201230401 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種垂直式發光二極體及其製作方法,尤 才曰一種具有大功率、且具大尺寸之垂直式發光二極體及其製 作方法。 【先前技術】 自60年代起,發光一極體的耗電量低及長效性的發光等 優勢,已逐漸取代日常生活中用來照明或各種電器設備的指 示燈或光源等用途。更有甚者,發光二極體朝向多色彩及高 亮度的發展,已應用在大型戶外顯示看板或交通號誌。 然而’習知中所使用之發光二極體100,其結構多如圖1 所示’係將正電極107及負電極108都作在同一側。再者,習 知之發光二極體所使用之基材1〇1(如藍寶石)不導電,因此電 流在半導體層102中必須由垂直順流轉變為水平橫流,故而使 得電流會集中在内彎處,無法完全使用p_N介面之電子層和電 洞層,減少發光效率。此外,前述電流會在半導體層i 〇2之集 中處產生熱點,使半導體層1〇2中之晶格產生缺陷,因此影響 發光二極體100之使用壽命;或者僅能以降低功率以避免熱點 之產生,惟此會降低發光二極體100之發光效果並限制其用 途。 發光二極體中造成電流轉彎的問題無法以封裝設計的改 良來改善,例如即使以覆晶方式來製作發光二極體,仍無法 201230401 避免電流轉彎產生熱點、造成晶格缺陷、影響發光效率、及 使用壽命降低等缺失。 因此’另有一種垂直式發光二極體將電極製作在該發光 二極體兩側以改善電流方向之構想產生。然而,現在所使用 之垂直式發光二極體,多使用碳化矽(SiC)基材來生長碳化 鎵。但因SiC單晶基板價格太高,一般以以或金屬等基板取 代,並以金-金、金錫-金錫、銦_銦等金屬結合磊晶層。然而, 由於此磊晶層與金屬基板或金屬結合層二種材料間之熱膨脹 係數差異迥大,在後續的剝離製程中往往導致發光二極體的 良率不佳。 因此,目前亟需一種大功率、散熱效果佳、且具大尺寸 之發光二極體及其製作方法。 【發明内容】 為達則述目的,本發明提供一種垂直式發光二極體之製 造方法,其包括下列步驟:提供一基材;於基材上形成一半 導體層,料導體層係具有以第II至VI族元素所構成之化合 物,形成一金屬反射層,使其與半導體層相互結合;形成至 ^中間層及至少-類鑽碳層;形成一複合材料I ;移除基 材;以及形成-第一電極層及一第二電極層,其分別設置於 +導體層及複合材料層之一側;其中,至少一中間層及至少 -類鑽碳層係以疊層之方式相互堆疊於金屬反射層之一侧。 根據本發明之製造方法,其中將基材移除之方式沒有特 殊限制’只要*會造成移除基材時,導致發光二極體中各層 201230401 ‘ 結構因產生介面應力而造成彎曲。較佳之移除方式係藉由— 雷射使基材與半導體層產生剝離。 此外’根據本發明之製造方法,可依製程上而選擇半導 體層、金屬反射層、至少一中間層、及至少一類鑽碳層之形 成方法’其中較佳可使用以陰極電弧、濺鍍、蒸鍍、電錢' 無電電鍍、或塗佈等沉積形成。 承上’根據本發明之製造方法,其中基材可為Ai2〇3(藍寶 石)、Si、Sic、GaAs、GaP、A1P、GaN、C(石墨)、hBN、或 ® C(鑽石)之基板;或為至少一陽離子為B、Al、Ga、In、Be、 Mg之氮化物、鱗化物、或神化物之基板;半導體層之組成可 為 Al2〇3(藍寶石)、si、SiC、GaAs、GaP、A1P、GaN、C(石墨)、 hBN、或C(鑽石);或為至少一陽離子為B、A卜Ga、In、Be、 Mg之氮化物、磷化物、或砷化物;金屬反射層可為至少一選 自由 Ag、Al、Ni、Co、Pd、Pt、Au、Zn、Sn、Sb、Pb、Qi、CuAg、201230401 VI. Description of the Invention: [Technical Field] The present invention relates to a vertical light-emitting diode and a manufacturing method thereof, and particularly to a vertical light-emitting diode having high power and large size and Production Method. [Prior Art] Since the 1960s, the advantages of low power consumption and long-lasting luminescence of a light-emitting body have gradually replaced the use of indicators or light sources for lighting or various electrical appliances in daily life. What's more, the development of light-emitting diodes towards multi-color and high brightness has been applied to large outdoor display billboards or traffic signs. However, the conventional light-emitting diode 100 used in the prior art has a structure as shown in Fig. 1. The positive electrode 107 and the negative electrode 108 are all on the same side. Moreover, the substrate 1〇1 (such as sapphire) used in the conventional light-emitting diode is not electrically conductive, so the current must be converted from the vertical downstream to the horizontal cross flow in the semiconductor layer 102, so that the current is concentrated in the inner bend. The electron layer and the hole layer of the p_N interface cannot be completely used, and the luminous efficiency is reduced. In addition, the foregoing current may generate a hot spot at the concentration of the semiconductor layer i 〇 2, causing a defect in the crystal lattice in the semiconductor layer 1 , 2, thereby affecting the service life of the light-emitting diode 100; or only reducing power to avoid hot spots This will reduce the luminous effect of the light-emitting diode 100 and limit its use. The problem of causing current turning in the light-emitting diode cannot be improved by the improvement of the package design. For example, even if the light-emitting diode is fabricated by flip chip, it is not possible to avoid hot spots, cause lattice defects, and affect luminous efficiency. And lack of service life and so on. Therefore, another vertical type of light-emitting diode is produced by making electrodes on both sides of the light-emitting diode to improve the current direction. However, the vertical light-emitting diodes used today often use a cerium carbide (SiC) substrate to grow gallium carbide. However, since the price of the SiC single crystal substrate is too high, it is generally replaced with a substrate such as a metal, and the epitaxial layer is bonded with a metal such as gold-gold, gold-tin-gold-tin, or indium-indium. However, since the difference in thermal expansion coefficient between the epitaxial layer and the metal substrate or the metal bonding layer is large, the yield of the light emitting diode is often poor in the subsequent stripping process. Therefore, there is a need for a light-emitting diode having a high power, a good heat dissipation effect, and a large size, and a method of fabricating the same. SUMMARY OF THE INVENTION For the purpose of the present invention, the present invention provides a method for fabricating a vertical light-emitting diode, comprising the steps of: providing a substrate; forming a semiconductor layer on the substrate, the material conductor layer having the second a compound composed of a group VI element, forming a metal reflective layer to be bonded to the semiconductor layer; forming an intermediate layer and at least a diamond-like carbon layer; forming a composite material I; removing the substrate; and forming - a first electrode layer and a second electrode layer respectively disposed on one side of the +conductor layer and the composite material layer; wherein at least one intermediate layer and at least a diamond-like carbon layer