TWI380480B - Method for manufacturing light emitting diode - Google Patents

Method for manufacturing light emitting diode Download PDF

Info

Publication number
TWI380480B
TWI380480B TW98107401A TW98107401A TWI380480B TW I380480 B TWI380480 B TW I380480B TW 98107401 A TW98107401 A TW 98107401A TW 98107401 A TW98107401 A TW 98107401A TW I380480 B TWI380480 B TW I380480B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
layer
semiconductor layer
light
emitting diode
Prior art date
Application number
TW98107401A
Other languages
Chinese (zh)
Other versions
TW201034248A (en
Inventor
Qun-Qing Li
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98107401A priority Critical patent/TWI380480B/en
Publication of TW201034248A publication Critical patent/TW201034248A/en
Application granted granted Critical
Publication of TWI380480B publication Critical patent/TWI380480B/en

Links

Description

1380480 101年08月06日修正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種發光二極體之製備方法,尤其涉及一種 透明導電膜含有奈米碳管之發光二極體之製備方法。 【先前技術】 [0002] 發光二極體係一種把電能轉換成光能之發光器件,係在. P-N結、雙異質結或複數層量子階結構上通以正向電流時 可發出可見光、紅外光及紫外光等之光發射器件。以氮 化鎵為代表之第三代半導體 -V族寬頻隙化合物半導體 材料之内外量子效率高,因此具有高發光效率、高熱導 率、耐高溫、抗輻射、耐酸域、高強度及高硬度之特點 〇 [0003] 先前技術中發光二極體之製備方法包括以下步驟:在藍 寶石基底上用金屬有機化學氣相沈積(MOCVD)技術分別外 延生長一緩衝層、一第一半導體層、一活性層及一第二 半導體層;在第二半導體層之一端進行蝕刻暴露出第一 半導體層;在所述暴露出之第一半導體層上,進行蒸鍍 光刻,形成第一電極;在第二半導體層上,進行蒸鍍光 刻,形成第二電極。 [0004] 然而,上述方法製備之發光二極體光取出效率(光取出效 率通常指活性層中所產生之光波從發光二極體内部釋放 出之效率)較低,其主要原因如下:其一,由於半導體之 折射率大於空氣之折射率,來自活性層之光波在半導體 與空氣之介面處發生全反射,從而大部分光波被限制在 發光二極體之内部,直至被發光二極體内之材料完全吸 單编號删1 第4頁/共35頁 1013298550-0 Γ380480 flOl年.08月06日修正 收;其二,發光二極體之工作電流容易被局限在p型電極 之下而且其橫向分散距離大’電流分散不當,導致了發 光二極體光取出效率低。由於光取出效率低導致發光二 極體内部產生大量之熱量,而熱量散發出去困難,使得 半導體材料之性能發生變化,減少發光二極體之使用壽 命,從而影響發光二極體之大規模應用。 ' [0005] 為了解決上述問題,人們通過各種手段來提高發光二極 體之光取出效率,例如,表面微結構方法、光子迴圈方 法及在藍寶石基底加反射鏡等方法,但以上方法之製作 工藝比較複雜,有可能在不同程度上破壞半導體層之晶 格結構並降低發光二極體之發光效率,而且,採用上述 方法提高光取出效率有限。為此,R. H. Horng等人研 究了一種含有透明導電膜之氮化鎵基發光二極體,請參 見 “GaN-based Light-emitting Diodes with Indium Tin Oxide Textureing Window Layers Using Natural Lithography” ,(R. H. Horng et al., Applied Physics Letters, vol.86, 221101 (2005))來提高發光二極體之光取出效率。所述氮化鎵 基發光二極體之製備方法包括以下步驟:首先,採用 M0CVD技術在藍寶石基底上依次生長氮化鎵緩衝層、氮化 鎵層、N型氮化鎵層、氮化銦鎵/氮化鎵層活性層及p型氮 化鎵層;其次,採用電感耦合電漿蝕刻技術蝕刻p型氮化 鎵層、活性層直至暴露出N型氮化鎵層之表面;在P型氮 化鎵層之表面採用電子束蒸發之方法製備一鎳層及一金 層’並在氧氣中退火1〇分鐘,該鎳層及金層共同用作透 〇981〇74〇产單編號·A0101 第5頁/共35頁 1013298550-0 1380480 ioi年.08) 06日修正_^頁 明接觸層;在透明接觸層表面之某一區域内濺鍍一層氧 化銦錫(I TO)薄膜用作透明導電膜,同時在透明接觸層表 面之另一區域内及N型氮化鎵層上分別形成一鈦層及一鋁 層,該鈦層及鋁層用作電極;之後,採用電感耦合電漿 蝕刻技術蝕刻氧化銦錫薄膜,使氧化銦錫薄膜表面粗糙 化,以提高發光二極體之光取出率。該種發光二極體之 製備方法中,用於透明導電膜之氧化銦錫薄膜採用濺鍍 · 之方法製備,且後續需要進一步之蝕刻工藝使其表面粗 縫化,因此,採用氧化銦錫作為發光二極體之透明導電 膜具有製備工藝繁雜,不易控制之缺點。 [0006] 【發明内容】 有鑒於此,提供一種透明導電膜製備方法簡單之發光二 極體之製備方法實為必要。 [0007] 一種發光二極體之製備方法,其包括以下步驟:提供一 基底,在該基底之表面依次形成一第一半導體層、一活 性層及一第二半導體層;提供一奈米碳管結構,將奈米 碳管結構直接鋪設在所述第二半導體層之表面,形成一 奈米碳管透明導電膜;形成一保護層,覆蓋所述奈米碳 管結構;除去保護層之第一區域,以暴露出部分奈米碳 管結構;在暴露出之奈米碳管結構之表®製備一第一電 極;除去保護層之第二區域及該第二區域以下之奈米碳 管結構、第二半導體層及活性層相應部分,以暴露出部 分第一半導體層;及在所述暴露出之第一半導體層之表 面製備一第二電極。 [0008] 一種發光二極體之製備方法,其包括以下步驟:提供一 0981074。产單编號删1 第6頁/共35頁 1013298550-0 1380480 •10Ϊ年.08月06日按正替換頁 基底,在該基底之表面依次形成一第一半導體層、一活 性層及一第二半導體層;提供一奈米碳管結構,將奈米 碳管結構直接舖設在所述第二半導體層之表面,形成一 奈米碳管透明導電膜;形成一金屬層,覆蓋所述奈米碳 管結構;去除所述金屬層之第一區域及該第一區域以下 之奈米碳管結構、第二半導體層及活性層相應部分,以 暴露出部分第一半導體層;在所述金屬層表面之第二區 域製備一第一電極;及在所述暴露出之第一半導體層之 表面製備一第二電極。 [0009] 相較於先前技術,本發明提供之採用奈米碳管結構作為 透明導電膜之發光二極體之製備方法具有以下優點:其 一,以奈米碳管結構作為透明導電膜,可將奈米碳管結 構直接鋪設於第二半導體層之表面,不需濺鍍等複雜工 藝,製備方法簡單;其二,不需要其他蝕刻工藝對奈米 碳管結構進行蝕刻,因此簡化了製備方法。 【實施方式】 [0010] 以下將結合附圖詳細說明本發明實施例提供之發光二極 體之製備方法。 [0011] 請參閱圖1、圖2-1及圖2-2,本發明第一實施例提供一種 奈米碳管結構作透明導電膜之發光二極體之製備方法, 具體包括以下步驟: [0012] 步驟S101,提供一基底110,在該基底110之表面依次形 成一第一半導體層130、一活性層140及一第二半導體層 150,請參閱圖2(a)。 09810740#單編號 Α0101 第7頁/共35頁 1013298550-0 1380480 [0013] 101年.08月06日修正替換頁j 所述基底110之厚度為300-500微米,該基底11〇為透光 基底’具有支撐整個發光二極體之作用。基底11〇之材料 為藍寶石、坤化鎵、磷化銦、氮化矽、氮化鎵、氧化鋅 、氮化鋁矽或碳化矽。在本實施例中,基底丨1〇之材料優 選為藍寶石’厚度為4〇〇微米。 [0014] [0015] [0016] 採用金屬化學氣相沈積(M0CVD)技術在所述基底11〇上 ,依次外延生長一第一半導體層13〇、一活性層14〇及一 第二半導體層150,所述第一半導體層丨3〇、活性層14〇 及第二半導體層150形成發光二極體之有源層。所述基底 110第半導體層130、活性層140及第二半導體層15〇 構成發光二極體之基片。 所述第一半導體層130及第二半導體層15〇之厚度範圍分 別為卜5微米、〇. 1-3微米。所述第一半導體層13〇、第 二半導體層150可以為N型半導體層或p型半導體層兩種類 型’且該第-半導體層13〇與第二半導體層15〇之類型不 同。所細財導體層具有提供電子移動場所之作用。所 述P型半導體層具有提供空穴移動之場所之作用。n型半 導體層之材料包括N型氮化鎵、N型坤化鎵及N型鱗化銅等 材料中之一種。”半導體層之材料包括P型氮化鎵、P型 坤化鎵及PM化財㈣,之_1本實_中第一半 導體層之材料為N型氮化鎵’其厚度為2微米,第二半導 體層之材料為P聽化鎵,其厚度為〇· 3微米。 所述活性層140為光子激發層,為f子與^相結合產生 光子之場所。 098107401^^^^ A〇101 第8頁/共35頁 1013298550-0 Γ380480 .101年08月06日 [0017] 所述活性層140之厚度為0. 01-0.6微米》所述活性層14〇 為包含一層或複數層量子阱層之量子阱結構(Quantum1380480 Modified on August 06, 2011. Replacement page 6. Description of the Invention: [Technical Field] [0001] The present invention relates to a method for preparing a light-emitting diode, and more particularly to a transparent conductive film containing a carbon nanotube Method for preparing a diode. [Prior Art] [0002] A light-emitting device that converts electrical energy into light energy, which emits visible light and infrared light when a forward current is passed through a PN junction, a double heterojunction or a complex quantum structure. And light emitting devices such as ultraviolet light. The third-generation semiconductor-V family wide-gap compound semiconductor material represented by gallium nitride has high internal and external quantum efficiency, and therefore has high luminous efficiency, high thermal conductivity, high temperature resistance, radiation resistance, acid resistance, high strength and high hardness. [0003] The prior art method for preparing a light-emitting diode includes the steps of: epitaxially growing a buffer layer, a first semiconductor layer, and an active layer on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). And a second semiconductor layer; etching at one end of the second semiconductor layer to expose the first semiconductor layer; performing vapor deposition lithography on the exposed first semiconductor layer to form a first electrode; and forming a first electrode; On the layer, vapor deposition lithography is performed to form a second electrode. [0004] However, the light extraction efficiency of the light-emitting diode prepared by the above method (the light extraction efficiency generally means that the light wave generated in the active layer is released from the inside of the light-emitting diode) is low, and the main reason is as follows: Since the refractive index of the semiconductor is greater than the refractive index of the air, the light wave from the active layer is totally reflected at the interface between the semiconductor and the air, so that most of the light is confined inside the light-emitting diode until it is illuminated by the LED. Material complete suction number No. 1 Page 4 / Total 35 pages 1013298550-0 Γ 380480 flOl year. August 06 correction; second, the working current of the light-emitting diode is easily confined under the p-type electrode and its The lateral dispersion distance is large, and the current is improperly dispersed, resulting in low light extraction efficiency of the light-emitting diode. Due to the low efficiency of light extraction, a large amount of heat is generated inside the light-emitting diode, and the heat is dissipated, which changes the performance of the semiconductor material and reduces the service life of the light-emitting diode, thereby affecting the large-scale application of the light-emitting diode. [0005] In order to solve the above problems, people have improved the light extraction efficiency of the light-emitting diode by various means, for example, a surface microstructure method, a photon loop method, and a mirror on a sapphire substrate, but the above method is produced. The process is relatively complicated, and it is possible to destroy the lattice structure of the semiconductor layer to a certain extent and reduce the luminous efficiency of the light-emitting diode. Moreover, the above method is used to improve the light extraction efficiency. To this end, RH Horng et al. studied a gallium nitride-based light-emitting diode containing a transparent conductive film, see "GaN-based Light-emitting Diodes with Indium Tin Oxide Textureing Window Layers Using Natural Lithography" (RH Horng et Al., Applied Physics Letters, vol. 86, 221101 (2005)) to improve the light extraction efficiency of light-emitting diodes. The method for preparing the gallium nitride-based light-emitting diode comprises the following steps: first, sequentially growing a gallium nitride buffer layer, a gallium nitride layer, an N-type gallium nitride layer, and an indium gallium nitride on a sapphire substrate by a M0CVD technique. / gallium nitride layer active layer and p-type gallium nitride layer; secondly, inductively coupled plasma etching technique is used to etch p-type gallium nitride layer, active layer until exposed surface of N-type gallium nitride layer; in P-type nitrogen The surface of the gallium layer is prepared by electron beam evaporation to prepare a nickel layer and a gold layer 'and annealed in oxygen for 1 minute. The nickel layer and the gold layer are used together as a 〇 〇 〇 〇 〇 〇 · · · 、 、 5 pages/total 35 pages 1013298550-0 1380480 ioi year.08) 06 revision _^ page contact layer; sputtering an indium tin oxide (I TO) film in a certain area on the surface of the transparent contact layer for transparent conduction a film, at the same time in another region of the surface of the transparent contact layer and the N-type gallium nitride layer respectively form a titanium layer and an aluminum layer, the titanium layer and the aluminum layer are used as electrodes; after that, inductively coupled plasma etching technology is used Etching an indium tin oxide film to roughen the surface of the indium tin oxide film, The light emitting diode to improve the removal rate. In the method for preparing the light-emitting diode, the indium tin oxide film for the transparent conductive film is prepared by sputtering, and further etching process is required to roughen the surface. Therefore, indium tin oxide is used as the plating method. The transparent conductive film of the light-emitting diode has the disadvantages of complicated preparation process and difficulty in control. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a method for preparing a light-emitting diode which is simple in the preparation method of a transparent conductive film. [0007] A method for fabricating a light-emitting diode, comprising the steps of: providing a substrate, sequentially forming a first semiconductor layer, an active layer and a second semiconductor layer on a surface of the substrate; providing a carbon nanotube a structure, the nano carbon tube structure is directly laid on the surface of the second semiconductor layer to form a carbon nanotube transparent conductive film; forming a protective layer covering the carbon nanotube structure; removing the first layer of the protective layer a region to expose a portion of the carbon nanotube structure; a first electrode in the exposed surface of the carbon nanotube structure; a second region of the protective layer and a carbon nanotube structure below the second region, a second semiconductor layer and a corresponding portion of the active layer to expose a portion of the first semiconductor layer; and a second electrode is formed on a surface of the exposed first semiconductor layer. [0008] A method of preparing a light-emitting diode, comprising the steps of: providing a 0981074. Production order number deletion 1 Page 6 / Total 35 pages 1013298550-0 1380480 • 10 years. August 06, according to the replacement of the page substrate, a first semiconductor layer, an active layer and a first layer are formed on the surface of the substrate. a semiconductor layer; providing a carbon nanotube structure, directly laying a carbon nanotube structure on the surface of the second semiconductor layer to form a carbon nanotube transparent conductive film; forming a metal layer covering the nanometer a carbon tube structure; removing a first region of the metal layer and a corresponding portion of the carbon nanotube structure, the second semiconductor layer and the active layer below the first region to expose a portion of the first semiconductor layer; Forming a first electrode in the second region of the surface; and preparing a second electrode on the surface of the exposed first semiconductor layer. [0009] Compared with the prior art, the method for preparing a light-emitting diode using a carbon nanotube structure as a transparent conductive film provides the following advantages: First, the carbon nanotube structure is used as a transparent conductive film. The nano carbon tube structure is directly laid on the surface of the second semiconductor layer, and no complicated process such as sputtering is required, and the preparation method is simple; secondly, the etching process of the carbon nanotube structure is not required by other etching processes, thereby simplifying the preparation method . [Embodiment] Hereinafter, a method of manufacturing a light-emitting diode according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. [0011] Please refer to FIG. 1, FIG. 2-1 and FIG. 2-2. The first embodiment of the present invention provides a method for preparing a light-emitting diode of a carbon nanotube structure as a transparent conductive film, which specifically includes the following steps: [0012] Step S101, a substrate 110 is provided, and a first semiconductor layer 130, an active layer 140 and a second semiconductor layer 150 are sequentially formed on the surface of the substrate 110. Please refer to FIG. 2(a). 09810740#单号Α0101 Page 7/35 pages 1013298550-0 1380480 [0013] 101. August 06, revised replacement page j The substrate 110 has a thickness of 300-500 microns, and the substrate 11 is a light-transmitting substrate. 'has the role of supporting the entire light-emitting diode. The material of the substrate 11 is sapphire, gallium arsenide, indium phosphide, tantalum nitride, gallium nitride, zinc oxide, aluminum nitride or tantalum carbide. In the present embodiment, the material of the substrate 丨1〇 is preferably sapphire' having a thickness of 4 Å. [0016] [0016] A first semiconductor layer 13 , an active layer 14 , and a second semiconductor layer 150 are epitaxially grown on the substrate 11 by metal chemical vapor deposition (M0CVD). The first semiconductor layer 〇3〇, the active layer 14〇, and the second semiconductor layer 150 form an active layer of the light emitting diode. The substrate 110, the semiconductor layer 130, the active layer 140, and the second semiconductor layer 15' constitute a substrate of a light-emitting diode. The thickness ranges of the first semiconductor layer 130 and the second semiconductor layer 15 are respectively 5 micrometers, 1-3 micrometers. The first semiconductor layer 13 and the second semiconductor layer 150 may be of an N-type semiconductor layer or a p-type semiconductor layer and the type of the first semiconductor layer 13A is different from that of the second semiconductor layer 15A. The fine-grained conductor layer has the function of providing an electronic moving place. The P-type semiconductor layer has a function of providing a place where holes move. The material of the n-type semiconductor layer includes one of materials such as N-type gallium nitride, N-type gallium nitride, and N-type scale copper. The material of the semiconductor layer includes P-type gallium nitride, P-type gallium nitride and PM-based financial (four), and the material of the first semiconductor layer is N-type gallium nitride, and its thickness is 2 micrometers. The material of the two semiconductor layers is P galvanic gallium, and its thickness is 〇·3 μm. The active layer 140 is a photon excitation layer, which is a place where photons are generated by combining f and ^. 098107401^^^^ A〇101 8 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Quantum well structure (Quantum

