TW201232808A - Epitaxial structure and method for making the same - Google Patents

Epitaxial structure and method for making the same Download PDF

Info

Publication number
TW201232808A
TW201232808A TW100103193A TW100103193A TW201232808A TW 201232808 A TW201232808 A TW 201232808A TW 100103193 A TW100103193 A TW 100103193A TW 100103193 A TW100103193 A TW 100103193A TW 201232808 A TW201232808 A TW 201232808A
Authority
TW
Taiwan
Prior art keywords
layer
epitaxial
carbon nanotube
substrate
carbon
Prior art date
Application number
TW100103193A
Other languages
Chinese (zh)
Other versions
TWI476948B (en
Inventor
Yang Wei
Chen Feng
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW100103193A priority Critical patent/TWI476948B/en
Publication of TW201232808A publication Critical patent/TW201232808A/en
Application granted granted Critical
Publication of TWI476948B publication Critical patent/TWI476948B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to an epitaxial structure and method for making the same. The epitaxial structure includes a substrate having an epitaxial growth surface, an epitaxial layer located on the epitaxial growth surface, and a carbon nanotube layer located between the substrate and the epitaxial layer. The method includes following steps of: providing a substrate having an epitaxial growth surface; placing a carbon nanotube layer on the epitaxial growth surface; and epitaxial growing an epitaxial layer on the epitaxial growth surface.

Description

201232808 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種種外延結構及其製備方法。 【先前技術】 [0002]彳延結構,尤其異質外延結構為製作半導體器件的主要 材料之一。例如,近年來,製備發光二極體(LED)的氮 化鎵外延片成為研究的熱點。 國所述1化鎵外延片指在—定條件下H化鎵材料分子 〇 ’有規則排列’定向生長在藍寶石基底上。然而,高品 質氮化鎵外延片的製備—直為研㈣難點。由於氣化錄 和藍寶;5基底的晶格常數以及熱膨脹係數的不同,從而 導致氣化鎵外延層存在較多位錯缺陷。而且氮化鎵外 L層和藍寶;5基底之間存在較大應力,應力越大會導致 鼠化嫁外延層破裂。這種異質外延結構普遍存在晶格失 配現象’且易形成位料缺陷。 ❹師]先讀術提供_種改善上述不足的方法其採用非平整 的藍寶石基底外延生長氮花鎵。然而 ’先前技術通常採 用光刻等微電子工藝在藍寶石基底表面形成溝槽從而構 成非平整外延生長面。該方法不但工藝複雜,成本較高 而且會對藍寶石基底外延生長面造成污染,從而影響 外延結構的品質。 【發明内容】 有鑒此,提供一種工藝簡單,成本低廉,且不會對基底 表面造成污染的外延結構的製備方法以及一種高品質的 外延結構實為必要。 100103193201232808 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to an epitaxial structure and a method of fabricating the same. [Prior Art] [0002] The epitaxial structure, especially the heteroepitaxial structure, is one of the main materials for fabricating a semiconductor device. For example, in recent years, a gallium nitride epitaxial wafer for preparing a light-emitting diode (LED) has become a research hotspot. The above-mentioned gallium epitaxial wafer refers to a directional growth of the GaN material molecules 有 ' in a regular arrangement on a sapphire substrate. However, the preparation of high-quality GaN epitaxial wafers is straightforward (four) difficult. Due to the different lattice constants and thermal expansion coefficients of the gasification recording and the sapphire; 5, the gallium carbide epitaxial layer has many dislocation defects. Moreover, there is a large stress between the outer layer of gallium nitride and the sapphire; 5, and the greater the stress, the rupture of the ratified epitaxial layer. This heteroepitaxial structure generally has a lattice mismatch phenomenon and is prone to form defect defects. ❹师]Pre-reading provides a method to improve the above-mentioned deficiencies, which uses a non-flat sapphire substrate to epitaxially grow nitrogen gallium. However, the prior art generally uses a microelectronic process such as photolithography to form trenches on the surface of the sapphire substrate to form a non-planar epitaxial growth surface. The method is not only complicated in process, high in cost, but also pollutes the epitaxial growth surface of the sapphire substrate, thereby affecting the quality of the epitaxial structure. SUMMARY OF THE INVENTION Accordingly, it is necessary to provide a method for preparing an epitaxial structure and a high-quality epitaxial structure which are simple in process, low in cost, and which do not cause contamination on the surface of the substrate. 100103193

表單編號A010I 第3頁/共42頁 1002005652-0 [0005] 201232808 [0006] —種外延結構,其包括:一基底,該基底具有一外延生 長面,以及一外延層形成於所述基底的外延生長面,其 中,進一步包括一奈米碳管層設置於所述外延層與基底 之間。 [0007] —種外延結構,其包括:一基底,該基底具有一外延生 長面,以及一異質外延層形成於所述基底的外延生長面 ,其中,進一步包括一圖形化的奈米碳管層設置於所述 異質外延層與基底之間,且該圖形化的奈米碳管層具有 複數個開口,使異質外延層滲透奈米碳管層的複數個開 口與所述基底的外延生長面接觸。 [0008] 一種外延結構的製備方法,其包括以下步驟:提供一基 底,該基底具有一支持外延層生長的外延生長面;在所 述基底的外延生長面設置一奈米碳管層;以及在基底的 外延生長面生長外延層。 [0009] 與先前技術相比,由於在所述基底的外延生長面設置一 奈米碳管層而獲得圖形化的掩模的方法工藝簡單、成本 低廉,大大降低了外延結構的製備成本,同時降低了對 環境的污染。進一步,所述包括奈米碳管層的外延結構 使得外延結構具有廣泛用途。 【實施方式】 [0010] 以下將結合附圖詳細說明本發明實施例提供的外延結構 及其製備方法。為了便於理解本發明的技術方案,本發 明首先介紹一種異質外延結構的製備方法。 [〇〇11] 請參閱圖1,本發明實施例提供一種異質外延結構ίο的製 100103193 表單編號A0101 第4頁/共42頁 1002005652-0 201232808 備方法,其具體包括以下步驟: ⑽⑵S10 :提供一基底100,且該基底1〇〇具有一支持異質外 延層104生長的外延生長面101 ; [0013] S20 :在所述基底1〇〇的外延生長面1〇1設置一奈米碳管 層 102 ; [0014] S30 .在基底100的外延生長面1〇1生長異質外延層。 [0015] 步驟S10中,所述基底100提供了異質外延層1〇4的外延 0 生長面101。所述基底100的外延生長面101為一分子平 滑的表面,且去除了氧或碳等雜質。所述基底1〇〇可以為 單層或複數層結構。當所述爹滅1()0為單層結構時,該基 底100可以為一單晶結構體,且具有一晶面作為異質外延 層104的外延生長面1〇1。所述單層結構的基底1〇〇的材Form No. A010I Page 3 of 42 1002005652-0 [0005] 201232808 [0006] An epitaxial structure comprising: a substrate having an epitaxial growth surface, and an epitaxial layer formed on the epitaxial layer The growth surface, further comprising a carbon nanotube layer disposed between the epitaxial layer and the substrate. An epitaxial structure comprising: a substrate having an epitaxial growth surface, and a heteroepitaxial layer formed on the epitaxial growth surface of the substrate, further comprising a patterned carbon nanotube layer Arranging between the heteroepitaxial layer and the substrate, and the patterned carbon nanotube layer has a plurality of openings, so that the plurality of openings of the heteroepitaxial layer penetrating the carbon nanotube layer are in contact with the epitaxial growth surface of the substrate . [0008] A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface supporting epitaxial layer growth; providing a carbon nanotube layer on an epitaxial growth surface of the substrate; An epitaxial growth surface of the substrate grows an epitaxial layer. [0009] Compared with the prior art, the method for obtaining a patterned mask by providing a carbon nanotube layer on the epitaxial growth surface of the substrate is simple in process and low in cost, and the preparation cost of the epitaxial structure is greatly reduced. Reduced pollution to the environment. Further, the epitaxial structure including the carbon nanotube layer makes the epitaxial structure have a wide range of uses. Embodiments [0010] Hereinafter, an epitaxial structure and a method of fabricating the same according to embodiments of the present invention will be described in detail with reference to the accompanying drawings. In order to facilitate understanding of the technical solution of the present invention, the present invention first introduces a method of preparing a heteroepitaxial structure. Referring to FIG. 1 , an embodiment of the present invention provides a method for preparing a heteroepitaxial structure ίο100103193, Form No. A0101, Page 4/42, 1002005652-0 201232808, which specifically includes the following steps: (10) (2) S10: Provide a The substrate 100 has an epitaxial growth surface 101 supporting the growth of the heteroepitaxial layer 104; [0013] S20: a carbon nanotube layer 102 is disposed on the epitaxial growth surface 1〇1 of the substrate 1〇〇 [0014] S30. A heteroepitaxial layer is grown on the epitaxial growth surface 1〇1 of the substrate 100. [0015] In step S10, the substrate 100 provides an epitaxial 0 growth surface 101 of the heteroepitaxial layer 1〇4. The epitaxial growth surface 101 of the substrate 100 is a smooth surface of a molecule, and impurities such as oxygen or carbon are removed. The substrate 1〇〇 may be a single layer or a plurality of layers. When the quenching 1()0 is a single layer structure, the substrate 100 may be a single crystal structure having a crystal plane as the epitaxial growth surface 1〇1 of the heteroepitaxial layer 104. The single-layer structure of the substrate

