TW201107192A - Marine engine control system and method - Google Patents

Marine engine control system and method Download PDF

Info

Publication number
TW201107192A
TW201107192A TW099129230A TW99129230A TW201107192A TW 201107192 A TW201107192 A TW 201107192A TW 099129230 A TW099129230 A TW 099129230A TW 99129230 A TW99129230 A TW 99129230A TW 201107192 A TW201107192 A TW 201107192A
Authority
TW
Taiwan
Prior art keywords
control
control system
load resistance
resistance coefficient
output
Prior art date
Application number
TW099129230A
Other languages
Chinese (zh)
Other versions
TWI444310B (en
Inventor
Kazutaka Shimada
Takeshi Aoki
Hidenori Yamamoto
Akira Mitsufuji
Original Assignee
Mitsui Engineering & Shipbuilding Co Ltd
Mitsui Zosen Systems Res Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co Ltd, Mitsui Zosen Systems Res Inc filed Critical Mitsui Engineering & Shipbuilding Co Ltd
Publication of TW201107192A publication Critical patent/TW201107192A/en
Application granted granted Critical
Publication of TWI444310B publication Critical patent/TWI444310B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine

Abstract

Disclosed is a marine engine control system which is characterized by seeking a load resistance factor from the actual revolving speed of a main engine and a fuel index and converting a control target value from the first physical value to the second physical value using the load resistance factor being updated.