Wei 1)。量子阱層之材料為氮化銦鎵、氮化銦鎵鋁、珅化 鎵、砷化鋁鎵、磷化銦鎵、磷化銦砷或砷化銦鎵中之一 種。本實關巾,活性層之厚度抓3—,為兩層結構 ,-層之材料為氮化鋪,另-層之材料為氮化嫁。 _]可選擇地,在基底11〇之表面形成一其他功能層12〇,該 功能層120可以為一緩衝層、一反射層或一光子晶體 層。所述緩衝層有利於提高材料之外延生長品質減少 晶格失配’其材料為氮化鎵或氮化紹等。所述反射層可 以改變發光二極體内部之光折射路線,増加光之取出效 率,其材料為銀、純料金屬中之—種1述光子晶 體結構層可以提高光之取出效率。所述光子結構層之材 料為石夕、氧化銦錫或奈米碳管中之—種。本實施二中, 在藍寶石基底上外延生長一緩衝層,所述緩衝層之材料 為氮化鎵,其厚度可以為20-50奈来。 [0019] 可選擇地,在所述第二半導體居1£ 干等髖層150表面之一個區域製備 一固定電極112,請參閱圖2(b)。 _該固定電極112之類型可以為N型電極或卩型㈣,其與第 二半導體層15G之類型相同。固定電極112同時用作反射 層及電極。所述固定電極112至少為_層結構,其材料為 鈦、銘、鎳、金或其任意組合。本實施例中,所述固定 電極112為P型電極,位於第二半導體層表面之 述固定電極112為兩層結構,一層為厚度為15奈米之欽, 另一層為厚度為100奈来之金,形成_錢 0_740产單編號删1 第9頁/共35f 電極 1013298550-0 丄380480 101年08月06日梭正替&頁 [0021] 所述在第二半導體層150表面之一個區域製備固定電極 112之方法可以為物理氣相沈積法(pvd),例如,電子束 蒸發法、真空蒸鍍法及離子濺射法等。本實施例中採用 電子束蒸發法製備所述鈦/金固定電極,具體步驟為:在 上述P型氮化鎵層上均勻地塗敷一層光刻膠,去除p型氮Wei 1). The material of the quantum well layer is one of indium gallium nitride, indium gallium aluminum nitride, gallium antimonide, aluminum gallium arsenide, indium gallium phosphide, indium phosphide or indium gallium arsenide. The thickness of the active layer is 3—, which is a two-layer structure, the material of the layer is nitrided, and the material of the other layer is nitrided. Optionally, a further functional layer 12 is formed on the surface of the substrate 11 , and the functional layer 120 can be a buffer layer, a reflective layer or a photonic crystal layer. The buffer layer is advantageous for improving the growth quality of the material, and the lattice mismatch, the material of which is gallium nitride or nitrided. The reflective layer can change the light refraction path inside the light-emitting diode, and the extraction efficiency of the light-added light, and the material is silver, the pure metal, and the photonic crystal structure layer can improve the light extraction efficiency. The material of the photonic structure layer is a species of Shixi, indium tin oxide or carbon nanotubes. In the second embodiment, a buffer layer is epitaxially grown on the sapphire substrate, and the buffer layer is made of gallium nitride, and the thickness thereof may be 20-50 nm. [0019] Optionally, a fixed electrode 112 is prepared in a region of the surface of the second semiconductor layer 150, such as FIG. 2(b). The type of the fixed electrode 112 may be an N-type electrode or a 卩-type (4) which is of the same type as the second semiconductor layer 15G. The fixed electrode 112 serves as both a reflective layer and an electrode. The fixed electrode 112 is at least a layer structure, and the material thereof is titanium, inscription, nickel, gold or any combination thereof. In this embodiment, the fixed electrode 112 is a P-type electrode, and the fixed electrode 112 on the surface of the second semiconductor layer has a two-layer structure, one layer has a thickness of 15 nanometers, and the other layer has a thickness of 100 nanometers. Gold, formation _ money 0_740 production order number deletion 1 page 9 / total 35f electrode 1013298550-0 丄 380480 101 August 101 shuttle shuttle & page [0021] described in the surface of the second semiconductor layer 150 The method of preparing the fixed electrode 112 may be a physical vapor deposition method (pvd), for example, an electron beam evaporation method, a vacuum evaporation method, an ion sputtering method, or the like. In the embodiment, the titanium/gold fixed electrode is prepared by electron beam evaporation, and the specific step is: uniformly coating a layer of photoresist on the P-type gallium nitride layer to remove p-type nitrogen.