料可以為GaAs、GaN、Si、SOI、AIN、SiC、MgO、ZnO 、LiGa02、LiA102或A12〇3等。當所述基底100為複數層 結構時’其需要包括至少一層述單晶結構體,且該單 ❹ 晶結構體具有一晶面作為異質外延層104的外延生長面 101。所述基底1〇〇的材料可以根據所要生長的異質外延 層104來選擇,優選地’使所述基底1〇〇與異質外延層 104具有相近的晶格常數以及熱膨脹係數。所述基底1〇〇 的厚度、大小和形狀不限,可以根據實際需要選擇。所 述基底100不限於上述列舉的材料,只要具有支持異質外 延層104生長的外延生長面101的基底1〇〇均屬於本發明 的保護範圍。 [0016] 步驟S20中,所述奈米碳管層102為包括複數個奈米碳管 1002005652-0 100103193 表單編號>0101 第5頁/共42頁 201232808 的連續的整體結構。所述奈米碳管層l〇2中複數個奈米碳 管沿著基本平行於奈米碳管層102表面的方向延伸。當所 述奈米碳管層102設置於所述基底1〇〇的外延生長面1〇1 時’所述奈米碳管層102中複數個奈米碳管的延伸方向基 本平行於所述基底100的外延生長面^所述奈米碳管 層的厚度為1奈米〜100微米’或1奈米〜1微米,或1奈米 200奈米’優選地厚度為1〇奈米〜1〇〇奈米。所述奈米碳 管層102為一圖形化的奈米碳管層102。所述“圖形化” 指所述奈米碳管層102具有複數個開口 1〇5,該複數個開 口 105從所述奈米碳管層1〇2的厚度方向貫穿所述奈米碳 管層102。當所述奈米碳管層102覆蓋所述基底1〇〇的外 延生長面101設置時’從而使所逑基底1〇〇的外延生長面 :· - .. ....... ... 101對應該開口 105的部分暴露以便於生長異質外延層 104。所述開口 1〇5可以為微孔或間隙。所述開口 1〇5的 尺寸為10奈米〜500微米,所述尺寸指所述微孔的孔徑或 所述間隙的寬度方向的間距。所述開口 1 〇 5的尺寸為1 Q奈 米〜300微米、或1〇奈米〜12〇微米、或1〇奈米~8〇微米、 或10奈米〜10微米。開口 1〇5的尺寸越小,有利於在生長 外延層的過程中減少位錯缺陷的產生,以獲得高品質的 異質外延層104。優選地,所述開口 1〇5的尺寸為1〇奈米 〜10微米。進一步地,所述奈米碳管層1〇2的佔空比為 1:1〇〇〜100:卜或1:10〜10:1,或1:2〜2:;1,或 〜4:1。優選地,所述佔空比為1:4〜4:1。所謂“佔空 比”指該奈米碳管層1〇2設置於基底1〇〇的外延生長面 1 〇 1後,該外延生長面! 0〗被奈米碳管層i 0 2佔據的部分 與通過開孔105暴露的部分的面積比。 100103193The material may be GaAs, GaN, Si, SOI, AIN, SiC, MgO, ZnO, LiGaO 2, LiA 102 or A12 〇 3 or the like. When the substrate 100 is a plurality of layers, it is required to include at least one layer of the single crystal structure, and the single crystal structure has a crystal plane as the epitaxial growth surface 101 of the heteroepitaxial layer 104. The material of the substrate 1 可以 may be selected according to the heteroepitaxial layer 104 to be grown, preferably 'having a similar lattice constant and a coefficient of thermal expansion of the substrate 1 〇〇 and the heteroepitaxial layer 104. The thickness, size and shape of the substrate 1〇〇 are not limited and may be selected according to actual needs. The substrate 100 is not limited to the materials listed above, as long as the substrate 1 having the epitaxial growth surface 101 supporting the growth of the heteroepitaxial layer 104 is within the scope of the present invention. [0016] In step S20, the carbon nanotube layer 102 is a continuous overall structure including a plurality of carbon nanotubes 1002005652-0 100103193 form number > 0101 5th page / total 42 pages 201232808. The plurality of carbon nanotubes in the carbon nanotube layer 10 延伸 2 extend in a direction substantially parallel to the surface of the carbon nanotube layer 102. When the carbon nanotube layer 102 is disposed on the epitaxial growth surface 1〇1 of the substrate 1′′, the plurality of carbon nanotubes in the carbon nanotube layer 102 extend in a direction substantially parallel to the substrate Epitaxial growth surface of 100 ^ The thickness of the carbon nanotube layer is from 1 nm to 100 μm or 1 nm to 1 μm, or 1 nm to 200 nm. Preferably, the thickness is 1 〇 nanometer ~ 1 〇 〇 Nano. The carbon nanotube layer 102 is a patterned carbon nanotube layer 102. The "patterned" means that the carbon nanotube layer 102 has a plurality of openings 1 〇 5, and the plurality of openings 105 penetrate the carbon nanotube layer from the thickness direction of the carbon nanotube layer 1 〇 2 102. When the carbon nanotube layer 102 covers the epitaxial growth surface 101 of the substrate 1 设置, so that the epitaxial growth surface of the substrate 1 : is: -.............. A portion of the opening 105 is exposed to facilitate the growth of the heteroepitaxial layer 104. The opening 1〇5 may be a micro hole or a gap. The size of the opening 1〇5 is 10 nm to 500 μm, and the size refers to the aperture of the micro hole or the pitch of the gap in the width direction. The size of the opening 1 〇 5 is 1 Q nm to 300 μm, or 1 μN to 12 μm, or 1 nm to 8 μm, or 10 nm to 10 μm. The smaller the size of the opening 1〇5, the smaller the generation of dislocation defects during the growth of the epitaxial layer, to obtain a high-quality heteroepitaxial layer 104. Preferably, the size of the opening 1〇5 is from 1 nanometer to 10 micrometers. Further, the duty ratio of the carbon nanotube layer 1〇2 is 1:1〇〇100:Bu or 1:10~10:1, or 1:2~2:;1, or ~4: 1. Preferably, the duty ratio is 1:4 to 4:1. The "duty ratio" means that the carbon nanotube layer 1〇2 is disposed on the epitaxial growth surface 1 〇 1 of the substrate 1〇〇, and the epitaxial growth surface! 0] the area ratio of the portion occupied by the carbon nanotube layer i 0 2 to the portion exposed through the opening 105. 100103193