are stacked on each other in a metal reflection One side of the layer. According to the manufacturing method of the present invention, the manner in which the substrate is removed is not particularly limited. As long as * causes a removal of the substrate, the layers in the light-emitting diodes 201230401 ‘the structure is bent due to the interface stress. A preferred method of removal is to cause the substrate to be peeled off from the semiconductor layer by means of a laser. In addition, according to the manufacturing method of the present invention, a semiconductor layer, a metal reflective layer, at least one intermediate layer, and a method for forming at least one type of drilled carbon layer may be selected according to the process, wherein a cathode arc, sputtering, steaming is preferably used. Plating, electricity, 'electroless plating, or coating and other deposition. The manufacturing method according to the present invention, wherein the substrate may be a substrate of Ai2〇3 (sapphire), Si, Sic, GaAs, GaP, AlP, GaN, C (graphite), hBN, or ® C (diamond); Or a substrate in which at least one cation is a nitride, a scale, or a derivative of B, Al, Ga, In, Be, Mg; the composition of the semiconductor layer may be Al2〇3 (sapphire), Si, SiC, GaAs, GaP , A1P, GaN, C (graphite), hBN, or C (diamond); or at least one cation is B, A, Ga, In, Be, Mg nitride, phosphide, or arsenide; metal reflective layer can At least one selected from the group consisting of Ag, Al, Ni, Co, Pd, Pt, Au, Zn, Sn, Sb, Pb, Qi, CuAg,
NiAg及如述金屬合金所組成之群組,且金屬反射層之厚度 >又有限制,只要可以達成導引光線及增加發光效率即可,較 _ 佳可為1〇〇_5〇〇 nm,最佳為2〇〇 nm。 〜根據本發明之製造方法,其中,中間層之材質係選擇使 用月t與碳產生反應’且能合成碳化物(⑶化丨心&啦“)之金屬皆 可,較佳為可包括至少一選自由Ti、v、Cr、&、灿、論、NiAg and a group of metal alloys as described above, and the thickness of the metal reflective layer> are limited as long as the guiding light can be achieved and the luminous efficiency can be increased, which is preferably 1〇〇_5〇〇nm. The best is 2〇〇nm. The manufacturing method according to the present invention, wherein the material of the intermediate layer is selected to be a metal-reactive reaction using a month t and capable of synthesizing a carbide ((3) 丨 &&; 啦 ”), preferably including at least One selected from Ti, v, Cr, &, Can, theory,
Ta W、及則述金屬之合金所組成之群組等材料。而該 中間層之厚度沒有限制,較佳為5〇_5〇〇nm,更佳為1〇〇細。 201230401 根據本發明之製造方法,類鑽碳層是用以排除發光二極 體在發光時所產生之廢熱,並以傳導之方式迅速排除,藉以 延長發光二極體之使用壽命。 根據本發明之製造方法,複合材料層可包括至少一金屬 及鑽石所組成之複合材料,且鑽石於複合材料層中可以—單 層、多層、或隨機分佈之佈鑽排列,其中鑽石約佔複合材料 層總體積之25-60%,較佳為30-50%。至於金屬之組成可為至 少一選自由Cu、Ag、Co、Ni、W、Fe、Ti、Cr及B所組成之 群組’鑽石可為合成鑽石磨粒(Synthetic diamond grits),且鑽 石之較佳粒徑為1 μιη〜1 mm。 根據本發明之製造方法’複合材料層之厚度沒有特別限 制’較佳之厚度為100-500 μηι ’更佳為15〇 。此外,複合 材料層之熱膨脹係數係可依所需而進行調整,以避免製造過 程中因介面應力而導致發光二極體之半導體層產生臀曲或内 部缺陷’進而使產品良率下降而增加生產成本或光衰減效 應;根據根據本發明之製造方法,複合材料層較佳之熱膨脹 係數為在2〜10 ppm/°C間。再者,根據本發明之製造方法,其 中更包括有一將該複合材料層之表面拋光至κ&<1μιη之步 驟,主要是使基材與發光二極體結構剝離時,仍可保持剝離 面的平坦面之誤差小於1 mm。 根據本發明之製造方法’其中更包括有一透明類鑽碳層 形成於半導體層之一側,其作用主要將發光二極體中所產生 之熱輻射(如螢光粉層)能迅速排除,藉以增加方光效率及產品 週期。至於透明類鑽碳層可依所需使用任何沉積法而得,較 201230401 . 佳為使用電漿化學氣相沉積法(PECVD)來形成。此外,上述 透明類鑽碳層可進-步包括有氫原子於其中,其含量若以透 明類鑽碳層全部計算,氫原子可約佔15肩原子百分比,藉以 增加熱排除效應及發光二極體之發光效率。 本發明亦提供一種垂直式發光二極體之製造方法’其包 括下列步驟:提供一基材;於基材上形成一半導體層,半導 體層係具有以第II至VI族元素所構成之化合物;形成一金屬反 射層,使其與半導體層相互結合;形成一複合材料層;移除 擊該基材;以及形成-第一電極層及一第二電極層,其分別設 置於4半導體層及該複合材料層之一側。至於根據本製造方 法,其中之方法步驟及各層結構(如基材、半導體層金屬反 射層、複合材料層、及第一電極層及第二電極層)之定義係如 上述。 本發明之另一目的在提供一種垂直式發光二極體,其包 括:一半導體層,其係具有以第11至乂1族元素所構成之化合 物;一金屬反射層’係與半導體層相互結合;至少一中間層; • 至少一類鑽碳層;一複合材料層;以及一第一電極層及一第 二電極層,其分別設置於半導體層及複合材料層之一側;其 中,至少一中間層及至少一類鑽碳層係以疊層之方式相互堆 疊於金屬反射層之一側。 根據本發明之垂直式發光二極體,其中半導體層之組成 可為 Al2〇3(藍寶石)、Si、Sic、GaAs、GaP、A1P、GaN、C(石 墨)、hBN、或C(鑽石);或為至少一陽離子為b、a卜Ga、In、 Be、Mg之氮化物、磷化物、或砷化物;金屬反射層可為至少 201230401 一選自由 Ag、A1、Ni、CQ、Pd、Pt、Au、Zn、Sn、Sb、Pb、Cu、CuAg、 NlAg、及前述金屬合金所組成之群組,且金屬反射層之厚度 沒有限制,只要可以達成導引光線及增加發光效率即可,較 佳可為100-500 nm,最佳為200 nm ° 根據本發明之垂直式發光二極體,其中,中間層之材質 係選擇使用此與碳產生反應,且能合成碳化物(carbide former) 之金屬皆可,較佳為可包括至少一選自由Ti、v、Cr、Zr、Nb、Ta W, and a group of alloys of metals. The thickness of the intermediate layer is not limited, and is preferably 5 Å to 5 Å, more preferably 1 Å. 201230401 According to the manufacturing method of the present invention, the diamond-like carbon layer is used to eliminate the waste heat generated by the light-emitting diode during light emission, and is quickly eliminated in a conductive manner, thereby prolonging the service life of the light-emitting diode. According to the manufacturing method of the present invention, the composite material layer may comprise at least one composite material composed of metal and diamond, and the diamond may be arranged in a single layer, a plurality of layers, or a randomly distributed cloth in the composite layer, wherein the diamond occupies a composite The total volume of the material layer is 25-60%, preferably 30-50%. The composition of the metal may be at least one selected from the group consisting of Cu, Ag, Co, Ni, W, Fe, Ti, Cr, and B. The diamond may be a Synthetic diamond grits, and the diamonds are compared. The preferred particle size is 1 μιη to 1 mm. The thickness of the composite material layer according to the production method of the present invention is not particularly limited. A preferred thickness is 100-500 μηι ‘ more preferably 15 Å. In addition, the coefficient of thermal expansion of the composite layer can be adjusted as