TW201239191A - Device and method for controlling ship engine - Google Patents

Device and method for controlling ship engine Download PDF

Info

Publication number
TW201239191A
TW201239191A TW101105439A TW101105439A TW201239191A TW 201239191 A TW201239191 A TW 201239191A TW 101105439 A TW101105439 A TW 101105439A TW 101105439 A TW101105439 A TW 101105439A TW 201239191 A TW201239191 A TW 201239191A
Authority
TW
Taiwan
Prior art keywords
rotation speed
fuel index
target
rotational speed
ship
Prior art date
Application number
TW101105439A
Other languages
Chinese (zh)
Inventor
Ichiro Tanaka
Takeshi Aoki
Hidenori Yamamoto
Akira Mitsufuji
Hiroki Watanabe
Original Assignee
Mitsui Shipbuilding Eng
Mitsui Zosen Systems Res Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Shipbuilding Eng, Mitsui Zosen Systems Res Inc filed Critical Mitsui Shipbuilding Eng
Publication of TW201239191A publication Critical patent/TW201239191A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Feedback Control In General (AREA)

Abstract

The actual rotational velocity Ne for a main engine (1) is detected, and is input to a time delay logic (13) and a cycle calculation unit (15). The fluctuation cycle of the actual rotational velocity Ne is detected by the cycle calculation unit (15), and the actual rotational velocity Ne is delayed by a quarter-cycle by the time delay logic (13), and the result is fed back. The target rotational velocity No and the feedback signal deviation are input to a proportional control unit (14), and a proportional calculation is performed with a gain corresponding to the fluctuation angle velocity ? of the actual rotational velocity calculated from the cycle that has been determined by the cycle calculation unit (15). The fuel index FIo corresponding to the target rotational velocity No is calculated by an N/FI conversion unit (12), and is added to the output from the proportional control unit (14).

