JP4539846B2 - Output control device for internal combustion engine - Google Patents

Output control device for internal combustion engine Download PDF

Info

Publication number
JP4539846B2
JP4539846B2 JP2005098185A JP2005098185A JP4539846B2 JP 4539846 B2 JP4539846 B2 JP 4539846B2 JP 2005098185 A JP2005098185 A JP 2005098185A JP 2005098185 A JP2005098185 A JP 2005098185A JP 4539846 B2 JP4539846 B2 JP 4539846B2
Authority
JP
Japan
Prior art keywords
target
throttle opening
throttle
intake air
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005098185A
Other languages
Japanese (ja)
Other versions
JP2006274993A (en
Inventor
一英 栂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2005098185A priority Critical patent/JP4539846B2/en
Publication of JP2006274993A publication Critical patent/JP2006274993A/en
Application granted granted Critical
Publication of JP4539846B2 publication Critical patent/JP4539846B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は内燃機関の出力制御装置に係り、詳しくは車両のアクセル操作時における振動(加減速ショック)を低減する技術に関する。   The present invention relates to an output control device for an internal combustion engine, and more particularly to a technique for reducing vibration (acceleration / deceleration shock) during accelerator operation of a vehicle.

一般に、車両のアクセル踏み込み時や戻し操作時(特に、急激なアクセルの踏み込み時)には振動(加減速ショック)が生じる。このような、加減速ショックは、急激なアクセルの踏み込みや戻し操作によりエンジントルクが急変し、その結果駆動系に捩り振動が発生することに起因している。そして、当該駆動系の捩り振動が車体前後方向の振動現象として現れる。   Generally, vibration (acceleration / deceleration shock) occurs when the accelerator of the vehicle is depressed or returned (particularly when the accelerator is depressed suddenly). Such acceleration / deceleration shock is caused by a sudden change in engine torque due to a sudden accelerator depression or return operation, resulting in torsional vibration in the drive system. And the torsional vibration of the drive system appears as a vibration phenomenon in the longitudinal direction of the vehicle body.

このようなアクセル操作に伴って発生する駆動系の振動を抑制するには、スロットルをゆっくり開く手法が広く知られているが、かかる手法では加速感を損なう。
このようなことから、本出願の出願人より、電子スロットルバルブ(ETV)の制御入力上流に補償器を介装し、発生トルクが吸入空気量に大きく支配されることに鑑み、エンジントルクをスロットル開度の時系列のプロフィールとして制御して駆動系の振動を抑制する手法が提案されている(特許文献1等)。
特開2004−68702号公報
A method of slowly opening the throttle is widely known in order to suppress the vibration of the drive system that occurs due to such an accelerator operation. However, such a method impairs the feeling of acceleration.
For this reason, the applicant of the present application has installed a compensator upstream of the control input of the electronic throttle valve (ETV), and in view of the fact that the generated torque is largely controlled by the intake air amount, the engine torque is throttled. A method of controlling the vibration of the drive system by controlling it as a time-series profile of the opening degree has been proposed (Patent Document 1, etc.).
JP 2004-68702 A

しかしながら、上記特許文献1に開示の技術においては、通常走行時のようにスロットル開度が低開度の領域では良好な補償効果が得られる一方、急加速時における過渡時のように高開度となるような領域では十分な補償効果が得られず、応答性が悪くトルク波形が乱れるという現象が確認された。
これは、過渡時においては、吸気管圧力がスロットル開度とエンジン回転速度によって決定されるような定常状態ではなく、吸気管圧力が低い状態からスロットルを大きく開くために突入的な量の空気がスロットルを通過して吸気管圧力が急速に高まり、スロットル通過空気量とシリンダ吸入空気量との関係が変化するためと考えられる。
However, in the technique disclosed in Patent Document 1, a good compensation effect can be obtained in a region where the throttle opening is low as in normal driving, while a high opening as in a transient during sudden acceleration. In such a region, it was confirmed that a sufficient compensation effect could not be obtained, and the response was poor and the torque waveform was disturbed.
This is not a steady state in which the intake pipe pressure is determined by the throttle opening and the engine speed during the transition, but an inrush amount of air is used to open the throttle from a low intake pipe pressure. This is probably because the intake pipe pressure rapidly increases after passing through the throttle, and the relationship between the amount of air passing through the throttle and the amount of cylinder intake air changes.

即ち、スロットルを大きく開いても、スロットル開度に基づく目標通りの吸入空気量がシリンダ内に吸入されないためであると考えられる。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、過渡時における応答性の向上を図り、時系列のトルク波形を正確に実現することの可能な内燃機関の出力制御装置を提供することにある。
That is, it is considered that even if the throttle is greatly opened, the target intake air amount based on the throttle opening is not sucked into the cylinder.
The present invention has been made to solve such a problem, and an object of the present invention is to improve the responsiveness in a transient state and to accurately realize a time-series torque waveform. It is to provide an engine output control device.