Description

201107192 、發明說明: 【發明所屬之技術領域】 本發明係關於一種船舶用引擎控制系統,特別是關 於依據海象進行船舶用引擎之控制的控制系統。 【先前技術】 船舶用引擎之控制係進行PID控制以使所設定之目 標旋轉速度與實際旋轉速度之間無偏差。但是,在暴風 雨時等,因螺旋槳之負載扭矩急遽變化,仍假設是在正 常天候下航行而實施增益(gain)之PID控制,可能因超 速而導致發動機故障等。針對此種問題,曾提出有預測 干擾造成螺旋槳旋轉速度之變動,來變更PID控制之增 益的結構(專利文獻一)。 專利文獻一:日本特開平8-200131號公報 【發明内容】 [發明所欲解決之問題] 為了提高油耗效益需要依海象進行調速控制,但是 專利文獻一由於並未進行海象之判斷,因此無法密切對 應於時時刻刻變化的海象。又,旋轉速度控制並非依據 海象,因此油耗效益之效率不佳。 本發明之目的為無須新設感測器,而是藉由判斷海 象之變化,依海象進行調速控制以謀求提高油耗效益。 [解決問題之手段] 本發明之船舶用引擎控制系統的特徵為··從主發動 201107192 且= 然料指數求出負载阻力係數,使用更新 二物理量。、文將控制目標值從第—物理量變換成第 換。Ϊ為:ΛΓ且力係數在指定時間之平均值用於變 換又例如第一物理量係 物理量係主發動機之輸出。又,:钱=速度:第-指數。爯去,止A t第一物理篁亦可係燃料 式,第1理旦擎控制系統具備複數個控制模 二模式之切換中宜在主發動機之輸 出之阻力係數導 少其t之-變動周期或變動之有效值至 亦可對應於™運算之比例項:ϊ 引擎船舶的特徵為:具備前述任何-個船舶用 機之二 發動 力係數將控制目標值從第—物理量 [發明之效果] 變化依新設感測器’可藉由判斷海象之 依海象進仃调速控制以提高油耗效益。豕 201107192 【實施方式】 ’就本發明之實施形態’參照圖式作說明。 弟—圖係顯示本發明第一種實施形態 擎控,系統的結構之控制區塊圖。 α 備4二實舶用引擎控制系統10例如具 餘式’各控制模式可依海象之狀態等擇-選 ,控制模式係將主發動機13之實際_速度(轉 :。旋轉速度(轉速)Ν〇的旋轉速度控 Μ第一控制模式係將主發動機13之輸出pe維持在目 : 輸出控制。又’第三控制模式係將燃料噴射 里亦即將作為其指標之燃料指數Fie維持在目;FTn 的燃料指數控制。 ㈣在目&值Flo 中均;===:作任何控制模式 所賦模式(旋轉速度控制)係將作為控制指令 門的德心&㈣速度Ν。與反饋之實際⑽速度Ne 入控制㈣。來自控制器U之輸出經由切 =關22而送至致動器15,致動器15將對應於來自控 ,11之輸出的燃料噴射量(燃料指數 給至主發動機13。 之切切換開關22係進行第—至第三控制模式間 且在選擇第—控制模式時,連接旋轉速 度控制用之控制器11與致動器15。 201107192 第二控制模式(輸出控制)係將作為控制指令所賦 予之目標旋轉速度No在旋轉速度/輸出變換區塊16中 變換成目標輸出P〇 (後述)。輸出控制時,反饋主發動 機13現在之輸出Pe,並將與目標輸出Po間之偏差輸入 控制器17。在第二控制模式中,切換開關22連接控制 器17與致動器15,來自控制器17之輸出經由切換開關 22而送至致動器15。致動器15在主發動機13中進行 對應於來自控制器17之輸出的燃料喷射(對應於燃料 指數He )。 另外,反饋之現在的輸出Pe係在輸出算出區塊19 中,從主發動機13之實際旋轉速度Ne與對應於實際燃 料喷射量之燃料指數Fie而算出(後述)。 又,由於在旋轉速度/輸出變換區塊16中之變換 係依據後述之負載阻力係數R的平均值Rav作變換者, 因此負載阻力係數R及其平均值Rav係在負載阻力係數 算出區塊24中,如後述地從實際燃料指數Fie與實際旋 轉速度Ne而算出。 第三控制模式(燃料指數控制)係將作為控制指令 所賦予之目標旋轉速度No在旋轉速度/燃料指數變換 區塊12中變換成目標燃料指數Flo。另外,該變換中仍 使用在負載阻力係數算出區塊24中算出之負載阻力係 數R的平均值Rav。 燃料指數控制時,反饋對應於實際燃料喷射量之燃 料指數Fie,並將與目標燃料指數Flo間之偏差輸入控 制器14,在第三控制模式中,切換開關22連接控制器 201107192 14與致動器15,來自控制器14 而送至致動器15。致動器15在:機巧:換開關22 於來自控制器μ之輸出的㈣m中進行對應 ne)。 、、竹噴射(對應於燃料指數 如以上所述’第-種實獅態之船舶 統10可藉由切換開關22之切換,而/ f控制糸 =::數控制之間切換控丄二 其次’就旋轉速度/輸出變換區塊16、旋轉速度/ 燃料f數變換區塊12中之控制目標值的變換公式,及 輸出算出區塊19中之輸出算出公式作說明。另外,以 下之說明將旋轉速度N、輸出p、扭矩τ、燃料指數打 以主發動機13的連續最大額定(MCR)時是1〇〇%的百 分率[%]來表示。 依據螺旋槳定律,輸出P[%]與旋轉速度N[%]之三 次方成正比,而表示為 P = R · (N/100) 3 (1) 其中,R係取決於前述海象之係數[%],本說明書中 稱為負載阻力係數。另外R[%]於水面平靜狀態(無風浪 之穩定狀態)下航行中為100%。 另外,由於扭矩T[%]、輸出P[%]及旋轉速度N[%] 之間有如下之關係, T = p/ (Ν/100) (2) 因此,扭矩Τ於使用負載阻力係數R時’表示為 T = R . (N/100) 2 (3) 201107192 又,調速控制中,由於燃料指數FI[〇/〇]可看成 扭矩T[°/〇] (FI=T),因此從公式(3)獲得以下公式 ; FI = R . (N/100) 2 (4) 因此,負載阻力係數R決定時,旋轉速度/輪出科 換區塊16係依據公式(1)從旋轉速度N求出輸出p,# 轉速度/燃料指數變換區塊12係依據公式(4)求出燦= 指數FI。 .“、料 又,從公式(4) ’現在之負載阻力係數R的值可從燃 料指數FIe[%]與實際旋轉速度Ne[%],而用 R=FIe/ (Ne/100) 2 (5) 求出。 亦即’公式(4)之負載阻力係數R雖依海象而時時刻 刻變化,不過其值可從公式(5)求出。因此,本實施形態 之旋轉速度/輸出變換區塊16及旋轉速度/燃料指婁1 變換區塊12係將使用公式(5)而算出之負載阻力係數R 在指定時間(例如數十分鐘至數小時程度,並宜為i小 時程度)T的平均值Rav = [ $ pie/ ( Ne/100 ) 2 ·叫 /T ’在每個指定時間τ更新、設定,作為在公式〇)、 公式(4)使用之負載阻力係數R的值。 亦即’旋轉速度/輸出變換區塊16係使用 P〇=Rav · (No/100)3 (6) 作為變換式,旋轉速度/燃料指數變換區塊12係 使用 ⑺ FIo=Rav · (No/100)2 作為變換式。 201107192 又,在輸出算出區塊19中算出之輸出pe的值,從 公式⑴、(5),用BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a marine engine control system, and more particularly to a control system for controlling a marine engine based on a walrus. [Prior Art] The control system of the marine engine performs PID control so that there is no deviation between the set target rotational speed and the actual rotational speed. However, in the event of a storm or the like, the load torque of the propeller changes rapidly, and it is assumed that the PID control is performed while sailing in a normal weather, and engine failure may occur due to overspeed. In response to such a problem, there has been proposed a structure for predicting the fluctuation of the rotation speed of the propeller caused by the disturbance to change the gain of the PID control (Patent Document 1). Patent Document 1: Japanese Laid-Open Patent Publication No. Hei 8-200131 [Summary of the Invention] [Problems to be Solved by the Invention] In order to improve the fuel consumption efficiency, it is necessary to perform speed control according to the walrus, but the patent document 1 cannot be judged by the walrus. It closely corresponds to the walrus that changes moments. Moreover, the rotational speed control is not based on walrus, so the fuel efficiency is not efficient. The object of the present invention is to improve the fuel consumption efficiency by judging the change of the sea image by judging the change of the sea image by judging the change of the sea image. [Means for Solving the Problem] The ship engine control system according to the present invention is characterized in that the load resistance coefficient is obtained from the main engine 201107192 and the load index is used, and the updated two physical quantities are used. The text changes the control target value from the first physical quantity to the first. Ϊ is: 平均值 and the average of the force coefficient at the specified time is used for the transformation, for example, the first physical quantity is the output of the main engine. Also,: money = speed: the first - index. In the first place, the first physical 篁 can also be fuel-based. The first Lidan engine control system has a plurality of control modes. Or the effective value of the change to the proportional term that can also correspond to the TM operation: 引擎 The characteristics of the engine ship are: having the second power coefficient of any of the aforementioned marine engines, the control target value is changed from the first physical quantity [effect of the invention] According to the new sensor, it can improve the fuel consumption efficiency by judging the walrus walrus speed control.