I 化鎵層表面之某一個區域内之光刻膠,以暴露出部分p型 氮化鎵層;通過電子束蒸發法在光刻膠及暴露出之P型氮 化鎵上沈積一鈦/金層;通過丙嗣等有機溶劑去除光刻膠 及其上之欽/金層,保留在P型氮化鎵層上之鈦/金層為鈦 /金固定電極。 [0022] 步驟S102,提供一奈米碳管結構114,將所述奈米碳管結 構114直接鋪設在所述第二半導體層150之表面,形成一 奈米碳管透明導電膜。 [0023] 奈米碳管結構114直接舖設於第二半導體層150之表面用 作透明導電膜,因此,製備方法簡單。請參閱圖2(c), 所述奈米碳管結構114覆蓋了第二半導體層150之全部表 面及固定電極11 2之全部或部分表面。所述奈米碳管結構 114可以包括至少一奈米碳管膜、複數個奈米碳管線狀結 構或其組合。在下文中所揭露之各種奈米碳管膜,奈米 碳管繩等都係奈米碳管結構114之一呰實施例,皆應在本 發明之保護範圍之内。所述奈米碳管結構114為層狀結構 ,其厚度大於0. 5奈米。優選地,所述奈米碳管結構114 之厚度為0. 5-200微米。所述奈米碳管結構包括若干大致 平行之第一奈米碳管,及若干大致平行之第二奈米碳管 ,該第一與第二奈米碳管大致平行於奈米碳管透明導電 〇981〇74〇产單編號 A0101 第10頁/共35頁 1013298550-0 Γ380480 .101年.08月06日修正替換頁 膜之表面,該第一奈米碳管之延伸方向與第二奈米碳管 之延伸方向形成一交叉角度α,α大於等於0度小於等於 90度。 [0024] 所述至少一奈米碳管膜為一層或複數層奈米碳管膜,相 鄰兩層奈米碳管膜中之奈米碳管之間形成一交叉角度α ,α大於等於0度小於等於90度。具體請參閱本申請人於 2007年2月9日申請,公開號為CN101 23971 2之中國大陸 專利申諳“一種奈米碳管薄膜結構及其製備方法”。為 節省篇幅,僅引用於此,但上述申請所有技術揭露也應 視為本發明申請技術揭露之一部分。 [0025] 所述奈米碳管膜包括若干大致平行之奈米碳管,該奈米 碳管大致平行於奈米碳管透明導電膜之表面。所述奈米 碳管膜中之奈米碳管為有序排列或無序排列,所述有序 排列係指奈米碳管之排列方向有規則。所述無序排列係 指奈米碳管之排列方向無規則。 [0026] 所述無序奈米碳管膜可以為奈米碳管絮化膜,所述奈米 碳管絮化膜包括複數個相互纏繞之奈米碳管,通過凡德 瓦爾力相互吸引、纏繞,.形成網路狀結構。所述奈米碳 管膜各向同性,其中之奈米碳管均勻分佈,無規則排列 。所述奈米碳管膜之長度及寬度不限。請參閱本申請人 於2007年4月13日申請之公開號為CN1 01 284662A之中國 大陸專利申請“奈米碳管膜之製備方法”。為節省篇幅 ,僅引用於此,但上述申請所有技術揭露也應視為本發 明申請技術揭露之一部分。 098匪0严編號Α_ 第11頁/共35頁 1013298550-0 1380480a photoresist in a region of the surface of the gallium layer to expose a portion of the p-type gallium nitride layer; depositing a titanium/gold on the photoresist and the exposed P-type gallium nitride by electron beam evaporation The photoresist is removed by an organic solvent such as acrylonitrile and the chin/gold layer thereon, and the titanium/gold layer remaining on the P-type gallium nitride layer is a titanium/gold fixed electrode. [0022] Step S102, a carbon nanotube structure 114 is provided, and the carbon nanotube structure 114 is directly laid on the surface of the second semiconductor layer 150 to form a carbon nanotube transparent conductive film. [0023] The carbon nanotube structure 114 is directly laid on the surface of the second semiconductor layer 150 as a transparent conductive film, and therefore, the preparation method is simple. Referring to FIG. 2(c), the carbon nanotube structure 114 covers all surfaces of the second semiconductor layer 150 and all or part of the surface of the fixed electrode 112. The carbon nanotube structure 114 can include at least one carbon nanotube membrane, a plurality of nanocarbon line-like structures, or a combination thereof. The various carbon nanotube films, nanocarbon tube ropes and the like disclosed hereinafter are all examples of the carbon nanotube structure 114, and are all within the scope of the present invention. 5纳米。 The carbon nanotube structure 114 is a layered structure, the thickness of which is greater than 0.5 nm. 5微米微米。 The thickness of the carbon nanotube structure is 0. 5-200 microns. The carbon nanotube structure comprises a plurality of substantially parallel first carbon nanotubes and a plurality of substantially parallel second carbon nanotubes, the first and second nanotubes being substantially parallel to the carbon nanotubes and transparently conducting 〇981〇74〇Order No.A0101 Page 10/Total 35 Page 1013298550-0 Γ380480 .101.08.06 Revision of the surface of the replacement film, the extension direction of the first carbon nanotube and the second nanometer The extending direction of the carbon tube forms an intersection angle α, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees. [0024] The at least one carbon nanotube film is one layer or a plurality of layers of carbon nanotube film, and a carbon nanotube film in the adjacent two layers of carbon nanotube film forms an intersection angle α, and α is greater than or equal to 0. Degree is less than or equal to 90 degrees. For details, please refer to the applicant's application for publication on February 9, 2007, the publication of CN101 23971 2, the Chinese patent application "a nano carbon tube film structure and its preparation method". In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the technical disclosure of the present application. [0025] The carbon nanotube membrane comprises a plurality of substantially parallel carbon nanotubes, the carbon nanotubes being substantially parallel to the surface of the carbon nanotube transparent conductive membrane. The carbon nanotubes in the carbon nanotube film are ordered or disorderly arranged, and the ordered arrangement means that the arrangement of the carbon nanotubes is regular. The disordered arrangement means that the arrangement direction of the carbon nanotubes is irregular. [0026] The disordered carbon nanotube film may be a carbon nanotube flocculation membrane, and the carbon nanotube flocculation membrane comprises a plurality of intertwined carbon nanotubes, which are mutually attracted by van der Waals force. Winding, forming a network structure. The carbon nanotube film is isotropic, wherein the carbon nanotubes are evenly distributed and randomly arranged. The length and width of the carbon nanotube film are not limited. Please refer to the Chinese mainland patent application "Preparation Method of Nano Carbon Film Membrane" of the applicant's publication No. CN1 01 284662A, filed on Apr. 13, 2007. In order to save space, only the above is cited, but all the technical disclosures of the above application should also be considered as part of the technical disclosure of the present application. 098匪0 Strictly numbered Α_ Page 11 of 35 1013298550-0 1380480