上記した目的を達成するために、請求項1の内燃機関の出力制御装置では、アクセル開度を検出するアクセル開度検出手段と、前記アクセル開度検出手段により検出されたアクセル開度に基づき目標トルクを設定し、該目標トルクから目標吸入空気量を求めるとともに該目標吸入空気量に基づき目標スロットル開度を算出する目標スロットル開度算出手段と、前記目標スロットル開度算出手段により算出された目標スロットル開度に基づき前記スロットルの開度を調整するスロットル開度調整手段と、前記スロットルの下流側の吸気管圧力を検出する吸気管圧力検出手段とを備え、前記目標スロットル開度算出手段は、さらに、前記吸気管圧力検出手段により検出された吸気管圧力と前記スロットルの上流側の大気圧との間の圧力比に応じて定まる前記スロットルの通過空気量と内燃機関の燃焼室への吸入空気量との流量比に基づいて前記目標スロットル開度を補正することを特徴とする。 In order to achieve the above object, in the output control apparatus for an internal combustion engine according to claim 1, an accelerator opening degree detecting means for detecting an accelerator opening degree and a target based on the accelerator opening degree detected by the accelerator opening degree detecting means. A target throttle opening calculating means for setting a torque, obtaining a target intake air amount from the target torque and calculating a target throttle opening based on the target intake air amount; and a target calculated by the target throttle opening calculating means A throttle opening adjusting means for adjusting the throttle opening based on the throttle opening; and an intake pipe pressure detecting means for detecting an intake pipe pressure on the downstream side of the throttle, the target throttle opening calculating means, Furthermore, depending on the pressure ratio between the atmospheric pressure on the upstream side of the the detected intake pipe pressure throttle by the intake pipe pressure detecting means Circle and corrects the target throttle opening based on the flow rate ratio of the amount of intake air to the combustion chamber of the throttle passage air quantity and the engine.

即ち、アクセル開度に基づいて目標トルクが設定され、該目標トルクから目標吸入空気量が求められて目標スロットル開度が算出されるが、この際、目標スロットル開度は、吸気管圧力検出手段により検出された吸気管圧力とスロットルの上流側の大気圧との間の圧力比に応じて定まるスロットルの通過空気量と内燃機関の燃焼室への吸入空気量との流量比に基づいて、現実に即して適正に補正される。 That is, the target torque is set based on the accelerator opening, and the target throttle opening is calculated by obtaining the target intake air amount from the target torque. At this time, the target throttle opening is calculated by the intake pipe pressure detecting means. Based on the flow rate ratio between the amount of air passing through the throttle and the amount of intake air into the combustion chamber of the internal combustion engine, which is determined according to the pressure ratio between the intake pipe pressure detected by the air pressure and the atmospheric pressure upstream of the throttle, It is corrected appropriately according to.

請求項2の内燃機関の出力制御装置では、請求項1において、前記流量比は、前記圧力比が所定の臨界圧力比以下のときには一定であり、該所定の臨界圧力比より大きくなるに従い前記スロットルの通過空気量に対して内燃機関の燃焼室への吸入空気量が少なくなるよう変化するものであって、前記目標スロットル開度算出手段は、前記目標吸入空気量を前記流量比で除すようにして前記目標スロットル開度を算出することを特徴とする。   The output control apparatus for an internal combustion engine according to claim 2, wherein the flow rate ratio is constant when the pressure ratio is equal to or lower than a predetermined critical pressure ratio, and the throttle ratio is increased as the pressure ratio becomes larger than the predetermined critical pressure ratio. The target throttle opening calculation means is configured to divide the target intake air amount by the flow rate ratio, so that the intake air amount to the combustion chamber of the internal combustion engine becomes smaller with respect to the passing air amount. Thus, the target throttle opening is calculated.

即ち、スロットルの通過空気量と内燃機関の燃焼室への吸入空気量との流量比は、圧力比が所定の臨界圧力比以下のときには一定で、該所定の臨界圧力比より大きくなるに従いスロットルの通過空気量に対して内燃機関の燃焼室への吸入空気量が少なくなるという一定の特性を有しており、これより、目標吸入空気量を当該流量比で除して逆算することで、容易にして目標スロットル開度が適正に算出される。   In other words, the flow rate ratio between the amount of air passing through the throttle and the amount of intake air into the combustion chamber of the internal combustion engine is constant when the pressure ratio is less than or equal to a predetermined critical pressure ratio, and as the pressure ratio becomes larger than the predetermined critical pressure ratio, It has a certain characteristic that the amount of intake air into the combustion chamber of the internal combustion engine decreases with respect to the amount of air passing through. From this, it is easy to divide the target intake air amount by the flow rate ratio and calculate backward. Thus, the target throttle opening is properly calculated.