表單編號細1 * 6 I/# 42 I 1002005652-0 201232808 [0017] Ο [0018] [0019] 〇 [0020] 進一步地,所述“圖形化”指所述奈米碳管層102中複數 個奈米碳管的排列方式為有序的、有規則的。例如,所 述奈米碳管層1 02中複數個奈米碳管的轴向均基本平行於 所述基底100的外延生長面101且基本沿同一方向延伸。 或者,所述奈米碳管層102中複數個奈米碳管的轴向可有 規律性地基本沿兩個以上方向延伸。或者,所述奈米碳 管層102中複數個奈米碳管的軸向沿著基底1 00的一晶向 延伸或與基底100的一晶向成一定角度延伸。上述奈米碳 管層1 02中沿同一方向延伸的相鄰的奈米碳管通過凡得瓦 (Van Der Waals)力首尾相連。 在所述奈米碳管層102具有如前所述的開口 105的前提下 ,所述奈米碳管層102中複數個奈米碳管也可無序排列、 無規則排列。 優選地,所述奈米碳管層102設置於所述基底100的整個 外延生長面101。所述奈米碳管層102中的奈米碳管可以 為單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管中的一 種或複數種,其長度和直徑可以根據需要選擇。 所述奈米碳管層102用作生長異質外延層104的掩模。所 謂“掩模”指該奈米碳管層102用於遮擋所述基底100的 部分外延生長面101,且暴露部分外延生長面101,從而 使得異質外延層104僅從所述外延生長面101暴露的部分 生長。由於奈米碳管層102具有複數個開口 105,故,該 奈米碳管層102形成一圖形化的掩模。當奈米碳管層102 設置於基底100的外延生長面101後,複數個奈米碳管沿 著平行於外延生長面101的方向延伸。由於所述奈米碳管 100103193 表單編號A0101 第7頁/共42頁 1002005652-0 201232808 層102在所述基底100的外延生長面101形成複數個開口 105,從而使得所述基底100的外延生長面101上具有一 圖形化的掩模。可以理解,相對於光刻等微電子工藝, 通過設置奈米碳管層1 0 2掩模進行外延生長的方法工藝簡 單.、成本低廉,不易在基底100的外延生長面101引入污 染,而且綠色環保,可以大大降低了異質外延結構10的 製備成本。 [0021] 可以理解,所述基底100和奈米碳管層102共同構成了用 於生長異質外延結構的襯底。該襯底可用於生長不同材 料的異質外延層104,如半導體外延層、金屬外延層或合 金外延層。該襯底也可用於生長同質外延層,從而得到 一同質外延結構。 [0022] 所述奈米碳管層102可以預先形成後直接鋪設在所述基底 100的外延生長面101。所述奈米碳管層102為一宏觀結 構,且所述奈米碳管層102為一個自支撐的結構。所謂“ 自支撐”指該奈米碳管層102不需要大面積的載體支撐, 而只要相對兩邊提供支撐力即能整體上懸空而保持自身 狀態,即將該奈米碳管層102置於(或固定於)間隔特定 距離設置的兩個支撐體上時,位於兩個支撐體之間的奈 米碳管層102能夠懸空保持自身狀態。由於奈米碳管層 102為自支撐結構,所述奈米碳管層102不必要通過複雜 的化學方法形成在基底100的外延生長面101。進一步優 選地,所述奈米碳管層102為複數個奈米碳管組成的純奈 米碳管結構。所謂“純奈米碳管結構”指所述奈米碳管 層在整個製備過程中無需任何化學修飾或酸化處理,不 100103193 表單編號A0101 第8頁/共42頁 1002005652-0 201232808 [0023] ο 含有任何羧基等官能團修飾β 所述奈米碳管層102還可以為—包 L括複數個奈米碳管以及 添加材料的複合結構。所述添加材料包括石墨' 石墨稀 、碳化石夕、氮化领、氮化石夕、二氧化石夕、無定形碳等中 的一種或複數種。所述添加材料還 何升還可以包括金屬碳化物 、金屬氧化物及金屬氮化物等中的一種或複數種。所述 添加材料包覆於奈米礙管層1()2中奈米㈣的至少部分表 面或設置於奈米碳管層m的開D1_。優選地,所述 添加材料包覆於奈米碳管的表面。由於,所述添加材料 包覆於奈米碳管的表面’使得奈米碳管的直徑變大從 而使奈米碳管之_開n1Q5減小。料添加材料可以通 過化學氣相沈積(CVD)、物理氣相沈積(pVD)、磁控 錢射等方法形成於奈米碳管的表面。 [0024] ❹ 將所述奈米碳管層102鋪設在所述基底1〇〇的外延生長面 101後還可以包括一有機溶劑處理的步驟,以使奈米碳管 層1 0 2與外延生長面1 〇 1更加緊密結合。該有機溶劑可選 用乙醇、甲醇、丙酮、二氧乙燦和氣仿中一種或者幾種 的混合。本實施例中的有機溶劑採用乙醇。該使用有機 溶劑處理的步驟可通過試管將有機溶劑滴落在奈米碳管 層102表面浸潤整個奈米碳管層102或將基底100和整個 奈米碳管層102—起浸入盛有有機溶劑的容器中浸潤》 [0025] 所述奈米碳管層102也可以通過化學氣相沈積(CVD)等 方法直接生長在所述基底的外延生長面101或先生長 在矽基底表面,然後轉印到所述基底1〇〇的外延生長面 101。 100103193 表單編號A0101 第9頁/共42頁 1002005652-0 201232808 [0026] 具體地,所述奈米碳管層1 0 2可以包括奈米碳管膜或奈米 碳管線。所述奈米碳管層102可以為一單層奈米碳管膜或 複數個層疊設置的奈米碳管膜。所述奈米碳管層102可包 括複數個平行設置的奈米碳管線或複數個交叉設置的奈 米碳管線。當所述奈米碳管層102為複數個層疊設置的奈 米碳管膜時,奈米碳管膜的層數不宜太多,優選地,為2 層〜100層。當所述奈米碳管層102為複數個平行設置的奈 米碳管線時,相鄰兩個奈米碳管線之間的距離為0. 1微米 〜200微米,優選地,為10微米〜100微米。所述相鄰兩個 奈米碳管線之間的空間構成所述奈米碳管層102的開口 105。相鄰兩個奈米碳管線之間的間隙長度可以等於奈米 碳管線的長度。所述奈米碳管膜或奈米碳管線可以直接 鋪設在基底100的外延生長面101構成所述奈米碳管層 1 02。通過控制奈米碳管膜的層數或奈米碳管線之間的距 離,可以控制奈米碳管層1 0 2中開口 1 0 5的尺寸。 [0027] 所述奈米碳管膜為由若干奈米碳管組成的自支撐結構。 所述若干奈米碳管為沿同一方向擇優取向延伸。所述擇 優取向指在奈米碳管膜中大多數奈米碳管的整體延伸方 向基本朝同一方向。而且,所述大多數奈米碳管的整體 延伸方向基本平行於奈米碳管膜的表面。進一步地,所 述奈米碳管膜_多數奈米碳管通過凡得瓦力首尾相連。 具體地,所述奈米碳管膜中基本朝同一方向延伸的大多 數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米 碳管通過凡得瓦力首尾相連。當然,所述奈米碳管膜中 存在少數隨機排列的奈米碳管,這些奈米碳管不會對奈 100103193 表單編號A0101 第10頁/共42頁 1002005652-0 201232808 米碳管膜中大多數奈米碳管的整體取向排列構成明顯影 響。所述自支撐為奈米碳管膜不需要大面積的載體支撐 ,而只要相對兩邊提供支撐力即能整體上懸空而保持自 身膜狀狀態,即將該奈米碳管膜置於(或固定於)間隔 特定距離設置的兩個支撐體上時,位於兩個支撐體之間 的奈米碳管膜能夠懸空保持自身膜狀狀態。所述自支撐 主要通過奈米碳管膜中存在連續的通過凡得瓦力首尾相 連延伸排列的奈米碳管而實現。 義 [0028] Ο 具體地,所述奈米碳管膜中基本朝同一方向延伸的多數 奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者 並非完全按照延伸方向上排列,可以適當的偏離延伸方 向。故,不能排除奈米碳管膜的基本朝同一方向延伸的 多數奈米碳管中並列的奈米碳管之間可能存在部分接觸 〇 [0029] ❹ 請參閱圖2及圖3,具體地,所述奈米碳管膜包括複數個 連續且定向延伸的奈米碳管片段143。該複數個奈米碳管 片段143通過凡得瓦力首尾相連。每一奈米碳管片段143 包括複數個相互平行的奈米碳管145,該複數個相互平行 的奈米碳管145通過凡得瓦力緊密結合。該奈米碳管片段 143具有任意的長度、厚度、均勻性及形狀。所述奈米碳 管膜可通過從一奈米碳管陣列中選定部分奈米碳管後直 接拉取獲得。所述奈米碳管膜的厚度為1奈米~100微米, 寬度與拉取出該奈米碳管膜的奈米碳管陣列的尺寸有關 ,長度不限。所述奈米碳管膜中相鄰的奈米碳管之間存 在微孔或間隙從而構成開口 105,且該微孔的孔徑或間隙 100103193 表單編號Α0101 第11頁/共42頁 1002005652-0 201232808 的尺寸小於1〇微米。優選地,所述奈米碳管膜的厚度為 1 〇〇奈米〜1 0微米。該奈米碳管膜中的奈米碳管1 45沿同 一方向擇優取向延伸。所述奈米碳管膜的結構及其製備 方法請參見範守善等人於2〇〇7年2月12日申請的,於 2010年7月n公告的第1327177號台灣公告專利申請“奈 米碳管薄膜結構及其製備方法”’申請人:鴻海精密工 業股份有限公司。為節省篇幅,僅引用此,但上述申請 所有技術揭露也應視為本發明申請技術揭露的一部分。 [0030] [0031] 請參閱圖4,當所述奈米碳管層包括層疊設置的複數層奈 米碳管膜時,相鄰兩層奈米碳管膜中的奈米碳管的延伸 方向形成一交又角度《,且i大於等於«小於等於9 〇度 (〇°<= α < = 90〇) 〇 為減小奈米碳管膜的厚度,還可以進—步對該奈米碳管 膜進行加熱處理。為避免奈米<管膜加熱時被破壞,所 述加熱奈米碳管膜的方法採用局部加熱法。其具體包括 以下步驟:局部加熱奈米竣管膜,使奈米碳管膜在局部 位置的部分奈米碳管被氧化;移動奈米碳管被局部加熱 的位置,從局部到整體實現整個奈米碳管膜的加熱。具 體地,可將該奈米唉管膜分成複數個小的區域,採用由 局部到整體的方式,逐區域地加熱該奈米碳管膜。所述 局部加熱奈米碳管膜的方法可以有多種,如鐳射加執法 、微4波加熱法等等。本實施例中,通過功率密度大於〇 ι Χίο瓦特/平方米的鐳射掃描照射該奈米碳管膜,由局部 到整體的加熱該奈米碳管膜。該“碳管_過鐳射照 射,在厚度方向上部分奈米碳管被氧化,同時,奈米竣 100103193 表單編號40Ζ0Ϊ 苐!2頁/共42頁 1002005652-0 201232808 管膜中直徑較大的奈米碳管束被去除,使得該奈米碳管 膜變薄。 [0032] Ο 可以理解,上述鐳射掃描奈米碳管膜的方法不限,只要 能夠均勻照射該奈米碳管膜即可。鐳射掃描可以沿平行 奈米碳管膜中奈米碳管的排列方向逐行進行,也可以沿 垂直於奈米碳管膜中奈米碳管的排列方向逐列進行。具 有固定功率、固定波長的鐳射掃描奈米碳管膜的速度越 小,奈米碳管膜中的奈米碳管束吸收的熱量越多,對應 被破壞的奈米碳管束越多,鐳射處理後的奈米碳管膜的 厚度變小。然,如果鐳射掃描速度太小,奈米碳管膜將 吸收過多熱量而被燒毁。本實施例中,鐳射的功率密度 大於0. 053xl012瓦特/平方米,鐳射光斑的直徑在1毫米 ~5毫米範圍内,鐳射掃描照射時間小於1. 8秒。優選地, 雷射器為二氧化碳雷射器,該雷射器的功率為30瓦特, 波長為10. 6微米,光斑直徑為3毫米,鐳射裝置140與奈 米碳管膜的相對運動速度小於10毫米/秒。 〇 [0033] 所述奈米碳管線可以為非扭轉的奈米碳管線或扭轉的奈 米碳管線。所述非扭轉的奈米碳管線與扭轉的奈米碳管 線均為自支撐結構。具體地,請參閱圖5,該非扭轉的奈 米碳管線包括複數個沿平行於該非扭轉的奈米碳管線長 度方向延伸的奈米碳管。具體地,該非扭轉的奈米碳管 線包括複數個奈米碳管片段,該複數個奈米碳管片段通 過凡得瓦力首尾相連,每一奈米碳管片段包括複數個相 互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳 管片段具有任意的長度、厚度、均勻性及形狀。該非扭 100103193 表單編號A0101 第13頁/共42頁 1002005652-0 201232808 轉的奈米碳管線長度不限,直徑為0. 5奈米〜100微米。非 扭轉的奈米碳管線為將奈米碳管膜通過有機溶劑處理得 到。具體地,將有機溶劑浸潤所述奈米碳管膜的整個表 面,在揮發性有機溶劑揮發時產生的表面張力的作用下 ,奈米碳管膜中的相互平行的複數個奈米碳管通過凡得 瓦力緊密結合,從而使奈米碳管膜收縮為一非扭轉的奈 米碳管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲 醇、丙酮、二氣乙烷或氣仿,本實施例中採用乙醇。通 過有機溶劑處理的非扭轉的奈米碳管線與未經有機溶劑 處理的奈米碳管膜相比,比表面積減小,黏性降低。 [0034] 所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管 膜兩端沿相反方向扭轉獲得。請參閱圖6,該扭轉的奈米 碳管線包括複數個繞該扭轉的奈米碳管線轴向螺旋延伸 的奈米碳管。具體地,該扭轉的奈米碳管線包括複數個 奈米碳管片段,該複數個奈米碳管片段通過凡得瓦力首 尾相連,每一奈米碳管片段包括複數個相互平行並通過 凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任 意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管線 長度不限,直徑為0.5奈米〜100微米。進一步地,可採用 一揮發性有機溶劑處理該扭轉的奈米碳管線。在揮發性 有機溶劑揮發時產生的表面張力的作用下,處理後的扭 轉的奈米碳管線中相鄰的奈米碳管通過凡得瓦力緊密結 合,使扭轉的奈米碳管線的比表面積減小,密度及強度 增大。 [0035] 所述奈米碳管線及其製備方法請參見範守善等人於2002 100103193 表單編號A0101 第14頁/共42頁 1002005652-0 201232808 年11月5日申請的,2008年11月27日公告的第1303239 號台灣公告專利“一種奈米碳管繩及其製造方法”,申 請人:鴻海精密工業股份有限公司,以及2005年12月16 日申請的,2009年7月21日公告的第131 2337號台灣公告 專利“奈米碳管絲之製作方法”,申請人:鴻海精密工 業股份有限公司。為節省篇幅,僅引用此,但上述申請 所有技術揭露也應視為本發明申請技術揭露的一部分。 [0036] 步驟S30中,所述異質外延層104的生長方法可以通過分 子束外延法(MBE)、化學束外延法(CBE)、減壓外延 法、低溫外延法、選擇外延法、液相沈積外延法(LPE) 、金屬有機氣相外延法(MOVPE)、超真空化學氣相沈積 法(UHVCVD)、氫化物氣相外延法(HVPE)、以及金屬有 機化學氣相沈積法(MOCVD)等中的一種或複數種實現。 [0037] 所述異質外延層104指通過外延法生長在基底100的外延 生長面101的單晶結構體,其材料不同於基底100,故, 稱異質外延層104。所述異質外延層104的生長的厚度可 以根據需要製備。具體地,所述異質外延層104的生長的 〇 ❹ 厚度可以為0. 5奈米〜1毫米。例如,所述異質外延層104 的生長的厚度可以為100奈米〜500微米,或200奈米〜200 微米,或500奈米~100微米。所述異質外延層104可以為 一半導體外延層,且該半導體外延層的材料為GaMnAs、 GaAlAs、GalnAs、GaAs、SiGe、InP、Si、AIN、GaN 、GalnN、AlInN、GaAIN 或 AlGalnN。所述異質外延層 104可以為一金屬外延層,且該金屬外延層的材料為銘、 始、銅或銀。所述異質外延層104可以為一合金外延層, 100103193 表單編號A0101 第15頁/共42頁 1002005652-0 201232808 且該合金外延層的材料為MnGa、CoMnGa或C〇2MnGa。 [0038] 請參閱圖7,具體地,所述異質外延層104的生長過程具 體包括以下步驟: [0039] S31 :沿著基本垂直於所述基底100的外延生長面101方 向成核並外延生長形成複數個異質外延晶粒1 042 ; [0040] S32 :所述複數個異質外延晶粒1042沿著基本平行於所述 基底100的外延生長面101方向外延生長形成一連續的異 質外延薄膜1044 ; [0041] S33 :所述異質外延薄膜1044沿著基本垂直於所述基底 100的外延生長面101方向外延生'長形成一異質外延層 104。 [0042] 步驟S31中,所述複數個異質外延晶粒1042在所述基底 100的外延生長面101通過該奈米碳管層102的開口 105暴 露的部分開始生長,且其生長方向基本垂直於所述基底 100的外延生長面101,即該步驟中複數個異質外延晶粒 1 042進行縱向外延生長。 [0043] 步驟S32中,通過控制生長條件使所述複數個異質外延晶 粒1 042沿著基本平行於所述基底100的外延生長面101的 方向同質外延生長並連成一體將所述奈米碳管層102覆蓋 。即,該步驟中所述複數個異質外延晶粒1 042進行側向 外延生長直接合攏,並最終在奈米碳管周圍形成複數個 孔洞1 0 3將奈米碳管包圍。優選地,奈米碳管與包圍該奈 米碳管的異質外延層1 0 4間隔設置。所述孔洞的形狀與奈 米碳管層1 0 2中的奈米壤管的排列方向有關。當奈米碳管 100103193 表單編號A0101 第16頁/共42頁 1002005652-0 201232808 層102為單層奈米碳官膜或複數個平行設置的奈米碳管線 時,所述複數個孔洞103為基本平行設置的溝槽。當奈米 奴官層102為複數層交又設置的奈米碳管膜或複數個交叉 設置的奈米碳管線時,所述複數個孔洞1〇3為交叉設置的 溝槽網絡。 [0044] ❹ 步驟S33中,由於所述奈米碳管層1〇2的存在,使得異質 外延晶粒1042與基底100之間的晶格位錯在形成連續的異 質外延薄膜1044的過程中停止生長。故,該步驟的異質 外延層1 04相當於在沒有缺陷㈣料延薄膜m4表面進 行同質外延生長。所述異質外延層刚具有較少的缺陷。 本發月第Λ施例令,所述基底1〇〇為一藍寶石( )土片所述'丁'米碳營層102為一單層奈米碳管膜。本實 施採謂行外延生長。其中,制高純氨氣、 (ΝΗ3)作為氮的以,制氫氣(Η2)作載氣,採用三甲 基鎵(TMGa)或三乙基鎵⑽〇、三甲基銦(她)、三 甲基銘(mu作為Ga源、In_Ai源。具體包括以下步 ❹ 驟。首先’純f石基纖_人反應室,加細赋 〜12 0 0 C,並通入 μ 9 、τ。λ/ : 、Ν2或其混合氣體作為載氣,高溫 供烤2〇〇秒~1 000秒。其次,繼續同入載氣,並降溫到 霞韻,通入三甲基鎵或三乙基録以及氨氣,生長Form number fine 1 * 6 I/# 42 I 1002005652-0 201232808 [0017] [0020] Further, the "graphical" refers to a plurality of the carbon nanotube layers 102. The arrangement of the carbon nanotubes is orderly and regular. For example, the plurality of carbon nanotubes in the carbon nanotube layer 102 have an axial direction substantially parallel to the epitaxial growth surface 101 of the substrate 100 and extend substantially in the same direction. Alternatively, the axial directions of the plurality of carbon nanotubes in the carbon nanotube layer 102 may regularly extend substantially in more than two directions. Alternatively, the plurality of carbon nanotubes in the carbon nanotube layer 102 extend axially along a crystal orientation of the substrate 100 or at an angle to a crystal orientation of the substrate 100. Adjacent carbon nanotubes extending in the same direction in the above carbon nanotube layer 102 are connected end to end by Van Der Waals force. Under the premise that the carbon nanotube layer 102 has the opening 105 as described above, the plurality of carbon nanotubes in the carbon nanotube layer 102 may also be disorderly arranged and randomly arranged. Preferably, the carbon nanotube layer 102 is disposed on the entire epitaxial growth surface 101 of the substrate 100. The carbon nanotubes in the carbon nanotube layer 102 may be one or a plurality of single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes, and the length and diameter thereof may be as needed select. The carbon nanotube layer 102 serves as a mask for growing the heteroepitaxial layer 104. By "mask" is meant that the carbon nanotube layer 102 is used to shield a portion of the epitaxial growth surface 101 of the substrate 100 and expose a portion of the epitaxial growth surface 101 such that the heteroepitaxial layer 104 is only exposed from the epitaxial growth surface 101. Part of the growth. Since the carbon nanotube layer 102 has a plurality of openings 105, the carbon nanotube layer 102 forms a patterned mask. After the carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 100, a plurality of carbon nanotubes extend in a direction parallel to the epitaxial growth surface 101. Since the carbon nanotubes 100103193, Form No. A0101, Page 7 of 42, 1002005652-0 201232808, the layer 102 forms a plurality of openings 