needed to avoid the occurrence of hip or internal defects in the semiconductor layer of the light-emitting diode due to interface stress during the manufacturing process, thereby increasing the yield of the product and increasing production. Cost or light attenuation effect; according to the manufacturing method according to the present invention, the composite layer preferably has a coefficient of thermal expansion of from 2 to 10 ppm/°C. Furthermore, according to the manufacturing method of the present invention, the method further comprises the step of polishing the surface of the composite material layer to κ &<1μηη, mainly to keep the peeling surface when the substrate is peeled off from the light emitting diode structure. The flat surface has an error of less than 1 mm. According to the manufacturing method of the present invention, a transparent diamond-like carbon layer is further formed on one side of the semiconductor layer, and the function thereof mainly removes heat radiation (such as a phosphor powder layer) generated in the light-emitting diode quickly. Increase the efficiency of the square light and product cycle. As for the transparent diamond-like carbon layer, any deposition method can be used as required, which is formed by plasma chemical vapor deposition (PECVD). In addition, the transparent diamond-like carbon layer may further include a hydrogen atom therein, and the content thereof may be calculated by using a transparent diamond-like carbon layer, and the hydrogen atom may account for about 15 atomic percent of the shoulder, thereby increasing the heat-eliminating effect and the light-emitting diode. The luminous efficiency of the body. The invention also provides a method for manufacturing a vertical light-emitting diode, which comprises the steps of: providing a substrate; forming a semiconductor layer on the substrate, the semiconductor layer having a compound composed of elements of Group II to VI; Forming a metal reflective layer to be bonded to the semiconductor layer; forming a composite material layer; removing the substrate; and forming a first electrode layer and a second electrode layer respectively disposed on the 4 semiconductor layer and the One side of the composite layer. As for the manufacturing method, the method steps and the structure of each layer (e.g., substrate, semiconductor layer metal reflective layer, composite material layer, and first electrode layer and second electrode layer) are as defined above. Another object of the present invention is to provide a vertical light emitting diode comprising: a semiconductor layer having a compound composed of elements of Groups 11 to ;1; a metal reflective layer' bonded to the semiconductor layer At least one intermediate layer; at least one type of carbon layer; a composite material layer; and a first electrode layer and a second electrode layer respectively disposed on one side of the semiconductor layer and the composite material layer; wherein at least one intermediate portion The layer and the at least one type of drilled carbon layer are stacked on one side of the metal reflective layer in a stacked manner. The vertical light emitting diode according to the present invention, wherein the composition of the semiconductor layer may be Al2〇3 (sapphire), Si, Sic, GaAs, GaP, AlP, GaN, C (graphite), hBN, or C (diamond); Or at least one cation is b, a Ga, In, Be, Mg nitride, phosphide, or arsenide; the metal reflective layer may be at least 201230401, selected from Ag, A1, Ni, CQ, Pd, Pt, a group of Au, Zn, Sn, Sb, Pb, Cu, CuAg, NlAg, and the foregoing metal alloy, and the thickness of the metal reflective layer is not limited as long as the guiding light can be achieved and the luminous efficiency is increased, preferably It may be 100-500 nm, and most preferably 200 nm. According to the vertical light-emitting diode of the present invention, the material of the intermediate layer is selected to use this carbon-reactive reaction and to synthesize a metal of a carbide former. Preferably, it may preferably include at least one selected from the group consisting of Ti, v, Cr, Zr, Nb,
Mo、Hf、Ta ' W、及前述金屬之合金所組成之群組等材料❶ 而該中間層之厚度沒有限制,較佳為50-500 nm,更佳為100 nm 〇 根據本發明之垂直式發光二極體,類鑽碳層是用以排除 發光二極體在發光時所產生之廢熱,並以傳導之方式迅速排 除’藉以延長發光二極體之使用壽命。 根據本發明之垂直式發光二極體,複合材料層可包括至 y 金屬及鑽石所組成之複合材料,且鑽石於複合材料層中 可以一單層、多層、或隨機分佈之佈鑽排列,其中鑽石約佔 複合材料層總體積之25_60%,較佳為30·50%。至於金屬之組 成可為至少一選自由Cu、Ag、c〇、Ni、w、Fe、Ti、&及8 所組成之群組;鑽石可為合成鑽石磨粒(synthetie diamQnd grits) ’且鑽石之較佳粒徑為1 μηι〜1 mm。 根據本發明之垂直式發光二極體,複合材料層之厚度沒 有特別限制,較佳之厚度為·5〇〇 μιη,更佳為⑼_。此 外,複合材料層之熱膨脹係數係可依所需而進行調整,以避 免製造過程中因介面應力而導致發光二極體之半導體層產生 201230401 • 彎曲或内部缺陷,進而使產品良率下降而增加生產成本或光 衰減效應;根據根據本發明之製造方法,複合材料層較佳之 熱膨服係數為在2~ 1 〇 ppm/ C間。再者,根據本發明之垂直式 發光二極體,其中複合材料層之表面具有拋光至Ra< 1 μιη。 根據本發明之垂直式發光二極體,其中更包括有一透明 類鑽碳層形成於半導體層之一側,其作用主要將發光二極體 中所產生之熱輻射(如螢光粉層)能迅速排除’藉以增加方光效 率及產品週期。至於透明類鑽碳層可依所需使用任何沉積法 • 而得,較佳為使用電漿化學氣相沉積法(PECVD)來形成。此 外’上述透明類鑽碳層可進一步包括有氫原子於其中,其含 量若以透明類鑽碳層全部計算,氫原子可約佔15_4〇原子百分 比’藉以增加熱排除效應及發光二極體之發光效率。 根據本發明之再一目的,在提供一種垂直式發光二極 體,其包括:一半導體層,其具有以第π至VI#元素所構成之 化合物;一金屬反射層,係與半導體層相互結合;一複合材 料層,以及一第一電極層及一第二電極層,其分別設置於半 • 導體層及複合材料層之一側;其中,複合材料層係以Au或 Au-Sn於約300°C直接軟焊接合至金屬反射層,或直接以高溫 接合之方式。至於根據本垂直式發光二極體之結構,其中各 層結構(如基材、半導體層、金屬反射層、複合材料層、及第 一電極層及第二電極層)之定義係如上述。 