行並通過凡得瓦力 緊密結合的奈米碳管。該奈米碳管片段具有任意的長度 、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限 ,直徑為0. 5奈米〜100微米。進一步地,可採用一揮發性 有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑 揮發時產生的表面張力的作用下,處理後的扭轉的奈米 碳管線中相鄰的奈米碳管通過凡得瓦力緊密結合,使扭 轉的奈米碳管線的比表面積減小,密度及強度增大。 [0034] 所述奈米碳管線及其製備方法請參見范守善等人於2002 年11月5日申請的,2008年11月27日公告的第1303239 號台灣公告專利“一種奈米碳管繩及其製造方法”,申 請人:鴻海精密工業股份有限公司,以及2005年12月16 日申請的,2009年7月21日公告的第1 31 2337號台灣公告 專利“奈米碳管絲之製作方法”,申請人:鴻海精密工 業股份有限公司。為節省篇幅,僅引用此,但上述申請 所有技術揭露也應視為本發明申請技術揭露的一部分。 [0035] 步驟S30中,所述外延層104的生長方法可通過分子束外 延法(MBE)、化學束外延法(CBE)、減壓外延法、低 溫外延法、選擇外延法、液相沈積外延法(LPE)、金屬 有機氣相外延法(MOVPE)、超真空化學氣相沈積法( UHVCVD)、氫化物氣相外延法(HVPE)、及金屬有機化學 氣相沈積法(MOCVD)等中的一種或複數種實現。 100112852 表單編號A0101 第14頁/共45頁 1002021412-0 201240137 剛所述外延層m指通過外延法生長在基底ι〇〇的外延生長 面101的單晶結構體。所述外延層1〇4的生長的厚度可根 據需要製備。具體地,所述外延層1〇4的生長的厚度可為 5不米1毫*。例如,所述外延層的生長的厚度可 為100奈米~500微求,或2〇〇奈米〜200微米’或500奈米 ~1〇〇微米。所述外延層1〇4可為—半導體外延層,且該半 導體外延層的材料為GaMnAs、⑽仏、㈢士、⑽The nanocarbon line can be a non-twisted nanocarbon line or a twisted nanocarbon line. The non-twisted nanocarbon pipeline and the twisted nanocarbon pipeline are both self-supporting structures. Specifically, referring to Figure 5, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending in a direction parallel to the length of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by a van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through a van der Waals force. Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米至100微米。 The non-twisted nano carbon line length is not limited, the diameter is 0.5 nm ~ 100 microns. The non-twisted nano carbon line is obtained by treating the carbon nanotube membrane with an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and the mutually parallel complex carbon nanotubes in the carbon nanotube film pass through the surface tension generated by the volatilization of the volatile organic solvent. The wattage is tightly combined to shrink the carbon nanotube membrane into a non-twisted nanocarbon pipeline. The organic solvent is a volatile organic solvent such as ethanol, decyl alcohol, acetone, dioxane or gas, and ethanol is used in this embodiment. The non-twisted nanocarbon line treated by the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which is not treated with the organic solvent. The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to Figure 6, the twisted nano 100112852 Form No. A0101 Page 13 of 45 1002021412-0 [0033] The 201240137 carbon line includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon line. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals, and each of the carbon nanotube segments includes a plurality of parallel and through van der Waals Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〜100微米。 The twisted nano carbon line length is not limited, the diameter is 0. 5 nanometers ~ 100 microns. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals to make the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength. [0034] The nano carbon pipeline and the preparation method thereof can be referred to the application of Fan Shoushan et al. on November 5, 2002, and the Taiwan Patent No. 1303239 announced on November 27, 2008, "a nano carbon tube rope and "Manufacturing method", Applicant: Hon Hai Precision Industry Co., Ltd., and the application of the Taiwan Patent No. 1 31 2337, which was filed on December 16, 2005, announced on July 21, 2009. "Applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only this is cited, but all the technical disclosures of the above application should also be considered as part of the technical disclosure of the present application. [0035] In step S30, the growth method of the epitaxial layer 104 can be performed by molecular beam epitaxy (MBE), chemical beam epitaxy (CBE), vacuum deuteration, low temperature epitaxy, selective epitaxy, liquid deposition epitaxy Method (LPE), metal organic vapor phase epitaxy (MOVPE), ultra-vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy (HVPE), and metal organic chemical vapor deposition (MOCVD) One or a plurality of implementations. 100112852 Form No. A0101 Page 14 of 45 1002021412-0 201240137 The epitaxial layer m just described is a single crystal structure grown on the epitaxial growth surface 101 of the substrate ι by epitaxy. The thickness of the growth of the epitaxial layer 1〇4 can be prepared as needed. Specifically, the thickness of the epitaxial layer 1〇4 may be 5 m1 or less. For example, the thickness of the epitaxial layer may be from 100 nm to 500 μm, or from 2 nm to 200 μm or from 500 nm to 1 μm. The epitaxial layer 1 〇 4 may be a semiconductor epitaxial layer, and the material of the semiconductor epitaxial layer is GaMnAs, (10) 仏, (3), (10)

SiGe、InP、Si、AIN、GaN、GalnN、AlInN、GaAIN 或AlGaInN。所述外延層m可為—金屬外延層,且該金 Ο 4外延層的材料為叙、銘、銅或銀。所述外延層104可為 一合金外延層,且該合金外延層的材料為MnGa、c〇MnGa 或Cc^MnGa。所述外延層104的材料與基底1〇〇的材料可 相同也可不同。若所述外延層1〇4的材料與基底1〇〇的材 料相同則外延層104為-同質外延層。若所述外延層1〇4 的材料與基底100的材料不同則外延層1〇4為一異質外延 層。 ◎ 闕請參閱圖7,具體地,所述外延層1〇4的生長過程具體包 括以下步驟: [0038] S31 :沿基本垂直於所述基底1〇〇的外延生長面1〇1方向 成核並外延生長形成複數外延晶粒1〇42 ; [0039] S32 :所述複數外延晶粒1 042沿基本平行於所述基底1〇〇 的外延生長面101方向外延生長形成—連續的外延薄膜 1044 ; [0040] S33 :所述外延薄膜1044沿着基本垂直於所述基底1〇〇的 100112852 表單編號A0101 第15頁/共45頁 1002021412-0 201240137 外延生長面101方向外延生長形成一外延層104。 [0041] #驟S31中’所述複數外延晶粒1〇42在所述基底1〇〇的外 延生長面101通過該奈米碳管層102的開口 105暴露的部 生長且其生長方向基本垂直於所述基底1〇〇的外 延生長面101 ’即該步驟中複數外延晶粒1042進行縱向外 延生長。 _步驟S32中’通過控制生長條件使所述複數外延晶粒1042 〜基本平行於所述基底100的外延生長面101的方向同質 外延生長並連成一體將所述奈米碳管層1〇2覆蓋。即,該 步驟中所述複數外延晶粒1 042進行侧向外延生長直接合 攏’並最終在奈米碳管周圍形成複數孔洞1〇3將奈米礙管 包圍:該複數孔洞1〇3可為奈米級微孔結構。優選地,奈 米石厌管與包圍該奈米碳管的外延層工〇 4間隔設置 。所述孔 洞的形狀與奈米碳管層102中的奈米碳管的排列方向有關 。當奈米碳管層102為單層奈米碳管膜時,所述複數孔洞 1〇3相互連通並分佈在同一平面内。當奈米碳管層102為 複數平行設置的奈米碳管線時,所述複數孔洞1〇3為基本 平行設置的溝槽。當奈米雙管層1〇2為複數交又設置的奈 米碳g膜或複Hx置的奈米碳管線時,所述複數孔 洞103為交叉設置的溝槽網&。 _步驟S33中,由於所述奈米雙管層1〇2的存在,使得外延 晶粒1 042與基底100之間的晶格錯位在形成連續的外延薄 膜1044的過程中停止生長。因此,該步驟的外延層104相 當於在沒有缺陷的外延薄模1044表面進行同質外延生長 。所述外延層104具有較少的缺陷。所述外延層104覆蓋 100112852 表單編號A0101 第16頁/共45百 Ά 1002021412-0 201240137 所述奈米碳管層102設置並滲透奈米碳管層102的開口 105與所述基底100的外延生長面101接觸。將該基底100 、奈米碳管層102及外延層104組成的結構體定義為初級 外延結構體108。 [0044] Ο 本發明第一實施例中,所述基底1〇〇為一藍寶石(αι2〇3 )基片,所述奈米碳管層102為一單層奈米碳管膜。所述 單層奈米碳管膜係由若干奈米碳管組成的自支撐結構。 在該單層奈米碳管膜中大多數奈米碳管的整體延伸方向 基本朝同一方向。所述單層奈米碳管膜中基本朝同一方 向延伸的大多數奈米碳管中每一奈米碳管與在延伸方向 上相鄰的奈米碳管通過凡得瓦力首尾相連。本實施例採 用MOCVD方法進行外延生長。其中,採用高純氨氣(NHq) όSiGe, InP, Si, AIN, GaN, GalnN, AlInN, GaAIN or AlGaInN. The epitaxial layer m may be a metal epitaxial layer, and the material of the gold germanium epitaxial layer is Syrian, Ming, copper or silver. The epitaxial layer 104 may be an alloy epitaxial layer, and the material of the epitaxial layer of the alloy is MnGa, c〇MnGa or Cc^MnGa. The material of the epitaxial layer 104 may be the same as or different from the material of the substrate. If the material of the epitaxial layer 1〇4 is the same as the material of the substrate 1〇〇, the epitaxial layer 104 is a homoepitaxial layer. If the material of the epitaxial layer 1〇4 is different from the material of the substrate 100, the epitaxial layer 1〇4 is a heteroepitaxial layer. ◎ Please refer to FIG. 7. Specifically, the growth process of the epitaxial layer 1〇4 specifically includes the following steps: [0038] S31: nucleating along an epitaxial growth surface 1〇1 substantially perpendicular to the substrate 1〇〇 And epitaxially growing to form a plurality of epitaxial grains 1 〇 42; [0039] S32: the plurality of epitaxial grains 104 2 are epitaxially grown along a direction substantially parallel to the epitaxial growth surface 101 of the substrate 1 — - a continuous epitaxial film 1044 [0040] S33: the epitaxial film 1044 is epitaxially grown along an epitaxial growth surface 101, which is substantially perpendicular to the substrate 1100, 100112852, Form No. A0101, Page 15/45, 1002021412-0 201240137, to form an epitaxial layer 104. . [0041] The plurality of epitaxial grains 1 〇 42 in the step S31 are grown at a portion of the epitaxial growth surface 101 of the substrate 1 through the opening 105 of the carbon nanotube layer 102 and the growth direction thereof is substantially vertical The epitaxial growth surface 101' of the substrate 1', that is, the plurality of epitaxial grains 1042 in this step is longitudinally epitaxially grown. In step S32, 'the plurality of epitaxial grains 1042 are substantially homogenously epitaxially grown and integrated in a direction substantially parallel to the epitaxial growth surface 101 of the substrate 100 by controlling growth conditions. The carbon nanotube layer 1〇2 cover. That is, in the step, the plurality of epitaxial grains 1042 are subjected to lateral epitaxial growth to directly close together and finally form a plurality of holes around the carbon nanotubes 1〇3 to surround the nanotubes: the plurality of holes 1〇3 may be Nano-scale microporous structure. Preferably, the nano-holes are disposed at an interval from the epitaxial layer of the carbon nanotubes surrounding the carbon nanotubes. The shape of the holes is related to the arrangement direction of the carbon nanotubes in the carbon nanotube layer 102. When the carbon nanotube layer 102 is a single-layer carbon nanotube film, the plurality of pores 1〇3 are connected to each other and distributed in the same plane. When the carbon nanotube layer 102 is a plurality of parallel carbon nanotubes disposed in parallel, the plurality of pores 1〇3 are substantially parallel grooves. When the nanotube layer 1〇2 is a plurality of nano carbon film or a complex Hx nanocarbon line, the plurality of holes 103 are intersecting groove nets & In step S33, due to the presence of the nanotube layer 1〇2, the lattice misalignment between the epitaxial grains 1042 and the substrate 100 stops growing during the formation of the continuous epitaxial film 1044. Therefore, the epitaxial layer 104 of this step is equivalent to homoepitaxial growth on the surface of the epitaxial thin film 1044 having no defects. The epitaxial layer 104 has fewer defects. The epitaxial layer 104 covers 100112852 Form No. A0101 Page 16 / 45 Ά 1002021412-0 201240137 The carbon nanotube layer 102 is disposed and penetrates the opening 105 of the carbon nanotube layer 102 and the epitaxial growth of the substrate 100 Face 101 is in contact. The structure composed of the substrate 100, the carbon nanotube layer 102, and the epitaxial layer 104 is defined as a primary epitaxial structure 108. [0044] In the first embodiment of the present invention, the substrate 1 is a sapphire (αι2〇3) substrate, and the carbon nanotube layer 102 is a single-layer carbon nanotube film. The single-layered carbon nanotube membrane is a self-supporting structure composed of a plurality of carbon nanotubes. In the single-layered carbon nanotube film, the majority of the carbon nanotubes extend substantially in the same direction. Each of the plurality of carbon nanotubes extending substantially in the same direction in the single-layered carbon nanotube film is connected end to end with a vanadium tube adjacent to each other in the extending direction. This embodiment employs an MOCVD method for epitaxial growth. Among them, the use of high purity ammonia (NHq) ό