105 on the epitaxial growth surface 101 of the substrate 100, thereby causing the epitaxial growth surface of the substrate 100. There is a graphical mask on 101. It can be understood that, compared with a microelectronic process such as photolithography, the method of epitaxial growth by providing a carbon nanotube layer 102 mask is simple in process, low in cost, and difficult to introduce pollution on the epitaxial growth surface 101 of the substrate 100, and green. Environmental protection can greatly reduce the preparation cost of the heteroepitaxial structure 10. [0021] It will be appreciated that the substrate 100 and the carbon nanotube layer 102 together constitute a substrate for growing a heteroepitaxial structure. The substrate can be used to grow heteroepitaxial layers 104 of different materials, such as semiconductor epitaxial layers, metal epitaxial layers, or alloy epitaxial layers. The substrate can also be used to grow a homoepitaxial layer to provide a homoepitaxial structure. [0022] The carbon nanotube layer 102 may be directly formed on the epitaxial growth surface 101 of the substrate 100 after being formed in advance. The carbon nanotube layer 102 is a macrostructure and the carbon nanotube layer 102 is a self-supporting structure. By "self-supporting", the carbon nanotube layer 102 does not require a large-area support of the carrier, but can maintain its own state by simply providing a supporting force on both sides, that is, placing the carbon nanotube layer 102 (or When fixed to two supports disposed at a certain distance apart, the carbon nanotube layer 102 located between the two supports can be suspended to maintain its own state. Since the carbon nanotube layer 102 is a self-supporting structure, the carbon nanotube layer 102 does not have to be formed on the epitaxial growth surface 101 of the substrate 100 by complicated chemical methods. Further preferably, the carbon nanotube layer 102 is a pure carbon nanotube structure composed of a plurality of carbon nanotubes. By "pure carbon nanotube structure" is meant that the carbon nanotube layer does not require any chemical modification or acidification during the entire preparation process, not 100103193 Form No. A0101 Page 8 / Total 42 Page 1002005652-0 201232808 [0023] The carbon nanotube layer 102 may be a functional structure including a carboxyl group and the like. The carbon nanotube layer 102 may be a composite structure in which a plurality of carbon nanotubes and a filler are added. The additive material includes one or a plurality of graphite 'graphite thin, carbonized stone, nitrided collar, nitrided stone, sulphur dioxide, amorphous carbon, and the like. The additive material may further include one or a plurality of metal carbides, metal oxides, metal nitrides, and the like. The additive material is coated on at least a part of the surface of the nano (four) in the nano-tube layer 1 () 2 or the opening D1_ of the carbon nanotube layer m. Preferably, the additive material is coated on the surface of the carbon nanotube. Since the additive material is coated on the surface of the carbon nanotubes, the diameter of the carbon nanotubes is made larger, so that the carbon nanotubes are reduced by n1Q5. The material to be added may be formed on the surface of the carbon nanotube by chemical vapor deposition (CVD), physical vapor deposition (pVD), or magnetron control. [0024] 铺设 laying the carbon nanotube layer 102 on the epitaxial growth surface 101 of the substrate 1 may further include an organic solvent treatment step to make the carbon nanotube layer 10 2 and epitaxial growth Face 1 〇1 is more closely integrated. The organic solvent may be selected from a mixture of one or more of ethanol, methanol, acetone, dioxetane and gas. The organic solvent in this embodiment employs ethanol. The step of treating with an organic solvent may immerse the organic solvent on the surface of the carbon nanotube layer 102 through a test tube to infiltrate the entire carbon nanotube layer 102 or immerse the substrate 100 and the entire carbon nanotube layer 102 in an organic solvent. Infiltration in a container [0025] The carbon nanotube layer 102 may also be directly grown on the epitaxial growth surface 101 of the substrate by chemical vapor deposition (CVD) or the like, or may be transferred to the surface of the substrate, and then transferred. To the epitaxial growth surface 101 of the substrate 1〇〇. 100103193 Form No. A0101 Page 9 of 42 1002005652-0 201232808 [0026] Specifically, the carbon nanotube layer 102 may include a carbon nanotube film or a carbon nanotube line. The carbon nanotube layer 102 may be a single layer of carbon nanotube film or a plurality of laminated carbon nanotube films. The carbon nanotube layer 102 can include a plurality of carbon nanotube lines disposed in parallel or a plurality of carbon nanotubes disposed in a cross. When the carbon nanotube layer 102 is a plurality of laminated carbon nanotube films, the number of layers of the carbon nanotube film is not too high, and preferably, it is 2 to 100 layers. When the carbon nanotube layer 102 is a plurality of carbon nanotubes arranged in parallel, the distance between two adjacent carbon nanotubes is 0.1 micron to 200 micrometers, preferably 10 micrometers to 100 millimeters. Micron. The space between the adjacent two nanocarbon lines constitutes the opening 105 of the carbon nanotube layer 102. The length of the gap between two adjacent nanocarbon lines can be equal to the length of the carbon nanotube line. The carbon nanotube film or the nanocarbon line may be directly laid on the epitaxial growth surface 101 of the substrate 100 to constitute the carbon nanotube layer 102. By controlling the number of layers of the carbon nanotube film or the distance between the carbon nanotubes, the size of the opening 105 in the carbon nanotube layer 10 can be controlled. [0027] The carbon nanotube membrane is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes extend in a preferred orientation along the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film are oriented generally in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, the carbon nanotube membranes - most of the carbon nanotubes are connected end to end by van der Waals force. Specifically, each of the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film and the carbon nanotubes adjacent in the extending direction are connected end to end by van der Waals force. Of course, there are a few randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes will not be large in the carbon nanotube film of No. 100103193 Form No. A0101 Page 10 of 421002005652-0 201232808 The overall orientation of most carbon nanotubes constitutes a significant impact. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) When the two supports are disposed at a certain distance apart, the carbon nanotube film located between the two supports can be suspended to maintain the self-membrane state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the van der Waals end-to-end extension in the carbon nanotube film. Specifically, most of the carbon nanotube membranes extending substantially in the same direction in the same direction are not absolutely linear and may be appropriately bent; or may not be arranged completely in the extending direction, and may be appropriately The deviation extends in the direction. Therefore, it is not possible to exclude that there may be partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotube membranes extending in the same direction. [0029] ❹ Refer to FIG. 2 and FIG. 3, specifically, The carbon nanotube membrane comprises a plurality of continuous and oriented elongated carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of mutually parallel carbon nanotubes 145 which are tightly coupled by van der Waals forces. The carbon nanotube segment 143 has any length, thickness, uniformity, and shape. The carbon nanotube film can be obtained by directly drawing a portion of a carbon nanotube from an array of carbon nanotubes. The carbon nanotube film has a thickness of 1 nm to 100 μm, and the width is related to the size of the carbon nanotube array for taking out the carbon nanotube film, and the length is not limited. There are micropores or gaps between adjacent carbon nanotubes in the carbon nanotube film to form the opening 105, and the pore size or gap of the micropore 100103193 Form No. 1010101 Page 11 / Total 42 Page 1002005652-0 201232808 The size is less than 1 〇 micron. Preferably, the carbon nanotube film has a thickness of from 1 nanometer to 10 micrometers. The carbon nanotubes 1 45 in the carbon nanotube film extend in a preferred orientation in the same direction. For the structure of the carbon nanotube film and the preparation method thereof, please refer to the application filed by Fan Shoushan et al. on February 12, 2007, and the Taiwan Patent Application No. 1327177 announced in July 2010. Rice carbon tube film structure and preparation method thereof''Applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only this is cited, but all the technical disclosures of the above application should also be considered as part of the technical disclosure of the present application. [0031] Referring to FIG. 4, when the carbon nanotube layer comprises a plurality of laminated carbon nanotube films stacked in a stack, the extending direction of the carbon nanotubes in the adjacent two layers of carbon nanotube film Form an intersection and angle ", and i is greater than or equal to « less than or equal to 9 〇 degrees (〇 ° <= α < = 90 〇) 〇 To reduce the thickness of the carbon nanotube film, you can also step into the The carbon tube film is heat treated. In order to prevent the nanotube film from being destroyed upon heating, the method of heating the carbon nanotube film employs a local heating method. Specifically, the method comprises the steps of: locally heating the nanotube membrane to partially oxidize a portion of the carbon nanotube membrane at a local position; and moving the carbon nanotube to be locally heated to achieve a whole from the local to the whole Heating of the carbon tube film. Specifically, the nanotube membrane can be divided into a