由上述可知,習知所使用之發光二極體由於正負兩電極 都射在同側,且因習知之發光二極體所使用之基材(如藍寶石) 不導電,因此電流在半導體層中必須由垂直順流轉變為水平 201230401 橫流,故而使得電流會集中在内彎處,無法完全使用p_N介面 之電子層和電洞層,減少發光效率。此外,前述電流會在集 中處產生熱點,使半導體層中之晶格產生缺陷,因此影響發 光二極體之使用壽命。然而,根據本發明之垂直式發光二極 體及製造方法,其不僅使用由至少一金屬及鑽石所組成之複 合材料層,並同時使用至少一中間層及至少一類鑽碳層,且 將第一電極層及一第二電極層分別設置於分光二極體結構之 兩側。由此,本發明藉類鑽碳層所具有高的熱傳導率,以迅 速排除發光二極體發光時所產生之廢熱,並使半導體層中不 會因電流岔度分佈不均而產生内部晶格缺陷所導致光衰或使 用奇命等問題。 因此,根據本發明之發光二極體及其製造方法,可實現 一種具有大尺寸(> 1 mm)、大電流(> i A/mm2)、及大功率(> 丨〇 W) 之垂直式發光二極體’其顯會優於並聯多顆習知使用電流以 彎流式之發光二極體。根據本發明之垂直式發光二極體及其 製造方法,具有發光效率更佳使其更光亮,且藉類鑽碳層優 異的熱傳導率以排除發光時所產生之廢熱,以及解決内部缺 陷使其更耐久等優點。 【實施方式】 清參閱圖2E及圖3’其係根據本發明製造方法所獲得之垂 直式發光一極體結構’包括有一半導體層202 ’其係具有以第 π至vi族兀素所構成之化合物;一金屬反射層2〇3,係與半導 體層202相互結合;至少一中間層2〇4 ;至少一類鑽碳層2〇5 ; 201230401 一複合材料層206 ;以及一可為負電極之第一電極層207及一 可為正電極之第二電極層208,其分別設置於半導體層202及 複合材料層206之一側;其中,至少一中間層204及至少一類 鑽碳層205係以疊層之方式相互堆疊於金屬反射層之一側。 以下,將詳述本發明垂直式發光二極體之製造方法: 實施例1 請參閱圖2A至2E,係本發明製造垂直式發光二極體之一 具體實施例。首先,如圖2A所示,提供一基材201,在本實施 例中基材201為使用藍寶石基板,並可依製程上之所需,選擇 使用 Si、SiC、GaAs、GaP、A1P、GaN、C(石墨)、hBN、C(鑽 石)、或至少一陽離子為B、A1、Ga ' In、Be、Mg之氮化物、 磷化物、或砷化物之基板。接著如圖2B,於基材201上形成一 半導體層202,該半導體層202係具有以第II至VI族元素所構成 之化合物,例如 Al2〇3(藍寶石)、Si、SiC、GaAs、GaP、A1P、 GaN、C(石墨)、hBN、C(鑽石)、或至少一陽離子為B、Al、 Ga、In、Be、Mg之氮化物、墙化物、或珅化物,在本實施例 中係使用GaN作為半導體層202。其後如圖2C所示,形成一金 屬反射層203,以陰極電弧之方式使其沉積並與半導體層202 相互結合,金屬反射層203可為Ag或A1,其他可選擇為金屬反 射層 203 之材料如 Ni、Co、Pd、Pt、Au、Zn、Sn、Sb、Pb、Cu、CuAg、 NiAg、或前述金屬合金皆可,且金屬反射層203之厚度沒有限 制,只要可以達成導引光線及增加發光效率即可,較佳可為 100-500 nm,在本實施例中之金屬反射層203為約200 nm。 201230401 接著,如圖2D所示,依序以如濺鍍之方式形成一中間層 204及一類鑽碳層205,其中關於中間層204之材質係選擇只要 是使用能與碳產生反應,且能合成碳化物之金屬皆可,較佳 為可包括至少一選自由Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、 W、及前述金屬之合金所組成之群組等材料,在本實施例中 係使用鈦作為中間層204。至於中間層204之厚度沒有限制, 較佳為50-500 nm,本實施例之中間層約為100 nm。而類鑽碳 層205之厚度沒有特別限制,只要能達成較佳之散熱效果及與 中間層204能緊密結合即可,並可因中間層204及類鑽碳層205 以疊層之方式相互堆疊,進一步達成降低發光二極體中各層 結構因產生介面應力而造成彎曲之情形,而導致良率降低, 類鑽碳層205較佳厚度為大於300nm以上皆可,本實施例以約 500nm厚度之類鑽碳層205。此外,更可依製程上之所需,選 擇性地再形成一較薄之中間層204(約60 nm)於上類鑽碳層 205,而形成如圖2D所示之結構。 最後,如圖2E,形成一複合材料層206於前述結構上, 並移除基材201 ;其後並形成一第一電極層207及一第二電極 層208,其分別設置於半導體層202及複合材料層206之一側。 而複合材料層206可包括至少一金屬及鑽石所組成之複合材 料,且鑽石於該複合材料層中也可選擇性地以一單層、多層、 或隨機分佈之佈鑽排列。其中鑽石約佔複合材料層206總體積 之25-60%,較佳可如本實施例使用鑽石係佔複合材料層總體 積之30-50%之比例。至於金屬之組成可為至少一選自由Cu、 Ag、Co、Ni、W、Fe、Ti、Cr及B所組成之群組,在本實施例 12 201230401 中係以金屬鎳為其組成;鑽石可為合成鑽石磨粒(synthetic diamond grits) ’且鑽石之較佳粒徑為i μιη _ i爪爪。換句話說, 本實施例之複合材料層206係為使用一鎳_鑽石複合材料。至 於複合材料層206之厚度較佳之厚度為1〇〇·5〇〇μιη,本實施例 中複合材料層206之厚度為約150 μιη 〇 根據本實施例,基材201移除之方式係藉由一氣體雷射 (KrF,波長約248 nm)使基材與半導體層產生剝離。藉此方法 不僅較為迅速簡便,且因本實施例所製備而得的垂直式發光 二極體結構,也不會造成移除基材201時,導致發光二極體中 各層結構因產生介面應力而造成彎曲。再者,根據本實施例, 將複合材料層206之表面進行拋光至Ra<1pm之步驟,主要是 使基材201與發光二極體結構剝離時,仍可保持剥離面的平坦 面之誤差小於1 mm。 此外,根據本實施例之製造方法,可依製程上而選擇半 導體層202 '金屬反射層203、中間層204、及類鑽碳層2〇5之 形成方法,其中亦可使用以陰極電弧、濺鍍、蒸鍍、電錄、 無電電鍍、塗佈、銲接、或沉積等方式形成。 承前所述’複合材料層206之熱膨脹係數係可依所需而進 行調整,以避免製造過程中因介面應力而導致發光二極體之 半導體層202產生彎曲或内部缺陷,進而使產品良率下降而增 加生產成本或光衰減效應;根據本實施例之複合材料層2〇6, 其熱膨脹係數約在10 ppm/°C。 根據本實施例之製造方法,可進一步選擇將一透明類鑽 奴層(圖未示)形成於半導體層之一側,其作用主要將發光二極 13 201230401 體中所產生之熱輻射(如螢光粉層)能迅速排除,藉以增加發光 效率及產品週期。至於透明類鑽碳層可依所需使用任何沉積 法而得,例如可使用電漿化學氣相沉積法(PECVD)來形成。 此外,上述透明類鑽碳層可進一步包括有氫原子於其中,其 含量若以透明類鑽碳層全部計算,氫原子可約佔15_4〇原子百 分比,藉以增加熱排除效應及發光二極體之發光效率。 實施例2 在本實施例中所使用之製造方法與實施例1相似,故結構 亦可直接參照如圖2E,差異在於製造過程中將金屬反射層 203(如銀)係以濺鍍之方式形成於半導體層2〇2(如GaN)上,且 係使用一銅-鑽石複合材料作為複合材料層2〇6。因此,根據 本實施例之複合材料層2〇6 ’其熱膨脹係數約在5 ppm/<t。至 於其他各層之結構與特徵係如實施例1中所定義。 實施例3 如圖3所示’在本實施例中所使用之製造方法與實施例1 及實施例2相似,差異在於製造過程中將製作中間層3〇4及類 鑽碳層305依序相互堆疊,且該中間層3〇4及類鑽碳層3〇5之疊 層結構總厚度約為3μιη ,且在本實施例中係使用一銅_鎳_鑽石 複合材料作為複合材料層306。因此,根據本實施例之複合材 料層306,其熱膨脹係數可依製程上之所需調整約在〇 ppm/ C。至於其他各層之結構與特徵係如實施例i中所定義。 實施例4 201230401 如圖4所示,在本實施例中所使用之製造方法與實施例1 及實施例2相似,差異在於在本實施例中沒有形成類鑽碳層及 中間層,而是形成一第一電極407/半導體層402/金屬反射層 403/複合材料層406/第二電極408之結構,而其中複合材料層 406係以Au或Au-Sn於約30(TC直接軟焊接合至金屬反射層 403 ’或可依製程所需’直接以高溫接合直接結合複合材料層 406及金屬反射層403之方式。至於根據本實施例之各層結構 (如基材 '半導體層 '金屬反射層、複合材料層、及第一電極 • 層及第二電極層)係如實施例1所定義。 根據前述實施例,並請參閱圖5 A至圖7,習知中發光二極 體結構在進行雷射剝離之步驟前,會在半導體層上製作一層 反射金屬層(如銀),其後並再接上一導電的支撐體。然而,金 屬反射層往往因熱膨脹係數遠大於半導體層(如GaN),所以介 面會產生應力。鑑此,習知之發光二極體在通電時電流乃A 電阻最小處滲透前進,應力較大的局部溫度會快速昇高,金 • 屬反射層會把半導體層之晶格撐大。並由於發光二極體開關 頻繁,半導體層晶格會被重覆拉扯以致不斷產出缺陷,且易 造成金屬反射層與半導體層間之剝離(如圖5Α及圖5Β),以致 造成發光二極體的亮度就會快速減低。在此時,若如本發明 使用藉類鑽碳層所具有高的熱傳導率,以迅速排除發光二極 體發光時所產生之廢熱,且因具大幅降低介面應力之功效, 並能使半導體層中不會因電流密度分佈不均而產生内部晶格 缺陷所導致光衰或使用壽命等問題(如圖6)。 15 201230401 再者,根據本發明所包括之複合材料層及類鑽碳層,以 包括鑽·銅複合材料層之發光二極體結構為例,其分析係如圖 7所示’明顯可見根據本發明可有效控制熱膨脹係數,也能降 低熱阻。 承前’本發明上述實施例中之複合材料層的熱膨脹係數 (CTE)可依鑽石粒徑和體積百分率而進行調整,如前所述,為了 控制較佳CTE値(如在2-10 ppm/t:間)’故較佳的鑽石體積分率 為30·50 Vol%(如圖8所示),以及較佳之鑽石粒徑如圖9所示;更 可依需要’可選擇性地使用礙化物助劑的重量百分率為2_5 wt% ’該碳化物助劑可為Fe、Co、Ni、Cr、Ti、或B等。 因此’根據本實施例之製造方法所獲得之發光二極體, 可實現一種具有大尺寸(>lmm)、大電流(>iA/mm2)、及大功率 (>10W)之垂直式發光二極體,其顯會優於並聯多顆習知使用 電流以彎流式之發光二極體。因此,並具有發光效率更佳使 其更光亮’且藉類鑽碳層優異的熱傳導率以排除發光時所產 生之廢熱’以及解決内部缺陷使其更耐久等優點。 上述實施例僅係為了方便說明而舉例而已,本發明所主 張之權利範圍自應以申請專利範圍所述為準,而非僅限於上 述實施例。 【圖式簡單說明】 圖1係習知中發光二極體結構示意圖。 圖2 A至2 E係本發明一較佳實施例之垂直式發光二極體之製 造方法流程示意圖。 201230401 圖3係本發明另一較佳實施例之直式發光二極體結構示意圖。 圖4係本發明再一較佳實施例之直式發光二極體結構示意圖。 圖5 A至5 B係習知中發光二極體結構中電鍍金屬和半導體層 介面若僅以機械式而無化學鍵結時,產生剝離之電子顯微鏡 照片不意。 圖6係本心明一較佳貫施例之直式發光二極體部分結構電子 顯微鏡照片。 圖7係本發明-較佳實施财鑽,複合材料層之熱擴散係數 及熱傳導係數之比較圖。 圖8至圖9係本發明-較佳實施例中複合材料層之鑽石體積分 率比較圖。 【主要元件符號說明】 101 基材 107 正電極 2〇2 半導體層 204、304中間層 206、3 06複合材料層 100 發光二極體 102、302、402半導體層 108 負電極 201 基材 203、303、403金屬反射層 205、305類鑽碳層 207、 307、407 第一電極 208、 308、408 第二電極 17a material such as a group of Mo, Hf, Ta'W, and an alloy of the foregoing metal, and the thickness of the intermediate layer is not limited, and is preferably 50-500 nm, more preferably 100 nm. 