請求項1の内燃機関の出力制御装置によれば、吸気管圧力と大気圧との圧力比に応じて定まるスロットルの通過空気量と内燃機関の燃焼室への吸入空気量との流量比に基づいて目標スロットル開度を補正するので、目標スロットル開度を現実に即して適正に算出することができ、急加速時のような過渡時における応答性の向上を図ることができ、時系列のトルク波形を正確に実現できる。 According to the output control apparatus for an internal combustion engine of claim 1 , based on the flow rate ratio between the amount of air passing through the throttle and the amount of intake air into the combustion chamber of the internal combustion engine, which is determined according to the pressure ratio between the intake pipe pressure and the atmospheric pressure. Because the target throttle opening is corrected , the target throttle opening can be calculated appropriately according to the actual situation, and the responsiveness can be improved during transients such as during sudden acceleration. The torque waveform can be realized accurately.

請求項2の内燃機関の出力制御装置によれば、スロットルの通過空気量と内燃機関の燃焼室への吸入空気量との流量比は、圧力比が所定の臨界圧力比以下のときには一定で、該所定の臨界圧力比より大きくなるに従いスロットルの通過空気量に対して内燃機関の燃焼室への吸入空気量が少なくなるという一定の特性を有しており、目標吸入空気量を当該特性から求まる流量比で除して逆算することにより、容易にして目標スロットル開度を適正に算出することができる。   According to the output control device for an internal combustion engine of claim 2, the flow rate ratio between the amount of air passing through the throttle and the amount of intake air into the combustion chamber of the internal combustion engine is constant when the pressure ratio is equal to or less than a predetermined critical pressure ratio, It has a certain characteristic that the amount of intake air into the combustion chamber of the internal combustion engine decreases with respect to the amount of air passing through the throttle as it becomes larger than the predetermined critical pressure ratio, and the target intake air amount is obtained from the characteristic. By dividing by the flow rate ratio and calculating backward, the target throttle opening can be calculated appropriately with ease.

以下、図面を参照しながら本発明に係る内燃機関の出力制御装置の一実施形態について説明する。
図1を参照すると、本発明に係る内燃機関(吸気管噴射型ガソリンエンジンであって、以下エンジンという)1の吸気系の構成が模式的に示されており、同図に示すように、吸気管2には、アクセルペダルとスロットルバルブとが電気的に接続された所謂電子式のスロットルバルブ(スロットル開度調整手段)3が配設されている。スロットルバルブ3はスロットル開度センサ(TPS)を有し、スロットルバルブ3の吸気下流側の吸気マニフォールド4には、吸気マニフォールド圧、即ち吸気管圧力Pmを検出するマニフォールド圧センサ(吸気管圧力検出手段)5が設けられている。図中Qtはスロットルバルブ3を通過する通過空気量を、Qcはエンジン1のシリンダ(燃焼室)への吸入空気量を示し、Paはスロットルバルブ3上流側の大気圧を示す。なお、エンジン1のその他の構成、例えば吸気バルブ6、排気バルブ7、インジェクタ8、点火プラグ9、シリンダ1a等については公知であり、ここでは説明を省略する。
Hereinafter, an embodiment of an output control device for an internal combustion engine according to the present invention will be described with reference to the drawings.
Referring to FIG. 1, a configuration of an intake system of an internal combustion engine (an intake pipe injection type gasoline engine, hereinafter referred to as an engine) 1 according to the present invention is schematically shown. As shown in FIG. The pipe 2 is provided with a so-called electronic throttle valve (throttle opening adjusting means) 3 in which an accelerator pedal and a throttle valve are electrically connected. The throttle valve 3 has a throttle opening sensor (TPS), and an intake manifold 4 on the intake downstream side of the throttle valve 3 has a manifold pressure sensor (intake pipe pressure detecting means) for detecting an intake manifold pressure, that is, an intake pipe pressure Pm. ) 5 is provided. In the figure, Qt represents the amount of air passing through the throttle valve 3, Qc represents the amount of intake air to the cylinder (combustion chamber) of the engine 1, and Pa represents the atmospheric pressure upstream of the throttle valve 3. The other configurations of the engine 1, for example, the intake valve 6, the exhaust valve 7, the injector 8, the spark plug 9, the cylinder 1a, and the like are well known and will not be described here.