Description

201239191 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種控制船舶主機運轉的船舶引擎 控制裝置。 【先前技術】 在船舶,係廣泛採用將螺槳(propeller)旋轉速度 維持在固定值的旋轉速度固定控制。也就是說,船舶 主機的調速器控制,藉由PID控制,實際旋轉速度被 維持在目標旋轉速度(專利文獻υ。但是,在旋轉速 度固定控制中,由於對應負載變化,㈣供給量 mdex:燃料指標)會變動,所以有燃料效率惡化的狀 5二此’因應海象,也有進行調速器控制的狀況, 將燃料供給量(燃料指標)固定於固定值。 專利文獻1 :特開平8_200131號公報 固定但旨標固定,即使將主機力矩維持在大致 變:發:=:動,則螺紫力矩不維持固定,所以 文動發生在推力,推進效率會低落。 【發明内容】 制,㈣主機控 土發明的船舶弓,擎控制裝置 度’輪出燃料指標的船辑控制裝置:二= 201239191 於主機關的實際旋轉速度的變動周期延遲10%〜30% 的回饋訊號回饋,並與實際旋轉速度的變動角速度成比 例地使燃料指標變動。 回饋訊號為例如以時間延遲邏輯將實際旋轉速度 延遲而得的訊號,目標旋轉速度與回饋訊號的偏差為例 如經由設定對應變動角速度的增益的比例演算部被輸 出。 又,更具備目標旋轉速度/燃料指標變換手段,該 變換手段算出對應目標旋轉速度的燃料指標,來自比例 演算部的輸出被加到對應目標旋轉速度的燃料指標。 或者是,船舶引擎控制裝置,具備PI控制部,目 標旋轉速度與回饋訊號的偏差被輸入到PI控制部,對 應目標旋轉速度的燃料指標,在PI控制部的I演算部 被產生、維持。 又,也可以是回饋訊號被實際旋轉速度的微分演算 所產生的結構。 本發明的船舶,其特徵在於具備上述船舶引擎控制 裝置。 又,本發明的船舶引擎控制方法,是給予目標旋轉 速度,輸出燃料指標的船舶引擎控制方法,其特徵在於 將對於主機關的實際旋轉速度的變動周期延遲10%〜 30%的回饋訊號回饋,並與實際旋轉速度的變動角速度 成比例地使燃料指標變動。 根據本發明,進行螺槳力矩成固定的主機控制,抑 制推力變動,可以提昇推進效率。 201239191 【實施方式】 以下參照附帶圖式來說明關於本發明的實施形 態。 第一圖是表示本發明的第一實施形態的船舶引擎 控制裝置的結構的控制方塊圖。 本實施形態的船舶引擎控制裝置10,是控制往主 機關11的燃料供給的調速器系統,主機關11的曲柄軸 (crankshaft,圖未顯示)被連接於推進用螺槳(圖未 顯示)。在船舶引擎控制裝置10,做為目標值來設定 目標旋轉速度No’為主機關11的輸出的實際旋轉速度 Ne被用轉動齒輪(turning gear )等周知方法來檢測。 目標旋轉速度No,在N/FI變換部12被變換成燃 料指標Flo。又,並行於此,在本實施形態,求得與經 由時間延遲邏輯13回饋的主機關11的實際旋轉速度 Ne之間的偏差,在比例控制部η施加比例演算。 在本實施形態,比例控制部14是以與實際旋轉速 度Ne的變動角速度ω成比例的增益進行比例演算,時 間延遲邏輯13使實際旋轉速度Ne的相位延遲大約90 度’或者是延遲變動周期的約1〇〜30%。又,比例控 制部14的增益以及時間延遲邏輯13的延遲時間,是根 據基於實際旋轉速度Ne以周期算出部15所算出的實際 旋轉速度Ne的周期T來決定。 又’來自N/FI變換部12以及比例控制部14的訊 號’被相加並輸入至致動器(actuator) 16,致動器16 201239191 將對應燃料指標FI的量的燃料供給至主機關11。 接下來參照第二圖,對比燃料指標固定控制來說 明關於本發明的螺槳力矩固定控制的原理。 又’在第二圖,在燃料指標固定控制以及螺紫力 矩固定控制的主機旋轉速度N (第二(a )圖)、燃料 指標FI或主機力矩Qe (第二(b)圖)、螺槳力矩卩^^ 或推力(第二(c)圖)、力矩係數Kq (第二(d)圖) 的時間變動’係將其平均值做為1〇〇%來表示。又,在 第二圖’在0〜25秒的區間表示在燃料指標固定控制 的各物理量變動’在30〜55秒的區間表示在螺槳力矩 固定控制的各物理量的變動。 當以流體密度p、螺槳直徑D、目標旋轉速度No 將各物理量無因次化時’螺槳力矩Qp係採用力矩係數 Kq與主機旋轉速度N來表示成 Qp = Kq · N2 ( 1 )。201239191 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a ship engine control device for controlling the operation of a ship's main engine. [Prior Art] In ships, a fixed rotational speed control that maintains a propeller rotation speed at a fixed value is widely used. That is to say, the governor control of the ship's main engine is controlled by the PID, and the actual rotational speed is maintained at the target rotational speed (Patent Document υ. However, in the fixed rotational speed control, due to the corresponding load change, (4) the supply amount mdex: In the case of the fuel level, the fuel efficiency is deteriorated. Patent Document 1: Japanese Laid-Open Patent Publication No. Hei No. Hei. No. Hei. No. 8-200131. The fixed but fixed target is fixed. Even if the main engine torque is maintained at a constant value: the hair:=: movement, the spiral purple torque is not maintained constant, so the movement occurs in the thrust and the propulsion efficiency is lowered. [Summary of the Invention] System, (4) The ship bow of the host control soil invention, the ship control device of the engine control unit's round-off fuel index: 2 = 201239191 The fluctuation period of the actual rotation speed of the host switch is delayed by 10%~30%. The feedback signal is fed back and the fuel index is varied in proportion to the angular velocity of the actual rotational speed. The feedback signal is, for example, a signal obtained by delaying the actual rotational speed by the time delay logic, and the deviation between the target rotational speed and the feedback signal is outputted, for example, by a proportional calculation unit that sets the gain corresponding to the angular velocity. Further, the target rotation speed/fuel index conversion means is further provided, and the conversion means calculates the fuel index corresponding to the target rotation speed, and the output from the proportional calculation unit is added to the fuel index corresponding to the target rotation speed. Alternatively, the ship engine control unit includes a PI control unit, and the deviation between the target rotation speed and the feedback signal is input to the PI control unit, and the fuel index corresponding to the target rotation speed is generated and maintained in the I calculation unit of the PI control unit. Further, it may be a structure in which the feedback signal is generated by the differential calculation of the actual rotational speed. A ship according to the present invention is characterized by comprising the above-described ship engine control device. Further, the ship engine control method according to the present invention is a ship engine control method for giving a target rotation speed and outputting a fuel index, which is characterized in that the fluctuation period of the actual rotation speed of the main engine is delayed by 10% to 30% of the feedback signal feedback. The fuel index is varied in proportion to the angular velocity of the actual rotational speed. According to the present invention, the propeller torque is fixed to the main engine control, the thrust variation is suppressed, and the propulsion efficiency can be improved. [2012] [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The first figure is a control block diagram showing the configuration of a ship engine control device according to a first embodiment of the present invention. The ship engine control device 10 of the present embodiment is a governor system that controls fuel supply to the main engine switch 11, and a crankshaft (not shown) of the main switch 11 is connected to a propeller for propulsion (not shown). . In the ship engine control device 10, the target rotational speed No' is set as the target value, and the actual rotational speed Ne of the output of the main unit 11 is detected by a known method such as a turning gear. The target rotation speed No is converted into the fuel index Flo by the N/FI conversion unit 12. Further, in parallel with this, in the present embodiment, the deviation from the actual rotational speed Ne of the host switch 11 fed back by the time delay logic 13 is obtained, and the proportional calculation is applied to the proportional control unit η. In the present embodiment, the proportional control unit 14 performs proportional calculation with a gain proportional to the angular velocity ω of the actual rotational speed Ne, and the time delay logic 13 delays the phase of the actual rotational speed Ne by approximately 90 degrees' or a delay variation period. About 1〇~30%. Further, the gain of the proportional control unit 14 and the delay time of the time delay logic 13 are determined based on the period T of the actual rotational speed Ne calculated by the period calculating unit 15 based on the actual rotational speed Ne. Further, the 'signal from the N/FI conversion unit 12 and the proportional control unit 14' is added and input to an actuator 16, and the actuator 16 201239191 supplies the fuel corresponding to the amount of the fuel index FI to the host switch 11 . Next, referring to the second figure, the principle of the fixed control of the propeller torque of the present invention will be explained in comparison with the fuel index fixed control. Also, in the second figure, the main engine rotation speed N (second (a) diagram), the fuel index FI or the main engine moment Qe (second (b) diagram), the propeller in the fuel index fixed control and the screw purple torque fixed control The moment 卩^^ or thrust (second (c) diagram) and the moment coefficient Kq (second (d) diagram) are expressed as 1〇〇%. In the interval of 0 to 25 seconds in the second graph, the fluctuations in the respective physical quantities of the fuel index fixed control are shown in the range of 30 to 55 seconds. When the physical quantities are not dimensioned by the fluid density p, the propeller diameter D, and the target rotational speed No, the propeller torque Qp is represented by the torque coefficient Kq and the main engine rotational speed N as Qp = Kq · N2 ( 1 ).