豕 201107192 [Embodiment] The embodiment of the present invention will be described with reference to the drawings. The figure shows the control block diagram of the structure of the system according to the first embodiment of the present invention. The α engine 4 engine control system 10 has, for example, a residual mode. Each control mode can be selected according to the state of the walrus. The control mode is the actual _ speed of the main engine 13 (rotation: rotation speed (speed) Ν〇 The rotational speed control first control mode maintains the output of the main engine 13 at the target: output control. The 'third control mode maintains the fuel index Fie, which is also to be used as an indicator in the fuel injection; FTn Fuel index control. (4) In the target & value Flo; ===: The mode assigned to any control mode (rotation speed control) will be used as the control command gate's virtue & (4) speed Ν. Actual feedback (10) The speed Ne is entered into control (4). The output from the controller U is sent to the actuator 15 via the cut-off 22, and the actuator 15 will correspond to the fuel injection amount of the output of the control, 11 (fuel index is given to the main engine 13) The switching switch 22 is connected between the first to third control modes and when the first control mode is selected, the controller 11 for controlling the rotational speed and the actuator 15. 201107192 The second control mode (output control) will be used as The target rotational speed No given by the command is converted into the target output P〇 (described later) in the rotational speed/output conversion block 16. When the control is output, the main engine 13 is now outputting the Pe and will be connected to the target output Po. The deviation input controller 17. In the second control mode, the changeover switch 22 is connected to the controller 17 and the actuator 15, and the output from the controller 17 is sent to the actuator 15 via the changeover switch 22. The actuator 15 is in the main Fuel injection corresponding to the output from the controller 17 (corresponding to the fuel index He) is performed in the engine 13. Further, the current output Pe of the feedback is in the output calculation block 19, from the actual rotational speed Ne of the main engine 13 and The fuel index Fei corresponding to the actual fuel injection amount is calculated (described later). Further, since the transformation in the rotation speed/output conversion block 16 is based on the average value Rav of the load resistance coefficient R to be described later, the load resistance is changed. The coefficient R and the average value Rav thereof are calculated in the load resistance coefficient calculation block 24, and are calculated from the actual fuel index Fie and the actual rotation speed Ne as will be described later. The material index control is converted into the target fuel index Flo in the rotation speed/fuel index conversion block 12 as the target rotation speed No given by the control command. Further, the conversion is still used in the load resistance coefficient calculation block 24. Calculating the average value Rav of the load resistance coefficient R. When the fuel index is controlled, the fuel index Fie corresponding to the actual fuel injection amount is fed back, and the deviation from the target fuel index Flo is input to the controller 14, in the third control mode, The changeover switch 22 is connected to the controller 201107192 14 and the actuator 15 from the controller 14 to the actuator 15. The actuator 15 is in the following: the switch 22 is corresponding to ne) in the (m)m from the output of the controller μ. , bamboo injection (corresponding to the fuel index as described above, the 'the first type of lion state of the ship system 10 can be switched by the switch 22, and / f control 糸 =:: number control between the switch control second 'The conversion formula of the rotation speed/output conversion block 16, the rotation speed/fuel f number conversion block 12, and the output calculation formula in the output calculation block 19 will be described. The rotation speed N, the output p, the torque τ, and the fuel index are expressed as a percentage [%] of 1% in the continuous maximum rating (MCR) of the main engine 13. According to the propeller law, the output P [%] and the rotation speed are output. The square of N[%] is proportional to P = R · (N/100) 3 (1) where R depends on the coefficient of the above-mentioned walrus [%], which is called the load resistance coefficient in this specification. R[%] is 100% in the calm state of the water surface (steady state without wind and waves). In addition, since the torque T[%], the output P[%], and the rotational speed N[%] have the following relationship, T = p / (Ν/100) (2) Therefore, when the torque is less than the load resistance coefficient R, it is expressed as T = R. (N/100 2 (3) 201107192 Also, in the speed control, since the fuel index FI[〇/〇] can be regarded as the torque T[°/〇] (FI=T), the following formula is obtained from the formula (3); FI = R . (N/100) 2 (4) Therefore, when the load resistance coefficient R is determined, the rotational speed/wheeling block 16 is based on the formula (1) to obtain the output p from the rotational speed N, #转速度/fuel The exponential transformation block 12 is based on the formula (4) to find the can = index FI. ", and again, from the formula (4) 'The current load resistance coefficient R can be obtained from the fuel index FIe [%] and the actual rotation speed Ne[%], which is obtained by R=FIe/(Ne/100) 2 (5). That is, the load resistance coefficient R of the formula (4) changes momentarily according to the walrus, but its value can be obtained from the formula. (5) The rotation speed/output conversion block 16 and the rotational speed/fuel index 1 conversion block 12 of the present embodiment are the load resistance coefficient R calculated using the formula (5) at a predetermined time ( For example, the tens of minutes to several hours, and should be the degree of i hours) The average value of T Rav = [ $ pie / ( Ne / 100 ) 2 · called / T ' is updated and set at each specified time τ, as in the public 〇), the value of the load resistance coefficient R used in the formula (4). That is, the 'rotation speed/output conversion block 16 uses P〇=Rav · (No/100)3 (6) as the conversion type, the rotation speed/ The fuel index conversion block 12 uses (7) FIo = Rav · (No / 100) 2 as a conversion formula. 201107192 The value of the output pe calculated in the output calculation block 19 is used from equations (1) and (5).