作為氮的源氣,採用氫氣(Η2)作載氣,採用三甲基鎵 (TMGa)或三乙基鎵(TEGa)、三甲基銦(TMIn)、三甲基 鋁(ΤΜΑ1)作為Ga源、In源及Α1源。具體包括以下步驟。 首先,將藍寶石基底100置入反應室,加熱到11 00°C 〜1200°C,並通入H2、\或其混合氣體作為載氣,高溫烘 烤200秒〜1 000秒。其次,繼續同入載氣,並降溫到500 °C〜650°C,通入三甲基鎵或三乙基鎵及氨氣,生長GaN低 溫緩衝層,其厚度10奈米~50奈求。然後,停止通入三甲 基鎵或三乙基鎵,繼續通入氨氣及載氣,同時將溫度升 高到1100°C~1 200°C,並恒溫保持30秒〜300秒,進行退 火。再次,將基底100的溫度保持在1 000°C~1100°C,繼 續通入敦氣及載氣,同時重新通入三曱基錄或三乙基錄 ,在高溫下完成GaN的側向外延生長過程,並生長出高質 100112852 表單編號A0101 第17頁/共45頁 1002021412-0 201240137 量的G a N外延層。初級外延結構體1 0 8生長完畢後,分別 用掃描電子顯微鏡(SEM)及透射電子顯微鏡(ΤΕΜ)對初級 外延結構體108進行觀察及測試。本發明第一實施例中, 基底100的材料為藍寶石,外延層104的材料為GaN,因 此外延層104為異質外延層。請參閱圖8及圖9,本實施例 製備的初級外延結構體108中,異質外延層僅從基底的外 延生長面沒有奈米碳管層的位置開始生長,然後連成一 體。所述異質外延層與基底接觸的表面形成複數孔洞, 所述奈米碳管層設置於該孔洞内,且與異質外延層間隔 設置。具體地,從所述圖8中可清楚其看到GaN異質外延 層及藍寶石基底之間的界面,其中,深色部份為GaN異質 外延層,淺色部份為藍寶石基底。所述GaN異質外延層與 藍寶石基底接觸的表面具有一排孔洞103。從所述圖9中 可看到,每一孔洞103内設置有奈米碳管。所述孔洞103 内的奈米碳管設置於藍寶石基底表面,且與形成孔洞103 的GaN異質外延層間隔設置。 [0045] 步驟S40中,可通過電漿體蝕刻法、鐳射加熱法或者加熱 爐加熱法去除奈米碳管層102,使奈米碳管層102中的奈 米碳管被物理蝕刻去除或使奈米碳管發生氧化反應生成 氣體被去除。 [0046] 所述通過電漿蝕刻法去除奈米碳管層1 0 2的方法包括以下 步驟: [0047] 步驟S412 ;將所述初級外延結構體108放入一真空腔體; [0048] 步驟S4 1 4 ;在真空腔體中通入反應氣體,形成該反應氣 100112852 表單編號A0101 第18頁/共45頁 1002021412-0 201240137 體的電漿,使該電漿與奈米碳管層102反應。 [0049] 在步驟S412中,所述真空腔體可為一反應離子蝕刻機的 真空腔體。 [0050] 步驟S414可具體包括以下步驟: [〇〇51] 步驟S4142,將該反應離子蝕刻機的真空腔體中抽成真空 [0052] 步驟s4144,在反應離子蝕刻機的真空腔體中通入反應氣 體’該反應氣體可選擇為氧氣、氫氣或四氟化碳等; [0053] 步驟S4146,在上述真空腔體中通過輝光放電反應產生反 應氣體的電漿,並與奈米碳管層1〇2進行反應。 [0054]在步驟S4146中,反應氣體通過輝光放電形成電漿,該電 衆包括帶電荷的離子及電子。依據反應氣體的不同,該 電聚包括氧電漿、氫電漿或四氟化碳電漿等常用的電漿 。優選地’該反應氣體為氧氣,該電漿為氧電聚。由於 該電榮具有較好的流動性,通過適當控制真空腔内氣體 | 壓強及反應時間,電漿可滲透至初級外延結構體108的孔 洞103中。在初級外延結構體108的孔洞103中,奈米碳 管與外延層1〇4間隔設置。因此,電漿較易進入上述外延 層104的孔洞103中撞擊奈米碳管表面對奈米碳管進行物 理#刻’或者通過與奈米碳管層102中的碳原子發生氧化 反應生成二氡化碳等易揮發的反應產物對奈米碳管層102 進行化學钱刻。上述反應時間不易太短時,否則奈米碳 管層102與電漿反應不充分,無法達到去除奈米碳管層 102的目的。上述輝光放電反應的功率可為20~300瓦, 100112852 表單煸號 A0101 第 19 頁/共 45 頁 1002021412-0 201240137 優選為150瓦。反應氣體流量為10〜100標準狀態毫升/分 鐘(seem),優選為50sccm。真空腔體内氣體壓強為 1〜100帕,優選為10帕。電漿與奈米碳管反應時間為10 秒~ 1小時,優選為1 5秒〜1 5分鐘。 [0055] 所述通過鐳射加熱去除奈米碳管層102的方法具體包括以 下步驟: [0056] 步驟S422 ;提供一鐳射裝置,從該鐳射裝置發射雷射光 束照射至該初級外延結構體108中的基底100的表面。 [0057] 步驟S424 ;在含有氧氣的環境中,使雷射光束與所述初 級外延結構體108中的基底100的表面進行相對運動從而 使雷射光束掃描該初級外延結構體108中的基底100的表 面。 [0058] 在步驟S422中,鐳射裝置包括固體雷射器、液體雷射器 、氣體雷射器及半導體雷射器。鐳射的功率密度大於 0.053xl012瓦特/平方米,光斑的直徑在1毫米〜5毫米範 圍内,鐳射的照射時間小於1. 8秒。本實施例中,鐳射裝 置為二氧化碳雷射器,該雷射器的功率為30瓦特,波長 為10. 6微米,光斑的直徑為3毫米。優選地,所述雷射光 束垂直入射照射至初級外延結構體108中的基底100的表 面,即雷射光束基本垂直於所述基底100的表面。 [0059] 所述鐳射裝置的參數的選擇應考慮外延層104的材料在鐳 射照射下的穩定性。當所述外延層104的材料為GaN時, 在生長GaN的過程中可先生長一低溫GaN緩衝層,後生長 一高溫GaN層,或者直接生長高溫GaN層。本實施例中, 100112852 表單編號A0101 第20頁/共45頁 1002021412-0 201240137 [0060] Ο [0061] [0062] ❹ [0063] 100112852 外延層104包括一低溫GaN緩衝層及一高溫GaN層。由於 ’低溫GaN緩衝層對波長為248ηιη的鐳射有很強的吸收性 ’因此’低溫GaN在波長為248nm的鐳射照射下會分解為 Ga及N2 °因此’若外延層1〇4中包括低溫GaN緩衝層,則 採用鐘射去除奈米碳管層1〇2時,應避免選擇波長為 248nm的鐳射。當所述外延層1()4為其他材料時,也應避 免選擇會使外延層104發生不穩定的鐳射。 所述鐳射裝置包括至少一雷射器,當該鐳射裝置包括一 雷射器時’該鐳射裝置照射形成一光斑,該光斑的直徑 為1毫米~5毫米。當該鐳射裝置包括複數雷射器時,該鐳 射裝置照射形成一連續的鐳射掃描區,該鐳射掃描區為 由複數連續的鐳射光斑組成的條帶狀光斑,該條帶狀光 斑的寬度為1毫米〜5毫米,長度大於等於基底1〇〇的表面 的寬度。 步驟S424可通過以下兩種方法實現: 方法一:固定初級外延結構體108,然後移動鐳射裝置照 射該碳初級外延結構體108的方法’其具體包括以下步驟 :固定初級外延結構體108 ;提供一可移動的鐳射裝置; 及移動該鐳射裝置掃描該初級外延結構體1 〇8中的基底 100的表面。 方法二:固定错射裝置,移動初級外延結構想1〇8使鍾射 照射該初級外延結構體108中的基底100的表面的方法, 其具體包括以下步驟:提供一固定的鐳射裝置,該鐳射 裝置在一固定區域形成一鐘射掃描區;提供所述初級外 表單編號A0101 第21頁/共45頁 1002021412-0 201240137 延結構體1 0 8,使該初級外延結構體1 0 8中的基底1 〇 〇的 表面以一定的速度經過該鐳射掃描區。 [0064] 若基底100為不透光材料’當所述雷射光束照射在基底 1〇〇的表面時’所述基底1〇〇被雷射光束加熱並將熱量傳 導至奈米碳管層102。由於外延層104的孔洞1〇3中奈米 碳管與外延層104間隔設置’因此氧氣較容易進入外延層 1〇4的孔洞1〇3中。奈米碳管層102中的奈米碳管吸收熱 量並在氧氣的作用下被氧化成二氧化碳氣體進而被去除 〇 [0065] 若基底100為透光材料,則雷射光束可穿透基底ι〇〇直接 照射在奈米碳管層102上。由於奈米碳管對録射具有良好 的吸收特性’且奈米碳管層102中的奈米碳管將會吸收錯 射能S與氧氣發生反應而被燒餘去除,可通過控制該初 級外延結構體108的移動速度或該鐳射掃描區的移動速度 ,來控制鐳射照射奈米碳管層102的時間,從而控制奈米 碳管層102中奈米碳管所吸收的能量,使得該奈米碳管層 102中的奈米碳管被燒蚀去除。可以理解,對於具有固定 功率密度、固定波長的鐳射裝置,奈米碳管層i 〇2通過鐳 射掃描區的速度越小’奈米碳管層1〇2被照射的時間越長 ,奈米碳管層102中的奈米碳管束吸收的能量越多,奈米 碳管層102就越容易被燒姓去除。本實施例中,雷射器與 奈米碳管層102的相對運動速度小於1〇毫米/秒。可以理 解,上述錯射掃描奈米碳管層的方法不限,只要能夠 均勻照射該奈米碳管層1 〇 2即可。鐘射掃描可沿平行奈米 碳管層102中奈米碳管的排列方向逐行進行,也可沿垂直 100112852 表單編號A0101 第22頁/共45頁 1002021412-0 201240137 於奈米破管層10 2中奈米碳管的排列方向逐列進行。 [0066] 所述在氣氣環境下通過加熱爐加熱所述奈米碳管層ι〇2的 方法具體包括以下梦驟: [0067] 步驟S432,提供一加熱爐。該加熱爐的結構不限,只要 可提供均勻穩定地的加熱溫度即可。優選地所述加熱爐 為一電阻爐。所述電阻爐可為先前技術中的電阻爐。 [0068] 步驟S432,將所述初級外延結構體108放置於所述加熱爐 的内部,在氧氣環境下加熱所述初級外延結構體1〇8。 [0069] 所述初級外延結構韹108中的奈米碳管層1〇2吸收加熱爐 的熱量與氧氣發生反應而被燒蝕。電阻爐的知熱溫度在 600QC以上,玎確保奈米碳管獲得足夠的熱量與氡氣反鹿 。優選地,通過電阻爐將初級外延結構體加熱到65〇s C以上從而使奈米礙管層1 02去除。 [0070] 去除奈米碳管層1〇2之後得到外延結構體10。該外延結構 體10中外延層104具有複數孔洞103 ’外延層1〇4的非孔 洞103的區域與基體100接觸。 [0071] 本發明提供的去除奈米碳管層1〇2的鐳射加熱或者加熱爐 加熱或者通過電漿蝕刻的方法均具有方法簡單,無污染 的優點。 [0072]本發明第一實施例中,在含氧環境下,通過二氣化碳兩 射器照射藍寶石基底100,鐳射透過藍寶石基底丨〇〇照射 在奈米碳管層的表面使奈米碳管層被燒蝕掉進而被去盼 。該二氧化碳雷射器的功率為30瓦特,波長為1〇6^^#米 100112852 表單編號A0101 第23頁/共45頁 1002021412-0 201240137 ’ S斑直㈣3毫米’三氧化碳鐳射裝置與藍寶石基底 100的相對運動迷度小於10毫米/秒。 [0073] [0074] [0075] 本發明第—實施例製備的外延結構體1G包括-基底1〇〇及 外延層104 ’該基底1 〇〇具有一外延生長面ιοί,所述外 延層104設置於所述基底100的外延生長面101。所述外 延層104具有複數孔洞1〇3,該複數孔洞1〇3分佈在外延 層104及基底100的交界面處。所述複數孔洞1〇3的形成 對應於奈米碳管層102的形狀。 本發明第二實施例提供一種外延結構體的製備方法❶本 發明第二實施例提供的外延結構體的製備方法與本發明 第一實施例提供的外延結構體的製備方法基本相同,其 區別在於:所述基底為一絕緣體上的石夕基片( silicon on insulator),所述奈米碳管層為複數平行 且間隔設置的奈米碳管線。 具體地,首先,在SOI基底的外延生長面舖設複數平行且 間隔設置的奈米碳管線。然後在基底的外延生長面外延 生長GaN外延層’生長溫度l〇7〇°c,生長時間45〇秒,主 要係進行GaN的縱向生長;接著保持反應室壓力不變,升 高溫度到1110°C,同時降低Ga源流量,而保持氨氣流量 不變,以促進側向外延生長,生長時間為49〇〇秒;再次 ,降低溫度至1 070 C,同時增加(^源流量繼續縱向生長 阻爐將基底 管層去除。 ’分別採用三 1 0000秒;最後,在含氧環境下,通過一電 100及GaN外延層加熱至600。(:從而使奈米碳 本實施採用M0CVD方法進行外延生長。其中 100112852 甲基鎵(TMGa)、三甲基鋁(TMA1)作為Ga及八丨的源物質 表單編號A0】0〗 第24頁/共45頁 】00202】4】2-0 201240137 [0076] Ο [0077] Ο [0078] ,氨氣(νη3)作為氮的源物質,氫氣(Η )作載氣,使用臥 式水準反應爐加熱。本發明第二實施例製備得到的外延 結構體與本發明第一實施例製備得到的外延結構體相似 ,其區別在於,所述孔洞為複數相互平行的溝槽,該溝 槽可為奈米級溝槽。 本發明弟二實施例知:供一種外延結構體的製備方法。本 發明第三實施例提供的外延結構體的製備方法與本發明 第二實施例提供的外延結構體的製備方法基本相同,其 區別在於,交叉且間隔地設置複數奈米碳管線於基底的 外延生長面,以形成奈米碳管層,生長外延層之後通過 氧電漿敍刻法去除奈米碳管層從而在外延層中形成交叉 且連通的孔洞。 具體地,所述奈米碳管層中複數奈米碳管線分別沿第一 方向與第二方向平行設置,所述第一方向與第二方向交 叉設置。交又且間相鄰的四奈米碳管線之間形成一開口 。本實施例中,相鄰的二奈米碳管線平行設置,相交叉 的二奈米碳管線相互垂直。可以理解,所述奈米碳管線 也可採用任意交叉方式設置,只需使奈米碳管層形成複 數開口,從而使基底的外延生長面部份暴露即可。 請參閱圖10,為通過本發明第三實施例的方法製備的一 種外延結構體10,其包括:_基底1〇〇、一外延層1〇4及 形成於外延層104中的複數交又且連通的孔洞112。 本發明第四實施例進一步提供一種外延結構體的製備方 法,其具體包括以下步驟: 100112852 表單編號Α0101 第25頁/共45頁 1002021412-0 [0079] 201240137 [0080] [0081] [0082] [0083] [0084] S102 :提供一基底,且該基底具有—凌 外延生長面; 一 ^卜延層生㈣ S202 :在所述基底的外延生長面設置— $米礤營展 基底與奈米碳管層共同構成一襯底;及 增’該 S302 .在基底的外延生長面生長同質外延層 S402 :去除奈米碳管層獲得一外延結攝# 本發明第四實施例的外延層的生長方法與 外延層的生長方法基本相同,其區別在於〜實施例的 外延層的材料相同,從而構成一同質外 所迷基底與 、卜延結; 明第四實施例中,基底與外延層的材料岣 瑕。本發 100及外延層104為同質結構,即所述外延層aN °當基底 生長時,所述基底100與外延層1〇4的界 1〇4為同質 。所述外延結構體10實際上的結構為—層 乃辨 ®叫貝結構體, 該同質結構體中具有複數孔洞103相互連通分佈在同 , 面内 [〇〇85]請參閱圖11,本發明第五實施例提供一種外延結構體2〇 的生長方法,其具體包括以下步驟: [0086] S104 :提供一基底100,且該基底1〇〇具有一支持外延層 生長的外延生長面101 ; [0087] S204 :在所述基底100的外延生長面1〇1設置一第一奈米 碳管層1 0 6 ; [0088] S304 :在基底100的外延生長面1〇1生長一第一外延層 107 ; 100112852 表單編號A0101 第26頁/共45頁 1002021412-0 201240137 [0089] [0090] [0091] [0092] Ο [0093]As a source gas of nitrogen, hydrogen (Η2) is used as a carrier gas, and trimethylgallium (TMGa) or triethylgallium (TEGa), trimethylindium (TMIn), or trimethylaluminum (ΤΜΑ1) is used as a Ga source. , In source and Α1 source. Specifically, the following steps are included. First, the sapphire substrate 100 is placed in a reaction chamber, heated to 1100 ° C to 1200 ° C, and passed through H 2 , \ or a mixed gas thereof as a carrier gas, and baked at a high temperature for 200 seconds to 1 000 seconds. Secondly, continue to carry the same carrier gas, and cool down to 500 °C ~ 650 °C, pass through trimethylgallium or triethylgallium and ammonia, grow GaN low temperature buffer layer, the thickness of 10 nm ~ 50. Then, stop the introduction of trimethylgallium or triethylgallium, continue to pass ammonia and carrier gas, and raise the temperature to 1100 ° C ~ 1 200 ° C, and maintain the temperature for 30 seconds ~ 300 seconds, for annealing . Again, the temperature of the substrate 100 is maintained at 1 000 ° C ~ 1100 ° C, continue to enter the gas and carrier gas, while re-introduction of the triterpene or triethyl record, the lateral extension of GaN at high temperatures The growth process, and the growth of high quality 100112852 Form No. A0101 Page 17 / Total 45 pages 1002021412-0 201240137 amount of G a N epitaxial layer. After the growth of the primary epitaxial structure 1 0 8 was completed, the primary epitaxial structure 108 was observed and tested by a scanning electron microscope (SEM) and a transmission electron microscope (ΤΕΜ), respectively. In the first embodiment of the present invention, the material of the substrate 100 is sapphire, and the material of the epitaxial layer 104 is GaN, since the additional layer 104 is a heteroepitaxial layer. Referring to Figures 8 and 9, in the primary epitaxial structure 108 prepared in this embodiment, the heteroepitaxial layer grows only from the position where the epitaxial growth surface of the substrate has no carbon nanotube layer, and then is integrated. The surface of the heteroepitaxial layer in contact with the substrate forms a plurality of holes, and the carbon nanotube layer is disposed in the hole and spaced apart from the heteroepitaxial layer. Specifically, it is clear from Fig. 8 that the interface between the GaN heteroepitaxial layer and the sapphire substrate is seen, wherein the dark portion is a GaN heteroepitaxial layer and the light portion is a sapphire substrate. The surface of the GaN heteroepitaxial layer in contact with the sapphire