在此’將螺槳力矩Qp、力矩係數Kq、主機旋轉速 度N,分別用其平均值Qpa、Kpa、Na與變動成分AQp、 △ Kq、△ N表示成 Qp= Qpa+ Δ Qp Kq = Kqa-l· Δ Kq N = Na+ Δ N ,當將(1)式線性近似於平均值周圍,則可以近 似於 △ Qp= (5Qp/0Kq)· AKq+ (aQp應)· ΔΝHere, the propeller torque Qp, the moment coefficient Kq, and the main engine rotational speed N are expressed by the average values Qpa, Kpa, Na and the variation components AQp, ΔKq, ΔN as Qp=Qpa+ Δ Qp Kq = Kqa-l · Δ Kq N = Na+ Δ N , when the equation (1) is linearly approximated around the mean value, it can be approximated by Δ Qp= (5Qp/0Kq)· AKq+ (aQp should be)· ΔΝ

=Na2 · △ Kq + 2Kqa · Na · △ N 6 (2)。 (2)。201239191 在此’將力矩係數的平均值Kqa做為1 ( 1 〇〇% ), 即將平均螺槳力矩Qpa做為i (100%)時,由於在平 均值周圍,平均旋轉速度Na實質等於目標旋轉速度N〇 (=1) ’所以螺槳力矩變動成分AQp是從(2)式表示 成 Δ(}ρ= ΔΚ^+2 . ΔΝ (3)。 又,當將包含引擎或螺槳的旋轉部的慣性力矩做為 I ’將主機力矩做為Qe ’則歐拉(Euler)運動方程式為 dN/dt= (Qe-Qp) /1 ( 4 )。在此,將主機力矩=Na2 · Δ Kq + 2Kqa · Na · △ N 6 (2). (2). 201239191 Here, 'the average value Kqa of the moment coefficient is 1 (1 〇〇%), that is, when the average propeller torque Qpa is i (100%), since the average rotation speed Na is substantially equal to the target rotation around the average value Speed N〇(=1)' Therefore, the propeller torque variation component AQp is expressed by equation (2) as Δ(}ρ= ΔΚ^+2 . ΔΝ (3). Further, when the engine or the propeller is rotated The moment of inertia is I's the host torque as Qe', then the Euler equation of motion is dN/dt=(Qe-Qp) /1 ( 4 ). Here, the host torque