Pe=FIe · (Ne/l〇〇) (8) 而求出。 第二圖中示意地顯示負載阻力係數R、實際旋轉速 度Ne、燃料指數Fie之具體時間序列變化。另外,第二 圖(a)係顯不旋轉速度Ne[%] ’第一圖(b)係顯示燃料指數 FIe[°/〇]之計測值,第二圖(c)係顯示將第二圖(a)、第二圖 (b)所示之實際旋轉速度Ne、燃料指數Fie代入公式(5) 而算出之負載阻力係數R[%]的算出值之時間序列變化 者,橫軸係時間[秒]。 如第二圖(a)所示,實際旋轉速度Ne即使在將旋轉 速度(轉速)保持一定之旋轉速度控制中,仍因波浪之 影響而以所设定之目標值為中心而變動,變動之周期與 船體承受波浪之周期有關。另外,如第二圖(b)所示,燃 料指數(燃料喷射量)Fie中除了有關旋轉速度變動之 變動外,還存在位數(order)遠比旋轉速度變動之周期大 的流向(trend)。而藉由公式(5) R=:ne/ (Ne/1〇〇) 2 算出之負載阻力係數r受到第二圖(a)、第二圖(b)各個 變動之影響,而如第二圖(c)所示地變動。 其次,第三圖中顯示在旋轉速度控制、輸出控制、 燃料指數控制之各控制模式中的主發動機之旋轉速度 [%]的變動(第三圖(a))、燃料指數值之變動(第三圖 =))、輸出變動(第三圖⑷)、負載阻力係數之變動(第 三圖(句)的代表例。 201107192 如第三圖所示,燃料指數控制例如第三圖(d)所示地 係在發生負載阻力係數R之變動小且周期亦短之主發動 機的反應延遲時作選擇。燃料指數控制如第三圖(b)所 示,係將燃料指數維持一定,不過第三圖⑻、第三圖⑷ 所示之旋轉速度及輸出係以短的周期稍微變動。 如第三圖(d)所示,輸出控制係在負載阻力係數R之 變動為中等程度,且周期亦某種程度長,主發動機可密 切追隨之狀況下作選擇。主發動機之輸出藉由前述之輸 出控制而如第三圖(c)所示地概略維持一定,而主發動機 穩定地運轉。此時旋轉速度(第三圖(a))及燃料指數(第 三圖(b))以與負載阻力係數R概略相同之周期且以中等 程度之大小而變動。 又,旋轉速度控制例如在波濤巨浪中或在港灣區使 用,例如防止因空轉而造成主發動機過度旋轉等。例如 發生空轉時,如第三圖(d)所示,負載阻力係數R之值突 然變極小。此時,因旋轉速度開始急遽上昇,所以為了 將旋轉速度維持一定,而大幅降低燃料指數(第三圖 (b)),並大幅降低主發動機之輸出(第三圖(c))。藉此防 止旋轉速度過度上昇。 如以上所述,第一種實施形態可依海象等將適切之 物理量設定成控制目標值來進行調速控制,可提高油耗 效益。又,賦予目標旋轉速度No時,獲得適合其值及 此時之海象的輸出控制目標值Po及燃料指數控制目標 值Flo,因此可進一步改善油耗效益。 其次,參照第四圖、第五圖,就本發明第二種實施 201107192 船弓丄擎二?統作說明。第二種實施形態之 船舶用引擎控工制夺構概略與第一種實施形態之 值作=進;===變動有效 值動周期與有效 效值。 縱軸對應於負載阻力係數R之變動有 發動機:ί= 二3=之變動周期的長短與主 :反库性低本貫施形態在變動周期短且主發動機 響大的情況下,係進行燃料 模式)。’、、、U抑制喷射簡之浪費(㈣指數控制 的令門帶,Γ、ΐ ί f式)°而在此等兩個運轉模式 定心控卜,將主發動機之輸出維持- 亦即’第二種實施形態係依據在負载阻力係數算出 201107192 ^ 24 (第一圖)中算出之負載阻力係數R,進一步瞀 f負載阻力係數R變動之周期與負載阻力係數r變動: =值/並參照第四圖之控制圖選擇對應區域之控制模 式來進行切換開關22 (第一圖)之切換。 、 此時,第五圖⑷中顯示第二圖(c) 、 數·的變動成分Rv[%]之時間序列變化料^ 值以m的時間序列變化的曲線圖。另夕卜,第五圖(咐 分Rv對應於從第二圖(〇之負載阻力係數(r): 去机向者。又’第五圖(b)中顯示描輕 成分續壯昇中橫跨〇[%]之時刻至其次的上(昇) =%]時刻所花費的時_,本實施形態制該值作為負 載阻力係數R之變動周期。 、 ^ ,以上所述,依據本發明之第二種實施形態,可鞾 得與第-種實郷態概略同樣之效果,並且可從負載^ 2數之變動周期、變動之有效值等的從負載阻力係數 ,出之物理量韻現在之海象,而從控制目標值不同之 複數個控制模式選擇適切之控制模式。 八,.’參照第六圖、第七圖就第三種實施形態作說 明。第,種實施形態與第二種實施形態同樣地,係將負 載阻力係數R之變動周期與變動之有效值作為參數來切 換調速控制模式。第二種實施形態之控制模式的切換係 將控,目標值變更為旋轉速度、輸出、燃料指數,而第 三種實施形態不進行控制目標值之變更,係對應於圖 (map)之各區域來變更控制參數。 第三種實施形態之船舶用引擎控制系統例如將旋 12 201107192 ΐϊί控Γ於調速控制,在對應於第二種實施形態之 丨四圖)所示的旋轉速度控制、輸出控制、燃 :嚶二:5各區域的區域’分別如第六圖之控制圖所 不地=感控制、中度控制、緩慢控制。 f圖顯不第三種實施形態之旋轉速度控制的控 制區圖$外’就與第―、第二種實施形態同樣之結 構4用相同參照符號而省略其說明。第三種實施形態 之旋轉速度控制係將目標旋轉速度Pe=FIe · (Ne/l〇〇) (8) and find it. The second time diagram schematically shows the specific time series variation of the load resistance coefficient R, the actual rotation speed Ne, and the fuel index Fie. In addition, the second figure (a) shows the non-rotation speed Ne[%] 'the first figure (b) shows the measured value of the fuel index FIe[°/〇], and the second figure (c) shows the second figure. (a), the actual rotation speed Ne shown in the second diagram (b), and the time-series change in the calculated value of the load resistance coefficient R[%] calculated by substituting the fuel index Fie into the equation (5), and the horizontal axis time [ second]. As shown in the second diagram (a), the actual rotational speed Ne is changed in the rotational speed control in which the rotational speed (rotational speed) is kept constant, and is changed by the influence of the wave at the set target value. The cycle is related to the period in which the hull is subjected to waves. Further, as shown in the second diagram (b), in addition to the fluctuation of the rotational speed variation, the fuel index (fuel injection amount) Fie has a flow direction in which the number of orders is far larger than the period of the fluctuation of the rotational speed. . The load resistance coefficient r calculated by the formula (5) R=:ne/ (Ne/1〇〇) 2 is affected by the changes of the second graph (a) and the second graph (b), and the second graph is as shown in the second graph. (c) Changes as indicated. Next, the third graph shows the fluctuation of the rotational speed [%] of the main engine in each of the control modes of the rotational speed control, the output control, and the fuel index control (third figure (a)), and the change of the fuel index value (the Three graphs =)), output fluctuations (third graph (4)), and fluctuations in load resistance coefficient (a representative example of the third graph (sentence). 201107192 As shown in the third graph, the fuel index control is as shown in the third graph (d). The indication is selected when the reaction delay of the main engine with small fluctuation of the load resistance coefficient R and short cycle is selected. The fuel index control is as shown in the third figure (b), and the fuel index is maintained constant, but the third figure (8) The rotation speed and output shown in the third diagram (4) vary slightly in a short cycle. As shown in the third diagram (d), the output control system has a medium fluctuation in the load resistance coefficient R, and the period is also a certain The main engine can be closely selected to follow the situation. The output of the main engine is maintained as shown in the third figure (c) by the output control described above, and the main engine is stably operated. (No. The three figures (a)) and the fuel index (third figure (b)) vary in a period substantially the same as the load resistance coefficient R and are moderately large. Further, the rotational speed control is, for example, in a wave or a harbor. The use of the zone, for example, prevents excessive rotation of the main engine due to idling, etc. For example, when idling occurs, as shown in the third diagram (d), the value of the load resistance coefficient R suddenly becomes extremely small. At this time, since the rotation speed starts to rise sharply, Therefore, in order to maintain the rotation speed constant, the fuel index is greatly reduced (Fig. 3(b)), and the output of the main engine is greatly reduced (Fig. 3(c)), thereby preventing the rotation speed from rising excessively. In the first embodiment, the appropriate physical quantity can be set as the control target value according to the walrus, and the speed control can be performed to improve the fuel consumption efficiency. Further, when the target rotation speed No is given, the output suitable for the value and the walrus at this time is obtained. The target value Po and the fuel index control target value Flo are controlled, so that the fuel consumption benefit can be further improved. Next, referring to the fourth and fifth figures, the second embodiment of the present invention 201107192 In the second embodiment, the engine control system of the second embodiment is summarized as the value of the first embodiment; === variable effective period and effective value. The axis corresponds to the change of the load resistance coefficient R. There are engines: ί = 2 3 = the length of the change cycle and the main: the anti-depositive low-transition mode. When the change period is short and the main engine is loud, the fuel mode is performed. ). ',,, U suppresses the waste of the jet ((4) the index control of the door, Γ, ΐ ί f type) ° and in these two modes of operation, the control of the main engine is maintained - that is, ' The second embodiment is based on the load resistance coefficient R calculated in the load resistance coefficient calculated from 201107192^24 (first figure), and further changes the period of the load resistance coefficient R and the load resistance coefficient r: = value / reference The control chart of the fourth figure selects the control mode of the corresponding area to switch the switch 22 (first figure). At this time, the fifth graph (4) shows a graph in which the time series change value of the second graph (c) and the variable component Rv [%] of the number is changed in time series of m. In addition, the fifth figure (the Rv corresponds to the load resistance coefficient (r) from the second figure (〇): the detour to the direction. And the fifth figure (b) shows the light component continues to rise and fall. The time taken from the time of [%] to the time of the next upper (liter) = %] _, this embodiment produces this value as the fluctuation period of the load resistance coefficient R. , ^ , as described above, according to the present invention In the second embodiment, the same effect as the first-order real state can be obtained, and the walrus of the physical quantity can be obtained from the load resistance coefficient such as the fluctuation period of the load ^ 2 and the effective value of the variation. And selecting a suitable control mode from a plurality of control modes having different control target values. VIII, . . , referring to the sixth embodiment and the seventh embodiment, the third embodiment will be described. The first embodiment and the second embodiment Similarly, the speed control mode is switched by using the fluctuation period of the load resistance coefficient R and the effective value of the fluctuation as a parameter. The switching of the control mode of the second embodiment is controlled, and the target value is changed to the rotation speed, the output, and the fuel. Index, while the third embodiment is not The change of the control target value is performed by changing the control parameters corresponding to each area of the map. The marine engine control system of the third embodiment controls the speed control by, for example, the control system 12 Rotational speed control, output control, and combustion shown in Figure 4 of the two embodiments: 嘤2: 5 regions of each region are respectively as shown in the control chart of the sixth figure = sense control, moderate control, slow The control unit of the rotation speed control of the third embodiment is not shown in the third embodiment, and the same components as those of the second embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Rotational speed control