1-101^08¾ I 陶]優it地,所述奈米碳管膜為有序㈣。本實施例中在卩型 氮化鎵層上重豐铺設兩層超順排奈米碳管膜,該兩層超 順排碳奈米膜中奈米碳管之交又角度^^為9〇度。在?型氮 化鎵層上製備奈米私官結構114之方法包括以下步驟: [0028] 首先,提供一超順排奈米碳管陣列。 [0029] 本發明實施例提供之超順排奈米碳管陣列為單壁奈米碳 管陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中之一 種或複數種。本實施例中,該超順排奈米碳管陣列之製 備方法採用化學氣相沈積法’其具體步驟包括:(a)提 供一平整基底,該基底可選用P型或N型矽基底,或選用 形成有氧化層之矽基底’本實施例優選為採用4英寸之石夕 基底;(b)在基底表面均勻形成一催化劑層,該催化劑 層材料可選用鐵(Fe)、始(Co)、錄(Ni)或其任意 組合之合金之一;(c)將上述形成有催化劑層之基底在 700〜900 °C之空氣中退火約30分鐘〜90分鐘;(d)將處 理過之基底置於反應爐中’在保護氣體環境下加熱到 500~740°C,然後通入碳源氣體反應約5~30分鐘,生長 得到超順排奈米碳管陣列’其高度為200〜400微米。該超 順排奈米碳管陣列為複數個彼此平行且垂直於基底生長 之奈米碳管形成之純奈米碳管陣列。通過上述控制生長 條件,該超順排奈米碳管陣列中基本不含有雜質,如無 定型碳或殘留之催化劑金屬顆粒等。該奈米碳管陣列中 之奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣列。該 奈米碳管陣列之表面積與上述基底面積基本相同。 [0030] 本實施例中碳源氣可選用乙块、乙稀、甲炫•等化學性質 1013298550-0 098107401^單编號 A〇101 1380480 101年.08月06日修正替換頁 較活潑之碳氫化合物,本實施例優選之碳源氣為乙炔; 保護氣體為氮氣或惰性氣體,本實施例優選之保護氣體 為氬氣。 [0031] 可以理解,本實施例提供之奈米碳管陣列不限於上述製 備方法。也可為石墨電極恒流電弧放電沈積法、鐳射蒸 發沈積法等。 [0032] 其次:採用一拉伸工具從超順排奈米碳管陣列中拉取獲 得一超順排奈米碳管膜,具體包括以下步驟:(a)從一 超順排奈米碳管陣列中選定一個或具有一定寬度之複數 個奈米碳管,本實施例優選為採用具有一定寬度之膠帶 、鑷子或夾子接觸超順排奈米碳管陣列以選定一個或具 有一定寬度之複數個奈米碳管;(b)以一定速度拉伸該 選定之奈米碳管,從而形成首尾相連之複數個奈米碳管 片段,進而形成一連續之超順排奈米碳管膜。該拉取方 向沿基本垂直於奈米碳管陣列之生長方向。 [0033] 在上述拉伸過程中,該複數個奈米碳管片段在拉力作用 下沿拉伸方向逐漸脫離基底之同時,由於凡德瓦爾力作 用,該選定之複數個奈米碳管片段分別與其他奈米碳管 片段首尾相連地連續地被拉出,從而形成一連續、均勻 且具有一定寬度之超順排奈米碳管膜。該超順排奈米碳 管膜包括複數個首尾相連之奈米碳管,該奈米碳管基本 沿拉伸方向排列。該直接拉伸獲得之擇優取向之超順排 奈米碳管膜比無序之奈米碳管膜具有更好之均勻性。同 時該直接拉伸獲得超順排奈米碳管膜之方法簡單快速, 適宜進行工業化應用。 09810740^·單編號 A〇101 胃 13 頁 / 共 35 頁 1013298550-0 [0034] 其D優取向排列。所述超順排奈米碳管膜中之奈米碳 B首尾相連且擇優取向排列,且相鄰之奈米碳管之間通 2德瓦爾力緊密結合。該超順排奈米碳管膜中之奈米 s可為早壁奈米碳管、雙壁奈米碳管及多壁奈米碳管 中之種或複數種。所述單壁奈来碳管之直徑為〇. 5奈卡 · 米所述雙壁奈米碳管之直彳i為1.G奈米〜50奈米 ’可根據實際需求制得。 [0035] 可以理解,由於本實施例超順排奈米碳管陣列中之奈米 碳&非ifi純淨’且由於奈米碳管本身之比表面積非常大 ’所以該超順排奈求碳管膜本身具有較強之黏性。所述 不米碳膜及其製備方法具體請參閱本申請人於年9 月16日申請,公告號為CN10041 1979C之申國大陸專利申 請“一種奈米碳管繩及其製備方法”。為節省篇幅,僅 引用於此,但上述申請所有技術揭露也應視為本發明申 請技術揭露之一部分。 [0036] 。所述多壁奈米碳管之直徑為1.5奈米〜50奈米。所述超 順排奈米碳管膜之厚度為〇·5奈米〜100微米 ’寬度為 o’omioM。所述超順排奈米碳管膜中之奈米碳管 之間之孔㈣'於50微米。該超順排奈米碳管膜之寬度與 ,順排奈米碳管陣列所生長之基底之尺寸及超順排奈米 碳B陣列之寬度有關,該超順排奈米碳管膜之長度不限 最後,在P型氮化鎵層上垂直鋪設兩層上述超順排奈米碳 管膜,形成奈米碳管結構114,其具體包括以下步驟:將 所述P型氮化鎵層置於上述採用拉伸工具從超順排奈米碳 0981074GI^單编號 A〇101 第14頁/共35頁 1013298550-0 1380480 101年_08月06日修正替換頁 管陣列中拉取獲得之超順排奈米碳管膜之下;提升發光 二極體基片或者降低超順排奈米碳管膜使超順排奈米碳 管膜舖設在發光二極體基片上;裁去發光二極體基片區 域外之超順排奈米碳管膜;及旋轉所述發光二極體基片 90度’在發光二極體基片上鋪設第二層超順排奈米碳管 膜。由於所述超順排奈米碳管膜本身具有較強之黏性, 因此,可以黏附在發光二極體基片上。 [0037] 另外,所述有序排列之奈米碳管膜之製備方法還可為以 下步驟.k供一基底;在所述基底表面形成至少一個帶 狀催化劑薄膜;採用化學氣相沈積法生長至少一個帶狀 奈米%官陣列;及處理所述至少一個帶狀奈米碳管陣列 ,使所述至少一個帶狀奈米碳管陣列沿垂直於其長度之 方向傾倒,在基底表面形成至少一個帶狀奈米碳管膜。 該種方法製備之奈米碳管膜中包括複數個平行於奈米碳 管膜表面之超長奈米碳管,且超長奈米碳管彼此平行排 列。請參閱本申請人於2008年05月28日申請之申請號為 200810067529.X之中國大陸專利申請“帶狀奈米碳管膜 之製備方法。為卽省篇幅,僅引用於此,但上述申請 所有技術揭露也應視為本發明申請技術揭露之一部分。 [0038] 所述有序排列之奈米碳管膜之製備方法還可通過碾壓奈 米碳管陣列之方式獲得,具體步驟如下:提供一奈米碳 管陣列形成於一基底;及提供一施壓裝置擠壓上述奈米 碳管陣列,從而得到奈米碳管臈,該奈米碳管膜為有序 奈米碳管膜,包括複數個沿一個或複數個方向擇優取向 排列之奈米碳管。該種方法製備之奈米碳管膜中之奈米 麵_产單編號顯1 第15頁/共35頁 1013298550-0 1380480 101_.08月06日#正替&頁 碳管相互交疊,且沿一個方向或複數個方向擇優取向排 列。所述奈米碳管膜及其製備方法具體請參閱本申請人 於2007年6月1日中請之申請號為200710074699. 6之中 國大陸專利申請“奈米碳管膜之製備方法”。為節省篇 幅,僅引用於此,但上述申請所有技術揭露也應視為本 發明申請技術揭露之一部分。 ^ [〇〇39] 所述有序排列之奈米碳管膜之製備方法還可為以下步驟 :提供一生長裝置,且該生長裝置包括一反應室及間隔 設置於該反應室内之一旋轉平臺與一固定平臺,反應室 包括一進氣口與一出氣口,且所述固定平臺設置於靠近 進氣口一邊,所述旋轉平臺設置於靠近出氣口一邊;提 供一生長基底及一接收基底’並在該生長基底表面沈積 一單分散性催化劑層;將所述生長基底放置於該固定平 臺上,將所述接收基底放置於該旋轉平臺上;通入碳源 氣’沿者氣流之方向生長超長奈米碳管;停止通入碳^ j原 氣’超長奈米碳管平行且間隔之形成在接收基底表面; 更換生長基底’並複數次重複上述生長超長奈来碳管之 步驟’在接收基底上开> 成至少一奈米碳管薄膜;將所述 至少一奈米碳管薄膜從接收基底上取下、從而得到 米碳管薄膜結構。該奈米碳管膜包括複數個平行於奈米 碳管薄膜表面之超長奈米碳管’且超長奈米碳管彼此平 行排列》所述奈米碳管膜及其製備方法具體請參閱本申 請人於2008年2月1曰申請之,申請號為 20081 0066048. 7之中國大陸專利申請“奈米碳管結構及 其製備方法”。為節省篇幅,僅引用於此,但上述申請 09810740+單編號 Α0101 第16頁/共35頁 1013298550-0 1380480 101年.08月d6日核正替換頁 所有技術揭露也應視為本發明申請技術揭露之一部分。 [0040] 步驟S103,形成一保護層116,覆蓋所述奈米碳管結構 114,請參閱圖2(d)。 [0041] 所述保護層11 6可以採用絕緣材料、半導體材料或金屬材 料。保護層116之厚度範圍為10-100奈米。保護層116覆 蓋在所述奈米碳管結構114之表面,其作用係固定奈米碳 管結構114,避免後續之蝕刻等工藝造成所述碳奈米結構 之脫落或糾纏等現象。沈積所述保護層11 6至奈米碳管結 構114之上之方法可以為電子束蒸發、磁控濺射或化學氣 相沈積等方法。本實施例中,採用化學氣相沈積之方法 在所述垂直鋪設之兩層超順排奈米碳管膜上沈積一層二 氧化矽保護膜116,該二氧化矽保護膜116之厚度為50奈 米。 [0042] 步驟S104,除去保護層116之第一區域,以暴露出部分奈 米碳管結構114。 [0043] 本實施例中採用濕法蝕刻法蝕刻保護層116之第一區域, 以暴露出部分奈米碳管結構114,請參閱圖2(e)。 [0044] 所述保護層116之第一區域可以為方形、圓形或三角形等 任意形狀,該第一區域可以位於保護層116之一側,也可 以位於其中心。若發光二極體具有固定電極112,則固定 電極112所對應之保護層11 6之區域為第一區域。本實施 例中,去除所述鈦/金固定電極上方之二氧化矽保護膜 116,以暴露出鈦/金固定電極對應區域之奈米碳管膜。 本實施例中利用濕法蝕刻法蝕刻二氧化矽保護膜116,以 098107401^^^^ A〇101 第17頁/共35頁 1013298550-0 1〇ΐϋ8月〇|^正_頁丨 氧化物姓刻劑緩衝液⑽Ε)為餘刻液,該氧化物蝕刻$ 衝液中含有高濃度之氫氟酸溶液及1化氨緩衝劑。採用 氧化物__衝祕心氧切保賴ιΐ6之具體步驟 為:在二氧切保護膜U6之表面均勻地塗敷—層光刻膠 L過曝光顯衫之方法去二氧化秒保護膜^6表面對應於 金固疋電極之區域内之光刻膠暴露出部分二氧化砂 保叹膜116 ’提供—盛有氧化物餘刻劑緩衝液之氧化腐餘 槽;將所述發光二極體基片之塗敷有光_之表面浸入 氧化物甜_緩驗中,_去除未錄細膠之區域 之二氧化㈣_116 ;取出所述沈積有二氧切保護膜 116之發光二㈣基片’用大量離子水沖洗,並烘乾。用 大量離子水沖洗基片之目之係去除基片表面附有之氣化 物蝕刻緩衝液。 [0045] ^驟S105,在暴露出之奈米碳管結構U4之表面製備第— [0046] 第-電極118可以為_電極或ρ型電極,其類型及盘 固定電極112及第二半導體層15〇相同。若發光二極體不、 具有固定電極112,則第一電極118可以位於奈来竣以 構114表面之任-區域。若發光二極體具有固定電極 ,則第-電極118位於固定電極112所對應之奈米雙管結 構之表面。由於固定電極112為可選擇結構,因此,如 所述三者均抑型材料,則第—電極118即為發光二 之Ρ型電極,或者以電極112及第—電極118 — 光二極體之ρ型電極。如果所述三者均為Ν型材料第 一電極118為發光二極體以型電極,或者固定電核⑴及 09810740产單编號Α0101 第18頁/共35頁 10132985Ε 1380480 |·1〇1年08月06日修正销^頁 —電極11 8一起作為發光二極體之Ν型電極。第—電極 118之製備方法為物理氣相沈積法。所述第一電極⑴可 以為-層結構或複數層結構。所述第一電極ιΐ8之材料為 敛、金等。 [_本實施例中,所述第一電極118為?型電極,其為兩層結 構’ -層為厚度為15奈米之鈦’另一層為厚度為2〇〇奈米 之金,所述第-電極118與固定電極112之尺寸相同且位 置上下對應,第一電極118及固定電極112之間夾有奈米 碳管結構114,三者形成夾心結構使奈米碳管結構U4之 一端被固定,這有助於奈米碳管結構114在後續之蝕刻、 崧鍍工藝中避免脫落或糾纏。本實施例中,第一電極118 之形成方法為電子束蒸發法。 闺㈣S1G6,去除保護層U6之第一區域及該第二區域以下 之奈米碳管結構114、第二半導體層15〇及活性層140相 應部分’以暴露出部分第一半導體層13〇。 [0049]所述保護層116表面之第二區域為方形、圓形或三角形等 任意形狀’該被蝕刻之第二區域可以位於保護層116表面 之一侧’也可以位於其中心。所述蝕刻保護層丨丨6之第二 區域’暴露出第二區域内之第一半導體層130之方法包括 以下步驟:採用濕法蝕刻法蝕刻保護層116之第二區域, 以暴露出奈米碳管結構114,請參閱圖2(g);採用氧電漿 體姓刻法蝕刻所述暴露出之奈米碳管結構114,以暴露出 第二半導體層150,請參閱圖2(h);採用反應離子蝕刻法 i刻暴露出之第二半導體層150,暴露出第一半導體層 130。 1013298550-0 09810740产單編號A0101 第19頁/共35頁 [0050] 一 ·Γ〇1舉0_ 06百·正蘇百1 實施例中’所述第二區域為保護層U6表面與第一電極 相對之3㈣。姓刻所述保護層116之方法為採用濕 法餘刻。本實施射所述保護層116為二氧切保護膜 116 ’採用氡化_刻劑緩衝液㈣二氧切保護膜U6 之方法之具體步騾為:在所述發光二極體之具有二氧化 夕保6蔓膜116之表面均勻塗敷一層光刻膠;通過曝光及顯 影之方法將二氧切保護膜U6之表面與第—電極We · 對之-側之光⑽去除’暴露出部分二氧切保護膜U6 ’提供-盛有氣化純刻劑緩衝液之氧化腐㈣,將所 述發光二極體基片之塗敷有光刻膠之表面浸人所述氧化 物飯刻劑_液巾,則未錄有光㈣之二氧切保護 膜116被去除;及取出所述沈積有二氧化♦保護膜116之 基片’用大量料水沖洗,並烘乾。用大量離子水沖洗 基片可去除基片表面附有之氧化物蝕刻劑緩衝液。二氧 化石夕保護膜116之厚度為5〇奈米,採魏化㈣刻劑缓衝 液姓刻二氧化矽保護膜116大約1-2分鐘。 []Λ時發光—極體基片表面,去除二氡化石夕保護膜116之部 分暴露出部分奈米碳管結構114,未去除二氧化石夕保護膜 116之部分仍塗敷有光刻膠。 [嗎_奈米碳管結構114之方法為氧電漿體❹卜本實施例 中,奈米碳管結構為兩層垂直鋪設之奈米碳管膜,採用 氧電漿體蝕刻所述兩層垂直鋪設之奈米碳管膜之方法之 具體步驟為:將上述部分塗敷有光刻膠之發光二極體置 於一微波電漿體系統中,通過該微波電漿體系統之一感 應功率源產生氧電漿體,氧離子體以較低之離子能量從 098107401^^^11 A〇101 帛 20 頁 / 共 35 頁 1013298550-0 1380480 ΙΟί年.08月06日接正替_頁 產生區域擴散並漂移至發光二極體基月表面,此時發光 二極體基片上未被光刻膠塗敷之第二區域相對之位置之 奈米碳管結構被蝕刻,暴露出Ρ型氮化鎵層。此時,發光 二極體基片上未去除二氧化矽保護膜116及奈米碳管結構 114之區域仍塗敷有光刻膠。氧電漿體系統之功率係60瓦 ,氧電楽體之通入速率為40sc era (standard-state cubic centimeter per minute標況毫升每分),形成 之氣壓為2帕,採用氧電漿體蝕刻時間為2-8分鐘。 [0053] 蝕刻所述第二半導體層150、活性層140,並蝕刻部分第 一半導體層130之方法為反應離子蝕刻。本實施例中採用 反應離子蝕刻P型氮化鎵層、氮化銦鎵/氮化鎵層、部分N 型氮化鎵層,具體步驟為:將上述第二區域相對之位置 去除了除二氧化矽保護膜11 6及奈米碳管結構之發光二極 體基片放置在一感應耦合電漿體系統中,此時發光二極 體之基片之表面上第二區域之外之部分仍塗敷有光刻膠 :以四氣化矽及氯氣為蝕刻氣體去除待蝕刻區域内之P型 氮化鎵層、氮化銦鎵/氮化鎵層、部分N型氮化鎵層。本 實施例中,電漿體系統之功率係50瓦,氯氣之通入速率 為26sccm,四氣化石夕之通入速率為4sccm,形成氣壓為2 帕,蝕刻0. 3微米之P型氮化鎵層、0. 3微米氮化銦鎵/氮 化鎵層、0. 2微米之N型氮化鎵層。 [0054] [0055] 098腿0产単編號 步驟S107,在所述暴露出之第一半導體層130之表面製備 一第二電極120。 第二電極128可以為N型電極或P型電極,與固定電極112 及第一電極118之類型不同。本實施例中在第二半導體層 1013298550-0 A0101 第21頁/共35頁 1380480 [0056] [0057] [0058]1-101^083⁄4 I Tao] It is said that the carbon nanotube film is ordered (four). In this embodiment, two layers of super-sequential carbon nanotube film are laid on the 卩-type gallium nitride layer, and the angle of the carbon nanotubes in the two-layer super-sequential carbon nano film is 9 〇度. in? The method of preparing the nano-private structure 114 on the gallium nitride layer comprises the following steps: [0028] First, a super-sequential carbon nanotube array is provided. [0029] The super-sequential carbon nanotube array provided by the embodiment of the present invention is one or a plurality of single-walled carbon nanotube arrays, double-walled carbon nanotube arrays, and multi-walled carbon nanotube arrays. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or The crucible substrate formed with the oxide layer is selected. The present embodiment preferably uses a 4 inch stone substrate; (b) uniformly forms a catalyst layer on the surface of the substrate, and the catalyst layer material may be iron (Fe) or initial (Co). Recording (Ni) or any combination of alloys thereof; (c) annealing the substrate on which the catalyst layer is formed in air at 700 to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate In the reaction furnace, it is heated to 500-740 ° C in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 to 30 minutes to grow to obtain a super-sequential carbon nanotube array having a height of 200 to 400 μm. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions as described above. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals force. The surface area of the carbon nanotube array is substantially the same as the above substrate area. [0030] In the present embodiment, the carbon source gas may be selected from the group consisting of B, Ethylene, and Acacia. The chemical properties are 1013298550-0 098107401^Single number A〇101 1380480 101. On August 06, the replacement page is more active carbon. For the hydrogen compound, the preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. [0031] It can be understood that the carbon nanotube array provided in the embodiment is not limited to the above preparation method. It can also be a graphite electrode constant current arc discharge deposition method or a laser evaporation deposition method. [0032] Secondly, a super-sequential carbon nanotube film is obtained by pulling a super-sequential carbon nanotube array from a super-aligned carbon nanotube array, and specifically comprises the following steps: (a) from a super-sequential carbon nanotube One or more carbon nanotubes having a certain width are selected in the array. In this embodiment, it is preferred to use a tape, a braid or a clip having a certain width to contact the array of super-sequential carbon nanotubes to select one or a plurality of widths. The carbon nanotubes are (b) the selected carbon nanotubes are drawn at a certain speed to form a plurality of carbon nanotube fragments connected end to end, thereby forming a continuous super-sequential carbon nanotube film. The pull direction is substantially perpendicular to the growth direction of the nanotube array. [0033] In the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the tensile force, and the selected plurality of carbon nanotube segments are respectively separated by the van der Waals force. The other carbon nanotube segments are continuously pulled out end to end to form a continuous, uniform and width-limited super-sequential carbon nanotube film. The super-sequential carbon nanotube membrane comprises a plurality of carbon nanotubes connected end to end, the carbon nanotubes being arranged substantially in the direction of stretching. The super-aligned carbon nanotube film of the preferred orientation obtained by the direct stretching has better uniformity than the disordered carbon nanotube film. At the same time, the method of directly stretching to obtain a super-sequential carbon nanotube film is simple and rapid, and is suitable for industrial application. 09810740^·Single number A〇101 Stomach 13 pages / Total 35 pages 1013298550-0 [0034] Its D-optimal orientation. The nanocarbon B in the super-sequential carbon nanotube film is connected end to end and arranged in a preferred orientation, and the adjacent carbon nanotubes are tightly coupled by a 2 deval force. The nano s in the super-sequential carbon nanotube film may be one or more of the early-wall carbon nanotubes, the double-walled carbon nanotubes, and the multi-walled carbon nanotubes. The diameter of the single-walled carbon nanotubes is 〇. 5 Nika · m The double-walled carbon nanotubes of the double-walled carbon nanotubes are 1.G nanometers to 50 nanometers, which can be obtained according to actual needs. [0035] It can be understood that since the nano carbon & non-ifi pure in the super-sequential carbon nanotube array of the present embodiment and because the specific surface area of the carbon nanotube itself is very large, the super-shun carbon is obtained. The membrane itself has a strong viscosity. For the non-meter carbon film and the preparation method thereof, please refer to the applicant's mainland patent application “Nano Carbon Pipe Rope and Preparation Method”, which is filed on September 16, the applicant's application number is CN10041 1979C. In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the technical disclosure of the present invention. [0036]. The multi-walled carbon nanotube has a diameter of from 1.5 nm to 50 nm. The super-sequential carbon nanotube film has a thickness of from 〇5 nm to 100 μm and a width of o'omioM. The pores (four) between the carbon nanotubes in the super-sequential carbon nanotube film are at 50 microns. The width of the super-sequential carbon nanotube film is related to the size of the substrate grown by the array of aligned carbon nanotubes and the width of the super-sequential nanocarbon B array, and the length of the super-sequential carbon nanotube film Optionally, two layers of the super-sequential carbon nanotube film are vertically laid on the P-type gallium nitride layer to form a carbon nanotube structure 114, which specifically includes the following steps: placing the P-type gallium nitride layer Using the stretching tool above, the super-sequential nanocarbon 0981074 GI^ single number A 〇 101 page 14 / total 35 pages 1013298550-0 1380480 101 years _ 08 months revised the replacement page tube array to obtain the super Underneath the carbon nanotube film; lift the light-emitting diode substrate or reduce the super-sequential carbon nanotube film to lay the super-sequential carbon nanotube film on the light-emitting diode substrate; cut off the light-emitting diode a super-sequential carbon nanotube film outside the body substrate region; and rotating the light-emitting diode substrate 90 degrees to lay a second layer of super-aligned carbon nanotube film on the light-emitting diode substrate. Since the super-aligned carbon nanotube film itself has strong viscosity, it can be adhered to the light-emitting diode substrate. [0037] In addition, the method for preparing the ordered carbon nanotube film may further comprise the following steps: k providing a substrate; forming at least one strip catalyst film on the surface of the substrate; growing by chemical vapor deposition At least one ribbon nanometer array; and processing the at least one ribbon carbon nanotube array such that the at least one ribbon carbon nanotube array is tilted in a direction perpendicular to its length to form at least a surface of the substrate A ribbon-shaped carbon nanotube film. The carbon nanotube film prepared by the method comprises a plurality of super-long carbon nanotubes parallel to the surface of the carbon nanotube film, and the ultra-long carbon nanotubes are arranged in parallel with each other. Please refer to the Chinese Mainland Patent Application No. 200810067529.X, which is filed on May 28, 2008. The preparation method of the ribbon-shaped carbon nanotube film is only for reference herein, but the above application All the technical disclosures should also be regarded as a part of the technical disclosure of the present application. [0038] The method for preparing the ordered carbon nanotube film can also be obtained by milling an array of carbon nanotubes, and the specific steps are as follows: Providing a carbon nanotube array formed on a substrate; and providing a pressing device for extruding the carbon nanotube array to obtain a carbon nanotube membrane, wherein the carbon nanotube membrane is an ordered carbon nanotube membrane, The invention comprises a plurality of carbon nanotubes arranged in a preferred orientation along one or more directions. The nano surface of the carbon nanotube film prepared by the method _ production number number 1 page 15 / total 35 pages 1013298550-0 1380480 101_ .08月06日# The positive and negative carbon tubes overlap each other and are arranged in one direction or in a plurality of directions. The carbon nanotube film and its preparation method are described in detail in this application. The application number for the first day of the month is 2007100. 