図2を参照すると、本発明に係る出力制御装置を含む系の制御モデルがブロック図で示されている。
同ブロック図によれば、当該制御モデルでは、アクセルペダルの操作量、即ちアクセル開度を検出するアクセル開度センサ(APS、アクセル開度検出手段)10からのアクセル開度信号がECU(電子コントロールユニット)の一部である制御器20に入力する。制御器20では、アクセル開度信号がスロットル開度信号に変換され、制御器20からスロットル開度信号がエンジンモデル30に入力する。エンジンモデル30では、スロットル開度信号がトルク信号に変換され、エンジンモデル30からトルク信号が車両モデル40に入力し、当該トルク信号に基づき車両モデル40が出力制御される。
Referring to FIG. 2, a control model of a system including an output control device according to the present invention is shown in a block diagram.
According to the block diagram, in the control model, the accelerator opening signal from the accelerator opening sensor (APS, accelerator opening detecting means) 10 for detecting the amount of operation of the accelerator pedal, that is, the accelerator opening is an ECU (electronic control). To the controller 20 that is part of the unit. In the controller 20, the accelerator opening signal is converted into a throttle opening signal, and the throttle opening signal is input from the controller 20 to the engine model 30. In the engine model 30, the throttle opening signal is converted into a torque signal, the torque signal is input from the engine model 30 to the vehicle model 40, and the vehicle model 40 is output-controlled based on the torque signal.

図3を参照すると、制御器20のブロック線図が示されており、以下同図に基づき制御器20の制御内容について説明する。
制御器20にアクセル開度信号が入力すると、目標アクセル開度信号に基づき目標トルク設定部50において目標トルクが設定される。目標トルク信号は、トルク空気量変換部52において予め設定されたエンジン回転速度Neをパラメータとするトルク−空気量マップに基づいて目標吸入空気量に変換される。そして、目標吸入空気量信号は、前置補償器54に入力する。
Referring to FIG. 3, a block diagram of the controller 20 is shown, and the control contents of the controller 20 will be described below with reference to FIG.
When the accelerator opening signal is input to the controller 20, the target torque is set in the target torque setting unit 50 based on the target accelerator opening signal. The target torque signal is converted into a target intake air amount based on a torque-air amount map using the engine speed Ne set in advance in the torque air amount conversion unit 52 as a parameter. Then, the target intake air amount signal is input to the predistorter 54.

前置補償器54では、吸気管の時定数が補正される。ここでは、伝達関数は(1+Ts)/(1+T1s)で代表されるが、振動抑制型の伝達関数として(s2+2ξωns+ωn 2)/(s2+2ξ’ωns+ωn 2)を用いるようにしてもよい。ここに、sはラプラス演算子、ωn、ξ及びξ’は、それぞれ系の共振周波数、減衰係数を示す。
なお、吸気管容積とエンジン回転速度Neで一次遅れの時定数が決まることから、これを補正するようにしてもよい。
In the pre-compensator 54, the time constant of the intake pipe is corrected. Here, although the transfer function is represented by (1 + Ts) / (1 + T 1 s), (s 2 + 2ξω n s + ω n 2 ) / (s 2 + 2ξ′ω n s + ω n 2 ) is used as the vibration suppression type transfer function. You may make it use. Here, s is a Laplace operator, and ω n , ξ, and ξ ′ are a resonance frequency and a damping coefficient of the system, respectively.
Since the time constant of the first-order lag is determined by the intake pipe volume and the engine speed Ne, this may be corrected.

前置補償器54を経て時定数が補正された目標吸入空気量信号anは、フィードフォワード制御器(FF制御器)56に入力し、当該FF制御器56において目標吸入空気量信号anに基づき目標スロットル開度θtが算出され、目標スロットル開度信号θtが出力される(目標スロットル開度算出手段)。
図4を参照すると、本発明に係るFF制御器56のブロック線図が示されており、以下同図に基づき本発明に係るFF制御器56の制御内容について説明する。
The target intake air amount signal an whose time constant has been corrected through the pre-compensator 54 is input to a feedforward controller (FF controller) 56, and the FF controller 56 uses the target intake air amount signal an based on the target intake air amount signal an. The throttle opening θt is calculated, and a target throttle opening signal θt is output (target throttle opening calculation means).
Referring to FIG. 4, a block diagram of the FF controller 56 according to the present invention is shown, and the control contents of the FF controller 56 according to the present invention will be described below based on the same diagram.