No與實際旋轉速度 Ne的偏差輸入控制器25。來自控制器之輸出輸入至 致動姦15 ’而對主發動機13供給對應於來自控制器25 之輸出的燃料噴射量(燃料指數Fie)。 控制器25例如包含piD控制區塊,各項之增益的 设疋係依據來自控制模式切換區塊26之指令而變更。 在控制模式切換區塊26中輸入實際燃料指數π與實際 轉速Ne ’與第一種實施形態之負載阻力係數算出區塊 24同樣地算出負载阻力係數R,並且算出其變動周期及 變動之有效值’並參照第六圖之控制圖。而後’控制模 式切換區塊26對控制器25之PID控制區塊設定依據控 制圖而選擇之控制模式的增益。 表一中顯示在第三種實施形態之各控制模式中進 行PID運算之各項靈敏度的相對性關係,此等藉由變更 各項增益之設定而變更。 201107192The deviation of No from the actual rotational speed Ne is input to the controller 25. The output from the controller is input to the actuating 15' and the main engine 13 is supplied with a fuel injection amount (fuel index Fie) corresponding to the output from the controller 25. The controller 25 includes, for example, a piD control block, and the gain setting of each item is changed in accordance with an instruction from the control mode switching block 26. In the control mode switching block 26, the actual fuel index π and the actual rotation speed Ne' are input, and the load resistance coefficient R is calculated in the same manner as the load resistance coefficient calculation block 24 of the first embodiment, and the fluctuation period and the effective value of the fluctuation are calculated. 'And refer to the control chart of the sixth figure. The control mode switching block 26 then sets the gain of the control mode selected in accordance with the control map for the PID control block of the controller 25. Table 1 shows the relative relationship between the sensitivitys of the PID calculations in the respective control modes of the third embodiment, and these are changed by changing the setting of each gain. 201107192