74699. 6 Mainland China Patent Application "Preparation Method of Nano Carbon Film Membrane". To save space, only the above is cited, but all the technical disclosures of the above application should also be regarded as a part of the technical disclosure of the present application. ^ [〇〇 The method for preparing the ordered carbon nanotube film may further comprise the steps of: providing a growth device, and the growth device comprises a reaction chamber and a rotating platform and a fixed platform disposed in the reaction chamber The reaction chamber includes an air inlet and an air outlet, and the fixed platform is disposed adjacent to the air inlet, the rotating platform is disposed adjacent to the air outlet; providing a growth substrate and a receiving substrate and growing Depositing a monodisperse catalyst layer on the surface of the substrate; placing the growth substrate on the fixed platform, placing the receiving substrate on the rotating platform; and introducing carbon source gas to grow ultra-long nanometer along the direction of the airflow Carbon tube; stop the introduction of carbon ^ j raw gas 'ultra-long carbon nanotubes parallel and spaced on the surface of the receiving substrate; replace the growth substrate 'and repeat the above growth The step of the carbon nanotubes is 'opened on the receiving substrate> into at least one carbon nanotube film; the at least one carbon nanotube film is removed from the receiving substrate to obtain a carbon nanotube film structure. The carbon nanotube film comprises a plurality of ultra-long carbon nanotubes parallel to the surface of the carbon nanotube film and the ultra-long carbon nanotubes are arranged in parallel with each other. The carbon nanotube film and the preparation method thereof are specifically referred to the application. The application for the Chinese patent application "Nano Carbon Tube Structure and Its Preparation Method" is filed on February 1, 2008, and the application number is 20081 0066048. 7. To save space, only quote here, but the above application is 09810740+ No. 101 0101 Page 16 / Total 35 Page 1013298550-0 1380480 101. August, d6, nuclear replacement page All technical disclosures should also be considered as part of the technical disclosure of the present application. [0040] Step S103, forming a protective layer 116 covering the carbon nanotube structure 114, please refer to FIG. 2(d). [0041] The protective layer 116 may be made of an insulating material, a semiconductor material or a metal material. The thickness of the protective layer 116 ranges from 10 to 100 nm. The protective layer 116 covers the surface of the carbon nanotube structure 114, and functions to fix the carbon nanotube structure 114 to prevent the carbon nanostructure from falling off or entanglement. The method of depositing the protective layer 116 onto the carbon nanotube structure 114 may be electron beam evaporation, magnetron sputtering or chemical vapor deposition. In this embodiment, a layer of ruthenium dioxide protective film 116 is deposited on the vertically laid two-layer super-aligned carbon nanotube film by chemical vapor deposition, and the thickness of the cerium oxide protective film 116 is 50 nm. Meter. [0042] Step S104, removing the first region of the protective layer 116 to expose a portion of the carbon nanotube structure 114. [0043] In this embodiment, the first region of the protective layer 116 is etched by wet etching to expose a portion of the carbon nanotube structure 114, see FIG. 2(e). [0044] The first region of the protective layer 116 may be any shape such as a square, a circle, or a triangle. The first region may be located on one side of the protective layer 116 or may be located at the center thereof. If the light-emitting diode has the fixed electrode 112, the area of the protective layer 116 corresponding to the fixed electrode 112 is the first area. In this embodiment, the ruthenium dioxide protective film 116 above the titanium/gold fixed electrode is removed to expose the carbon nanotube film of the corresponding region of the titanium/gold fixed electrode. In the present embodiment, the cerium oxide protective film 116 is etched by wet etching to 098107401^^^^ A 〇 101 page 17 / total 35 pages 1013298550-0 1 〇ΐϋ August 〇 | ^ 正 _ page 丨 oxide surname The encapsulation buffer (10) is a residual solution, and the oxide etching solution contains a high concentration of hydrofluoric acid solution and an ammonia buffer. The specific steps of using oxide __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The photoresist in the region corresponding to the surface of the gold-solidium electrode is exposed to a portion of the dioxide dioxide film 116' to provide an oxidized rot remaining in the buffer of the oxide residual agent; the light-emitting diode is The surface of the substrate coated with light is immersed in the oxide sweetness _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Rinse with plenty of ionized water and dry. The substrate for rinsing the substrate with a large amount of ionized water removes the gasification etch buffer attached to the surface of the substrate. [0045] Step S105, preparing the surface of the exposed carbon nanotube structure U4 - [0046] The first electrode 118 may be an _ electrode or a p-type electrode, the type thereof and the disk fixing electrode 112 and the second semiconductor layer 15 is the same. If the light emitting diode does not have a fixed electrode 112, the first electrode 118 may be located in any region of the surface of the Neil. If the light-emitting diode has a fixed electrode, the first electrode 118 is located on the surface of the nano-tube structure corresponding to the fixed electrode 112. Since the fixed electrode 112 is of an alternative structure, the first electrode 118 is a light-emitting diode, or the electrode 112 and the first electrode 118, the photodiode. Type electrode. If the three are all Ν-type materials, the first electrode 118 is a light-emitting diode type electrode, or a fixed power core (1) and 09810740 production number Α0101 page 18/35 pages 10132985Ε 1380480 |·1〇1 year On August 06, the correction pin ^page-electrode 11 8 together serves as the Ν-type electrode of the light-emitting diode. The first electrode 118 is prepared by physical vapor deposition. The first electrode (1) may be a -layer structure or a plurality of layer structures. The material of the first electrode ι 8 is condensed, gold or the like. [_ In this embodiment, the first electrode 118 is? The electrode has a two-layer structure '-the layer is titanium having a thickness of 15 nm' and the other layer is gold having a thickness of 2 nanometers. The first electrode 118 has the same size as the fixed electrode 112 and corresponds to the position A carbon nanotube structure 114 is sandwiched between the first electrode 118 and the fixed electrode 112, and the three forms a sandwich structure to fix one end of the carbon nanotube structure U4, which contributes to the subsequent structure of the carbon nanotube structure 114. Avoid detachment or entanglement during etching and enamel plating. In this embodiment, the method of forming the first electrode 118 is an electron beam evaporation method.闺 (4) S1G6, removing the first region of the protective layer U6 and the carbon nanotube structure 114, the second semiconductor layer 15 and the corresponding portion of the active layer 140 below the second region to expose a portion of the first semiconductor layer 13A. The second region of the surface of the protective layer 116 is square, circular or triangular, and the like. The second region to be etched may be located on one side of the surface of the protective layer 116 or may be located at the center thereof. The method of exposing the second region etched of the protective layer 丨丨6 to the first semiconductor layer 130 in the second region includes the step of etching the second region of the protective layer 116 by wet etching to expose the nanometer The carbon tube structure 114, please refer to FIG. 2(g); the exposed carbon nanotube structure 114 is etched by an oxygen plasma surname to expose the second semiconductor layer 150, see FIG. 2(h) The second semiconductor layer 150 is exposed by reactive ion etching to expose the first semiconductor layer 130. 1013298550-0 09810740Bill No. A0101 Page 19 of 35 [0050] 一·Γ〇1举0_06百·正苏百1 In the embodiment, the second region is the surface of the protective layer U6 and the first electrode Relative to 3 (four). The method of engraving the protective layer 116 is to use a wet process. The specific step of the method for spraying the protective layer 116 to the dioxode protective film 116' using the bismuth-etching buffer (4) dicizing protective film U6 is as follows: the luminescent diode has a oxidizing effect The surface of the Xibao 6 vine film 116 is evenly coated with a layer of photoresist; the surface of the dioxin protective film U6 and the light of the side electrode (10) are removed by exposure and development to expose the second part The oxygen cut protective film U6 'provides - an oxidized rot (4) containing a vaporized pure engraving buffer, and the surface of the photodiode substrate coated with the photoresist is immersed in the oxide rice engraving agent _ In the liquid towel, the dioxoscopic protective film 116 from which the light (4) is not recorded is removed; and the substrate on which the oxidized protective film 116 is deposited is taken out, rinsed with a large amount of water, and dried. Rinse the substrate with a large amount of ionized water to remove the oxide etchant buffer attached to the surface of the substrate. The thickness of the dioxide protective film 116 is 5 Å nanometer, and the cerium oxide protective film 116 is etched for about 1-2 minutes. [] 发光 发光 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — . [The method of the nanocarbon tube structure 114 is an oxygen plasma slurry. In this embodiment, the carbon nanotube structure is a two-layer vertically laid carbon nanotube film, and the two layers are etched by an oxygen plasma paste. The specific method of vertically laying the carbon nanotube film is: placing the above-mentioned partially coated photoresist diode in a microwave plasma system, and inducing power through one of the microwave plasma systems The source generates an oxygen plasma, and the oxygen ion body has a lower ion energy from 098107401^^^11 A〇101 帛20 pages/total 35 pages 1013298550-0 1380480 ΙΟί年.08月06日正正_Page generation area Diffusion and drift to the base surface of the light-emitting diode, at which time the carbon nanotube structure of the second region of the light-emitting diode substrate not coated with the photoresist is etched to expose the germanium-type gallium nitride Floor. At this time, the region of the light-emitting diode substrate on which the ruthenium dioxide protective film 116 and the carbon nanotube structure 114 are not removed is still coated with a photoresist. The power of the oxygen plasma system is 60 watts, the access rate of the oxygen battery is 40sc era (standard-state cubic centimeter per minute), and the gas pressure is 2 Pa, which is etched by oxygen plasma. The time is 2-8 minutes. [0053] The method of etching the second semiconductor layer 150, the active layer 140, and etching a portion of the first semiconductor layer 130 is reactive ion etching. In this embodiment, a reactive ion etched P-type gallium nitride layer, an indium gallium nitride/gallium nitride layer, and a partial N-type gallium nitride layer are used. The specific steps are: removing the relative position of the second region and removing the dioxide. The light-emitting diode substrate of the protective film 11 6 and the carbon nanotube structure is placed in an inductively coupled plasma system, and the portion of the surface of the substrate of the light-emitting diode is still coated outside the second region. A photoresist is applied: a P-type gallium nitride layer, an indium gallium nitride/gallium nitride layer, and a partial N-type gallium nitride layer in the region to be etched are removed by using four gasified germanium and chlorine gas as etching gases. In this embodiment, the power of the plasma system is 50 watts, the access rate of the chlorine gas is 26 sccm, the access rate of the four gas fossils is 4 sccm, the gas pressure is 2 Pa, and the P-type nitridation is 0.3 μm. a gallium layer, a 0.3 micron indium gallium nitride/gallium nitride layer, and a 0.2 micron N-type gallium nitride layer. [0055] 098 leg 0 calving number step S107, a second electrode 120 is prepared on the surface of the exposed first semiconductor layer 130. The second electrode 128 may be an N-type electrode or a P-type electrode, which is different from the fixed electrode 112 and the first electrode 118. In the present embodiment, the second semiconductor layer is 1013298550-0 A0101 page 21/to 35 pages 1380480 [0056] [0058]