substrate has a row of holes 103. As can be seen from Fig. 9, a carbon nanotube is disposed in each of the holes 103. The carbon nanotubes in the holes 103 are disposed on the surface of the sapphire substrate and spaced apart from the GaN heteroepitaxial layer forming the holes 103. [0045] In step S40, the carbon nanotube layer 102 may be removed by a plasma etching method, a laser heating method, or a heating furnace heating method, so that the carbon nanotubes in the carbon nanotube layer 102 are physically etched or removed. The carbon nanotubes are oxidized to form a gas which is removed. [0046] The method for removing the carbon nanotube layer 102 by plasma etching comprises the following steps: [0047] Step S412; placing the primary epitaxial structure 108 into a vacuum chamber; [0048] S4 1 4 ; a reaction gas is introduced into the vacuum chamber to form a plasma of the reaction gas 100112852 Form No. A0101, page 18/45 pages 1002021412-0 201240137, and the plasma is reacted with the carbon nanotube layer 102. . [0049] In step S412, the vacuum chamber may be a vacuum chamber of a reactive ion etching machine. [0050] Step S414 may specifically include the following steps: [〇〇51] Step S4142, vacuuming the vacuum chamber of the reactive ion etching machine [0052] Step s4144, passing through the vacuum chamber of the reactive ion etching machine Into the reaction gas 'the reaction gas may be selected from oxygen, hydrogen or carbon tetrafluoride; [0053] Step S4146, a plasma of the reaction gas is generated by a glow discharge reaction in the vacuum chamber, and the carbon nanotube layer The reaction was carried out at 1〇2. In step S4146, the reactive gas forms a plasma by glow discharge, the population including charged ions and electrons. Depending on the reaction gas, the electropolymer includes conventional plasma such as oxygen plasma, hydrogen plasma or carbon tetrafluoride plasma. Preferably, the reaction gas is oxygen, and the plasma is oxygen electropolymerization. Since the device has good fluidity, the plasma can penetrate into the pores 103 of the primary epitaxial structure 108 by appropriately controlling the gas pressure and reaction time in the vacuum chamber. In the hole 103 of the primary epitaxial structure 108, the carbon nanotubes are spaced apart from the epitaxial layer 1〇4. Therefore, the plasma is more likely to enter the hole 103 of the epitaxial layer 104 and impact the surface of the carbon nanotube to physically or indirectly oxidize the carbon atom in the carbon nanotube layer 102. The volatile reaction product such as carbon is chemically engraved on the carbon nanotube layer 102. When the above reaction time is not too short, the reaction between the carbon nanotube layer 102 and the plasma is insufficient, and the purpose of removing the carbon nanotube layer 102 cannot be achieved. The power of the above glow discharge reaction can be 20~300 watts, 100112852 Form nickname A0101 Page 19 of 45 1002021412-0 201240137 is preferably 150 watts. The reaction gas flow rate is 10 to 100 standard conditions in milliliters per minute (seem), preferably 50 seem. The gas pressure in the vacuum chamber is from 1 to 100 Pa, preferably 10 Pa. The reaction time of the plasma with the carbon nanotubes is from 10 seconds to 1 hour, preferably from 15 seconds to 15 minutes. [0055] The method for removing the carbon nanotube layer 102 by laser heating specifically includes the following steps: [0056] Step S422; providing a laser device, and emitting a laser beam from the laser device to the primary epitaxial structure 108 The surface of the substrate 100. [0057] Step S424; in the environment containing oxygen, the laser beam is moved relative to the surface of the substrate 100 in the primary epitaxial structure 108 to cause the laser beam to scan the substrate 100 in the primary epitaxial structure 108. s surface. [0058] In step S422, the laser device includes a solid laser, a liquid laser, a gas laser, and a semiconductor laser. 8秒。 The laser power density is greater than 0.053xl012 watts / square meter, the spot diameter is in the range of 1 mm to 5 mm, the laser irradiation time is less than 1.8 seconds. In this embodiment, the laser device is a carbon dioxide laser having a power of 30 watts, a wavelength of 10.6 micrometers, and a spot diameter of 3 millimeters. Preferably, the laser beam is incident perpendicularly to the surface of the substrate 100 in the primary epitaxial structure 108, i.e., the laser beam is substantially perpendicular to the surface of the substrate 100. [0059] The selection of the parameters of the laser device should take into account the stability of the material of the epitaxial layer 104 under laser illumination. When the material of the epitaxial layer 104 is GaN, a low temperature GaN buffer layer may be grown in the process of growing GaN, a high temperature GaN layer may be grown later, or a high temperature GaN layer may be directly grown. In this embodiment, 100112852 Form No. A0101 Page 20 of 45 1002021412-0 201240137 [0060] [0062] 100112852 Epitaxial layer 104 includes a low temperature GaN buffer layer and a high temperature GaN layer. Since the 'low temperature GaN buffer layer is highly absorptive to lasers with a wavelength of 248 ηηη, 'low-temperature GaN will decompose into Ga and N2 ° under laser irradiation with a wavelength of 248 nm. Therefore, if the epitaxial layer 1〇4 includes low-temperature GaN For the buffer layer, when the carbon nanotube layer 1〇2 is removed by the clock, the laser with a wavelength of 248 nm should be avoided. When the epitaxial layer 1 () 4 is made of other materials, it is also desirable to avoid selecting a laser which causes the epitaxial layer 104 to be unstable. The laser device includes at least one laser, and when the laser device includes a laser, the laser device is illuminated to form a spot having a diameter of from 1 mm to 5 mm. When the laser device comprises a plurality of lasers, the laser device is illuminated to form a continuous laser scanning region, which is a strip-shaped spot composed of a plurality of consecutive laser spots, the strip-shaped spot having a width of 1毫米〜5 mm, the length is greater than or equal to the width of the surface of the substrate 1〇〇. Step S424 can be implemented by the following two methods: Method 1: Fixing the primary epitaxial structure 108, and then moving the laser device to illuminate the carbon primary epitaxial structure 108. The method specifically includes the following steps: fixing the primary epitaxial structure 108; providing a a movable laser device; and moving the laser device to scan a surface of the substrate 100 in the primary epitaxial structure 1 〇8. Method 2: A method of fixing a faulty device, moving a primary epitaxial structure, and causing a clock to illuminate a surface of the substrate 100 in the primary epitaxial structure 108, specifically comprising the steps of: providing a fixed laser device, the laser The device forms a clock-scanning area in a fixed area; providing the primary outer form number A0101 page 21/45 pages 1002021412-0 201240137 extended structure 1 0 8, the base in the primary epitaxial structure 1 0 8 The surface of the crucible passes through the laser scanning zone at a certain speed. [0064] If the substrate 100 is an opaque material 'When the laser beam is irradiated on the surface of the substrate 1', the substrate 1 is heated by the laser beam and conducts heat to the carbon nanotube layer 102. . Since the carbon nanotubes in the holes 1 〇 3 of the epitaxial layer 104 are spaced apart from the epitaxial layer 104, oxygen is more likely to enter the holes 1 〇 3 of the epitaxial layer 1 〇 4 . The carbon nanotubes in the carbon nanotube layer 102 absorb heat and are oxidized to carbon dioxide gas under the action of oxygen to be removed. [0065] If the substrate 100 is a light transmissive material, the laser beam can penetrate the substrate ι The ruthenium is directly irradiated on the carbon nanotube layer 102. Since the carbon nanotubes have good absorption characteristics for the recording, and the carbon nanotubes in the carbon nanotube layer 102 will absorb the misdirected energy S and react with oxygen to be removed by the combustion, the primary epitaxy can be controlled. The moving speed of the structure 108 or the moving speed of the laser scanning area controls the time of laser irradiation of the carbon nanotube layer 102, thereby controlling the energy absorbed by the carbon nanotubes in the carbon nanotube layer 102, so that the nano The carbon nanotubes in the carbon tube layer 102 are ablated and removed. It can be understood that for a laser device with a fixed power density and a fixed wavelength, the velocity of the carbon nanotube layer i 〇 2 passing through the laser scanning region is smaller. The longer the carbon nanotube layer 1 〇 2 is irradiated, the nano carbon The more energy the nanotube bundle in the tube layer 102 absorbs, the easier it is for the carbon nanotube layer 102 to be removed by burning. In this embodiment, the relative movement speed of the laser and the carbon nanotube layer 