Qe分離成其平均值Qea以及變動成分a ,當以Qe = Qea+ AQe來表示時,由於Qea實質上等於Qpa(Qea = Qpa) ’(4)式表示為 dAN/dt= ( AQe-AQp) /1 (5)。 [燃料指標固定控制] 主機力矩Qe係大致正比例於燃料指標,若除去 係數,實質上等於燃料指標FI,所以燃料指標固定控制 可以考慮到△ Qe= 0 (第二(b )圖左)。此時,(5 )式 表示為 dAN/dt=-AQp/I (6)。 在此’因波等的干擾導致的負載變動,表示成力矩 係數Kq的變動^Kq’當假定Akp與變動角速度ω的正 弦波(圖二(d)左)的關係為 AKq = A · sin ( ω〇 (7),則從(3)式變成 △ Qp = A . sin ( ωί) +2 · ΔΝ (8)。 若將此代入(6)式,則歐拉運動方程式變成 201239191 dN/dt=- ( A · sin ( ωί) +2 · ΔΝ )/1 (9)。 在此’(9 )式的穩態解(steady s〇iuti〇n )表示成 △ N=B · sin ( 6U+ 0 ) ( i〇) β = -Α// (( ωΐ) 2 + 4) θ - -tan-' ( ωΙ/2)(第二(a)圖左)。 一 也就是說,在燃料指標固定控制,當以(7)式表 示的周期性負載變動施加在螺槳,則主機旋轉速度N具 有對應慣性力矩I的相位0的延遲,如(1〇)式地變動。 此時’螺槳力矩Qp以及推力Th ( = Kt · N2,Kt :推力 係數),如(8)式地變動(第二(c)圖左),推進效率 會低落。又,在此,推力係數Kt假定為除了偏移程度 的不同外’以與力矩係數Kq大致相同地(以同相位) 變動。 [螺槳力矩固定控制] 另一方面’若螺槳力矩QP為固定,則△ Qp= 〇 (第 二(c )圖右),將此代入(3 )式,則獲得 Δ N = - A Kq/2 (11)。 也就是說’在平均值周圍’線性近似值成立時,為 了將螺槳力矩Qp固定,使主機旋轉速度N配合力矩係 數Kq的變動ΔΚρ,根據(11 )式以目標旋轉速度N〇 為中心變動即可(第二圖(a)右)。 又,螺槳力矩Qp為固定時(△ Qp= 〇時),(5 )式 表示成 d △ N/dt = △ Qe/I, 主機力矩Qe的變動成分AQe變成 AQe = I - (dAN/dt) ( 12)。 201239191 在此,與燃料指標固定控制相同地,假定力矩係數 Kq為(7)式的周期變動時(第二圖右),用來將 螺槳力矩Qp固定的條件是來自〇1)式而成為 ΔΝ=-Α * sin ( ^t) /2 » 得知使主機旋轉速度Ν,以與力矩係數的變動相 逆的相位,以1/2振幅變動(第二(a)圖右)。又, 這從(12 )式,對應使主機力矩Qe在平均值卩⑶周圍 以 ·Ι. A.cos(wt)/2 (13)來變動(第 一(b)圖右)。 如剷述,燃料指標FI可以被視為主機力矩Qe。因 此,以(7)式施加負載變動時,若將(13)式的變動 附加在對應目標旋轉速度N〇的燃料指標π〇,則螺槳 力矩被維持在固定(第二(e)圖右)。也就是說, 在,一貫施形態,如第一圖所示,在時間延遲邏輯13 使實際旋轉速度Ne的相位延遲9〇。(四分之一周期) 者負回饋,在比例控制部14進行在對應變動角速度㊉ 的增盈的增幅。 —根據如上述的第—實施形態,將螺槳力矩維持固 將推力維_定’可以防止因負錢動導致推進效 率的低落。 接下來參照第H關於本發明的第二實施形 ϊίί引擎之控制裂置。又’第三圖表示第二實施形 4的引擎控制裝置的結構的控制方塊圖。 祕幻在第—實施L船舶引擎控㈣置1G,僅使用Ρ &制’對應目標旋轉逮度No的燃料指標π〇經由丽 201239191 變換部12被產生。但是,在第二實施形態的船舶引擎 控制裝置20,用PI控制,不使用N/FI變換部12。又, 其他結構與第一實施形態一樣,關於同樣的結構用同一 參照符號,省略其說明。 在船舶引擎控制裝置20,目標旋轉速度No與經由 時間延遲邏輯13的實際旋轉速度Ne的回饋訊號的偏差 被輸入至比例+積分控制部(PI控制部)17。被輸入的 偏差,在比例+積分控制部(PI控制部)17進行各演 算,被輸出至致動器16。又,對應目標旋轉速度No的 燃料指標Flo,在比例+積分控制部(PI控制部)17的 I演算部被產生維持。此時,積分時間常數被設定為不 受變動周期影響的稍長時間。 即使在如上述的第二實施形態,與第一實施形態一 樣,可以將螺槳力矩維持固定,可得到一樣的效果。 又,在第一、第二實施形態,雖然用時間延遲邏輯 使實際旋轉速度延遲後進行回饋,並將比例演算部的增 益對應實際旋轉速度的變動角速度來設定,但也可以是 對實際旋轉速度進行微分演算後回饋的結構。 例如在第四、五圖表示用微分演算的第三以及第四 實施形態的船舶引擎控制裝置22、25的控制方塊圖。 又,在以下說明,關於與第一、第二實施形態同樣的結 構,用同一參照符號,省略其說明。 第四圖的第三實施形態,對應第一圖的第一實施形 態,第五圖的第四實施形態對應第三圖的第二實施形 態。也就是說,在第三實施形態,對應目標旋轉速度 201239191Qe is separated into its average value Qea and the variation component a. When Qe = Qea + AQe is expressed, since Qea is substantially equal to Qpa (Qea = Qpa) '(4) is expressed as dAN/dt=( AQe-AQp) / 1 (5). [Fuel indicator fixed control] The main engine torque Qe is roughly proportional to the fuel index. If the coefficient is removed, it is substantially equal to the fuel index FI. Therefore, the fuel index fixed control can take △ Qe = 0 (second (b) left). At this time, the formula (5) is expressed as dAN/dt=-AQp/I (6). Here, the load variation caused by interference due to waves or the like is expressed as the variation of the moment coefficient Kq ^Kq' when the relationship between Akp and the sine wave of the angular velocity ω (Fig. 2(d) left) is assumed to be AKq = A · sin ( Ω〇(7), from (3) to ΔQp = A. sin ( ωί) +2 · ΔΝ (8). If this is substituted into (6), the Euler equation of motion becomes 201239191 dN/dt= - ( A · sin ( ωί) +2 · ΔΝ ) / 1 (9). Here, the steady-state solution of the equation (9) (steady s〇iuti〇n ) is expressed as Δ N = B · sin ( 6U + 0 ) (i〇) β = -Α// (( ωΐ) 2 + 4) θ - -tan-' ( ωΙ/2) (second (a) left). That is, in the fuel index fixed control, When the periodic load variation expressed by the equation (7) is applied to the propeller, the main engine rotational speed N has a delay corresponding to the phase 0 of the moment of inertia I, and varies as in (1〇). At this time, the propeller torque Qp and The thrust Th (= Kt · N2, Kt: thrust coefficient), as in the equation (8) (the second (c) diagram left), the propulsion efficiency will be low. Again, here, the thrust coefficient Kt is assumed to be in addition to the degree of offset. Different from the outside 'with the torque coefficient Kq The same (in the same phase) changes [propeller torque fixed control] On the other hand, if the propeller torque QP is fixed, then Δ Qp = 〇 (second (c) right), substituting this into (3) , Δ N = - A Kq/2 (11) is obtained. That is to say, when the linear approximation value is established around the average value, in order to fix the propeller torque Qp, the host rotation speed N is matched with the variation ΔΚρ of the moment coefficient Kq, It is sufficient to change the target rotation speed N〇 according to the equation (11) (second diagram (a) right). When the propeller torque Qp is fixed (△ Qp = 〇), the equation (5) is expressed as d. △ N / dt = △ Qe / I, the fluctuation component AQe of the main engine torque Qe becomes AQe = I - (dAN / dt) (12). 