垂直 Vertical according to the present invention The light-emitting diode, the diamond-like carbon layer is used to eliminate the waste heat generated by the light-emitting diode during the light-emitting, and is quickly eliminated in a conductive manner to extend the service life of the light-emitting diode. According to the vertical light-emitting diode of the present invention, the composite material layer may comprise a composite material composed of y metal and diamond, and the diamond may be arranged in a single layer, a plurality of layers, or a randomly distributed cloth in the composite layer, wherein The diamond accounts for about 25-60% of the total volume of the composite layer, preferably 30.50%. As for the composition of the metal, at least one selected from the group consisting of Cu, Ag, c〇, Ni, w, Fe, Ti, & and 8; the diamond may be a synthetic diamond abrasive grain (synthetie diamQnd grits)' and the diamond The preferred particle size is 1 μηι~1 mm. According to the vertical light-emitting diode of the present invention, the thickness of the composite material layer is not particularly limited, and a thickness of preferably 5 Å μηη, more preferably (9) _. In addition, the thermal expansion coefficient of the composite layer can be adjusted as needed to avoid the occurrence of interface stress in the manufacturing process, resulting in a semiconductor layer of the LED that generates 201230401 • bending or internal defects, thereby increasing the yield of the product. Production cost or light attenuation effect; according to the manufacturing method according to the present invention, the composite material layer preferably has a thermal expansion coefficient of between 2 and 1 〇 ppm/C. Further, according to the vertical light-emitting diode of the present invention, the surface of the composite material layer is polished to Ra < 1 μm. The vertical light-emitting diode according to the present invention further comprises a transparent diamond-like carbon layer formed on one side of the semiconductor layer, the main function of which is to enable thermal radiation (such as a phosphor layer) generated in the light-emitting diode. Quickly eliminate 'to increase the efficiency and product cycle. As for the transparent diamond-like carbon layer, any deposition method can be used as desired, preferably by plasma chemical vapor deposition (PECVD). In addition, the above-mentioned transparent diamond-like carbon layer may further include a hydrogen atom therein, and the content thereof may be calculated by using a transparent diamond-like carbon layer, and the hydrogen atom may be about 15_4 atomic percent to increase the heat-eliminating effect and the light-emitting diode. Luminous efficiency. According to still another object of the present invention, there is provided a vertical light emitting diode comprising: a semiconductor layer having a compound composed of elements π to VI#; and a metal reflective layer bonded to the semiconductor layer a composite material layer, and a first electrode layer and a second electrode layer respectively disposed on one side of the semi-conductor layer and the composite material layer; wherein the composite material layer is Au or Au-Sn at about 300 °C direct soft soldering to the metal reflective layer, or directly at high temperature bonding. As for the structure of the vertical light-emitting diode, the definition of each layer structure (e.g., substrate, semiconductor layer, metal reflective layer, composite material layer, and first electrode layer and second electrode layer) is as described above. It can be seen from the above that the conventionally used light-emitting diodes are incident on the same side because both positive and negative electrodes are used, and since the substrate (such as sapphire) used in the conventional light-emitting diode is not electrically conductive, the current must be in the semiconductor layer. The vertical flow is converted to the horizontal 201230401 cross flow, so that the current will be concentrated in the inner bend, and the electron layer and the hole layer of the p_N interface cannot be completely used, thereby reducing the luminous efficiency. In addition, the aforementioned current generates a hot spot at the center, causing a defect in the crystal lattice in the semiconductor layer, thus affecting the service life of the light-emitting diode. However, the vertical light-emitting diode according to the present invention and the manufacturing method thereof use not only a composite material layer composed of at least one metal and diamond, but also at least one intermediate layer and at least one type of drill carbon layer, and will be first The electrode layer and the second electrode layer are respectively disposed on both sides of the beam splitting diode structure. Therefore, the carbon magnetic layer of the invention has high thermal conductivity, so as to quickly eliminate the waste heat generated when the light-emitting diode emits light, and the internal crystal lattice is not generated due to uneven current distribution in the semiconductor layer. Defects cause problems such as light decay or the use of odds. Therefore, according to the light-emitting diode of the present invention and the method of manufacturing the same, it is possible to realize a