102 is less than 1 mm/sec. It is to be understood that the above method of erroneously scanning the carbon nanotube layer is not limited as long as the carbon nanotube layer 1 〇 2 can be uniformly irradiated. The clock shot can be performed line by line along the arrangement direction of the carbon nanotubes in the parallel carbon nanotube layer 102, or along the vertical 100112852 Form No. A0101 Page 22 / Total 45 Page 1002021412-0 201240137 On the nano tube layer 10 The arrangement direction of the 2 carbon nanotubes is performed column by column. [0066] The method for heating the carbon nanotube layer ι 2 by a heating furnace in an air atmosphere specifically includes the following dreams: [0067] Step S432, a heating furnace is provided. The structure of the heating furnace is not limited as long as a uniform and stable heating temperature can be provided. Preferably, the furnace is a resistance furnace. The electric resistance furnace may be a resistance furnace of the prior art. [0068] Step S432, the primary epitaxial structure 108 is placed inside the heating furnace, and the primary epitaxial structure 1〇8 is heated in an oxygen atmosphere. [0069] The carbon nanotube layer 1〇2 in the primary epitaxial structure 韹108 absorbs the heat of the heating furnace and reacts with oxygen to be ablated. The temperature of the resistance furnace is above 600QC, and the enthalpy ensures that the carbon nanotubes get enough heat and anti-deer. Preferably, the primary epitaxial structure is heated to 65 〇s C or more by an electric resistance furnace to remove the nano-barrier layer 102. [0070] After the carbon nanotube layer 1〇2 is removed, the epitaxial structure 10 is obtained. The epitaxial layer 104 of the epitaxial structure 10 has a region of the non-holes 103 of the plurality of holes 103' epitaxial layers 1 〇 4 in contact with the substrate 100. [0071] The laser heating or heating furnace heating or the plasma etching method for removing the carbon nanotube layer 1〇2 provided by the invention has the advantages of simple method and no pollution. [0072] In the first embodiment of the present invention, the sapphire substrate 100 is irradiated by a two-vaporized carbon two-shot device in an oxygen-containing environment, and the laser is irradiated through the sapphire substrate to irradiate the surface of the carbon nanotube layer to form a nanocarbon. The tube layer is ablated and is expected. The carbon dioxide laser has a power of 30 watts and a wavelength of 1 〇 6 ^ ^ # meters 100112852 Form No. A0101 Page 23 / Total 45 pages 1002021412-0 201240137 'S spot straight (four) 3 mm 'carbon monoxide laser device with sapphire substrate The relative motion of 100 is less than 10 mm/sec. [0075] The epitaxial structure 1G prepared in the first embodiment of the present invention includes a substrate 1 and an epitaxial layer 104. The substrate 1 has an epitaxial growth surface ιοί, and the epitaxial layer 104 is disposed. The epitaxial growth surface 101 of the substrate 100. The epitaxial layer 104 has a plurality of holes 1〇3 which are distributed at the interface of the epitaxial layer 104 and the substrate 100. The formation of the plurality of holes 1〇3 corresponds to the shape of the carbon nanotube layer 102. The second embodiment of the present invention provides a method for preparing an epitaxial structure. The method for preparing an epitaxial structure according to the second embodiment of the present invention is substantially the same as the method for preparing an epitaxial structure according to the first embodiment of the present invention. The substrate is a silicon on insulator on an insulator, and the carbon nanotube layer is a plurality of parallel and spaced carbon nanotubes. Specifically, first, a plurality of parallel and spaced carbon nanotube lines are laid on the epitaxial growth surface of the SOI substrate. Then epitaxially growing the GaN epitaxial layer on the epitaxial growth surface of the substrate, the growth temperature is 〇7〇°c, and the growth time is 45 〇 seconds, mainly for the longitudinal growth of GaN; then the pressure of the reaction chamber is kept constant, and the temperature is raised to 1110°. C, while reducing the Ga source flow, while maintaining the ammonia flow rate to promote lateral epitaxial growth, the growth time is 49 〇〇 seconds; again, reduce the temperature to 1 070 C, while increasing (^ source flow continues longitudinal growth resistance The furnace removes the base tube layer. 'Three thousand and ten thousand seconds respectively. Finally, in an oxygen-containing environment, it is heated to 600 by an electric 100 and GaN epitaxial layer. (: The nanocarbon is thus epitaxially grown by the M0CVD method. 100112852 Methyl gallium (TMGa), trimethyl aluminum (TMA1) as the source material of Ga and gossip Form No. A0] 0〗 Page 24 / Total 45 pages 00202] 4] 2-0 201240137 [0076]氨 [0078] Ammonia gas (νη3) is used as a source material of nitrogen, hydrogen gas (Η) is used as a carrier gas, and is heated by a horizontal level reactor. The epitaxial structure prepared by the second embodiment of the present invention and the present invention The outer surface prepared by the first embodiment of the invention The structure is similar, and the difference is that the hole is a plurality of mutually parallel grooves, and the groove can be a nano-scale groove. The second embodiment of the present invention is a method for preparing an epitaxial structure. The method for preparing the epitaxial structure provided by the third embodiment is basically the same as the method for preparing the epitaxial structure provided by the second embodiment of the present invention, and the difference is that the plurality of nano carbon lines are disposed on the epitaxial growth surface of the substrate at intervals and intervals. To form a carbon nanotube layer, after the epitaxial layer is grown, the carbon nanotube layer is removed by an oxygen plasma lithography method to form intersecting and interconnected pores in the epitaxial layer. Specifically, the nanocarbon layer in the carbon nanotube layer The carbon carbon pipelines are respectively disposed in parallel with the second direction along the first direction, and the first direction is disposed to intersect with the second direction. An opening is formed between the adjacent four carbon carbon pipelines in the first and second directions. In this embodiment, The adjacent two nano carbon pipelines are arranged in parallel, and the intersecting two nano carbon pipelines are perpendicular to each other. It can be understood that the nano carbon pipelines can also be arranged in any cross manner, and only need to make nanometers The tube layer forms a plurality of openings to expose the epitaxial growth surface portion of the substrate. Referring to FIG. 10, an epitaxial structure 10 prepared by the method of the third embodiment of the present invention includes: _substrate 1〇〇 An epitaxial layer 1 〇 4 and a plurality of interconnected and interconnected holes 112 formed in the epitaxial layer 104. The fourth embodiment of the present invention further provides a method for fabricating an epitaxial structure, which specifically includes the following steps: 100112852 Form number Α 0101 Page 25 / page 45 1002021412-0 [0079] [0084] [0084] S102: providing a substrate, and the substrate has a - epitaxial growth surface; (4) S202: disposed on the epitaxial growth surface of the substrate - the 礤 礤 camp base and the carbon nanotube layer together form a substrate; and the addition of the S302. The homoepitaxial layer S402 is grown on the epitaxial growth surface of the substrate: Removing the carbon nanotube layer to obtain an epitaxial junction. The method for growing the epitaxial layer of the fourth embodiment of the present invention is basically the same as the method for growing the epitaxial layer, and the difference is that the material of the epitaxial layer of the embodiment is the same, thereby constituting The substrate and outer homogeneous, extended BU junction fans; embodiment, the material of the substrate and the epitaxial layer defect Gou Ming fourth embodiment. The epitaxial layer 100 and the epitaxial layer 104 are of a homogenous structure, that is, the epitaxial layer aN° is homogenous to the boundary 1〇4 of the epitaxial layer 1〇4 when the substrate is grown. The actual structure of the epitaxial structure 10 is a layer structure, and the plurality of holes 103 in the homogenous structure are connected to each other in the same plane, in-plane [〇〇85], please refer to FIG. The fifth embodiment provides a method for growing an epitaxial structure, which specifically includes the following steps: [0086] S104: providing a substrate 100 having an epitaxial growth surface 101 supporting epitaxial layer growth; S087: a first carbon nanotube layer 1 0 6 is disposed on the epitaxial growth surface 1〇1 of the substrate 100; [0088] S304: a first epitaxial layer is grown on the epitaxial growth surface 1〇1 of the substrate 100 107; 100112852 Form No. A0101 Page 26 of 45 1002021412-0 201240137 [0089] [0091] [0093] [0093]