201239191 Here, the torque coefficient Kq is assumed to be the same as the fuel index fixed control (7). When the period of the equation is changed (second diagram right), the condition for fixing the propeller torque Qp is from 〇1) and becomes ΔΝ=-Α * sin ( ^t) /2 » Ν, with a phase opposite to the variation of the moment coefficient, fluctuating by 1/2 amplitude (second (a) right). Further, from (12), the host torque Qe is changed around the average value 卩(3) by Ι. A.cos(wt)/2 (13) (first (b) right). As described above, the fuel index FI can be regarded as the host torque Qe. Therefore, when the load variation is applied by the equation (7), if the variation of the equation (13) is added to the fuel index π 对应 corresponding to the target rotational speed N 〇 , the propeller torque is maintained at a fixed value (second (e) right ). That is, in the consistent configuration, as shown in the first figure, the phase delay logic 13 delays the phase of the actual rotational speed Ne by 9 。. (A quarter cycle) The negative feedback is performed, and the proportional control unit 14 performs an increase in the gain of the corresponding angular velocity of ten. - According to the first embodiment as described above, maintaining the propeller torque to maintain the thrust dimension can prevent the deterioration of the propulsive efficiency due to the negative movement. Next, reference is made to Chapter H regarding the control splitting of the second embodiment of the present invention. Further, the third diagram shows a control block diagram of the configuration of the engine control device of the second embodiment 4. In the first implementation, the L-engine engine control (4) is set to 1G, and only the fuel index π of the 目标 & system corresponding to the target rotation catch No. is generated via the 丽 201239191 conversion unit 12. However, in the ship engine control device 20 of the second embodiment, PI control is used, and the N/FI conversion unit 12 is not used. The other structures are the same as in the first embodiment, and the same reference numerals will be given to the same components, and the description thereof will be omitted. In the ship engine control device 20, the deviation between the target rotational speed No and the feedback signal via the actual rotational speed Ne of the time delay logic 13 is input to the proportional + integral control unit (PI control unit) 17. The input deviation is calculated by the proportional + integral control unit (PI control unit) 17 and output to the actuator 16. Further, the fuel index Flo corresponding to the target rotational speed No is maintained in the I calculation unit of the proportional + integral control unit (PI control unit) 17. At this time, the integral time constant is set to a slightly longer time that is not affected by the fluctuation period. Even in the second embodiment as described above, as in the first embodiment, the propeller torque can be maintained constant, and the same effect can be obtained. Further, in the first and second embodiments, the actual rotation speed is delayed by the time delay logic, and the gain of the proportional calculation unit is set in accordance with the fluctuation angular velocity of the actual rotation speed. However, the actual rotation speed may be set. The structure of feedback after differential calculus. For example, in the fourth and fifth figures, control block diagrams of the ship engine control devices 22, 25 of the third and fourth embodiments using differential calculation are shown. In the following description, the same configurations as those of the first and second embodiments are denoted by the same reference numerals, and their description will be omitted. The third embodiment of the fourth figure corresponds to the first embodiment of the first figure, and the fourth embodiment of the fifth figure corresponds to the second embodiment of the third figure. That is to say, in the third embodiment, the corresponding target rotational speed 201239191