目標吸入空気量信号anは通常はエンジン1回転当たりの単位吸入空気量であるため、変換部70において単位吸入空気量を時間当たりの吸入空気量に変換する。そして、当該時間当たりの吸入空気量にアイドル/ダッシュポット流量Q0を加算し、時間当たりの目標吸入空気量Qを求める(Q=an・Ne/60+Q0)。
ところで、図5を参照すると、マニフォールド圧センサ5により検出されるスロットルバルブ3下流側の吸気管圧力Pmとスロットルバルブ3上流側の大気圧Paとの比、即ち吸気管圧力Pmを大気圧Paで除した圧力比Pr(=Pm/Pa)に応じて定まるスロットルバルブ3の通過空気量Qtとエンジン1のシリンダへの吸入空気量Qcとの流量比である流量係数φ、即ち吸気管圧力に応じた流量特性が示されている。同流量特性によれば、圧力比Prが臨界圧力比(0.53)以下(Pr≦0.53)では流量係数φは値0.7近傍で一定である一方、臨界圧力比より大きい範囲(0.53<Pr≦1.0)では、圧力比Prが大きいほど流量係数φが小さくなっている。
Since the target intake air amount signal an is normally the unit intake air amount per one rotation of the engine, the conversion unit 70 converts the unit intake air amount into the intake air amount per time. Then, the idle / dashpot flow rate Q0 is added to the intake air amount per hour to obtain the target intake air amount Q per hour (Q = an · Ne / 60 + Q0).
Referring to FIG. 5, the ratio between the intake pipe pressure Pm on the downstream side of the throttle valve 3 detected by the manifold pressure sensor 5 and the atmospheric pressure Pa on the upstream side of the throttle valve 3, that is, the intake pipe pressure Pm is the atmospheric pressure Pa. According to the flow coefficient φ, ie, the intake pipe pressure, which is the flow ratio between the amount of air Qt passing through the throttle valve 3 determined according to the divided pressure ratio Pr (= Pm / Pa) and the amount of intake air Qc into the cylinder of the engine 1 The flow characteristics are shown. According to the flow rate characteristic, when the pressure ratio Pr is equal to or less than the critical pressure ratio (0.53) (Pr ≦ 0.53), the flow coefficient φ is constant in the vicinity of the value 0.7, but within a range larger than the critical pressure ratio ( In 0.53 <Pr ≦ 1.0), the larger the pressure ratio Pr, the smaller the flow coefficient φ.

これより、図6を参照すると、スロットルバルブ3の通過空気量Qt(実線)とシリンダへの吸入空気量Qc(破線)との関係がスロットル開度が低開度の場合(Qt1、Qc1)と高開度の場合(Qt2、Qc2)とで比較してタイムチャートで示されているが、同図に示すように、スロットルバルブ3の開度、即ちスロットル開度θを高開度にしたまま保持すると、スロットルバルブ3の通過空気量Qt2が突入的に多くなるために吸気管圧力Pmが大気圧Paに近づき、その後、圧力比Prが臨界圧力比を超えると吸気管圧力Pmと大気圧Paとの圧力差が徐々に小さくなり、シリンダへの吸入空気量Qc2が少なくなるという現象が発生する。   Referring to FIG. 6, the relationship between the amount of air Qt (solid line) passing through the throttle valve 3 and the amount of intake air Qc (dashed line) to the cylinder is that the throttle opening is low (Qt1, Qc1). Although it is shown in the time chart in comparison with the case of high opening (Qt2, Qc2), as shown in the figure, the opening of the throttle valve 3, that is, the throttle opening θ is kept high. If held, the amount of air Qt2 passing through the throttle valve 3 suddenly increases, so that the intake pipe pressure Pm approaches the atmospheric pressure Pa. Thereafter, when the pressure ratio Pr exceeds the critical pressure ratio, the intake pipe pressure Pm and the atmospheric pressure Pa. The pressure difference gradually decreases and the amount of intake air Qc2 to the cylinder decreases.

このようなことから、切換部74において流量係数φが所定値εより大であってY側に切り換えられている場合には、目標吸入空気量信号Qは、変換部72において形状に基づく係数1/Kが乗算された後、切換部74を経て目標スロットル開度算出部76に入力する。
そして、目標スロットル開度算出部76では、当該目標吸入空気量Qに基づき、次式(1)及び(2)から目標スロットル開度θtを逆算により求める。
For this reason, when the flow rate coefficient φ is larger than the predetermined value ε in the switching unit 74 and switched to the Y side, the target intake air amount signal Q is a coefficient 1 based on the shape in the conversion unit 72. After being multiplied by / K, the value is input to the target throttle opening calculation unit 76 via the switching unit 74.
Then, the target throttle opening calculation unit 76 calculates the target throttle opening θt from the following equations (1) and (2) by back calculation based on the target intake air amount Q.

A=Q/(K・φ)…(1)
θt=cos-1(1−A/A0)…(2)
ここに、Aは求めるスロットル開口面積、A0は全開スロットル開口面積である。
即ち、ここでは、上記図5に示すように吸気管圧力Pmとスロットルバルブ3上流側の大気圧Paとの圧力比Prに応じて変化する流量係数φを考慮して目標スロットル開度θtを求めるようにする。
A = Q / (K · φ) (1)
θt = cos −1 (1-A / A0) (2)
Here, A is the required throttle opening area, and A0 is the fully open throttle opening area.
That is, here, as shown in FIG. 5, the target throttle opening degree θt is obtained in consideration of the flow coefficient φ that changes according to the pressure ratio Pr between the intake pipe pressure Pm and the atmospheric pressure Pa upstream of the throttle valve 3. Like that.