I ι〇ι^〇8月〇6 ϋ正钥^頁I 130之臺階面1!9之表面製備一第二電極128,請參閱圖 2(j)。第二電極128為兩層結構,一層為厚度15奈米之 鈦,另一層為厚度200奈米之金。所述形成第二電極128 之方法為:由於所述發光二極體基片之表面去除所述臺 階面119之部分均塗敷有光刻膠,通過電子束蒸發之方法 在光刻膠上及臺階面119上沈積一金屬層,所述金屬層為 兩層結構,一層為厚度為1 5奈米之鈦,另一層為厚度為 2〇〇奈米之金;最後,通過丙酮等有機溶劑去除光刻膠及 其上之金屬層,即在被蝕刻暴露出型氮化鎵層上形成 一第二電極128» 步驟S104至步驟S1 07所述之蝕刻保護層並製備第一電極 及第二電極之方法還可以為以下順序:用濕法蝕刻法去 除保護層116之第二區域,以暴露出奈米碳管結構114 ; 用氧電榮·钱刻法去除第一區域以下之奈米碳管結構114, 以暴露出部分第二半導縣15G ;用反應離子㈣法㈣ 第二區域下之第二半導體層150,以暴露出第一半導體層 130 ;用濕法蝕刻法蝕刻保護層116之第一區域以暴露 出所述奈米碳管結構114 ;在暴露出之奈米碳管結構114 及暴露出之第一半導體層130之表面製備第一電極118及 第二電極120 » 步驟S108,去除奈米碳管結構Π4表面剩餘之保護層116 〇 去除保護層116之方法可依保護層116之材料而定,本實 施例中採用濕法蝕刻法去除奈米碳管結構上之二氧化矽 保護膜116。 0981074#單编號 A〇101 第22頁/共35頁 1013298550-0 1380480 ιοί年08月06日梭正替^頁 [0059] 可選擇地,本發明第一實施例提供之發光二極體之製備 方法還可包括以下步驟:在奈米碳管結構114上製備一金 屬層;將發光二極體在300 °C-500 °C之溫度下退火3-10 分鐘。 [0060] 所述金屬層可以為一層也可以為複數層結構,本實施例 中,所述金屬層為二層結構,一層為厚度2奈米之鎳,一 層為厚度5奈米之金。 [0061] 由於所述金屬層很薄,因此退火後所述金屬層中之金屬 原子聚集成金屬顆粒,分佈在奈米碳管結構中形成一複 .合薄膜。該複合薄膜相對於單純之奈米碳管結構具有較 好之導電性,提高了電流注入效率,改善了奈米碳管結 構114與固定電極112、第一電極114及第二半導體層150 之電學接觸。 [0062] 請參閱圖3,本發明第二實施例提供一種奈米碳管結構作 透明導電膜之發光二極體之製備方法,具體包括以下步 驟: [0063] 步驟S201,提供一基底,在該基底之表面依次形成一第 一半導體層、一活性層及一第二半導體層; [0064] 可選擇地,在所述第二半導體層與所述活性層相對之表 面之一端製備一固定電極。 [0065] 本實施例中,所述基底為藍寶石基底,所述第一半導體 層之材料為N型氮化鎵,其厚度為2微米,所述第二半導 體層之材料為P型氮化鎵,其厚度為0. 3微米。所述固定 電極112為N型電極;所述固定電極112為兩層結構,一層 09810740^^^^* A0101 第23頁/共35頁 1013298550-0 1380480 101年.08月06日修正替換頁 為厚度為15奈米之鈦,另一層為厚度為200奈米之金,形 成鈦/金固定電極。 [0066] 步驟S202,提供一奈米碳管結構,將奈米碳管結構直接 鋪設在所述第二半導體層之表面,形成一奈米碳管透明 導電膜; , [0067] 本實施例中所述奈米碳管結構為重疊鋪設之兩層有序奈 . 米碳管膜,該兩層有序碳奈米膜中奈米碳管之交叉角度 α為90度。 [0068] 步驟S201、步驟S202及同本發明第一實施例中之步驟 S101及步驟S102相同,可參閱本發明第一實施例提供之 具體内容。 | [0069] 步驟S203,形成一金屬層,覆蓋所述奈米碳管結構; [0070] 所述金屬層之材料為鎳、金或鈦等,所述金屬層可以為 一層結構,也可以為複數層結構θ採用金屬層作為保護 層可以保護.奈米碳管結構在後續之蝕刻工藝中避免脫落 或糾纒之現象"由於金屬層之厚度較薄時,金屬層不僅 具備良好之導電性,還具備一定之透光率。因此採用金 屬層作為保護層,在後續之製備工藝中金屬層可以保留 於奈米碳管結構之表面,不需要蝕刻金屬層將其去除之 步驟。所述金屬層之製備方法可以為物理氣相沈積法。 [0071] 本實施例中,所述金屬層為二層結構,一層為厚度為2奈 米之鎳薄膜,一層為厚度為5奈米之金薄膜,所述金屬層 之厚度範圍為5-8奈米。由於金屬層本身具備良好之導電 性,當其厚度很薄時,金屬層具備良好之透光性,因此 0981074#單编號 Α〇101 第24頁/共35頁 1013298550-0 Γ380480 ^ 年.08月06日修正替^頁 ,在後續之製備工藝中,金屬層可以保留於奈米碳管結 構之表面。 [0072]步驟S204,在所述金屬層表面之第一區域蝕刻暴露出第 一半導體層; . [0073] 所述於金屬層之第一區域進行蝕刻,暴露出第一區域内 之第一半導體層之方法包括以下步驟:用濕法蝕刻法蝕 刻金屬層之第一區域,暴露出第一區域内之奈求碳管社 構;用氧電梁體姓刻法钱刻第一區域内之奈来碳管纟士構 暴露出第二爭導體層;用反應離子蝕刻法蝕刻第一區域 内之第二半導體層及活性層暴露出第一半導體層。 [0074] 可選擇地,所述用反應離子蝕刻法蝕刻第一區域内之第 二半導體層及活性層之步驟後,進一步包括用反應離子 钮刻法銀刻第區域内之第一半導體層之步驟。 [0075] 步驟S205,在所述金屬層表面之第二區域製備一第一電 極。 [0076] 步驟S206,衣所述暴露出之第一半導體層製備—第二電 極。 [0077] 所述第一電極及第二電極與本發明第一實施例中提供之 第一電極及第電極相同。 [0078] 本發明提供之奈米碳管結構作透明導電膜之發光二極體 製備方法具備以下優點:其一,以奈米碳管結構作為透 明導電膜,奈米碳官結構可以直接鋪設於第二半導體層 之表面,製備工藝簡單;其二,製備過程中,在奈米碳 〇9810740产單編號 A0101 第25頁/共35頁 1013298550-0 1380480 10Ϊ#:08) 0?日修正額頁 管結構之表面形成一保護層或一金屬層,避免了奈米碳 管結構在製備過程中發生奈米碳管結構之脫落或糾纏等 現象;其三,奈米碳管結構被固定電極與第一電極固定 ,三者形成夾心結構,避免了奈米碳管結構在製備過程 中發生脫落或糾纏等現象。 [0079] 另外,本領域技術人員還可在本發明精神内作其他變化 ,當然這些依據本發明精神所作之變化,都應包含在本 發明所要求保護之範圍内。 【圖式簡單說明】 [0080] 圖1係本發明第一實施例提供之發光二極體之製備方法流 程圖。 [0081] 圖2係本發明第一實施例提供之發光二極體之製備工藝流 程圖。 [0082] 圖3係本發明第二實施例提供之發光二極體之製備方法流 程圖。 【主要元件符號說明】 [0083] 基底:110 [0084] 緩衝層:120 [0085] 第一半導體層:130 [0086] 活性層:140 [0087] 第二半導體層:150 [0088] 固定電極:11 2 0_74#單编號 Α〇101 第26頁/共35頁 1013298550-0 Γ380480 [0089] 奈米碳管結構:114 [0090] 保護層: 116 [0091] 第一電極 :118 [0092] 第二電極 :128 0981074Gi^單編號 A_ 第27頁/共35頁 10Ϊ年.08月06日梭正接換頁 1013298550-0I 〇 〇 〇 〇 〇 ϋ ϋ ϋ ϋ ϋ ϋ ^ ^ ^ 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 The second electrode 128 has a two-layer structure, one layer of titanium having a thickness of 15 nm and the other layer of gold having a thickness of 200 nm. The method of forming the second electrode 128 is: the portion of the surface of the light-emitting diode substrate from which the step surface 119 is removed is coated with a photoresist, and is deposited on the photoresist by electron beam evaporation. A metal layer is deposited on the step surface 119. The metal layer is a two-layer structure, one layer is titanium having a thickness of 15 nanometers, and the other layer is gold having a thickness of 2 nanometers. Finally, it is removed by an organic solvent such as acetone. a photoresist and a metal layer thereon, that is, a second electrode 128 is formed on the etch-exposed-type gallium nitride layer to form an etch protection layer as described in step S104 to step S107, and a first electrode and a second electrode are prepared. The method may also be in the following order: removing the second region of the protective layer 116 by wet etching to expose the carbon nanotube structure 114; removing the carbon nanotubes below the first region by oxygen voltaic enrichment Structure 114, to expose a portion of the second semiconducting county 15G; using the reactive ion (four) method (d) the second semiconductor layer 150 under the second region to expose the first semiconductor layer 130; etching the protective layer 116 by wet etching a first region to expose the carbon nanotube The first electrode 118 and the second electrode 120 are prepared on the exposed surface of the carbon nanotube structure 114 and the exposed first semiconductor layer 130. Step S108, removing the remaining protective layer on the surface of the carbon nanotube structure Π4 The method of removing the protective layer 116 may be determined according to the material of the protective layer 116. In this embodiment, the ceria protective film 116 on the carbon nanotube structure is removed by wet etching. 0981074#单单A〇101 Page 22/35 pages 1013298550-0 1380480 ιοί年08月6日梭正替^页 [0059] Alternatively, the first embodiment of the present invention provides a light-emitting diode The preparation method may further comprise the steps of: preparing a metal layer on the carbon nanotube structure 114; and annealing the light emitting diode at a temperature of 300 ° C to 500 ° C for 3 to 10 minutes. [0060] The metal layer may be a layer or a plurality of layers. In this embodiment, the metal layer is a two-layer structure, one layer is nickel having a thickness of 2 nm, and one layer is gold having a thickness of 5 nm. [0061] Since the metal layer is very thin, the metal atoms in the metal layer are aggregated into metal particles after annealing, and are distributed in the carbon nanotube structure to form a composite film. The composite film has better conductivity than the simple carbon nanotube structure, improves current injection efficiency, and improves the electrical properties of the carbon nanotube structure 114 and the fixed electrode 112, the first electrode 114, and the second semiconductor layer 150. contact. [0062] Referring to FIG. 3, a second embodiment of the present invention provides a method for fabricating a light-emitting diode of a carbon nanotube structure as a transparent conductive film, which specifically includes the following steps: [0063] Step S201, providing a substrate, Forming a first semiconductor layer, an active layer, and a second semiconductor layer in sequence; [0064] optionally, preparing a fixed electrode at one end of the surface of the second semiconductor layer opposite to the active layer . [0065] In this embodiment, the substrate is a sapphire substrate, the material of the first semiconductor layer is N-type gallium nitride, and the thickness thereof is 2 micrometers, and the material of the second semiconductor layer is P-type gallium nitride. 3微米。 Thickness of 0. 3 microns. The fixed electrode 112 is an N-type electrode; the fixed electrode 112 has a two-layer structure, a layer of 09810740^^^^* A0101, page 23/total 35 pages, 1013298550-0 1380480, 101. The thickness is 15 nm of titanium, and the other layer is 200 nm thick to form a titanium/gold fixed electrode. [0066] Step S202, providing a carbon nanotube structure, directly laying a carbon nanotube structure on the surface of the second semiconductor layer to form a carbon nanotube transparent conductive film; [0067] The carbon nanotube structure is an overlapped two-layer ordered nanotube film, and the intersection angle α of the carbon nanotubes in the two-layer ordered carbon nanotube film is 90 degrees. [0068] Steps S201 and S202 are the same as steps S101 and S102 in the first embodiment of the present invention, and may refer to the specific content provided by the first embodiment of the present invention. [0069] Step S203, forming a metal layer covering the carbon nanotube structure; [0070] the material of the metal layer is nickel, gold or titanium, etc., the metal layer may be a layer structure, or The complex layer structure θ can be protected by using a metal layer as a protective layer. The phenomenon that the carbon nanotube structure avoids falling off or squeezing in the subsequent etching process" because the thickness of the metal layer is thin, the metal layer not only has good conductivity It also has a certain light transmittance. Therefore, the metal layer is used as the protective layer, and the metal layer can remain on the surface of the carbon nanotube structure in the subsequent preparation process, and the step of removing the metal layer is not required. The metal layer can be produced by a physical vapor deposition method. [0071] In this embodiment, the metal layer has a two-layer structure, one layer is a nickel film having a thickness of 2 nm, and one layer is a gold film having a thickness of 5 nm, and the thickness of the metal layer ranges from 5 to 8. Nano. Since the metal layer itself has good electrical conductivity, when the thickness is very thin, the metal layer has good light transmittance, so 0981174#单单Α〇101 page 24/35 pages 1013298550-0 Γ380480 ^year.08 On the 6th of the month, the correction is made. In the subsequent preparation process, the metal layer can remain on the surface of the carbon nanotube structure. [0072] Step S204, etching and exposing the first semiconductor layer on the first region of the surface of the metal layer; [0073] etching the first region of the metal layer to expose the first semiconductor in the first region The method of layer includes the steps of: etching a first region of the metal layer by wet etching, exposing a carbon nanotube structure in the first region; and etching the first region in the first region by using an oxygen electric beam The carbon tube gentleman structure exposes the second contiguous conductor layer; the second semiconductor layer and the active layer in the first region are etched by reactive ion etching to expose the first semiconductor layer. [0074] Optionally, after the step of etching the second semiconductor layer and the active layer in the first region by reactive ion etching, further comprising: etching the first semiconductor layer in the first region by reactive ion button etching step. [0075] Step S205, preparing a first electrode in a second region of the surface of the metal layer. [0076] Step S206, preparing the exposed first semiconductor layer to prepare a second electrode. [0077] The first electrode and the second electrode are the same as the first electrode and the first electrode provided in the first embodiment of the present invention. [0078] The method for preparing a light-emitting diode of the carbon nanotube structure provided by the present invention as a transparent conductive film has the following advantages: First, the carbon nanotube structure is used as a transparent conductive film, and the carbon carbon structure can be directly laid on The surface of the second semiconductor layer is simple in preparation process; secondly, in the preparation process, in the nanocarbon 〇 9810740 production order number A0101 page 25 / total 35 pages 1013298550-0 1380480 10 Ϊ #: 08) 0? The surface of the tube structure forms a protective layer or a metal layer, which avoids the phenomenon that the carbon nanotube structure is detached or entangled during the preparation process; third, the carbon nanotube structure is fixed electrode and the first One electrode is fixed, and the three forms a sandwich structure, which avoids the phenomenon that the carbon nanotube structure is detached or entangled during the preparation process. In addition, other changes in the spirit of the invention may be made by those skilled in the art, and variations of the invention in accordance with the spirit of the invention are intended to be included within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS [0080] FIG. 1 is a flow chart showing a method of fabricating a light-emitting diode according to a first embodiment of the present invention. 2 is a flow chart showing a process of preparing a light-emitting diode according to a first embodiment of the present invention. 3 is a flow chart showing a method of fabricating a light-emitting diode according to a second embodiment of the present invention. [Main Element Symbol Description] [0083] Substrate: 110 [0084] Buffer Layer: 120 [0085] First Semiconductor Layer: 130 [0086] Active Layer: 140 [0087] Second Semiconductor Layer: 150 [0088] Fixed Electrode: 11 2 0_74#单单Α〇101 Page 26/35 pages 1013298550-0 Γ380480 [0089] Nano carbon tube structure: 114 [0090] Protective layer: 116 [0091] First electrode: 118 [0092] Two electrodes: 128 0981074Gi^Single number A_ Page 27/Total 35 pages 10Ϊ年.08月6号 Shuttle is changing page 1013298550-0