No的燃料指標Flo,經由Ν/FI變換部12被產生,實際 旋轉速度Ne經由微分演算邏輯21、比例控制部14,被 正回饋至來自Ν/FI變換部12的燃料指標Flo。在微分 演算邏輯21,對實際旋轉速度Ne進行微分演算,在比 例控制部14,以特定增益增幅微分訊號。 另一方面,在第四實施形態,實際旋轉速度Ne與 第三實施形態一樣,經由微分演算邏輯21、比例控制 部14被正回饋,並被負回馈至目標旋轉速度No的輸入 側,其偏差被輸入至積分控制部24。亦即,積分控制 部24之積分時間常數被設定為不受變動周期影響的稍 長時間,對應目標旋轉速度No的燃料指標Flo,在積 分控制部24的I演算部被產生維持。從比例控制部14 輸出的回饋訊號被正回饋至來自積分控制部24之訊號 Fio,這些的和被輸入致動器16。 如上述,即使在第三、第四實施形態的結構,與第 一、第二實施形態一樣,可以實現螺槳力矩固定控制。 又,第--第四實施形態的螺槳力矩固定控制,為 例如併用旋轉速度固定控制、燃料指標固定控制、輸出 固定控制等,對應海象以例如自動或手動選擇性地切 換。螺槳力矩固定控制係適合於因波等導致的負載變動 在約20秒以下(更佳為10秒以下)的大致固定周期時, 例如在如此條件下被選擇。又,在第一、第二實施形態, 藉由將時間延遲邏輯的延遲時間為零,將控制部的比例 增益為1,可以將螺槳力矩固定控制切換成輸出固定控 制。 201239191 【圖式簡單說明】 第一圖:表示第一實施形態的引擎控制裝置的結構的 控制方塊圖。 第二圖:用來說明發明原理以及作用、效果的圖。 第三圖:表示第二實施形態的引擎控制裝置的結構 控制方塊圖。 第四圖:表示第三實施形態的引擎控制裝置的結 控制方塊圖。 的 第五圖:表示第四實施形態的引擎控制裝置的結 控制方塊圖。 ^ 【主要元件符號說明】 ^2(^22 45船舶引擎控制裝置 11主機關 12 N7FI變換部 13 時間延遲邏輯 14 比例控制部 15 周期算出部 致動器The fuel index Flo of the No is generated via the Ν/FI conversion unit 12, and the actual rotational speed Ne is fed back to the fuel index Flo from the Ν/FI conversion unit 12 via the differential calculation logic 21 and the proportional control unit 14. In the differential calculation logic 21, the actual rotation speed Ne is subjected to differential calculation, and the ratio control unit 14 increases the differential signal by a specific gain. On the other hand, in the fourth embodiment, the actual rotational speed Ne is positively fed back via the differential calculation logic 21 and the proportional control unit 14 as in the third embodiment, and is negatively fed back to the input side of the target rotational speed No. It is input to the integral control unit 24. In other words, the integral time constant of the integral control unit 24 is set to be slightly longer than the fluctuation period, and the fuel index Flo corresponding to the target rotation speed No is maintained in the I calculation unit of the integration control unit 24. The feedback signal output from the proportional control unit 14 is fed back to the signal Fio from the integral control unit 24, and the sum of these is input to the actuator 16. As described above, even in the configurations of the third and fourth embodiments, the propeller torque fixing control can be realized as in the first and second embodiments. Further, the propeller torque fixing control of the fourth to fourth embodiments is, for example, a combination of a rotational speed fixed control, a fuel index fixed control, an output fixed control, and the like, and the corresponding walrus is selectively switched, for example, automatically or manually. The propeller torque fixed control is suitable for a load variation due to waves or the like, and is selected under such conditions, for example, at a substantially constant period of about 20 seconds or less (more preferably 10 seconds or less). Further, in the first and second embodiments, by setting the delay time of the time delay logic to zero and the proportional gain of the control unit to 1, the propeller torque fixed control can be switched to the output fixed control. 201239191 [Simplified description of the drawings] Fig. 1 is a control block diagram showing the configuration of an engine control device according to the first embodiment. Second figure: A diagram for explaining the principle of the invention, its effects, and effects. Fig. 3 is a block diagram showing the structure of the engine control device of the second embodiment. Fig. 4 is a block diagram showing the control of the engine control device of the third embodiment. Fig. 5 is a block diagram showing the control of the engine control device of the fourth embodiment. ^ [Description of main component symbols] ^2 (^22 45 Marine Engine Control Unit 11 Main Unit Off 12 N7FI Conversion Unit 13 Time Delay Logic 14 Proportional Control Unit 15 Period Calculation Unit Actuator