plurality of small regions, and the carbon nanotube membrane is heated region by region in a partial to overall manner. The method of locally heating the carbon nanotube film can be various, such as laser plus law enforcement, micro 4-wave heating, and the like. In this embodiment, the carbon nanotube film is irradiated by a laser scan having a power density greater than 〇 ι Χ ί watts per square meter, and the carbon nanotube film is heated from a partial to a whole. The "carbon tube _ over laser irradiation, part of the carbon nanotubes are oxidized in the thickness direction, at the same time, nano 竣100103193 form number 40 Ζ 0 Ϊ 苐! 2 pages / total 42 pages 1002005652-0 201232808 The carbon nanotube bundle is removed to make the carbon nanotube film thin. [0032] It is understood that the above method of scanning the carbon nanotube film is not limited as long as the carbon nanotube film can be uniformly irradiated. The scanning can be carried out row by row along the arrangement direction of the carbon nanotubes in the parallel carbon nanotube film, or can be performed column by column in the direction perpendicular to the arrangement of the carbon nanotubes in the carbon nanotube film. It has a fixed power and a fixed wavelength. The smaller the speed of laser scanning of the carbon nanotube film, the more heat absorbed by the carbon nanotube bundle in the carbon nanotube film, the more the carbon nanotube bundle corresponding to the destruction, the laser treated carbon nanotube film If the laser scanning speed is too small, the carbon nanotube film will absorb too much heat and be burnt. In this embodiment, the laser power density is greater than 0. 053xl012 watts / square meter, the diameter of the laser spot is 1 mm ~ 5 m The laser scanning illumination time is less than 1.8 seconds. Preferably, the laser is a carbon dioxide laser, the laser has a power of 30 watts, a wavelength of 10.6 micrometers, a spot diameter of 3 mm, and a laser device. The relative movement speed of 140 to the carbon nanotube film is less than 10 mm/sec. [0033] The nanocarbon line may be a non-twisted nano carbon line or a twisted nano carbon line. The carbon carbon pipeline and the twisted nanocarbon pipeline are both self-supporting structures. Specifically, referring to FIG. 5, the non-twisted nanocarbon pipeline includes a plurality of nanometers extending in a direction parallel to the length of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals, and each of the carbon nanotube segments includes a plurality of parallel tubes And through the van der Waals tightly combined carbon nanotubes. The carbon nanotube fragments have any length, thickness, uniformity and shape. The non-twist 100103193 Form No. A0101 Page 13 / Total 42 pages 1002005652-0 201232808 The length of the converted nano carbon pipeline is not limited, and the diameter is 0.5 nm to 100 μm. The non-twisted nano carbon pipeline is obtained by treating the carbon nanotube membrane with an organic solvent. Specifically, the organic solvent is impregnated. The entire surface of the carbon nanotube film, under the action of the surface tension generated by the volatilization of the volatile organic solvent, the mutually parallel plurality of carbon nanotubes in the carbon nanotube film are tightly bonded by the van der Waals force, thereby The carbon nanotube film shrinks into a non-twisted nano carbon line. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, di-ethane or gas, and ethanol is used in this embodiment. The treated non-twisted nanocarbon line has a reduced specific surface area and a reduced viscosity compared to a carbon nanotube film that has not been treated with an organic solvent. [0034] The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to Figure 6, the twisted nanocarbon line includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon line. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through each other Derived tightly combined with carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity and shape. The twisted nanocarbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals to make the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength. [0035] The nano carbon pipeline and its preparation method can be found in Fan Shoushan et al. 2002 100103193 Form No. A0101 Page 14 / Total 42 Page 1002005652-0 Applyed on November 5, 201232808, November 27, 2008 Taiwan Announcement No. 1303239 Taiwan Announcement Patent "A Nano Carbon Pipe Rope and Its Manufacturing Method", Applicant: Hon Hai Precision Industry Co., Ltd., and the application filed on December 16, 2005, announced on July 21, 2009 No. 131 2337 Taiwan Announcement Patent "Method for Producing Nano Carbon Tube Wire", Applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only this is cited, but all the technical disclosures of the above application should also be considered as part of the technical disclosure of the present application. [0036] In step S30, the growth method of the heteroepitaxial layer 104 may be performed by molecular beam epitaxy (MBE), chemical beam epitaxy (CBE), vacuum deuteration, low temperature epitaxy, selective epitaxy, liquid deposition Epitaxial method (LPE), metal organic vapor phase epitaxy (MOVPE), ultra-vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy (HVPE), and metal organic chemical vapor deposition (MOCVD) One or a plurality of implementations. The heteroepitaxial layer 104 refers to a single crystal structure grown on the epitaxial growth surface 101 of the substrate 100 by an epitaxial method, the material of which is different from the substrate 100, so that the heteroepitaxial layer 104 is referred to. The thickness of the growth of the heteroepitaxial layer 104 can be prepared as needed. 5纳米〜1毫米。 The thickness of the 外延 ❹ thickness of the heteroepitaxial layer 104 may be 0. 5 nm ~ 1 mm. For example, the thickness of the heteroepitaxial layer 104 may be from 100 nm to 500 μm, or from 200 nm to 200 μm, or from 500 nm to 100 μm. The hetero- epitaxial layer 104 may be a semiconductor epitaxial layer, and the material of the semiconductor epitaxial layer is GaMnAs, GaAlAs, GalnAs, GaAs, SiGe, InP, Si, AIN, GaN, GalnN, AlInN, GaAIN or AlGalnN. The heteroepitaxial layer 104 may be a metal epitaxial layer, and the material of the metal epitaxial layer is inscription, beginning, copper or silver. The heteroepitaxial layer 104 may be an alloy epitaxial layer, 100103193 Form No. A0101, page 15 / page 42 1002005652-0 201232808 and the material of the epitaxial layer of the alloy is MnGa, CoMnGa or C〇2MnGa. Referring to FIG. 7, in particular, the growth process of the hetero epitaxial layer 104 specifically includes the following steps: [0039] S31: nucleation and epitaxial growth along a direction substantially perpendicular to the epitaxial growth surface 101 of the substrate 100 Forming a plurality of heteroepitaxial grains 1042; [0040] S32: the plurality of heteroepitaxial grains 1042 are epitaxially grown along a direction substantially parallel to the epitaxial growth surface 101 of the substrate 100 to form a continuous heteroepitaxial film 1044; [0041] S33: the heteroepitaxial film 1044 is epitaxially grown along a direction substantially perpendicular to the epitaxial growth surface 101 of the substrate 100 to form a heteroepitaxial layer 104. [0042] In step S31, the plurality of heteroepitaxial grains 1042 are grown at a portion of the epitaxial growth surface 101 of the substrate 100 exposed through the opening 105 of the carbon nanotube layer 102, and the growth direction thereof is substantially perpendicular to The epitaxial growth surface 101 of the substrate 100, that is, the plurality of heteroepitaxial crystal grains 1042 in this step is longitudinally epitaxially grown. [0043] In step S32, the plurality of heteroepitaxial crystal grains 1042 are homogenously epitaxially grown and integrated into a body substantially parallel to the epitaxial growth surface 101 of the substrate 100 by controlling growth conditions. The carbon tube layer 102 is covered. That is, in the step, the plurality of heteroepitaxial grains 1042 are directly epitaxially grown, and finally a plurality of holes are formed around the carbon nanotubes to surround the carbon nanotubes. Preferably, the carbon nanotubes are spaced apart from the heteroepitaxial layer 104 surrounding the carbon nanotubes. The shape of the pores is related to the arrangement direction of the nanotubes in the carbon nanotube layer 102. When the carbon nanotubes 100103193 Form No. A0101 Page 16 / Total 42 pages 1002005652-0 201232808 When the layer 102 is a single-layer nano carbon official film or a plurality of parallel arranged nano carbon pipelines, the plurality of holes 103 are basic Grooves arranged in parallel. When the nanolayer 102 is a plurality of layers of carbon nanotube film or a plurality of interdigitated carbon nanotubes, the plurality of holes 1〇3 are intersecting groove networks. [0044] In step S33, the lattice dislocations between the heteroepitaxial crystal grains 1042 and the substrate 100 are stopped during the formation of the continuous heteroepitaxial film 1044 due to the presence of the carbon nanotube layer 1〇2. Growing. Therefore, the heteroepitaxial layer 104 of this step is equivalent to homoepitaxial growth on the surface of the film m4 without the defect (iv). The heteroepitaxial layer has just fewer defects. According to the second embodiment of the present month, the substrate 1 is a sapphire ( ) soil sheet, and the 'D' carbon camp layer 102 is a single-layer carbon nanotube film. This implementation is based on row epitaxial growth. Among them, high-purity ammonia gas, (ΝΗ3) as nitrogen, hydrogen (Η2) as carrier gas, trimethylgallium (TMGa) or triethylgallium (10) antimony, trimethylindium (her), three Methyl Ming (mu as Ga source, In_Ai source. Specifically includes the following steps. First of all 'pure f stone base fiber _ human reaction chamber, add fine assignment ~ 12 0 0 C, and pass μ 9 , τ. λ / : , Ν 2 or its mixed gas as a carrier gas, high temperature for 2 sec to 1 000 sec. Secondly, continue to carry the same carrier gas, and cool down to Xia Yun, pass into trimethylgallium or triethyl and ammonia Gas, growth