切換部74において流量係数φが所定値ε以下であってN側に切り換えられた場合には、目標スロットル開度θtを全開θwtとする。
このように目標スロットル開度θtが求められると、目標スロットル開度信号θtは、図3のスロットル制御器58を経てスロットル機構60、即ちスロットルバルブ3に入力する。これより、目標スロットル開度信号θtに基づいてスロットルバルブ3が適切に制御される。
When the flow rate coefficient φ is not more than the predetermined value ε and is switched to the N side in the switching unit 74, the target throttle opening degree θt is set to the fully open θwt.
When the target throttle opening θt is thus obtained, the target throttle opening signal θt is input to the throttle mechanism 60, that is, the throttle valve 3 via the throttle controller 58 of FIG. Thus, the throttle valve 3 is appropriately controlled based on the target throttle opening signal θt.

スロットルバルブ3の実際のスロットル開度θは、上記図2のエンジンモデル30にスロットル開度信号θとして入力し、エンジン1のシリンダへの吸入空気量Qcに変換された後、エンジントルクに変換される。なお、当該スロットル開度θはスロットル制御器58にフィードバックされる。
さらに、目標スロットル開度θtは、エンジン1のシリンダへの吸入空気量Qcに基づいてフィードバック制御される。詳しくは、吸入空気量Qcは係数Kが乗算された後、フィードバック制御器(FB制御器)62に入力し、FB制御器62おいてフィードバック制御される。なお、当該フィードバック制御としてはPID制御が採用されるが、定常目標追従であれば積分制御であってもよく、過渡追従を主とするならば微分制御であってもよい。
The actual throttle opening θ of the throttle valve 3 is input as the throttle opening signal θ into the engine model 30 of FIG. 2 and converted into the intake air amount Qc into the cylinder of the engine 1 and then converted into the engine torque. The The throttle opening θ is fed back to the throttle controller 58.
Further, the target throttle opening degree θt is feedback-controlled based on the intake air amount Qc to the cylinder of the engine 1. Specifically, the intake air amount Qc is multiplied by a coefficient K, and then input to a feedback controller (FB controller) 62, which is feedback-controlled by the FB controller 62. PID control is employed as the feedback control, but integral control may be used as long as steady target tracking is performed, and differential control may be performed as long as transient tracking is mainly performed.

以上説明したように、本発明に係る内燃機関の出力制御装置によれば、スロットルバルブ3下流側の吸気管圧力Pmとスロットルバルブ3上流側の大気圧Paとの比、即ち吸気管圧力Pmを大気圧Paで除した圧力比Prに応じて定まるスロットルバルブ3の通過空気量Qtとエンジン1のシリンダへの吸入空気量Qcとの流量係数(流量比)φ、即ち図5に示す吸気管圧力に応じた流量特性を考慮して目標スロットル開度θtを求めるようにしている。具体的には、目標吸入空気量Qを流量係数φで除して逆算することにより目標スロットル開度θtを求めるようにしている(上記式(1)、(2)参照)。   As described above, according to the output control apparatus for an internal combustion engine according to the present invention, the ratio between the intake pipe pressure Pm downstream of the throttle valve 3 and the atmospheric pressure Pa upstream of the throttle valve 3, that is, the intake pipe pressure Pm is set. A flow coefficient (flow ratio) φ between the amount of air Qt passing through the throttle valve 3 determined according to the pressure ratio Pr divided by the atmospheric pressure Pa and the amount of intake air Qc into the cylinder of the engine 1, that is, the intake pipe pressure shown in FIG. The target throttle opening degree θt is obtained in consideration of the flow characteristic according to the above. Specifically, the target throttle opening θt is obtained by dividing the target intake air amount Q by the flow coefficient φ and calculating backward (see the above formulas (1) and (2)).

従って、当該出力制御装置によれば、容易にして目標スロットル開度θtを現実に即して適正に算出することができる。これにより、急加速時のような過渡時における応答性の向上を図ることができ、時系列のトルク波形を正確に実現することができる。
以上で本発明に係る内燃機関の出力制御装置の実施形態の説明を終えるが、実施形態は上記に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。
Therefore, according to the output control device, it is possible to easily calculate the target throttle opening degree θt appropriately in accordance with the actual situation. Thereby, it is possible to improve the responsiveness at the time of transition such as at the time of sudden acceleration, and it is possible to accurately realize a time-series torque waveform.
Although the description of the embodiment of the output control device for an internal combustion engine according to the present invention has been completed above, the embodiment is not limited to the above, and various modifications can be made without departing from the gist of the present invention.