17 21 24 D (PI控制部) 比例+積分控制部 微分演算邏輯 積分控制部 螺槳直徑 FI、Flo燃料指標 20123919117 21 24 D (PI control unit) Proportional + integral control section Differential calculation logic Integral control section Propeller diameter FI, Flo fuel index 201239191

Kq 力矩係數 N 主機旋轉速度 Ne 實際旋轉速度 No 目標旋轉速度 Qe 主機力矩 Qp 螺槳力矩 Th 推力 P 流體密度 ω 變動角速度Kq moment coefficient N main unit rotation speed Ne actual rotation speed No target rotation speed Qe main machine moment Qp propeller moment Th thrust P fluid density ω variable angular velocity

Claims (1)

2〇l239l9i 七 申請專利範圍: 1·一種船舶引擎控制裝置,給予目標旋 燃料指標,其特徵在於將對於主機關旋= 度的變動周期延遲10%〜30%的回饋轉f 旋轉速度的變動角速度成“ ί 責專利範圍帛】項所述的船舶引擎控制 盆 中刖述回饋訊號係以時間延遲邏輯 ^ ς 速度延遲而得的訊號,前述目標J = 轉 饋讯號的偏差係經由設定對應前述動;K二二 益的比例演算部被輸出。 Μ㈣連度的增 3.^申凊f利㈣第2項所述的船舶引擎控 且 備.目標旋轉速度/燃料指標變& ^ 八 ;目標旋轉速度的燃料指標::t自手以= 出:糸被加到對應前述目標旋轉速度的婵料於:、輸 偏差被輸入;!前速;,述回饋訊號的 ;的:,,在前工 所^ 輪前述實際旋轉速度的微分演算 6.一種船舶,其特徵為· 7 =-項所述的二引具擎備控^ .燃料=引予目標旋轉速度,輸出 寻徵在於將對於主機關的實際旋轉速 201239191 度的變動周期延遲10%〜30%的回饋訊號回饋,並 與該實際旋轉速度的變動角速度成比例地使該燃料 指標變動。 152〇l239l9i Seven patent application scope: 1. A ship engine control device that gives a target rotary fuel index, which is characterized by a variation of the angular velocity of the feedback f rotation speed of 10% to 30% for the fluctuation period of the main engine rotation = degree The signal in the ship engine control basin described in the "Responsibility of the patent scope" is a signal obtained by delaying the time delay logic ,, and the deviation of the target J = the feedback signal is set by the aforementioned The ratio calculation unit of K 二二益 is output. Μ(4) Increase in the degree of linkage 3.^申凊f利(4) The engine control and preparation of the ship as described in item 2. The target rotation speed/fuel index change & ^ 八; The fuel index of the target rotation speed::t from the hand = out: 糸 is added to the corresponding target rotation speed of the data:: the deviation is input; the front speed; the feedback signal; The differential calculation of the aforementioned actual rotational speed of the wheel of the former work station. 6. A ship characterized by the fact that the fuel is introduced to the target rotation speed, and the output is searched for The main body Rotational speed variation of the delay period 201 239 191 10% ~ 30% of the feedback signal feedback, and that the angular velocity in proportion to changes in the fuel index and the actual rotation speed variation. 15
TW101105439A 2011-03-15 2012-02-20 Device and method for controlling ship engine TW201239191A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057022A JP4994505B1 (en) 2011-03-15 2011-03-15 Marine engine control apparatus and method