GaN低溫緩衝層,复撢命1(1太丄 、 其厚度10奈米〜50奈米。然後,停止通 入三甲基鎵或三乙基鎵,繼續通入氨氣和載氣,同時將 溫度升南到iiorc〜l2〇(rc ’並恒溫保持3。秒〜綱秒, 進行退火。最後,料㈣㈣溫度_在咖f C ’繼續通入風氣和載氣,同時重新通入三甲基嫁或三 100103193 表單編號A0101 1002005652-0 201232808 乙基鎵,在高溫下完成GaN的側向外延生長過程,並生長 出高品質的GaN外延層。樣品生長完畢後,分別用掃描電 子顯微鏡(SEM)和透射電子顯微鏡(TEM)對樣品進行觀察 和測試。請參閱圖8和圖9,本實施例製備的異質外延結 構中,異質外延層僅從基底的外延生長面沒有奈米碳管 層的位置開始生長,然後連成一體。所述異質外延層與 基底接觸的表面形成複數個孔洞,所述奈米碳管層設置 於該孔洞内,且與異質外延層間隔設置。具體地,從所 述圖8中可以清楚其看到GaN外延層和藍寶石基底之間的 介面,其中,深色部分為GaN外延層,淺色部分為藍寶石 基底。所述GaN外延層與藍寶石基底接觸的表面具有一排 孔洞。從所述圖9中可以看到,每個礼洞内設置有奈米碳 管。所述孔洞内的奈米碳管設置於藍寶石基底表面,且 與形成孔洞的G a N外延層間隔設置。 [0045] [0046] 請參閱圖1G與圖1卜為本發明第—實施例製備獲得的一 種異質外延結構10,其包括:_基底議,一奈米碳管層 102以及一異質外延層1〇4。所述基底1〇〇具有—外延生 長面101。所述奈米碳管層102設置於所述基底1〇〇的外 延生長面HH ’該奈米碳管層1G2具有複數個開口1〇5, 所迷基底1〇〇的外延生長面1()1對應所述奈米碳管層ι〇2 的開口 1G5的部分暴露。所述異料延川4設置於所述 基底10G的外延生長面1G1,並覆蓋所述奈米碳管層1〇2 。所述奈米碳管層1 02設置於所述異f外延層1Q4與基底 100之間。 所述異質外❹m料衫米碳"丨㈣蓋,並渗透 100103193 表單編號A0101 第18頁/共42頁 1002005652-0 201232808 ❹ [0047] 所述奈米碳管層1 02的複數個開口 1 ο5與所述基底1 00的 外延生長面101接觸,即所述奈米碳管層102的複數個開 口 105中均滲透有所述異質外延層104。所述異質外延層 1〇4與其覆蓋的奈米碳管層1〇2在微觀上間隔設置,即所 述異質外延層104與基底100接觸的表面形成複數個孔洞 1〇3,所述奈米碳管層1〇2設置於該孔洞1〇3内’具體地 ,所述奈米碳管層102中的奈米碳管分別設置在複數個孔 洞103内。所述孔洞1〇3形成在異質外延層1〇4與所述基 底100接觸的表面,在所述異質外延層104的厚度方向該 孔洞103均為盲孔。在每個孔洞1〇3内,奈米碳管均基本 不與所述異質外延層104接觸》 G [0048] 所述奈米碳管層1〇2為一自支擇結構◊該奈..米碳管層包括 奈米破管膜或奈米碳管線。本實施例中,所述奈米碳管 層102為一單層奈米碳管膜’該奈米碳管膜包括複數個奈 米碳管,該複數個奈米碳管的軸向沿同一方向擇優取向 延伸,延伸方向相同的相鄉的桊来碳管通過凡得瓦力首 尾相連。在垂直於延伸方向的相鄰蚱奈米碳管之間部分 間隔設置存在微孔或間隙’從而構成開口 1 〇 5。 請參閱圖12 ’為本發明第二實施例製備獲得的一種異質 外延結構20,其包括:一基底2〇〇,一奈米碳管層2〇2以 及一異質外延層204。本發明第二實施例中的異質外延結 構20的基底200和異質外延層204的材料,以及基底2〇〇 、奈米碳管層202與異質外延層204的位置關係與第一實 施例的異質外延結構1〇基本相同,其區別在於,奈米碳 管層202為複數個平行且間隔設置的奈米碳管線,相鄰的 100103193 表單編號A0101 第19頁/共42頁 1002005652-0 201232808 奈米碳管線之間形成微孔。 [0049] 所述奈米碳管線可以為非扭轉的奈米碳管線或扭轉的奈 米碳管線。具體地,所述非扭轉的奈米碳管線包括複數 個沿該非扭轉的奈米碳管線長度方向延伸的奈米碳管。 所述扭轉的奈米碳管線包括複數個繞該扭轉的奈米碳管 線軸向螺旋延伸的奈米碳管。 [0050] 本發明第二實施例中,所述基底100為一絕緣體上的矽( SOI: silicon on insulator)基片,所述奈米石炭管層 102為複數個平行且間隔設置的奈米碳管線。本實施採用 M0CVD工藝進行外延生長。其中,分別採用三甲基鎵 (TMGa)、三甲基鋁(TMA1)作為Ga和A1的源物質,氨氣 (NH3)作為氮的源物質,氫氣(H2)作載氣,使用臥式水 準反應爐加熱。具體地,首先在SOI基底100的外延生長 面101鋪設複數個平行且間隔設置的奈米碳管線。然後在 基底100的外延生長面101外延生長GaN外延層,生長溫 度1 070°C,生長時間450秒,主要進行GaN的縱向生長; 接著保持反應室壓力不變,升高溫度到lll〇°C,同時降 低G a源流量,而保持氨氣流量不變,以促進側向外延生 長,生長時間為4900秒;最後,降低溫度至1 070°C,同 時增加G a源流量繼續縱向生長1 0 0 0 0秒。 [0051] 請參閱圖13,本發明第三實施例提供一種異質外延結構 3〇,其包括:一基底300,一奈米碳管層302以及一異質 外延層304。本發明第三實施例中的異質外延結構30的基 底300和異質外延層304的材料,以及基底300、奈米碳 管層302與異質外延層304的位置關係與第二實施例的異 100103193 表單編號A0101 第20頁/共42頁 1002005652-0 201232808 Ο [0052] [0053] ❹ [0054] [0055] 100103193 質外延結構20基本相同,其區別在於,奈米碳管層3〇2為 複數個交叉且間隔設置的奈米碳管線,交又且間相鄰的、 四個奈米碳管線之間形成微孔。具體地,該複數個奈米 碳管線分別沿第一方向與第二方向平行設置所述第一 方向與第二方向交又設置。交叉且間相鄰的四個奈米碳 管線之間形成一開口。本實施例中,相鄰的兩個奈米碳 管線平行設置,相交叉的兩個奈米碳管線相互垂直。可 以理解,所述奈米碳管線也可採用任意交又方式設置, 只需使奈米碳管層302形成複數個開口,從而使基底 的外延生長面部分暴露即可。 本發明第三實施例的異質外延結構3〇可以採用與第一實 施例或第二實施例相同的方法製備。 本發明第四實施例提供一種同質外延結構,其包括:一 基底,一奈米碳管層以及一外延層。本發明第四實施例 中的奈米碳管層可採用上述第—實施例至第三實施例的 奈米碳管層,基底、奈来碳管層與外延層的材料及位置 關係與第一實施例基本相同,其區別在於,所述基底與 外延層的材料相同,從而構成—同質外延結構。具體地 ,本實施例中,所述基底與外延層的材料均為GaN。 本發明第四實施例進一步提供—種同質外延結構的製備 方法,其具體包括以下步驟: S100 :提供一基底,且該基底具有一支持同質外延層生 長的外延生長面; S200 :在所述基底的外延生長面設置一奈米碳管層,該 1002005652-0 表單編號A0101 第21頁/共42頁 [0056] 201232808 基底與奈米碳管層共同構成一襯底;以及 [0057] [0058] [0059] [0060] [0061] [0062] S3〇〇 :在基底的外延生長面生長同質外延層。 本發明第四實施例的同質外延層的生長方法與第一實施 例的異質外延層的生長方法基本相同,其區別在於,所 述基底與外延層的材料相同,從而構成1質外延結構 〇 本發明_ -奈米碳管層作為掩㈣置以述基底外延 生長面生長外延層具有以下有以效果: 所述不米碳官層為—自支撐結構可直接鋪設在 土底的外延生長面’相對於n技術通過洗積後光刻等 工藝形成掩模’本發明卫藝簡單,成本低廉,有利於量 產。 第二’所述奈米碳管層為_化結構,其厚度、開口尺 寸均可達到奈米級,所述襯底用來生長外延層時形成的 異質外延晶粒具有更小的尺寸,有利於減少位錯缺陷的 產生,以獲得高品質的異質外延層。 第一,所述奈米碳管層的開口尺寸為奈米級,所述外延 層攸與奈米級開口㈣的暴露的外延生長面生長,使得 生長的外延層與基底之間的接觸面積減小,減小了生長 k程中外延層與襯底之間的應力,從而可以生長厚度較 大的異貝外延層,可進一步提高異質外延層的品質。 、-上所述,本發明確已符合發明專利之要件,遂依法提 出專利申4。惟,以上所述者僅為本發明之較佳實施例 100103193 表單編號A0101 第22頁/共42頁 1002005652-0 [0063] 201232808 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋以下申請專利範圍内。 【圖式簡單說明】 [0064] [0065] Ο [0066] . [0067] [0068] [0069] Ο [0070] [0071] [0072] [0073] 100103193 圖1為本發明實施例提供的異質外延結構的製備方法的工 藝流程圖。 圖2為本發明實施例中採用的奈米碳管膜的掃描電鏡照片 〇 圖3為圖2中的奈米碳管膜中的奈米碳管片段的結構示意 圖。 圖4為本發明實施例中採用的複數層交叉設置的奈米碳管 膜的掃描電鏡照片。 圖5為本發明實施例中採用的非扭轉的奈米碳管線的掃描 電鏡照片。 圖6為本發明實施例中採用的扭轉的奈米碳管線的掃描電 鏡照片。 圖7為本發明實施例中異質外延層生長過程示意圖。 圖8為本發明第一實施例製備的異質外延結構截面的掃描 電鏡照片。 圖9為本發明第一實施例製備的異質外延結構介面處的透 射電鏡照片。 圖1 0為本發明第一實施例提供的異質外延結構的立體結 構示意圖。 表單編號Α0101 第23頁/共42頁 1002005652-0 201232808 [0074] 圖11為圖10所示的異質外延結構沿線XI-XI的剖面示意 圖。 [0075] 圖1 2為本發明第二實施例提供的異質外延結構的立體結 構示意圖。 [0076] 圖13為本發明第三實施例提供的異質外延結構的立體結 構示意圖。 【主要元件符號說明】 [0077] 異質外延結構:10, 20, 30 [0078] 基底:100,200, 300 [0079] 外延生長面:101 [0080] 奈米碳管層:102, 202, 302 [0081] 孔洞:103 [0082] 異質外延層:104, 204, 304 [0083] 異質外延晶粒:1042 [0084] 異質外延薄膜:1044 [0085] 開口 : 1 0 5 [0086] 奈米碳管片段:143 [0087] 奈米碳管:145 100103193 表單編號A0101 第24頁/共42頁 1002005652-0GaN low temperature buffer layer, 撢 撢 1 (1 too 丄, its thickness 10 nm ~ 50 nm. Then, stop the introduction of trimethyl gallium or triethyl gallium, continue to pass ammonia and carrier gas, while The temperature rises south to ioroc~l2〇(rc' and the constant temperature is maintained for 3. seconds to sec., annealing is performed. Finally, the material (four) (four) temperature _ in the coffee f C 'continue to enter the atmosphere and carrier gas, while re-introducing trimethyl Marry or three 100103193 Form No. A0101 1002005652-0 201232808 Ethyl gallium, the lateral epitaxial growth process of GaN is completed at high temperature, and a high quality GaN epitaxial layer is grown. After the sample is grown, scanning electron microscopy (SEM) is used respectively. The sample was observed and tested by transmission electron microscopy (TEM). Referring to FIG. 8 and FIG. 9, in the heteroepitaxial structure prepared in this embodiment, the heteroepitaxial layer has no position of the carbon nanotube layer only from the epitaxial growth surface of the substrate. Starting to grow, and then joining together. The surface of the heteroepitaxial layer in contact with the substrate forms a plurality of holes, and the carbon nanotube layer is disposed in the hole and spaced apart from the heteroepitaxial layer. Specifically, from the In Figure 8 It can be clearly seen that the interface between the GaN epitaxial layer and the sapphire substrate is seen, wherein the dark portion is a GaN epitaxial layer and the light portion is a sapphire substrate. The surface of the GaN epitaxial layer in contact with the sapphire substrate has a row of holes. It can be seen in Fig. 9 that a carbon nanotube is disposed in each hole, and the carbon nanotubes in the hole are disposed on the surface of the sapphire substrate and are spaced apart from the G a N epitaxial layer forming the hole. [0046] Please refer to FIG. 1G and FIG. 1 for a heteroepitaxial structure 10 prepared according to the first embodiment of the present invention, which includes: a substrate, a carbon nanotube layer 102, and a heteroepitaxial layer. 4. The substrate 1 has an epitaxial growth surface 101. The carbon nanotube layer 102 is disposed on an epitaxial growth surface HH of the substrate 1', and the carbon nanotube layer 1G2 has a plurality of openings 1 5, the epitaxial growth surface 1 () 1 of the substrate 1 对应 corresponds to a partial exposure of the opening 1G5 of the carbon nanotube layer ι 2 . The heterogeneous Yanchuan 4 is disposed on the epitaxial growth of the substrate 10G Surface 1G1, and covering the carbon nanotube layer 1〇2. The carbon nanotube The layer 102 is disposed between the hetero-f epitaxial layer 1Q4 and the substrate 100. The heterogeneous outer ❹ m-shirt carbon carbon " 丨 (four) cover, and penetrate 100103193 Form No. A0101 Page 18 / Total 42 pages 1002005652-0 201232808 [0047] The plurality of openings 1 ο5 of the carbon nanotube layer 102 are in contact with the epitaxial growth surface 101 of the substrate 100, that is, the plurality of openings 105 of the carbon nanotube layer 102 are infiltrated The heteroepitaxial layer 104. The heteroepitaxial layer 1〇4 is microscopically spaced from the carbon nanotube layer 1〇2 covered by the substrate, that is, the surface of the heteroepitaxial layer 104 contacting the substrate 100 forms a plurality of holes 1 〇3, the carbon nanotube layer 1〇2 is disposed in the hole 1〇3. Specifically, the carbon nanotubes in the carbon nanotube layer 102 are respectively disposed in the plurality of holes 103. The hole 1〇3 is formed on a surface of the heteroepitaxial layer 1〇4 in contact with the substrate 100, and the holes 103 are blind holes in the thickness direction of the heteroepitaxial layer 104. In each hole 1〇3, the carbon nanotubes are substantially not in contact with the heteroepitaxial layer 104. [0048] The carbon nanotube layer 1〇2 is a self-supporting structure. The carbon nanotube layer includes a nano tube membrane or a nano carbon line. In this embodiment, the carbon nanotube layer 102 is a single-layer carbon nanotube film. The carbon nanotube film includes a plurality of carbon nanotubes. The axial directions of the plurality of carbon nanotubes are in the same direction. The preferred orientation extension, the extension of the same direction of the town of the carbon nanotubes through the Van der Waals force end to end. An opening 1 〇 5 is formed by partially arranging micropores or gaps between adjacent x-carbon tubes perpendicular to the extending direction. Referring to FIG. 12, a hetero-epitaxial structure 20 prepared according to a second embodiment of the present invention includes: a substrate 2 〇〇, a carbon nanotube layer 2 〇 2 and a hetero-epitaxial layer 204. The material of the substrate 200 and the heteroepitaxial layer 204 of the heteroepitaxial structure 20 in the second embodiment of the present invention, and the positional relationship between the substrate 2, the carbon nanotube layer 202 and the heteroepitaxial layer 204 are different from those of the first embodiment. The epitaxial structure 1 〇 is basically the same, except that the carbon nanotube layer 202 is a plurality of parallel and spaced carbon nanotubes, adjacent to each other 100103193 Form No. A0101 Page 19 / Total 42 pages 1002005652-0 201232808 Nano Micropores are formed between the carbon lines. [0049] The nanocarbon line may be a non-twisted nano carbon line or a twisted carbon carbon line. Specifically, the non-twisted nanocarbon line includes a plurality of carbon nanotubes extending along the length of the non-twisted nanocarbon line. The twisted nanocarbon line includes a plurality of carbon nanotubes extending axially around the twisted carbon nanotube line. In the second embodiment of the present invention, the substrate 100 is a silicon-on-insulator (SOI) substrate, and the nano-carbon nanotube layer 102 is a plurality of parallel and spaced nanocarbons. Pipeline. This embodiment uses the M0CVD process for epitaxial growth. Among them, trimethylgallium (TMGa) and trimethylaluminum (TMA1) are used as the source materials of Ga and A1, ammonia (NH3) is used as the source of nitrogen, hydrogen (H2) is used as carrier gas, and horizontal level is used. The furnace is heated. Specifically, a plurality of parallel and spaced carbon nanotube lines are first laid on the epitaxial growth surface 101 of the SOI substrate 100. Then, a GaN epitaxial layer is epitaxially grown on the epitaxial growth surface 101 of the substrate 100, the growth temperature is 1 070 ° C, and the growth time is 450 seconds, mainly performing longitudinal growth of GaN; then, the pressure of the reaction chamber is kept constant, and the temperature is raised to lll 〇 ° C. At the same time, reduce the flow rate of the G a source while maintaining the flow rate of the ammonia gas to promote the lateral epitaxial growth, the growth time is 4900 seconds; finally, the temperature is lowered to 1 070 ° C, while increasing the flow rate of the G a source and continuing the longitudinal growth 10 0 0 0 0 seconds. Referring to FIG. 13, a third embodiment of the present invention provides a heteroepitaxial structure, comprising: a substrate 300, a carbon nanotube layer 302, and a hetero-epitaxial layer 304. The material of the substrate 300 and the heteroepitaxial layer 304 of the heteroepitaxial structure 30 in the third embodiment of the present invention, and the positional relationship between the substrate 300, the carbon nanotube layer 302 and the heteroepitaxial layer 304 and the different 100103193 form of the second embodiment No. A0101 Page 20 of 42 1002005652-0 201232808 Ο [0055] [0055] 100103193 The epitaxial structure 20 is substantially the same, except that the carbon nanotube layer 3〇2 is plural The intersecting and spaced-apart nanocarbon pipelines form micropores between the adjacent and adjacent four carbon carbon pipelines. Specifically, the plurality of nanocarbon pipelines are disposed in parallel with the second direction in the first direction and the second direction, respectively. An opening is formed between the intersecting and adjacent four carbon carbon lines. In this embodiment, two adjacent nanocarbon pipelines are arranged in parallel, and the two nanocarbon pipelines intersecting each other are perpendicular to each other. It can be understood that the nano carbon pipeline can also be disposed in any manner, and only the carbon nanotube layer 302 is formed into a plurality of openings, so that the epitaxial growth surface portion of the substrate is partially exposed. The heteroepitaxial structure 3 of the third embodiment of the present invention can be produced by the same method as the first embodiment or the second embodiment. A fourth embodiment of the present invention provides a homoepitaxial structure comprising: a substrate, a carbon nanotube layer, and an epitaxial layer. The carbon nanotube layer in the fourth embodiment of the present invention may adopt the carbon nanotube layer of the above-mentioned first to third embodiments, the material and the positional relationship between the substrate, the carbon nanotube layer and the epitaxial layer, and the first The embodiments are substantially identical except that the substrate is of the same material as the epitaxial layer to form a homoepitaxial structure. Specifically, in this embodiment, the material of the substrate and the epitaxial layer is GaN. The fourth embodiment of the present invention further provides a method for preparing a homoepitaxial structure, which specifically includes the following steps: S100: providing a substrate, the substrate having an epitaxial growth surface supporting growth of a homoepitaxial layer; S200: at the substrate a carbon nanotube layer is disposed on the epitaxial growth surface, the 1002005652-0 Form No. A0101 Page 21 of 42 [0056] 201232808 The substrate and the carbon nanotube layer together form a substrate; and [0058] [0062] S3〇〇: A homoepitaxial layer is grown on the epitaxial growth surface of the substrate. The method for growing a homoepitaxial layer according to the fourth embodiment of the present invention is substantially the same as the method for growing a heteroepitaxial layer of the first embodiment, except that the substrate and the material of the epitaxial layer are the same, thereby constituting a monolithic epitaxial structure. Invention _ - The carbon nanotube layer is used as a mask. The epitaxial layer of the epitaxial growth surface has the following effects: The non-carbon carbon layer is a self-supporting structure that can be directly laid on the epitaxial growth surface of the soil bottom. The mask is formed by a process such as post-washing lithography with respect to the n technology. The invention is simple in the art and low in cost, and is advantageous for mass production. The second 'the carbon nanotube layer is a _-structure, and the thickness and the opening size thereof can reach the nanometer level, and the heteroepitaxial crystal grains formed when the substrate is used for growing the epitaxial layer have a smaller size, which is advantageous. To reduce the generation of dislocation defects to obtain a high quality heteroepitaxial layer. First, the opening size of the carbon nanotube layer is nanometer, and the epitaxial layer is grown with the exposed epitaxial growth surface of the nano-scale opening (4), so that the contact area between the grown epitaxial layer and the substrate is reduced. Small, the stress between the epitaxial layer and the substrate in the growth k process is reduced, so that a thick outer layer of the epitaxial layer can be grown, and the quality of the heteroepitaxial layer can be further improved. As described above, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only the preferred embodiment of the present invention. 100103193 Form No. A0101 Page 22 of 42 1002005652-0 [0063] 201232808, the scope of the patent application of this case cannot be limited thereby. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to cover the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0064] [0066] [0069] [0069] [0073] [0073] FIG. 1 is a heterogeneity provided by an embodiment of the present invention. Process flow diagram of a method for preparing an epitaxial structure. Fig. 2 is a scanning electron micrograph of a carbon nanotube film used in an embodiment of the present invention. Fig. 3 is a schematic view showing the structure of a carbon nanotube segment in the carbon nanotube film of Fig. 2. Fig. 4 is a scanning electron micrograph of a carbon nanotube film of a plurality of layers disposed in an embodiment of the present invention. Figure 5 is a scanning electron micrograph of a non-twisted nanocarbon line used in an embodiment of the present invention. Figure 6 is a scanning electron micrograph of a twisted nanocarbon line employed in an embodiment of the present invention. FIG. 7 is a schematic view showing a growth process of a heteroepitaxial layer in an embodiment of the present invention. Figure 8 is a scanning electron micrograph of a cross section of a heteroepitaxial structure prepared in accordance with a first embodiment of the present invention. Figure 9 is a transmission electron micrograph of a heteroepitaxial structure interface prepared in accordance with a first embodiment of the present invention. Figure 10 is a perspective view showing the structure of a heteroepitaxial structure according to a first embodiment of the present invention. Form No. Α0101 Page 23 of 42 1002005652-0 201232808 [0074] FIG. 11 is a cross-sectional view of the heteroepitaxial structure shown in FIG. 10 taken along line XI-XI. FIG. 12 is a schematic perspective view showing a structure of a heteroepitaxial structure according to a second embodiment of the present invention. 13 is a perspective view showing a three-dimensional structure of a hetero-epitaxial structure according to a third embodiment of the present invention. [Major component symbol description] [0077] Hetero-epitaxial structure: 10, 20, 30 [0078] Substrate: 100, 200, 300 [0079] Epitaxial growth surface: 101 [0080] Carbon nanotube layer: 102, 202, 302 Hole: 103 [0082] Hetero-epitaxial layer: 104, 204, 304 [0083] Hetero-epitaxial grain: 1042 [0084] Hetero-epitaxial film: 1044 [0085] Opening: 1 0 5 [0086] Carbon nanotube Fragment: 143 [0087] Carbon nanotubes: 145 100103193 Form number A0101 Page 24 of 42 1002005652-0

Claims (1)

201232808 七、申請專利範圍· 1 . 一種外延結構的製備方法,其包括以下步驟: 提供一基底,該基底具有一支持外延層生長的外延生長面 , 在所述基底的外延生長面設置一奈米碳管層;以及 在基底的外延生長面生長外延層。 2.如申請專利範圍第1項所述的外延結構的製備方法,其中 ,所述外延層為一異質外延層。 3 .如申請專利範圍第2項所述的外延結構的製備方法,其中 ❹ ,所述基底為一單晶結構體,且所述基底的材料為GaAs 、GaN、Si、SOI、AIN、SiC、MgO、ZnO、LiGa〇2、 LiAl〇24Al2〇3。 4 .如申請專利範圍第2項所述的外延結構的製備方法,其中 ,所述在基底的外延生長面設置一奈米碳管層的方法為將 奈米碳管膜或奈米碳管線直接鋪設在所述基底的外延生長 面作為奈米碳管層。 ^ 5 .如申請專利範圍第2項所述的外延結構的製備方法,其中 ,所述奈米碳管層中具有複數個開口,所述異質外延層從 所述基底的外延生長面通過該開口暴露的部分生長。 6 .如申請專利範圍第2項所述的外延結構的製備方法,其中 ,所述異質外延層的生長方法具體包括以下步驟: 沿著基本垂直於所述基底的外延生長面方向成核並外延生 長形成複數個異質外延晶粒; 所述複數個異質外延晶粒沿著基本平行於所述基底的外延 生長面方向外延生長形成一連續的異質外延薄膜;以及 100103193 表單編號A0101 第25頁/共42頁 1002005652-0 201232808 所述異質外延薄膜沿著基本垂直於所述基底的外延生長面 方向外延生長形成一異質外延層。 如申請專利範圍第2項所述的外延結構的製備方法,其中 所述外延層的生長方法包括分子束外延法、化學束外延 法減壓外延法、低溫外延法、選擇外延法、液相沈積外 延法、金屬有機氣相外延法、超真空化學氣相沈積法氫 化物氣相外延法、以及金屬有機化學氣相沈積法中的一種 或複數種。201232808 VII. Patent Application Range 1. A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface supporting epitaxial layer growth, and setting a nanometer on an epitaxial growth surface of the substrate a carbon tube layer; and an epitaxial layer grown on the epitaxial growth surface of the substrate. 2. The method of preparing an epitaxial structure according to claim 1, wherein the epitaxial layer is a heteroepitaxial layer. 3. The method for preparing an epitaxial structure according to claim 2, wherein 基底, the substrate is a single crystal structure, and the material of the substrate is GaAs, GaN, Si, SOI, AIN, SiC, MgO, ZnO, LiGa〇2, LiAl〇24Al2〇3. 4. The method for preparing an epitaxial structure according to claim 2, wherein the method of disposing a carbon nanotube layer on the epitaxial growth surface of the substrate is directly introducing the carbon nanotube film or the nano carbon pipeline The epitaxial growth surface of the substrate is laid as a carbon nanotube layer. The method for producing an epitaxial structure according to claim 2, wherein the carbon nanotube layer has a plurality of openings, and the heteroepitaxial layer passes through the opening from an epitaxial growth surface of the substrate The exposed part grows. 6. The method for preparing an epitaxial structure according to claim 2, wherein the method for growing the heteroepitaxial layer specifically comprises the steps of: nucleating and epitaxially extending along an epitaxial growth plane substantially perpendicular to the substrate; Forming a plurality of heteroepitaxial grains; the plurality of heteroepitaxial grains are epitaxially grown along a direction substantially parallel to the epitaxial growth surface of the substrate to form a continuous heteroepitaxial film; and 100103193 Form No. A0101 Page 25 / Total 42 pages 1002005652-0 201232808 The heteroepitaxial film is epitaxially grown along a direction substantially perpendicular to the epitaxial growth surface of the substrate to form a heteroepitaxial layer. The method for preparing an epitaxial structure according to claim 2, wherein the epitaxial layer growth method comprises a molecular beam epitaxy method, a chemical beam epitaxy decompression epitaxy method, a low temperature epitaxy method, a selective epitaxy method, or a liquid phase deposition method. One or more of epitaxial method, metal organic vapor phase epitaxy, ultra-vacuum chemical vapor deposition hydride vapor phase epitaxy, and metal organic chemical vapor deposition. 10 . 如申請專利範圍第2項所述的外延結構的製備方法,其中 ’所述異f外延層在料奈轉管層關形賴數個孔洞 將所述奈米碳管層中的奈米碳管包谓。 如申凊專利範圍第1項所述的外延結刺製備方法其中 ,所述外延層為一同質外延層。 —種外延結構,其包括:—基底,該基底具有-外延生長 面’以及-外延層形成於所述基底的外延生長面,其改良 在於’進-步包括-奈米碳管層設置於所述外延層與基底 之間。 一 11 .如申請專利範圍第10項所述的外延結構,其中,所述外延 層為一異質外延層。 12 ·=請專利範圍第U項所述的外延結構,其中,所述奈米 兔官層為-自支撐結構直接鋪設在所述基底的外延生長面 13 如申請專職韻料转結構,其巾,所述夺米 ,管層具有複數個開σ,所述異質外延層覆蓋所述奈米碳 官層設置並滲透奈米碳管層的開口與所述基底的外延生長 面接觸。 100103193 表單編號Α0101 第26頁/共42頁 1002005652-0 201232808 14 15 如申明專利範圍第1 3項所述的外延結構 的尺寸為10奈米〜500微米。 如申請專利範圍第14項所述的外延結構 的尺寸為10奈米〜120微米。 其中,所述開口 其中,所述開口 16 如申請專利範圍第15項所述的外延結構 的尺寸為10奈米〜80微米。 其中,所述開口 17 18 Ο 19 如申請專利範圍川^項中任_項所述的外延結構, 其中,所述奈米碳管層的佔空比為1:1〇〇〜1〇〇:1。 如申請專利範圍第14至16項中任_項所述的外延結構, 其中’所述奈米碳管層的佔空比為1:4〜4:1。 如申凊專利範圍第11項所述的外延結構,其巾,所述異質 外延層在與所述基底接觸的表面形成複數個細所述奈 米碳管層設置於該孔洞内。 20 2110. The method for preparing an epitaxial structure according to claim 2, wherein the 'the hetero-f epitaxial layer is formed in the nanotube layer to form a nanometer in the carbon nanotube layer The carbon tube package says. The epitaxial spur preparation method according to claim 1, wherein the epitaxial layer is a homoepitaxial layer. An epitaxial structure comprising: a substrate having an epitaxial growth surface and an epitaxial layer formed on an epitaxial growth surface of the substrate, the improvement being that the step-by-step includes a carbon nanotube layer disposed at the substrate Between the epitaxial layer and the substrate. The epitaxial structure of claim 10, wherein the epitaxial layer is a heteroepitaxial layer. 12: The epitaxial structure according to the invention of claim U, wherein the nano rabbit layer is a self-supporting structure directly laid on the epitaxial growth surface 13 of the substrate, such as applying for a full-time rhyme-turning structure, The rice layer has a plurality of openings σ, and the heteroepitaxial layer covers the nanocarbon layer and the opening of the carbon nanotube layer is in contact with the epitaxial growth surface of the substrate. 100103193 Form No. Α0101 Page 26 of 42 1002005652-0 201232808 14 15 The dimensions of the epitaxial structure as described in claim 13 of the patent range are from 10 nm to 500 μm. The size of the epitaxial structure as described in claim 14 is from 10 nm to 120 μm. Wherein, the opening 16 has an outer structure of a size of 10 nm to 80 μm as described in claim 15 of the patent application. The opening 17 18 Ο 19 is the epitaxial structure according to any one of the above claims, wherein the duty ratio of the carbon nanotube layer is 1:1 〇〇 〜1 〇〇: 1. The epitaxial structure according to any one of clauses 14 to 16, wherein the carbon nanotube layer has a duty ratio of 1:4 to 4:1. The epitaxial structure according to claim 11, wherein the heteroepitaxial layer is formed in the hole by forming a plurality of thin carbon nanotube layers on a surface in contact with the substrate. 20 21 如申請專職圍第11項所述的外延結構,其巾所述奈米 碳管層的厚度為1奈米〜100微米。 如申請專職圍第11項所述麟延結構,其巾,所述奈米 兔官層包括至少-奈米碳管膜,該奈米碳管膜包括複數個 奈米碳管,且所述複數個奈米碳管的轴向沿同—方向擇優 取向延伸。 22 如申請專利額第21項所述料延結構,其中,所述轴向 沿同-方向擇優取向延伸的相㈣奈米碳管通過凡得瓦力 首尾相連。 .如申請專利範圍第21項所述的外延結構,其中,所述奈米 碳管層包括複數個奈米碳管膜層疊設置。 .如申請專利範圍第11項所述的外延結構,其中,所述奈米 碳管層包括複數個平行且間隔設置的奈米碳管線。 表單編號Α0101 第27頁/共42頁 1002005652-0 201232808 25 26 27 28 29 30 . 31 . 32 . 33 . 34 . 100103193 如申請專利範圍第11項所述的外延結構’其中,所述奈米 碳管層包括複數個交叉設置的奈米碳管線。 如申請專利範圍第24或25項所述的外延結構’其中,所 述奈米碳管線的直徑為0.5奈米〜100微米,相鄰兩個平行 设置的奈米碳管線之間的距離為〇 j微米〜2〇〇微米。 如申請專利範圍第11項所述的外延結構,其中,所述外延 層為一半導體外延層、金屬外延層或合金外延層。 如申請專利範圍第11項所述的外延結構,其中,所述基底 為一單晶結構體,且所述基底的材料為GaAS、GaN、Si、- SOI、AlN、SiC'MgO、Zn〇、LiGa〇2、LiA A1 〇 2 2 3 O 如申請專利範圍第11項所述的外延結構,其中,所述奈米 碳管層為一連續的整體結構。 如申睛專利範圍第U項所述的外延結構,其中,所述奈米 碳管層包純數财純管沿著平行於奈米碳管層表面的 方向延伸。 如申请專利範圍第〗丨項所述的外延結構其中所述奈米 碳管層為-包括複數個奈米碳管以及添加材料的複合結構 如申凊專利Μ第31項所述的外延結構,其巾,所述添加 材料為石墨、石墨稀' 碳化梦、氮化爛、氮切、二氧化 矽及無定形碳中的一種或複數種。 如申租專利範圍第3丨項所述的外延結構,其中,所述添加 材料為金屬碳化物、金屬氧化物及金屬氮化物中的〆種或 複數種。 其中,所述奈米 1002005652-0 如申請專利範圍第31項所述的外延結構 表單編號Α0101 第28頁/共42頁 201232808 35 . 36 . Ο 碳管層具有複數個開口,所述添加材料包覆於奈米碳管層 的奈米碳管的至少部分表面或設置於奈米碳管層的開口内 〇 如申請專利範圍第10項所述的外延結構,其中,所述外延 層為一同質外延層。 一種外延結構,其包括:一基底,該基底具有一外延生長 面,以及一異質外延層形成於所述基底的外延生長面,其 改良在於,進一步包括一圖形化的奈米碳管層設置於所述 異質外延層與基底之間,且該圖形化的奈米碳管層具有複 數個開口,使異質外延層滲透奈米碳管層的複數個開口與 所述基底的外延生長面接觸。 ο 100103193 表單編號Α0101 第29頁/共42頁 1002005652-0For example, if the epitaxial structure described in Item 11 of the full-time application is applied, the thickness of the carbon nanotube layer of the towel is from 1 nm to 100 μm. For example, the application of the full-length enclosure 11th article, the towel, the nano rabbit layer includes at least a carbon nanotube film, the carbon nanotube film includes a plurality of carbon nanotubes, and the plurality The axial direction of the carbon nanotubes extends along the same direction as the preferred direction. 22 as claimed in claim 21, wherein the phase (four) carbon nanotubes extending axially in the same direction as the preferred orientation are connected end to end by van der Waals force. The epitaxial structure according to claim 21, wherein the carbon nanotube layer comprises a plurality of carbon nanotube film laminates. The epitaxial structure of claim 11, wherein the carbon nanotube layer comprises a plurality of parallel and spaced carbon nanotubes. Form No. 1010101 Page 27 of 421002005652-0 201232808 25 26 27 28 29 30 . 31 . 32 . 33 . 34 . 100103193 The epitaxial structure of claim 11 wherein the nanocarbon The tube layer includes a plurality of cross-set nano carbon lines. The epitaxial structure according to claim 24 or 25, wherein the diameter of the nanocarbon line is from 0.5 nm to 100 μm, and the distance between adjacent two carbon nanotubes arranged in parallel is 〇 j micron ~ 2 〇〇 micron. The epitaxial structure according to claim 11, wherein the epitaxial layer is a semiconductor epitaxial layer, a metal epitaxial layer or an alloy epitaxial layer. The epitaxial structure according to claim 11, wherein the substrate is a single crystal structure, and the material of the substrate is GaAS, GaN, Si, -SOI, AlN, SiC'MgO, Zn, LiGa〇2, LiA A1 〇2 2 3 O The epitaxial structure according to claim 11, wherein the carbon nanotube layer is a continuous unitary structure. The epitaxial structure of claim U, wherein the carbon nanotube layer comprises a plurality of pure tubes extending in a direction parallel to a surface of the carbon nanotube layer. The epitaxial structure according to the above-mentioned patent application, wherein the carbon nanotube layer is a composite structure including a plurality of carbon nanotubes and an additive material, such as the epitaxial structure described in claim 31, In the towel, the additive material is one or a plurality of graphite, graphite thin carbonized dream, nitrided, nitrogen cut, cerium oxide and amorphous carbon. The epitaxial structure according to the third aspect of the invention, wherein the additive material is a metal carbide, a metal oxide or a metal nitride or a plurality of species. Wherein, the nanometer 1002005652-0 is as described in claim 31, the epitaxial structure form number Α0101, page 28 / total 42 pages 201232808 35 . 36 . 碳 the carbon tube layer has a plurality of openings, the additive material package At least a portion of the surface of the carbon nanotube layer overlying the carbon nanotube layer or disposed in the opening of the carbon nanotube layer, such as the epitaxial structure of claim 10, wherein the epitaxial layer is homogenous Epitaxial layer. An epitaxial structure comprising: a substrate having an epitaxial growth surface, and a heteroepitaxial layer formed on the epitaxial growth surface of the substrate, the improvement comprising further comprising a patterned carbon nanotube layer disposed on The heteroepitaxial layer is interposed between the heteroepitaxial layer and the substrate, and the patterned carbon nanotube layer has a plurality of openings, such that the plurality of openings of the heteroepitaxial layer penetrating the carbon nanotube layer are in contact with the epitaxial growth surface of the substrate. ο 100103193 Form number Α0101 Page 29 of 42 1002005652-0
TW100103193A 2011-01-27 2011-01-27 Epitaxial structure and method for making the same TWI476948B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100103193A TWI476948B (en) 2011-01-27 2011-01-27 Epitaxial structure and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100103193A TWI476948B (en) 2011-01-27 2011-01-27 Epitaxial structure and method for making the same

Publications (2)

Publication Number Publication Date
TW201232808A true TW201232808A (en) 2012-08-01
TWI476948B TWI476948B (en) 2015-03-11

Family

ID=47069703

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103193A TWI476948B (en) 2011-01-27 2011-01-27 Epitaxial structure and method for making the same

Country Status (1)

Country Link
TW (1) TWI476948B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360476B1 (en) * 2000-06-27 2002-11-08 삼성전자 주식회사 Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
KR100790859B1 (en) * 2002-11-15 2008-01-03 삼성전자주식회사 Nonvolatile memory device utilizing vertical nanotube
US7466523B1 (en) * 2003-07-10 2008-12-16 Yingjian Chen Nanotube spin valve and method of producing the same
US20050167655A1 (en) * 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
KR100820174B1 (en) * 2006-12-05 2008-04-08 한국전자통신연구원 The electronic devices using carbon nanotubes having vertical structure and the manufacturing method thereof

Also Published As

Publication number Publication date
TWI476948B (en) 2015-03-11

Similar Documents

Publication Publication Date Title
US10622516B2 (en) Epitaxial structure and method for making the same
US11078597B2 (en) Method for making epitaxial structure
US20120325139A1 (en) Eptaxial substrate, method for making the same and method for growing epitaxial layer using the same
US9450142B2 (en) Method for making epitaxial structure
TW201241876A (en) A epitaxialstructure and method for making the same
TW201536669A (en) Epitaxial structure
CN102610718B (en) Substrate used for growing epitaxial structure and using method thereof
JP2015192147A (en) Method of manufacturing epitaxial structure
TWI474966B (en) A method for making epitaxial structure
TWI557066B (en) Method of making epitaxial structure
CN102593272B (en) The preparation method of epitaxial structure
US9570292B2 (en) Method for making an epitaxial structure with carbon nanotube layer
CN102605422A (en) Mask for growth of epitaxial structure and usage thereof
TWI505984B (en) A method for making an epitaxial structure
TW201232808A (en) Epitaxial structure and method for making the same
TWI426159B (en) Mask for growing epitaxial structure and method for using the same
TWI479681B (en) Semiconductor epitaxial structure
TWI443863B (en) Base for growing epitaxial structure and method for using the same
TW201239949A (en) A substrate with micro-structure and method for making the same
TW201240137A (en) Method for making an epitaxial structure