large size (> 1 mm), a large current (> i A/mm2), and a high power (> 丨〇W). The vertical light-emitting diode 'is significantly better than a plurality of conventional light-emitting diodes that use current to bend current. According to the vertical light-emitting diode of the present invention and the method of manufacturing the same, the light-emitting efficiency is better to make it brighter, and the thermal conductivity of the carbon-like layer is excellent to eliminate the waste heat generated when the light is emitted, and to solve internal defects. More durable and so on. [Embodiment] Referring to FIG. 2E and FIG. 3', the vertical light-emitting diode structure 'obtained according to the manufacturing method of the present invention' includes a semiconductor layer 202' which has a composition of π to vi. a compound; a metal reflective layer 2〇3, bonded to the semiconductor layer 202; at least one intermediate layer 2〇4; at least one type of drilled carbon layer 2〇5; 201230401 a composite material layer 206; and a negative electrode An electrode layer 207 and a second electrode layer 208, which may be positive electrodes, are respectively disposed on one side of the semiconductor layer 202 and the composite material layer 206; wherein at least one intermediate layer 204 and at least one type of drilled carbon layer 205 are stacked The layers are stacked on one side of one side of the metal reflective layer. Hereinafter, a method of manufacturing the vertical light-emitting diode of the present invention will be described in detail. Embodiment 1 Referring to Figures 2A to 2E, a specific embodiment of the present invention for manufacturing a vertical light-emitting diode is described. First, as shown in FIG. 2A, a substrate 201 is provided. In the embodiment, the substrate 201 is a sapphire substrate, and Si, SiC, GaAs, GaP, AlP, GaN, and the like are selected according to the requirements of the process. C (graphite), hBN, C (diamond), or at least one cation is a substrate of B, A1, Ga' In, Be, Mg nitride, phosphide, or arsenide. Next, as shown in FIG. 2B, a semiconductor layer 202 is formed on the substrate 201, and the semiconductor layer 202 has a compound composed of elements of Group II to VI, such as Al2〇3 (sapphire), Si, SiC, GaAs, GaP, A1P, GaN, C (graphite), hBN, C (diamond), or at least one cation is a nitride of B, Al, Ga, In, Be, Mg, a wall compound, or a telluride, which is used in this embodiment. GaN is used as the semiconductor layer 202. Thereafter, as shown in FIG. 2C, a metal reflective layer 203 is formed, which is deposited by a cathodic arc and bonded to the semiconductor layer 202. The metal reflective layer 203 may be Ag or A1, and other metal reflective layers 203 may be selected. The material may be Ni, Co, Pd, Pt, Au, Zn, Sn, Sb, Pb, Cu, CuAg, NiAg, or the foregoing metal alloy, and the thickness of the metal reflective layer 203 is not limited as long as the guiding light can be achieved. The luminous efficiency may be increased, preferably 100-500 nm, and the metal reflective layer 203 in the present embodiment is about 200 nm. 201230401 Next, as shown in FIG. 2D, an intermediate layer 204 and a type of drilled carbon layer 205 are sequentially formed by sputtering, wherein the material of the intermediate layer 204 is selected to be reactive with carbon and can be synthesized. Any of the metals of the carbide, preferably including at least one selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, and alloys of the foregoing metals, in the present embodiment In the example, titanium was used as the intermediate layer 204. As for the thickness of the intermediate layer 204, there is no limitation, preferably 50-500 nm, and the intermediate layer of this embodiment is about 100 nm. The thickness of the diamond-like carbon layer 205 is not particularly limited as long as a better heat dissipation effect can be achieved and the intermediate layer 204 can be tightly bonded, and the intermediate layer 204 and the diamond-like carbon layer 205 can be stacked on each other in a stacked manner. Further, it is possible to reduce the bending of the layers in the light-emitting diode due to the interface stress, and the yield is reduced. The thickness of the diamond-like carbon layer 205 is preferably greater than 300 nm, and the embodiment has a thickness of about 500 nm or the like. The carbon layer 205 is drilled. In addition, a thinner intermediate layer 204 (about 60 nm) can be selectively formed on the upper diamond-like carbon layer 205 to form a structure as shown in Fig. 2D. Finally, as shown in FIG. 2E, a composite material layer 206 is formed on the foregoing structure, and the substrate 201 is removed. Thereafter, a first electrode layer 207 and a second electrode layer 208 are formed, which are respectively disposed on the semiconductor layer 202 and One side of the composite layer 206. The composite layer 206 can comprise a composite of at least one metal and diamond, and the diamond can also be selectively arranged in a single layer, multiple layers, or randomly distributed cloth in the composite layer. The diamond accounts for about 25-60% of the total volume of the composite layer 206, preferably in the proportion of 30-50% of