[0094] S404 :在該第一外延層107的遠離基底100的表面設置一 第二奈米碳管層109 ; S504 :在該第一外延層107的遠離基底100的表面生長一 第二外延層110得到一初級外延結構體208 ; S604 :去除該初級外延結構體208中的第一奈米碳管層 106及第二奈米碳管層109。 本發明第五實施例提供的外延結構體20的生長方法與第 一實施例提供的外延結構體10的生長方法相似,其區別 在於:本發明第五實施例的基底100上生長有兩層外延層 ,即第一外延層107及第二外延層11〇,且第一外延層 107及第二外延層110之間形成有孔洞狀的微結構,第一 外延層107及所述基底100的外延生長面101之間也形成 有孔洞狀的微結構。所述基底100、第一外延層107及第 二外延層110相互可為同質的也可為異質的。 在步驟S604中,通過鐳射照射的方法去除第一奈米碳管 層106及第二奈米碳管層109。所述鐳射可從基底1〇〇的 表面入射,也可從第二外延層110的表面入射。優選地, 所述鐳射分別從基底1〇〇的表面及第二外延層的表面 入射,如此可降低所需鐳射的強度及時間。 可以理解,可重複步驟S404及步驟s504,在基底100的 外延生長面101上重複生長外延層,即可在基底100的外 延生長面101生長至少兩層外延層,如在基底的外延生長 面101依次層疊生長第η層外延層,其中n為大於等於2的 整數。該至少兩層外延層中相鄰的外延層之間設置有一 100112852 表單編號Α0101 第27頁/共45頁 1002021412-0 201240137 丁米厌S層。4外延結構體包括複數疊設置的外延層, 至少相4的外延層的交界面設置有複數微孔結構,該 微孔結構可為奈米級微孔結構。 [酬本糾提供的外找龍㈣備総射訂有益效果 第本發明提供了一種在外延層與基底之間形成孔洞 狀奈米級微結構的方法,該方法通過設置—奈米碳管層 作為掩板的方法無需剝離基底即可在外延層的表面形成 孔洞狀微結構’方法簡單、成本低,克服了切技術基 本無法在不祕基底的情況τ在外延層與基底之間形成 孔洞狀奈米級微結構的技術問題。 [⑻97]第本發明方法製備的外延結構體在應用於製造發光 二極體時,形成在外延層表面的奈米級微結構可有效提 尚發光二鋪it;光效率,同時無需㈣基底有利於簡化 方法。 [0098] [0099] [0100] 第三’奈㈣管層為自支㈣構’可直接鋪設在基底表 面’方法簡單’有利於大規模產業化製造。 第四’本發明的方法可實現製備—同質結構體,該同質 結構體内具有複數奈米級微孔結構分佈在—平面内或相 互平饤且間隔的複數平面内,在半導體技術領域等複數 領域具有廣泛的應用前景。 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利f請。惟,以上所述者僅為本發明之較佳實施例 100112852 自不能以此限制本案之申請專利範圍 表單編號A0101 第28頁/共45頁 舉凡習知本案 1002021412-0 201240137 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0101] 圖1為本發明實施例提供的外延結構體的製備方法的方法 流程圖。 [0102] 圖2為本發明實施例中採用的奈米碳管膜的掃描電鏡照片[0094] S404: a second carbon nanotube layer 109 is disposed on a surface of the first epitaxial layer 107 away from the substrate 100; S504: a second epitaxial layer is grown on a surface of the first epitaxial layer 107 away from the substrate 100. 110: obtaining a primary epitaxial structure 208; S604: removing the first carbon nanotube layer 106 and the second carbon nanotube layer 109 in the primary epitaxial structure 208. The method for growing the epitaxial structure 20 according to the fifth embodiment of the present invention is similar to the method for growing the epitaxial structure 10 provided by the first embodiment, and the difference is that the substrate 100 of the fifth embodiment of the present invention has two layers of epitaxial growth thereon. The first epitaxial layer 107 and the second epitaxial layer 11 are formed, and a hole-shaped microstructure is formed between the first epitaxial layer 107 and the second epitaxial layer 110, and the first epitaxial layer 107 and the epitaxial layer 100 are epitaxial. A hole-like microstructure is also formed between the growth faces 101. The substrate 100, the first epitaxial layer 107, and the second epitaxial layer 110 may be homogenous or heterogeneous. In step S604, the first carbon nanotube layer 106 and the second carbon nanotube layer 109 are removed by laser irradiation. The laser may be incident from the surface of the substrate 1 , or may be incident from the surface of the second epitaxial layer 110. Preferably, the laser light is incident from the surface of the substrate 1 及 and the surface of the second epitaxial layer, respectively, so that the intensity and time of the required laser light can be reduced. It can be understood that step S404 and step s504 can be repeated, and the epitaxial layer is repeatedly grown on the epitaxial growth surface 101 of the substrate 100, so that at least two epitaxial layers can be grown on the epitaxial growth surface 101 of the substrate 100, such as the epitaxial growth surface 101 of the substrate. The n-th epitaxial layer is sequentially stacked, wherein n is an integer greater than or equal to 2. A gap is formed between adjacent epitaxial layers of the at least two epitaxial layers. 100112852 Form No. Α0101 Page 27/Total 45 Pages 1002021412-0 201240137 The epitaxial structure comprises a plurality of epitaxial layers arranged at a plurality of layers, and at least the epitaxial layer of the phase 4 is provided with a plurality of microporous structures, and the microporous structure may be a nanoporous structure. [Warning for the external search for the dragon (four) for the preparation of the beneficial effects of the first invention] The present invention provides a method for forming a hole-shaped nano-scale microstructure between the epitaxial layer and the substrate, the method by setting the carbon nanotube layer The method as a mask can form a hole-like microstructure on the surface of the epitaxial layer without peeling off the substrate. The method is simple and low in cost, and overcomes the fact that the cutting technique can hardly form a hole between the epitaxial layer and the substrate. Technical problems with nanoscale microstructures. [(8)97] The epitaxial structure prepared by the method of the present invention is applied to the manufacture of the light-emitting diode, and the nano-scale microstructure formed on the surface of the epitaxial layer can effectively improve the light-emitting efficiency; and the light efficiency is not required. To simplify the method. [0099] [0100] The third 'nano (four) tube layer is self-supporting (four) structure' can be directly laid on the surface of the substrate. The method is simple' and is advantageous for large-scale industrial manufacturing. The fourth method of the present invention can realize a preparation-homogeneous structure having a plurality of nano-scale microporous structures distributed in a plane or in a plane parallel to each other and spaced apart, in the field of semiconductor technology and the like The field has broad application prospects. In summary, the present invention has indeed met the requirements of the invention patent, and the patent is filed according to law. However, the above description is only the preferred embodiment of the present invention 100112852. It is not possible to limit the patent application scope of the present invention. Form No. A0101, page 28/45 pages, the person skilled in the art 1002021412-0 201240137 Equivalent modifications or variations of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0101] FIG. 1 is a flow chart of a method for fabricating an epitaxial structure according to an embodiment of the present invention. 2 is a scanning electron micrograph of a carbon nanotube film used in an embodiment of the present invention.