Claims (1)

1380480 101年.08月06日修正替換頁 七、申請專利範圍: 1 . 一種發光二極體之製備方法,其包括以下步驟: 提供一基底,在該基底之表面依次形成一第一半導體層、 一活性層及一第二半導體層; 提供一奈米碳管結構,將奈米碳管結構直接鋪設在所述第 二半導體層之表面,形成一奈米碳管透明導電膜; 〇 形成一保護層,覆蓋所述奈米碳管結構; 除去保護層之第一區域,以暴露出部分奈米碳管結構; 在暴露出之奈米碳管結構之表面製備一第一電極; 除去保護層之第二區域及該第二區域以下之奈米碳管結構 、第二半導體層及活性層相應部分,以暴露出部分第一半 導體層;及 在所述暴露出之第一半導體層之表面製備一第二電極。 _2 .如申請專利範圍第1項所述之發光二極體之製備方法,其 中’所述保護層之材料為絕緣材料、半導體材料或金屬材 料。 3 .如申請專利範.圍第1項所述之發光二極體之製備方法,其 中,所述製備第二電極之步驟後進一步包括去除奈米碳管 結構表面剩餘之保護層之步驟。 4. 如申請專利範圍第3項所述之發光二極體之製備方法,其 中,所述去除奈米碳管結構上剩餘之保護層之步驟之後, 進一步包括以下步驟:在奈米碳管結構之表面製備一金屬 層;將發光二極體在300 °C-500 °C之溫度下退火3-10分 鐘。 5. 如申請專利範圍第1項所述之發光二極體之製備方法,其 09810740P編號删1 第28頁/共35頁 1013298550-0 Γ380480 .101年08月06日梭正替換頁 中,所述形成奈米碳管透明導電膜於第二半導體層之表面 之步驟之前,預先製備一固定電極於所述第二半導體層表 面。 6 .如申請專利範圍第5項所述之發光二極體之製備方法,其 中,所述固定電極所對應之保護層之區域為第一區域。 7. 如申請專利範圍第1項所述之發光二極體之製備方法,其 中,所述奈米碳管結構包括至少一奈米碳管膜、複數個奈 米碳管線狀結構或其組合。 8. 如申請專利範圍第7項所述之發光二極體之製備方法,其 中,所述奈米碳管膜包括若干大致平行之奈米碳管,該奈 米碳管大致平行於奈米碳管透明導電膜之表面。 9 .如申請專利範圍第1項所述之發光二極體之製備方法,其 中,所述奈米碳管結構包括若干大致平行之第一奈米碳管 ,及若干大致平行之第二奈米碳管,該第一與第二奈米碳 管大致平行於奈米碳管透明導電膜之表面,該第一奈米碳 管之延伸方向與第二奈米碳管之延伸方向形成一交叉角度 α,α大於等於0度小於等於90度。 10 .如申請專利範圍第1項所述之發光二極體之製備方法,其 中,所述奈米碳管結構為層狀結構,厚度大於0. 5奈米。 11 .如申請專利範圍第1項所述之發光二極體之製備方法,其 中,在保護層之第二區域用濕法蝕刻法蝕刻去除保護層, 以暴露出部分奈米碳管結構。 12 .如申請專利範圍第1項所述之發光二極體之製備方法,其 中,用氧電漿體蝕刻法蝕刻去除第二區域以下之奈米碳管 結構,以暴露出部分第二半導體層。 13 .如申請專利範圍第1項所述之發光二極體之製備方法,其 0981074#單魏删1 第29頁/共35頁 1013298550-0 1380480 :1014¾ 06日修正秘頁 中,用反應離子蝕刻法蝕刻第二區域以下之第二半導體層 ,以暴露出第一半導體層。 14 .如申請專利範圍第1項所述之發光二極體之製備方法,其 中,用濕法蝕刻法蝕刻去除第一區域内之保護層,以暴露 出所述奈米碳管結構。 15 .如申請專利範圍第1項所述之發光二極體之製備方法,其 中,所述除去保護層並製備第一電極及第二電極之方法包 括以下步驟:在保護層之第二區域用濕法蝕刻法蝕刻去除 保護層,以暴露出奈米碳管結構;用氧電漿體蝕刻法蝕刻 去除所述暴露出之奈米碳管結構,以暴露出第二半導體層 ;在暴露出之第二半導體層之表面用反應離子蝕刻法蝕刻 ,以暴露出第一半導體層;在保護層之第一區域用濕法蝕 刻法蝕刻去除保護層,以暴露出奈米碳管結構;及於所述 暴露出之奈米碳管结構之表面及所述暴露出之第一半導體 層之表面分別製備一第一電極及一第二電極。 16,如申請專利範圍第1項所述之發光二極體之製備方法,其 中,所述除去保護層並製備第一電極及第二電極之方法包 括以下步驟:在保護層之第一區域用濕法蝕刻法蝕刻去除 保護層,以暴露出奈米碳管結構;在所述暴露出之奈米碳-管結構之表面製備一第一電極;在保護層之第二區域用濕 法蝕刻法蝕刻去除保護層,以暴露出奈米碳管結構;用氧 電漿體蝕刻法蝕刻去除所述暴露出之奈米碳管結構,以暴 露出第二半導體層;用反應離子蝕刻法蝕刻暴露出之第二 半導體層,以暴露出第一半導體層;在所述暴露出之第一 半導體層之表面製備一第二電極。 17 . —種發光二極體之製備方法,其包括以下步驟: 0_740产單编號A0101 第30頁/共35頁 1013298550-0 1380480 •101年.08月06日按正菁g頁 提供一基底,在該基底之表面依次形成一第一半導體層、 一活性層及一第二半導體層; 提供一奈米碳管結構,將奈米碳管結構直接鋪設在所述第 二半導體層之表面,形成一奈米碳管透明導電膜; 形成一金屬層,覆蓋所述奈米碳管結構; 去除所述金屬層之第一區域及該第一區域以下之奈米碳管 結構、第二半導體層及活性層相應部分,以暴露出部分第 一半導體層; 在所述金屬層表面之第二區域製備一第一電極;及 在所述暴露出之第一半導體層之表面製備一第二電極。 18 .如申請專利範圍第17項所述之發光二極體之製備方法,其 中,所述奈米碳管結構包括一奈米碳管膜、複數個奈米碳 管線狀结構或其組合。 19 .如申請專利範圍第18項所述之發光二極體之製備方法,其 中,所述奈米碳管膜包括若干大致平行之奈米碳管,該奈 米碳管大致平行於奈米碳管透明導電膜之表面。 20 .如申請專利範圍第17項所述之發光二極體之製備方法,其 中,所述奈米碳管結構包括若干大致平行之第一奈米碳管 ,及若干大致平行之第二奈米碳管,該第一與第二奈米碳 管大致平行於奈米碳管透明導電膜之表面,該第一奈米碳 管之延伸方向與第二奈米碳管之延伸方向不平行。 21 .如申請專利範圍第17項所述之發光二極體之製備方法,其 中,所述奈米碳管結構為層狀結構,厚度大於0. 5奈米。 09丽4#單編號A0101 1013298550-0 第31頁/共35頁1380480 101. 08.06.06 Revision Replacement Page VII. Patent Application Range: 1. A method for preparing a light-emitting diode, comprising the steps of: providing a substrate, sequentially forming a first semiconductor layer on a surface of the substrate; An active layer and a second semiconductor layer; providing a carbon nanotube structure, directly laying a carbon nanotube structure on the surface of the second semiconductor layer to form a carbon nanotube transparent conductive film; a layer covering the carbon nanotube structure; removing the first region of the protective layer to expose a portion of the carbon nanotube structure; preparing a first electrode on the surface of the exposed carbon nanotube structure; removing the protective layer a second region and a second portion of the second region of the second carbon nanotube structure, the second semiconductor layer and the active layer to expose a portion of the first semiconductor layer; and a surface of the exposed first semiconductor layer Second electrode. The method for producing a light-emitting diode according to claim 1, wherein the material of the protective layer is an insulating material, a semiconductor material or a metal material. 3. The method for preparing a light-emitting diode according to the above aspect, wherein the step of preparing the second electrode further comprises the step of removing the remaining protective layer on the surface of the carbon nanotube structure. 4. The method for preparing a light-emitting diode according to claim 3, wherein after the step of removing the remaining protective layer on the carbon nanotube structure, the method further comprises the following steps: in the carbon nanotube structure A metal layer is prepared on the surface; the light emitting diode is annealed at a temperature of 300 ° C to 500 ° C for 3-10 minutes. 5. For the preparation method of the light-emitting diode according to the first application of the patent scope, the number of the 09810740P is deleted, the second page, the second page, the third page, the 1011398550-0 Γ380480. Before the step of forming the carbon nanotube transparent conductive film on the surface of the second semiconductor layer, a fixed electrode is prepared in advance on the surface of the second semiconductor layer. 6. The method for producing a light-emitting diode according to claim 5, wherein the region of the protective layer corresponding to the fixed electrode is the first region. 7. The method of producing a light-emitting diode according to claim 1, wherein the carbon nanotube structure comprises at least one carbon nanotube film, a plurality of nanocarbon line-like structures, or a combination thereof. 8. The method for producing a light-emitting diode according to claim 7, wherein the carbon nanotube film comprises a plurality of substantially parallel carbon nanotubes, the carbon nanotubes being substantially parallel to the nanocarbon. The surface of the transparent conductive film. 9. The method of producing a light-emitting diode according to claim 1, wherein the carbon nanotube structure comprises a plurality of substantially parallel first carbon nanotubes, and a plurality of substantially parallel second nanoparticles. a carbon tube, the first and second carbon nanotubes are substantially parallel to a surface of the carbon nanotube transparent conductive film, and the extending direction of the first carbon nanotube forms an angle of intersection with the extending direction of the second carbon nanotube α, α is greater than or equal to 0 degrees and less than or equal to 90 degrees. 5 纳米。 The nano-carbon tube structure is a layered structure, the thickness is greater than 0. 5 nanometers. 11. The method of producing a light-emitting diode according to claim 1, wherein the protective layer is etched by wet etching in a second region of the protective layer to expose a portion of the carbon nanotube structure. The method for producing a light-emitting diode according to claim 1, wherein the carbon nanotube structure below the second region is etched by an oxygen plasma etching method to expose a portion of the second semiconductor layer . 13. The method for preparing a light-emitting diode according to the first aspect of the patent application, which is 0981074#单魏除1 page 29/35 pages 1013298550-0 1380480:10143⁄4 06-day revision of the secret page, using reactive ions The second semiconductor layer below the second region is etched to expose the first semiconductor layer. 14. The method of producing a light-emitting diode according to claim 1, wherein the protective layer in the first region is etched away by wet etching to expose the carbon nanotube structure. The method for producing a light-emitting diode according to claim 1, wherein the method of removing the protective layer and preparing the first electrode and the second electrode comprises the steps of: using the second region of the protective layer Etching etching to remove the protective layer to expose the carbon nanotube structure; etching the exposed carbon nanotube structure by oxygen plasma etching to expose the second semiconductor layer; The surface of the second semiconductor layer is etched by reactive ion etching to expose the first semiconductor layer; the protective layer is etched by wet etching in the first region of the protective layer to expose the carbon nanotube structure; A first electrode and a second electrode are respectively prepared on the surface of the exposed carbon nanotube structure and the surface of the exposed first semiconductor layer. The method for preparing a light-emitting diode according to claim 1, wherein the method of removing the protective layer and preparing the first electrode and the second electrode comprises the steps of: using the first region of the protective layer Etching etching to remove the protective layer to expose the carbon nanotube structure; preparing a first electrode on the surface of the exposed nanocarbon tube structure; and wet etching in the second region of the protective layer Etching to remove the protective layer to expose the carbon nanotube structure; etching the exposed carbon nanotube structure by oxygen plasma etching to expose the second semiconductor layer; etching exposed by reactive ion etching a second semiconductor layer to expose the first semiconductor layer; and a second electrode on the surface of the exposed first semiconductor layer. 17 . A method for preparing a light-emitting diode, comprising the following steps: 0_740 production order number A0101 page 30 / total 35 pages 1013298550-0 1380480 • 101 years. August 06, according to the page of the Zhengjing g page provides a substrate Forming a first semiconductor layer, an active layer and a second semiconductor layer on the surface of the substrate; providing a carbon nanotube structure, directly laying the carbon nanotube structure on the surface of the second semiconductor layer Forming a carbon nanotube transparent conductive film; forming a metal layer covering the carbon nanotube structure; removing the first region of the metal layer and the carbon nanotube structure and the second semiconductor layer below the first region And a corresponding portion of the active layer to expose a portion of the first semiconductor layer; a first electrode being formed on the second region of the surface of the metal layer; and a second electrode being formed on the surface of the exposed first semiconductor layer. 18. The method of producing a light-emitting diode according to claim 17, wherein the carbon nanotube structure comprises a carbon nanotube film, a plurality of nanocarbon line structures, or a combination thereof. The method for producing a light-emitting diode according to claim 18, wherein the carbon nanotube film comprises a plurality of substantially parallel carbon nanotubes, the carbon nanotubes being substantially parallel to the nanocarbon The surface of the transparent conductive film. The method for producing a light-emitting diode according to claim 17, wherein the carbon nanotube structure comprises a plurality of substantially parallel first carbon nanotubes, and a plurality of substantially parallel second nanometers. The carbon tube, the first and second carbon nanotubes are substantially parallel to the surface of the carbon nanotube transparent conductive film, and the extending direction of the first carbon nanotube is not parallel to the extending direction of the second carbon nanotube. 5 纳米。 The nano-carbon tube structure is a layered structure, the thickness is greater than 0.5 nanometers. 09丽4#单号A0101 1013298550-0 Page 31 of 35
TW98107401A 2009-03-06 2009-03-06 Method for manufacturing light emitting diode TWI380480B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98107401A TWI380480B (en) 2009-03-06 2009-03-06 Method for manufacturing light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98107401A TWI380480B (en) 2009-03-06 2009-03-06 Method for manufacturing light emitting diode