the total thickness of the composite layer used in this embodiment. The composition of the metal may be at least one selected from the group consisting of Cu, Ag, Co, Ni, W, Fe, Ti, Cr, and B. In this embodiment 12 201230401, the composition is composed of metallic nickel; For synthetic diamond grits' and the preferred particle size of the diamond is i μιη _ i claws. In other words, the composite layer 206 of this embodiment is a nickel-diamond composite. The thickness of the composite material layer 206 is preferably 1〇〇·5〇〇μηη, and the thickness of the composite material layer 206 in the embodiment is about 150 μm. According to the embodiment, the substrate 201 is removed by A gas laser (KrF, wavelength about 248 nm) causes the substrate to peel off from the semiconductor layer. The method is not only relatively quick and simple, but also the vertical light-emitting diode structure prepared by the embodiment does not cause the substrate layer 201 to be removed due to the interface stress caused by the removal of the substrate 201. Causes bending. Furthermore, according to the embodiment, the step of polishing the surface of the composite material layer 206 to Ra < 1 pm is mainly to prevent the flat surface of the peeling surface from being less than the deviation when the substrate 201 and the light emitting diode structure are peeled off. 1 mm. In addition, according to the manufacturing method of the embodiment, the method of forming the semiconductor layer 202 'the metal reflective layer 203, the intermediate layer 204, and the diamond-like carbon layer 2〇5 may be selected according to the process, wherein the cathode arc and splash may also be used. Formed by plating, evaporation, electro-recording, electroless plating, coating, welding, or deposition. The thermal expansion coefficient of the composite layer 206 can be adjusted as needed to avoid bending or internal defects of the semiconductor layer 202 of the light-emitting diode due to interface stress during the manufacturing process, thereby reducing the yield of the product. The production cost or the light attenuation effect is increased; the composite material layer 2〇6 according to the present embodiment has a thermal expansion coefficient of about 10 ppm/°C. According to the manufacturing method of the embodiment, a transparent diamond-like layer (not shown) may be further formed on one side of the semiconductor layer, and the main function thereof is to generate heat radiation (such as firefly) generated in the body of the light-emitting diode 13 201230401. Light powder layer can be quickly eliminated to increase luminous efficiency and product cycle. As for the transparent diamond-like carbon layer, any deposition method can be used as needed, for example, by plasma chemical vapor deposition (PECVD). In addition, the transparent diamond-like carbon layer may further include a hydrogen atom therein, and the content of the transparent diamond-like carbon layer may be about 15_4 atomic percent, thereby increasing the heat elimination effect and the light emitting diode. Luminous efficiency. Embodiment 2 The manufacturing method used in this embodiment is similar to that of Embodiment 1, so the structure can also directly refer to FIG. 2E, the difference is that the metal reflective layer 203 (such as silver) is formed by sputtering in the manufacturing process. On the semiconductor layer 2〇2 (such as GaN), a copper-diamond composite material is used as the composite material layer 2〇6. Therefore, the composite material layer 2〇6' according to the present embodiment has a coefficient of thermal expansion of about 5 ppm/<t. The structure and characteristics of the other layers are as defined in Embodiment 1. Embodiment 3 As shown in FIG. 3, the manufacturing method used in the present embodiment is similar to that of Embodiment 1 and Embodiment 2, except that the intermediate layer 3〇4 and the diamond-like carbon layer 305 are sequentially formed in the manufacturing process. The stacked, and the laminated structure of the intermediate layer 3〇4 and the diamond-like carbon layer 3〇5 has a total thickness of about 3 μm, and in the present embodiment, a copper-nickel-diamond composite material is used as the composite material layer 306. Therefore, according to the composite material layer 306 of the present embodiment, the coefficient of thermal expansion can be adjusted to about 〇 ppm / C as required in the process. The structure and characteristics of the other layers are as defined in the embodiment i. Embodiment 4 201230401 As shown in FIG. 4, the manufacturing method used in the present embodiment is similar to that of Embodiment 1 and Embodiment 2, except that in the present embodiment, a diamond-like carbon layer and an intermediate layer are not formed, but are formed. a structure of a first electrode 407 / a semiconductor layer 402 / a metal reflective layer 403 / a composite material layer 406 / a second electrode 408, wherein the composite material layer 406 is directly soft soldered to about 30 by Au or Au-Sn The metal reflective layer 403 ′ or may be directly bonded to the composite material layer 406 and the metal reflective layer 403 at a high temperature in accordance with the requirements