φ彳倮玩马三個區域,不矾介可 刻分兩個控制模式而構成,該情況下例如劃八 3與緩慢控制,兩模式中進行PID運算之比:二 刀項的靈敏度之相對性關係顯示於表二。 負積 [表二] 比例 積分 敏感 大 短 緩慢 小 長 另外’此種情況下亦可僅為π控制。 如以上所述,第三種實施形態亦可獲得與第二種實 施形態概略同樣之效果。另外,本實施形態係以旋轉速 度控制為例作說明,不過亦可將本實施形態適用於輸出 控制及燃料指數控制。 又,第一至第二種貫施形態在加以整合之範圍中, 亦可分別組合而適用。 另外’各種實施形態中,亦可將算出之負載阻力係 數、其變動周期、變動之有效值中的任何一個或從負載 201107192 阻力係數導出之物理量的二個以上顯示於操舵室及發 動機室等而構成。又,第二、第三種實施形態中,亦可 僅與負載阻力係數之變動周期、變動之有效值中的任何 一方或是與從負載阻力係數導出之其他物理量組合來 規定控制模式之切換。又,亦可取代變動周期而使用變 動頻率。再者,本實施形態之操縱者設定旋轉速度作為 控制指令,不過亦可設定燃料指數、輸出、船速及其他 物理量作為控制指令而構成。 又,控制方法不限於PID控制,亦可適用於現代控 制理論、適用控制、學習控制等。例如第三種實施形態 之情況,係依據從負載阻力係數導出之物理量,變更PI 運算及PID運算之靈敏度,來進行控制模式之切換,不 過,例如現代控制理論、適用控制、學習控制等亦可依 據從負載阻力係數導出之物理量變更各個控制中之控 制參數值,來進行控制模式之切換。 15 201107192 【圖式簡單說明】 第一圖係第一種實施形態之船舶用引擎控制系統 的控制區塊圖。 、第二圖係顯示負載阻力係數R、實際旋轉速度Ne、 燃料指數Fie之具體時間序列變化的曲線圖。 弟一圖係顯示燃料指數控制、輸出控制、旋轉速度 控制中之動態特長的曲線圖。 第四圖係第二種實施形態使用之控制圖的例。 第五圖係顯示第二圖(c)所示之負載阻力係數R的 變動成分Rv、其有效值Re之時間序列變化及負載阻力 係數R之變動周期的曲線圖。 第六圖係第三種實施形態使用之控制圖的例。 第七圖係第三種實施形態之船舶用引擎控制系統 的控制區塊圖。 【主要元件符號說明】 10 船舶用引擎控制系統 11 控制器 12 旋轉速度/燃料指數變換區塊 13 主發動機 14 控制器 15 致動器 16 旋轉速度/輸出值變換區塊 201107192 17 控制器 19 輸出算出區塊 22 切換開關 24 負載阻力係數算出區塊 25 控制器 26 控制模式切換區塊 FI ' Fie 燃料指數 Flo 目標燃料指數 N 旋轉速度 Ne 實際旋轉速度 No 目標旋轉速度 P 輸出 Pe 主發動機之輸出 Po 目標值 R 負載阻力係數 Rav 負載阻力係數平均值 Rv 負載阻力係數變動成分 Re 有效值 T 扭矩 17Φ彳倮 play three areas, can be divided into two control modes can be divided into two, in this case, for example, eight and three slow control, the ratio of PID operation in the two modes: the relative sensitivity of the two-knife The relationship is shown in Table 2. Negative product [Table 2] Proportional Integral Sensitive Large Short Slow Slow Small In addition, in this case, it is only π control. As described above, the third embodiment can also obtain the same effects as those of the second embodiment. Further, in the present embodiment, the rotation speed control is taken as an example, but the present embodiment can be applied to the output control and the fuel index control. Further, the first to second embodiments may be combined and applied in a range of integration. In addition, in the various embodiments, two or more of the calculated load resistance coefficient, the fluctuation period, and the effective value of the fluctuation or the physical quantity derived from the load 201107192 resistance coefficient may be displayed in the steering room, the engine room, or the like. Composition. Further, in the second and third embodiments, the switching of the control mode may be defined only in combination with any one of the fluctuation period of the load resistance coefficient and the effective value of the fluctuation or another physical quantity derived from the load resistance coefficient. Further, the variable frequency can be used instead of the fluctuation period. Further, the operator of the present embodiment sets the rotation speed as a control command, but may also set the fuel index, the output, the ship speed, and other physical quantities as control commands. Further, the control method is not limited to PID control, and can be applied to modern control theory, applicable control, learning control, and the like. For example, in the case of the third embodiment, the sensitivity of the PI calculation and the PID calculation is changed according to the physical quantity derived from the load resistance coefficient, and the control mode is switched. However, for example, modern control theory, applicable control, and learning control may be used. The control mode is switched by changing the value of the control parameter in each control based on the physical quantity derived from the load resistance coefficient. 15 201107192 [Simple description of the diagram] The first diagram is a control block diagram of the marine engine control system of the first embodiment. The second graph shows a graph of specific time series changes of the load resistance coefficient R, the actual rotational speed Ne, and the fuel index Fie. The first picture shows a graph of the dynamic characteristics of fuel index control, output control, and rotational speed control. The fourth figure is an example of a control map used in the second embodiment. The fifth graph shows a graph of the variation component Rv of the load resistance coefficient R shown in the second diagram (c), the time series change of the effective value Re, and the fluctuation period of the load resistance coefficient R. The sixth figure is an example of a control map used in the third embodiment. The seventh figure is a control block diagram of the marine engine control system of the third embodiment. [Main component symbol description] 10 Marine engine control system 11 Controller 12 Rotation speed/fuel index conversion block 13 Main engine 14 Controller 15 Actuator 16 Rotation speed/output value conversion block 201107192 17 Controller 19 Output calculation Block 22 changeover switch 24 load resistance coefficient calculation block 25 controller 26 control mode switching block FI ' Fie fuel index Flo target fuel index N rotation speed Ne actual rotation speed No target rotation speed P output Pe main engine output Po target Value R Load resistance coefficient Rav Load resistance coefficient average value Rv Load resistance coefficient variation component Re RMS T torque 17