Publications (2)

Publication Number Publication Date
TW201034248A TW201034248A (en) 2010-09-16
TWI380480B true TWI380480B (en) 2012-12-21

Family

ID=44855437

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98107401A TWI380480B (en) 2009-03-06 2009-03-06 Method for manufacturing light emitting diode

Country Status (1)

Country Link
TW (1) TWI380480B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719888B (en) * 2011-03-29 2015-11-25 清华大学 There is the preparation method of nano-micro structure substrate
CN102760802B (en) 2011-04-29 2015-03-11 清华大学 Led
CN102760804B (en) 2011-04-29 2015-01-21 清华大学 Light-emitting diode
CN102760803B (en) * 2011-04-29 2015-08-26 清华大学 Light-emitting diode
CN102760797B (en) * 2011-04-29 2015-04-01 清华大学 Led
CN102760806B (en) * 2011-04-29 2014-12-10 清华大学 Led
CN103904179A (en) 2012-12-29 2014-07-02 展晶科技(深圳)有限公司 Light emitting diode crystal particle and manufacturing method thereof

Also Published As

Publication number Publication date
TW201034248A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
CN101820036B (en) Method for preparing light-emitting diode
US9202975B2 (en) Light emitting diode including graphene layer
US9190565B2 (en) Light emitting diode
TWI380480B (en) Method for manufacturing light emitting diode
US8865577B2 (en) Method for making epitaxial structure
CN101859858B (en) Transparent conducting electrode based on graphene and manufacture method and applications thereof
CN104810455B (en) Ultraviolet semiconductor luminescent device and its manufacture method
KR101212711B1 (en) ZnO nanorod - graphene thin film hybrid architectures and fabricating methods thereof
US8900977B2 (en) Method for making epitaxial structure
US9099307B2 (en) Method for making epitaxial structure
CN102709426A (en) Manufacture method of GaN (gallium nitride)-based LED (light emitting diode) chip with roughened surface
TW201244168A (en) Light-emitting diode
US8823045B2 (en) Light emitting diode with graphene layer
US20130285212A1 (en) Epitaxial structure
US20130285016A1 (en) Epitaxial structure
US8859402B2 (en) Method for making epitaxial structure
US20140065742A1 (en) Method for making light emitting diode
US9105484B2 (en) Epitaxial stucture
TW201244156A (en) Light emitting diode
JP5591865B2 (en) Manufacturing method of light emitting diode
Li et al. Fabrication and application of indium-tin-oxide nanowire networks by polystyrene-assisted growth
JP2014195069A (en) Semiconductor light-emitting element, manufacturing method of the same and optical base material
CN104952987B (en) Light emitting diode
Nivetha et al. Optical and structural properties of fluorine doped SnO2 on Si (100) for photovoltaic application
KR102118777B1 (en) Tansparent electrode using graphene and nanowire and method for fabricating the same