Publications (1)

Publication Number Publication Date
TW201239191A true TW201239191A (en) 2012-10-01

Family

ID=46793875

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101105439A TW201239191A (en) 2011-03-15 2012-02-20 Device and method for controlling ship engine

Country Status (5)

Country Link
JP (1) JP4994505B1 (en)
KR (1) KR101229816B1 (en)
CN (1) CN102959217A (en)
TW (1) TW201239191A (en)
WO (1) WO2012124399A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7019369B2 (en) * 2017-10-11 2022-02-15 ナブテスコ株式会社 Remote control device
JP6907139B2 (en) * 2018-02-27 2021-07-21 株式会社三井E&Sマシナリー Control system for main marine engine
CN109669347B (en) * 2018-12-05 2024-04-02 山东智翼航空科技有限公司 Unmanned ship rotating speed differential stabilization system and method
JP7448415B2 (en) * 2020-01-28 2024-03-12 ナブテスコ株式会社 Fuel control device and rudder control device
CN112963254B (en) * 2021-03-23 2022-09-23 潍柴动力股份有限公司 Engine control method and engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263687A (en) * 1992-03-23 1993-10-12 Zexel Corp Revolving speed control method of internal combustion engine
JPH08246937A (en) * 1995-03-08 1996-09-24 Nissan Motor Co Ltd Fuel injection timing control device for diesel engine
JP2002180876A (en) * 2000-12-07 2002-06-26 Unisia Jecs Corp Air-fuel ratio controller for internal combustion engine
JP4980391B2 (en) * 2009-03-31 2012-07-18 三井造船株式会社 Marine power system

Also Published As

Publication number Publication date
CN102959217A (en) 2013-03-06
JP2012193641A (en) 2012-10-11
KR20120127678A (en) 2012-11-22
KR101229816B1 (en) 2013-02-05
WO2012124399A1 (en) 2012-09-20
JP4994505B1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
TW201239191A (en) Device and method for controlling ship engine
WO2007055144A1 (en) Controller for internal combustion engine
WO2011125466A1 (en) Ship main engine control system and method
TW201035440A (en) Ship engine control system
US9988995B2 (en) Output control system
JP4580951B2 (en) Engine electronic governor
JPH0240044A (en) Throttle opening control device for internal combustion engine
JP2012088188A (en) Engine testing method and device
JP4553956B2 (en) Idle rotation speed control device
JPH11159377A (en) Engine control device
JP4539846B2 (en) Output control device for internal combustion engine
TW201107192A (en) Marine engine control system and method
JP2015085808A (en) Control device for hybrid vehicle
JP4306609B2 (en) Control device for internal combustion engine
JP5289854B2 (en) Ship idle speed control device
TW201035439A (en) Marine engine control system
JP2019148212A (en) Control system of marine main engine
KR101167577B1 (en) Engine control device and method
US20170102070A1 (en) Output control system
WO2011125465A1 (en) Ship engine control device and method
KR20180009349A (en) Apparatus and method for controlling the propulsion effect of a ship
CA3085284C (en) Fuel supply device
TW201035441A (en) Marine engine control system
RU188252U1 (en) ELECTROMECHANICAL DRIVE FOR AUTOMATIC SYSTEMS
JP6095926B2 (en) Electronic control unit