[0103] 圖3為圖2中的奈米碳管膜中的奈米碳管片段的結構示意 圖。 [0104] 圖4為本發明實施例中採用的複數交叉設置的奈米碳管膜 的掃描電鏡照片。 [0105] 圖5為本發明實施例中採用的非扭轉的奈米碳管線的掃描 電鏡照片。 [0106] 圖6為本發明實施例中採用的扭轉的奈米碳管線的掃描電 鏡照片。 [0107] 圖7為本發明實施例中外延層生長過程示意圖。 [0108] 圖8為本發明第一實施例製備的異質外延結構截面的掃描 電鏡照片。 [0109] 圖9為本發明第一實施例製備的異質外延結構介面處的透 射電鏡照片。 [0110] 圖10為本發明第三實施例提供的外延結構體的立體結構 示意圖。 1002021412-0 100112852 表單編號A0101 第29頁/共45頁 201240137 [0111] 圖1 1為本發明第五實施例提供的外延結構體的製備方法 的方法流程圖。 【主要元件符號說明】 100112852 表單編號 A0101 第 30 頁/共 45 頁 1002021412-0 [0112] 外延結構體:10、 20 [0113] 基底:100 [0114] 外延生長面:101 [0115] 奈米碳管層:102 [0116] 孔洞:10 3、11 2 [0117] 外延層:104 [0118] 開口 : 10 5 [0119] 第一奈米碳管層: 106 [0120] 第一外延層:107 [0121] 初級外延結構體: 108 ' 208 [0122] 第二奈米碳管層: 109 [0123] 第二外延層:110 [0124] 外延晶粒:1042 [0125] 外延薄膜:1044 [0126] 奈米碳管片段:143 [0127] 奈米碳管:1453 is a schematic view showing the structure of a carbon nanotube segment in the carbon nanotube film of FIG. 2. 4 is a scanning electron micrograph of a carbon nanotube film provided in a plurality of crossovers according to an embodiment of the present invention. 5 is a scanning electron micrograph of a non-twisted nanocarbon line used in an embodiment of the present invention. 6 is a scanning electron micrograph of a twisted nanocarbon line used in an embodiment of the present invention. 7 is a schematic view showing a growth process of an epitaxial layer in an embodiment of the present invention. 8 is a scanning electron micrograph of a cross section of a heteroepitaxial structure prepared in accordance with a first embodiment of the present invention. 9 is a transmission electron micrograph of a heteroepitaxial structure interface prepared in accordance with a first embodiment of the present invention. 10 is a schematic perspective view of an epitaxial structure according to a third embodiment of the present invention. 1002021412-0 100112852 Form No. A0101 Page 29 of 45 201240137 [0111] FIG. 11 is a flow chart of a method for fabricating an epitaxial structure according to a fifth embodiment of the present invention. [Description of main component symbols] 100112852 Form No. A0101 Page 30 of 45 1002021412-0 [0112] Epitaxial structure: 10, 20 [0113] Substrate: 100 [0114] Epitaxial growth surface: 101 [0115] Nano carbon Tube layer: 102 [0116] Hole: 10 3, 11 2 [0117] Epitaxial layer: 104 [0118] Opening: 10 5 [0119] First carbon nanotube layer: 106 [0120] First epitaxial layer: 107 [ 0121] Primary epitaxial structure: 108 '208 [0122] Second carbon nanotube layer: 109 [0123] Second epitaxial layer: 110 [0124] Epitaxial grain: 1042 [0125] Epitaxial film: 1044 [0126] Carbon tube fragment: 143 [0127] Nano carbon tube: 145