Claims (1)

201107192 七 2. 3. 4. 5. 6. 7. 申請專利範圍: 丨擎控制系統,其特徵為:從主發動機之 ηΐϊ與燃料指數求出負載阻力係數,使用更 係數將控制目標值從第-物理量 範圍第1項之船舶用引擎控制系統,其中 述負載阻力係數在指定時間之平均值用於前述 專:範圍第2項之船舶用引擎控制系統,其中 别述第-物理錢前述主發動機之旋轉速度。 =„ U第3項之船舶㈣擎控制系統,其中 别述第一物理量係前述主發動機之輸出。 2 r f範㈣3項之船舶用引擎控制系統’其中 月'J述第一物理量係燃料指數。 係在前述主發動機之輸出與燃“數』 專利範圍第2項或申請專利範圍第6項之船拖 擎控制系統,其中將從前述負載阻力、山 物理量作為參數來進行控制模式之切換。導出之 圍第7項之船舶用引擎控制系統,苴中 前係數之變動周期或 如申請專利範圍第8項之船舶用引擎控制系統,其中 9. 2〇1107192 10. 11. 12. 目標值之切換。 擎控制系統,其中 運算之比例項、積 前述控制模式之切換係對應於控制 如申請專利範圍第9項之船舶用引 前述控制模式之切換係對應於PID 分項的靈敏度之變更。 里加朋…穴丨用τ呀寻利範圍第 10項中任一項之船舶用引擎控制系统。 :種船舶用引擎控制方法,其特徵為:從 度與燃料指數求出負載阻力係數= 變換成第二物理量。 曰知值從第一物理量201107192 VII 2. 3. 4. 5. 6. 7. Patent application scope: The engine control system is characterized by: calculating the load resistance coefficient from the ηΐϊ and fuel index of the main engine, and using the more coefficient to control the target value from the first - a marine engine control system according to item 1 of the physical quantity range, wherein the average value of the load resistance coefficient at a specified time is used for the marine engine control system of the above-mentioned special: range item 2, wherein the first main engine of the first physical money is described The speed of rotation. = „ U 3rd ship (4) engine control system, in which the first physical quantity is the output of the aforementioned main engine. 2 rf fan (4) 3 item marine engine control system 'where the month' refers to the first physical quantity fuel index. The ship drag control system of the above-mentioned main engine output and the "number" of the patent "No. 2" or the scope of claim 6 of the patent application, wherein the control mode is switched from the load resistance and the mountain physical quantity as parameters. For the marine engine control system of the seventh item, the change period of the medium-precision coefficient or the marine engine control system of the eighth application patent scope, 9. 2〇1107192 10. 11. 12. Target value Switch. The control system, in which the proportional term of the operation, and the switching of the aforementioned control modes correspond to the control, the switching of the control mode as in the ninth aspect of the patent application scope corresponds to the change of the sensitivity of the PID sub-item. Rigapeng...The use of the engine control system for ships in any of the 10th. : A method for controlling an engine for a ship, characterized in that the load resistance coefficient is calculated from the degree of dependence and the fuel index = converted into a second physical quantity. Knowing the value from the first physical quantity
TW099129230A 2009-08-31 2010-08-31 Ship engine control system and method TWI444310B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201066A JP4750880B2 (en) 2009-08-31 2009-08-31 Marine engine control system and method