本発明に係る内燃機関の吸気系の構成を模式的に示す図である。It is a figure which shows typically the structure of the intake system of the internal combustion engine which concerns on this invention. 本発明に係る出力制御装置を含む系の制御モデルを示すブロック図である。It is a block diagram which shows the control model of the system containing the output control apparatus which concerns on this invention. 図2の制御器のブロック線図である。FIG. 3 is a block diagram of the controller of FIG. 2. 図3の本発明に係るFF制御器のブロック線図である。FIG. 4 is a block diagram of the FF controller according to the present invention of FIG. 3. 吸気管圧力Pmと大気圧Paとの圧力比Pr(=Pm/Pa)に応じて定まるスロットルバルブの通過空気量Qtと吸入空気量Qcとの流量比である流量係数φ、即ち吸気管圧力に応じた流量特性を示す図である。The flow rate coefficient φ, which is the flow rate ratio between the amount of air passing through the throttle valve Qt and the amount of intake air Qc determined according to the pressure ratio Pr (= Pm / Pa) between the intake pipe pressure Pm and the atmospheric pressure Pa, that is, the intake pipe pressure It is a figure which shows the flow characteristic according to. スロットルバルブの通過空気量Qt(実線)と吸入空気量Qc(破線)との関係を示すタイムチャートである。It is a time chart which shows the relationship between the passing air amount Qt (solid line) and the intake air amount Qc (broken line) of a throttle valve.

符号の説明Explanation of symbols

1 エンジン
3 スロットルバルブ(スロットル開度調整手段)
5 マニフォールド圧センサ(吸気管圧力検出手段)
10 アクセル開度センサ(APS、アクセル開度検出手段)
20 制御器
30 エンジンモデル
40 車両モデル
50 目標トルク設定部(目標スロットル開度算出手段)
52 トルク空気量変換部(目標スロットル開度算出手段)
54 前置補償器(目標スロットル開度算出手段)
56 FF制御器(目標スロットル開度算出手段)
62 FB制御器
76 スロットル開度算出部
1 Engine 3 Throttle valve (Throttle opening adjustment means)
5 Manifold pressure sensor (intake pipe pressure detection means)
10 Accelerator position sensor (APS, accelerator position detector)
20 controller 30 engine model 40 vehicle model 50 target torque setting unit (target throttle opening calculation means)
52 Torque air amount conversion unit (target throttle opening calculation means)
54 Precompensator (Target throttle opening calculation means)
56 FF controller (target throttle opening calculation means)
62 FB controller 76 Throttle opening calculator

Claims (2)

アクセル開度を検出するアクセル開度検出手段と、
前記アクセル開度検出手段により検出されたアクセル開度に基づき目標トルクを設定し、該目標トルクから目標吸入空気量を求めるとともに該目標吸入空気量に基づき目標スロットル開度を算出する目標スロットル開度算出手段と、
前記目標スロットル開度算出手段により算出された目標スロットル開度に基づき前記スロットルの開度を調整するスロットル開度調整手段と
前記スロットルの下流側の吸気管圧力を検出する吸気管圧力検出手段とを備え、
前記目標スロットル開度算出手段は、さらに、前記吸気管圧力検出手段により検出された吸気管圧力と前記スロットルの上流側の大気圧との間の圧力比に応じて定まる前記スロットルの通過空気量と内燃機関の燃焼室への吸入空気量との流量比に基づいて前記目標スロットル開度を補正することを特徴とする内燃機関の出力制御装置。
An accelerator opening detecting means for detecting the accelerator opening;
A target throttle opening that sets a target torque based on the accelerator opening detected by the accelerator opening detecting means, calculates a target intake air amount from the target torque, and calculates a target throttle opening based on the target intake air amount A calculation means;
Throttle opening adjusting means for adjusting the throttle opening based on the target throttle opening calculated by the target throttle opening calculating means ;
An intake pipe pressure detecting means for detecting an intake pipe pressure downstream of the throttle ,
The target throttle opening degree calculation means further includes a passage air quantity of the throttle determined according to the pressure ratio between the atmospheric pressure on the upstream side of the the detected intake pipe pressure throttle by the intake pipe pressure detecting means An output control device for an internal combustion engine, wherein the target throttle opening is corrected based on a flow rate ratio with an intake air amount into a combustion chamber of the internal combustion engine.
前記流量比は、前記圧力比が所定の臨界圧力比以下のときには一定であり、該所定の臨界圧力比より大きくなるに従い前記スロットルの通過空気量に対して内燃機関の燃焼室への吸入空気量が少なくなるよう変化するものであって、
前記目標スロットル開度算出手段は、前記目標吸入空気量を前記流量比で除すようにして前記目標スロットル開度を算出することを特徴とする、請求項1記載の内燃機関の出力制御装置。
The flow rate ratio is constant when the pressure ratio is equal to or lower than a predetermined critical pressure ratio, and the intake air amount into the combustion chamber of the internal combustion engine with respect to the amount of air passing through the throttle as the pressure ratio becomes larger than the predetermined critical pressure ratio Change so that
2. The output control apparatus for an internal combustion engine according to claim 1, wherein the target throttle opening calculation means calculates the target throttle opening by dividing the target intake air amount by the flow rate ratio.
JP2005098185A 2005-03-30 2005-03-30 Output control device for internal combustion engine Expired - Fee Related JP4539846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098185A JP4539846B2 (en) 2005-03-30 2005-03-30 Output control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098185A JP4539846B2 (en) 2005-03-30 2005-03-30 Output control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006274993A JP2006274993A (en) 2006-10-12
JP4539846B2 true JP4539846B2 (en) 2010-09-08