Claims (1)

201240137 七、申請專利範圍: 1 . 一種外延結構體之製備方法,其具體包括以下步驟: 提供一基底,該基底具有一支持外延層生長的外延生長面 9 在所述基底的外延生長面設置一奈米碳管層; 在基底的外延生長面生長一外延層並覆蓋所述奈米碳管層 ,形成一初級外延結構體; 去除該初級外延結構體中的奈米碳管層。 2 .如申請專利範圍第1項所述之外延結構體之製備方法,其 ® 中,所述去除該初級外延結構體中的奈米碳管層的方法為 對奈米碳管層中奈米碳管進行物理蝕刻。 3.如申請專利範圍第1項所述之外延結構體之製備方法,其 中,所述去除該初級外延結構體中的奈米碳管層的方法為 通過使奈米碳管層中的碳原子發生氧化反應生成二氧化碳 對奈米碳管層進行化學蚀刻。 4 .如申請專利範圍第1項所述之外延結構體之製備方法,其 中,所述奈米碳管層為一自支撐結構,所述奈米碳管層直 接鋪設在所述基底的外延生長面並與所述基底接觸設置。 5 .如申請專利範圍第4項所述之外延結構體之製備方法,其 中,所述奈米碳管層為一連續的整體結構。 6 .如申請專利範圍第4項所述之外延結構體之製備方法,其 中,所述奈米碳管層為至少一層奈米碳管膜,該奈米碳管 膜包括複數奈米碳管沿同一方向擇優取向延伸,該奈米碳 管膜中沿同一方向延伸的相鄰的奈米碳管通過凡得瓦力首 尾相連。 100112852 表單編號A0101 第31頁/共45頁 1002021412-0 201240137 7 .如申請專利範圍第4項所述之外延結構體之製備方法,其 中,所述奈米碳管層為複數相互平行且間隔設置的奈米碳 管線。 8 .如申請專利範圍第4項所述之外延結構體之製備方法,其 中,所述奈米碳管層為複數奈米碳管線組成的網狀結構。 9 ·如申請專利範圍第4項所述之外延結構體之製備方法,其 中,所述奈米碳管層具有複數開口,所述外延層覆蓋所述 奈米碳管層設置並滲透奈米碳管層的開口與所述基底的外 延生長面接觸。 10 .如申請專利範圍第1項所述之外延結構體之製備方法,其 中,所述外延層的生長方法具體包括以下步驟: 沿基本垂直於所述基底的外延生長面方向成核並外延生長 形成複數外延晶粒; 所述複數外延晶粒沿着基本平行於所述基底的外延生長面 方向側向外延生長形成一連續的外延薄膜; 所述外延薄膜沿基本垂直於所述基底的外延生長面方向外 延生長形成一外延層。 11 .如申請專利範圍第10項所述之外延結構體之製備方法,其 中,所述側向外延生長時,外延層在所述奈米碳管層周圍 形成複數孔洞將所述奈米碳管層中的奈米碳管包圍。 12 .如申請專利範圍第1項所述之外延結構體之製備方法,其 中,所述去除該初級外延結構體中的奈米碳管層的方法為 電漿蝕刻法,所述電漿蝕刻法去除奈米碳管層的方法具體 包括以下步驟:首先,將初級外延結構體放入一反應離子 蝕刻機的真空腔體中;其次,將該真空腔體抽成真空,在 反應離子蝕刻機的真空腔體中通入反應氣體;最後,在上 100112852 表單編號A0101 第32頁/共45頁 1002021412-0 201240137 述真空腔體中通過輝光放電反應產生反應氣體的電漿,該 電漿對奈米碳管層進行物理蝕刻或與奈米碳管層進行反應 進行化學钮刻,去除奈米碳管層。 13 .如申請專利範圍第12項所述之外延結構體之製備方法,其 中,所述反應氣體的電漿包括氧電漿、氫電漿或四氟化碳 電漿。 14 .如申請專利範圍第1項所述之外延結構體之製備方法,其 Ο201240137 VII. Patent application scope: 1. A method for preparing an epitaxial structure, which comprises the following steps: providing a substrate having an epitaxial growth surface supporting epitaxial layer growth 9 disposed on an epitaxial growth surface of the substrate a carbon nanotube layer; an epitaxial layer is grown on the epitaxial growth surface of the substrate and covers the carbon nanotube layer to form a primary epitaxial structure; and the carbon nanotube layer in the primary epitaxial structure is removed. 2. The method for preparing an outer structure according to the scope of claim 1, wherein the method for removing the carbon nanotube layer in the primary epitaxial structure is a nano-carbon nanotube layer The carbon tube is physically etched. 3. The method for preparing an outer structure according to claim 1, wherein the method of removing the carbon nanotube layer in the primary epitaxial structure is by passing carbon atoms in the carbon nanotube layer. The oxidation reaction generates carbon dioxide to chemically etch the carbon nanotube layer. 4. The method for preparing an outer structure according to claim 1, wherein the carbon nanotube layer is a self-supporting structure, and the carbon nanotube layer is directly laid on the substrate for epitaxial growth. And disposed in contact with the substrate. 5. The method of preparing an outer structure according to claim 4, wherein the carbon nanotube layer is a continuous unitary structure. 6. The method for preparing an outer structure according to claim 4, wherein the carbon nanotube layer is at least one layer of carbon nanotube film, and the carbon nanotube film comprises a plurality of carbon nanotube tubes The preferred orientation extends in the same direction, and adjacent carbon nanotubes extending in the same direction in the carbon nanotube film are connected end to end by van der Waals force. The method for preparing an outer structure according to the fourth aspect of the invention, wherein the carbon nanotube layer is plural and parallel to each other and is disposed at intervals of 10012. Nano carbon pipeline. 8. The method for preparing an outer structure according to the fourth aspect of the invention, wherein the carbon nanotube layer is a network structure composed of a plurality of carbon nanotubes. The method for preparing an outer structure according to claim 4, wherein the carbon nanotube layer has a plurality of openings, the epitaxial layer covers the carbon nanotube layer and penetrates the nanocarbon The opening of the tube layer is in contact with the epitaxial growth surface of the substrate. The method for preparing an outer structure according to claim 1, wherein the method for growing the epitaxial layer specifically comprises the steps of: nucleating and epitaxially growing in a direction substantially perpendicular to an epitaxial growth surface of the substrate; Forming a plurality of epitaxial grains; the plurality of epitaxial grains are laterally epitaxially grown along a direction substantially parallel to an epitaxial growth surface of the substrate to form a continuous epitaxial film; the epitaxial film is epitaxially grown substantially perpendicular to the substrate Epitaxial growth in the plane direction forms an epitaxial layer. The method for preparing an outer structure according to claim 10, wherein, in the lateral epitaxial growth, the epitaxial layer forms a plurality of holes around the carbon nanotube layer to form the carbon nanotube Surrounded by carbon nanotubes in the layer. 12. The method for preparing an outer structure according to claim 1, wherein the method of removing the carbon nanotube layer in the primary epitaxial structure is a plasma etching method, and the plasma etching method The method for removing the carbon nanotube layer specifically includes the following steps: first, placing the primary epitaxial structure into a vacuum chamber of a reactive ion etching machine; secondly, drawing the vacuum chamber into a vacuum, in the reactive ion etching machine The reaction gas is introduced into the vacuum chamber; finally, the plasma of the reaction gas is generated by the glow discharge reaction in the vacuum chamber in the above-mentioned 100112852 Form No. A0101, page 32/45 pages 1002021412-0 201240137, the plasma is applied to the nanometer. The carbon tube layer is physically etched or reacted with the carbon nanotube layer to perform chemical button etching to remove the carbon nanotube layer. 13. The method of preparing an outer structure according to claim 12, wherein the plasma of the reaction gas comprises an oxygen plasma, a hydrogen plasma or a carbon tetrafluoride plasma. 14. The preparation method of the extended structure as described in claim 1 of the patent application, 100112852 中,所述去除該初級外延結構體中的奈米碳管層的方法為 鐳射加熱法,所述鐳射加熱法去除奈米碳管層的方法具體 包括以下步驟:提供一鐳射裝置,從該鐳射裝置發射雷射 光束至該初級外延結構體中的基底的表面;在含有氧氣的 環境中,使雷射光束與初級外延結構體中的基底的表面進 行相對運動從而使雷射光束掃描該初級外延結構體中的基 底的表面,奈米碳管層中的奈米碳管吸收鐳射能量與氧氣 發生反應而被去除。 15 .如申請專利範圍第1項所述之外延結構體之製備方法,其 中,所述去除該初級外延結構體中的奈米碳管層的方法為 加熱爐加熱法:提供一加熱爐;將所述初級外延結構體放 置於所述加熱爐的内部,在含有氧氣的環境下加熱所述初 級外延結構體,其中所述加熱溫度大於600SC,初級外延 結構體中的奈米碳管層吸收熱量與氧氣發生反應而被燒蝕 去除。 16 .如申請專利範圍第1項所述之外延結構體之製備方法,其 中,所述外延層為異質外延層。 17 .如申請專利範圍第1項所述之外延結構體之製備方法,其 中,所述外延層為同質外延層。 表單編號A0101 第33頁/共45頁 1002021412-0 201240137 18 · —種外延結構體的製備方法,其具體包括以下步驟: 提供一基底,且該基底具有一外延生長面; 在所述基底的外延生長面設置一奈米碳管層; 在基底的外延生長面依次層疊生長第η層外延層,形成一 初級外延結構體,其中,相鄰外延層之間均設置一奈米碳 管層,η為大於等於2的整數; 去除該初級外延結構體中的奈米碳管層。 100112852 表單編號Α0101 第34頁/共45頁 1002021412-0In 100112852, the method for removing the carbon nanotube layer in the primary epitaxial structure is a laser heating method, and the method for removing the carbon nanotube layer by the laser heating method comprises the following steps: providing a laser device, The laser device emits a laser beam to a surface of the substrate in the primary epitaxial structure; in an environment containing oxygen, the laser beam is caused to move relative to the surface of the substrate in the primary epitaxial structure to cause the laser beam to scan the primary The surface of the substrate in the epitaxial structure, the carbon nanotubes in the carbon nanotube layer absorb the laser energy and react with oxygen to be removed. The method for preparing an outer structure according to the first aspect of the invention, wherein the method for removing the carbon nanotube layer in the primary epitaxial structure is a heating furnace heating method: providing a heating furnace; The primary epitaxial structure is placed inside the heating furnace, and the primary epitaxial structure is heated in an atmosphere containing oxygen, wherein the heating temperature is greater than 600 SC, and the carbon nanotube layer in the primary epitaxial structure absorbs heat It is ablated and removed by reaction with oxygen. The method for producing an outer structure according to the first aspect of the invention, wherein the epitaxial layer is a heteroepitaxial layer. The method of producing a structure according to claim 1, wherein the epitaxial layer is a homoepitaxial layer. Form No. A0101, page 33 / page 45 1002021412-0 201240137 18 - a method for preparing an epitaxial structure, specifically comprising the steps of: providing a substrate having an epitaxial growth surface; a carbon nanotube layer is disposed on the growth surface; an n-th epitaxial layer is sequentially stacked on the epitaxial growth surface of the substrate to form a primary epitaxial structure, wherein a carbon nanotube layer is disposed between adjacent epitaxial layers, η An integer greater than or equal to 2; the carbon nanotube layer in the primary epitaxial structure is removed. 100112852 Form number Α0101 Page 34 of 45 1002021412-0
TW100112852A 2011-03-29 2011-04-13 Method for making an epitaxial structure TWI466321B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110076867.1A CN102723414B (en) 2011-03-29 2011-03-29 Preparation method for epitaxial structure body

Publications (2)

Publication Number Publication Date
TW201240137A true TW201240137A (en) 2012-10-01
TWI466321B TWI466321B (en) 2014-12-21

Family

ID=46949126

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112852A TWI466321B (en) 2011-03-29 2011-04-13 Method for making an epitaxial structure

Country Status (3)

Country Link
JP (1) JP5718209B2 (en)
CN (1) CN102723414B (en)
TW (1) TWI466321B (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788104B2 (en) * 1998-05-28 2006-06-21 住友電気工業株式会社 Gallium nitride single crystal substrate and manufacturing method thereof
JP3589200B2 (en) * 2000-06-19 2004-11-17 日亜化学工業株式会社 Nitride semiconductor substrate, method of manufacturing the same, and nitride semiconductor device using the nitride semiconductor substrate
JP3823781B2 (en) * 2001-08-31 2006-09-20 日亜化学工業株式会社 Nitride semiconductor substrate and method for manufacturing the same
JP2003243316A (en) * 2002-02-20 2003-08-29 Fuji Photo Film Co Ltd Substrate for semiconductor element and its manufacturing method
KR100533910B1 (en) * 2004-01-15 2005-12-07 엘지전자 주식회사 Method of growing high quality nitride semiconductor thin film
JP4885507B2 (en) * 2005-10-05 2012-02-29 古河機械金属株式会社 Group III nitride semiconductor layer forming method and group III nitride semiconductor substrate manufacturing method
JP2008266064A (en) * 2007-04-19 2008-11-06 Nichia Corp Substrate for semiconductor element and its manufacturing method
JP2009043841A (en) * 2007-08-07 2009-02-26 Toyota Motor Corp Inspecting method and inspecting device for trench
JP5276852B2 (en) * 2008-02-08 2013-08-28 昭和電工株式会社 Method for manufacturing group III nitride semiconductor epitaxial substrate
CN101820036B (en) * 2009-02-27 2013-08-28 清华大学 Method for preparing light-emitting diode
JP2010232464A (en) * 2009-03-27 2010-10-14 Showa Denko Kk Group iii nitride semiconductor light emitting element, method of manufacturing the same, and laser diode

Also Published As

Publication number Publication date
JP5718209B2 (en) 2015-05-13
TWI466321B (en) 2014-12-21
CN102723414A (en) 2012-10-10
JP2012206926A (en) 2012-10-25
CN102723414B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
US20190074408A1 (en) Epitaxial structure and method for making the same
TWI473758B (en) Method for making epitaxial structure
TWI431667B (en) A epitaxialstructure and method for making the same
US9450142B2 (en) Method for making epitaxial structure
TWI444326B (en) Method for making light-emitting diode
TWI474966B (en) A method for making epitaxial structure
TWI438144B (en) A method for making a substrate with micro-structure
TWI449659B (en) Method for making epitaxial structure
TWI442451B (en) A substrate with micro-structure and method for making the same
TW201240137A (en) Method for making an epitaxial structure
TWI505984B (en) A method for making an epitaxial structure
TWI479681B (en) Semiconductor epitaxial structure
TWI476948B (en) Epitaxial structure and method for making the same
TWI426159B (en) Mask for growing epitaxial structure and method for using the same
TWI443863B (en) Base for growing epitaxial structure and method for using the same