of the process. As for the layer structure (such as the substrate 'semiconductor layer' metal reflective layer, according to the embodiment, The composite material layer, and the first electrode layer and the second electrode layer are as defined in Embodiment 1. According to the foregoing embodiment, and referring to FIG. 5A to FIG. 7, the conventional light-emitting diode structure is in the mine. Before the step of stripping, a reflective metal layer (such as silver) is formed on the semiconductor layer, and then a conductive support is attached. However, the metal reflective layer tends to have a thermal expansion coefficient much larger than that of the semiconductor layer (such as GaN). So Therefore, the conventional light-emitting diode is infiltrated at the minimum of the A resistance when the current is energized, and the local temperature of the stress is rapidly increased, and the gold reflective layer will support the lattice of the semiconductor layer. And because of the frequent switching of the light-emitting diodes, the crystal lattice of the semiconductor layer will be repeatedly pulled to continuously produce defects, and it is easy to cause peeling between the metal reflective layer and the semiconductor layer (as shown in FIG. 5A and FIG. 5Β), resulting in a light-emitting diode. The brightness of the body is rapidly reduced. At this time, if the carbon layer of the borrowing type is used as the present invention, the high thermal conductivity is used to quickly eliminate the waste heat generated when the light emitting diode emits light, and the interface stress is greatly reduced. The effect is that the semiconductor layer can not cause problems such as light decay or service life caused by internal lattice defects due to uneven current density distribution (Fig. 6). 15 201230401 Furthermore, the composite according to the present invention is included. The material layer and the diamond-like carbon layer are exemplified by the light-emitting diode structure including the diamond-copper composite layer, and the analysis thereof is as shown in FIG. 7 'It is obvious that the thermal expansion can be effectively controlled according to the present invention. The coefficient can also reduce the thermal resistance. The thermal expansion coefficient (CTE) of the composite layer in the above embodiments of the present invention can be adjusted according to the diamond particle size and volume percentage, as described above, in order to control the preferred CTE値 ( For example, between 2-10 ppm/t:), the preferred diamond volume fraction is 30.50 Vol% (as shown in Figure 8), and the preferred diamond particle size is shown in Figure 9; 'The weight percentage of the barrier auxiliaries may be selectively used to be 2 to 5 wt%'. The carbide auxiliary agent may be Fe, Co, Ni, Cr, Ti, or B, etc. Therefore, 'according to the manufacturing method of the present embodiment The light-emitting diode can realize a vertical light-emitting diode having a large size (>lmm), a large current (>iA/mm2), and a high power (>10W), which is superior to the parallel A number of conventional light-emitting diodes that use current to bend current. Therefore, it has the advantage that the luminous efficiency is better to make it brighter, and the thermal conductivity of the carbon layer is excellent to eliminate the waste heat generated when the light is emitted, and to solve internal defects to make it more durable. The above-described embodiments are merely examples for the convenience of the description, and the scope of the invention is intended to be limited by the scope of the claims, and not limited to the above embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a light-emitting diode in the prior art. 2 to 2E are schematic flow charts showing a method of manufacturing a vertical light-emitting diode according to a preferred embodiment of the present invention. 201230401 FIG. 3 is a schematic structural view of a straight light emitting diode according to another preferred embodiment of the present invention. 4 is a schematic structural view of a straight light emitting diode according to still another preferred embodiment of the present invention. Fig. 5A to 5B show that the electroplated metal and the semiconductor layer in the structure of the light-emitting diode are not mechanically bonded, and the electron micrograph of the peeling is unintentional. Fig. 6 is a partial electron microscope photograph of a portion of a direct-emitting diode of a preferred embodiment of the present invention. Figure 7 is a graph comparing the thermal diffusivity and heat transfer coefficient of a composite material layer of the present invention. Figures 8 through 9 are graphs showing the comparison of diamond volume fractions of composite layers in the preferred embodiment of the present invention. [Main component symbol description] 101 substrate 107 positive electrode 2〇2 semiconductor layer 204, 304 intermediate layer 206, 306 composite material layer 100 light-emitting diode 102, 302, 402 semiconductor layer 108 negative electrode 201 substrate 203, 303 403 metal reflective layer 205, 305 type drilled carbon layer 207, 307, 407 first electrode 208, 308, 408 second electrode 17