Publications (2)

Publication Number Publication Date
TW201107192A true TW201107192A (en) 2011-03-01
TWI444310B TWI444310B (en) 2014-07-11

Family

ID=43628094

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099129230A TWI444310B (en) 2009-08-31 2010-08-31 Ship engine control system and method

Country Status (5)

Country Link
JP (1) JP4750880B2 (en)
KR (1) KR101173535B1 (en)
CN (1) CN102483004B (en)
TW (1) TWI444310B (en)
WO (1) WO2011025003A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103786860B (en) * 2014-02-19 2016-05-04 哈尔滨工程大学 Marine main engine executing agency and control method thereof
JP6777970B2 (en) * 2016-10-21 2020-10-28 テンアイズ株式会社 How to control the number of revolutions of a marine engine
CN107045351B (en) * 2017-05-13 2020-02-21 安徽科微智能科技有限公司 Multifunctional novel unmanned ship remote controller
JP6907139B2 (en) * 2018-02-27 2021-07-21 株式会社三井E&Sマシナリー Control system for main marine engine
JP2022091049A (en) 2020-12-08 2022-06-20 ヤマハ発動機株式会社 Boat

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137760B2 (en) * 2003-10-20 2008-08-20 本田技研工業株式会社 Intake air amount control device for internal combustion engine
CN101091046B (en) * 2004-11-04 2010-08-11 国立大学法人东京海洋大学 Method and device for controlling injection of fuel for marine diesel engine
JP4529713B2 (en) * 2005-02-08 2010-08-25 トヨタ自動車株式会社 Control method for internal combustion engine
JP2008045484A (en) * 2006-08-16 2008-02-28 Japan Marine Science Inc Control method and control device for marine internal combustion engine
JP2009045484A (en) 2008-12-01 2009-03-05 Olympia:Kk Game machine

Also Published As

Publication number Publication date
TWI444310B (en) 2014-07-11
JP2011052577A (en) 2011-03-17
WO2011025003A1 (en) 2011-03-03
CN102483004B (en) 2013-08-07
CN102483004A (en) 2012-05-30
KR101173535B1 (en) 2012-08-13
JP4750880B2 (en) 2011-08-17
KR20120068846A (en) 2012-06-27

Similar Documents

Publication Publication Date Title
TW201107192A (en) Marine engine control system and method
Sørensen et al. Torque and power control of electrically driven marine propellers
EP2178745B1 (en) Efficiency optimizing propeller speed control for ships
WO2011125466A1 (en) Ship main engine control system and method
JP6125124B1 (en) Motor control method and control apparatus
TWI444309B (en) Ship engine control system and method
US9764812B1 (en) Systems and methods for setting engine speed using a feed forward signal
WO2017149589A1 (en) Ship propulsion method and ship propulsion device
JP4994505B1 (en) Marine engine control apparatus and method
TW201035440A (en) Ship engine control system
US7000590B2 (en) Engine output control system
JP2007198348A (en) Engine control device
JP4898935B2 (en) Engine control apparatus and method
US20100269784A1 (en) Control apparatus and method of an internal combustion engine
JP2019148212A (en) Control system of marine main engine
TW201035439A (en) Marine engine control system
TW201144581A (en) Ship engine control device and method
US10415495B2 (en) Method for regulating a fuel delivery system
US20040107038A1 (en) Torque controller of internal combustion engine
WO2011004813A1 (en) Governor control device and method for marine engines