Family

ID=37209986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098185A Expired - Fee Related JP4539846B2 (en) 2005-03-30 2005-03-30 Output control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4539846B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986074B2 (en) * 2008-03-31 2012-07-25 マツダ株式会社 Vehicle powertrain control method and program for executing the method
CN103339360B (en) * 2011-02-02 2014-12-31 丰田自动车株式会社 Control device of internal combustion engine with supercharger
JP5998731B2 (en) * 2012-08-08 2016-09-28 三菱自動車工業株式会社 Engine control device
JP6613612B2 (en) * 2015-05-15 2019-12-04 三菱自動車工業株式会社 Engine control device
JP2019203439A (en) * 2018-05-23 2019-11-28 トヨタ自動車株式会社 Engine control device
IT201800009528A1 (en) * 2018-10-17 2020-04-17 Fpt Ind Spa DEVICE FOR CONTROL OF A BUTTERFLY VALVE OF AN INTERNAL COMBUSTION ENGINE AND INTERNAL COMBUSTION ENGINE INCLUDING SAID DEVICE
JP7135719B2 (en) * 2018-10-24 2022-09-13 トヨタ自動車株式会社 throttle controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303177A (en) * 2001-04-04 2002-10-18 Denso Corp Electronic throttle control device for internal combustion engine
JP2004036602A (en) * 2002-06-29 2004-02-05 Hyundai Motor Co Ltd Calculation method for cylinder suction amount of air and engine fuel control method and system utilizing the same
JP2004068702A (en) * 2002-08-06 2004-03-04 Mitsubishi Motors Corp Output control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303177A (en) * 2001-04-04 2002-10-18 Denso Corp Electronic throttle control device for internal combustion engine
JP2004036602A (en) * 2002-06-29 2004-02-05 Hyundai Motor Co Ltd Calculation method for cylinder suction amount of air and engine fuel control method and system utilizing the same
JP2004068702A (en) * 2002-08-06 2004-03-04 Mitsubishi Motors Corp Output control device for internal combustion engine

Also Published As

Publication number Publication date
JP2006274993A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4251228B2 (en) Control device for internal combustion engine
JP4539764B2 (en) Control device for internal combustion engine
JP4539846B2 (en) Output control device for internal combustion engine
JP4815294B2 (en) Failure detection device for supercharging pressure control means in engine supercharging device
JP4425816B2 (en) Electronically controlled throttle device
EP1982063B1 (en) Control apparatus for vehicle
US6119063A (en) System and method for smooth transitions between engine mode controllers
CN107917004B (en) Control device for internal combustion engine
JP4488318B2 (en) Internal combustion engine control device
US9957883B2 (en) Controller for supercharger-equipped internal combustion engine
JP2011137469A (en) Adaptive engine control
JPH0932612A (en) Idle speed controller for internal combustion engine
JPH03210032A (en) Rotating speed control device for internal combustion engine
WO2014010067A1 (en) Control device of internal combustion engine equipped with turbo supercharger
KR102274100B1 (en) Method for Dualizing Throttle Acceleration Control and Vehicle thereof
EP0940572B1 (en) A method for controlling engine idle speed
US7529615B2 (en) Method and device for controlling a charging device of an internal combustion engine during a charging mode
WO2012169026A1 (en) Device for controlling internal combustion engine fitted with supercharger
US8365761B2 (en) Regulator unit and method for regulating a flap opening of a flap situated in a mass flow line
JP5125896B2 (en) Control device for internal combustion engine
US6536411B2 (en) Method of operating an internal combustion engine
JP5305041B2 (en) Control device for internal combustion engine
JP4379098B2 (en) Control device for internal combustion engine
JP2505018B2 (en) Idle speed control device for internal combustion engine
JP2008157181A (en) Control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4539846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees