TWI443870B - Vertical light emitting diode and its manufacturing method - Google Patents

Vertical light emitting diode and its manufacturing method Download PDF

Info

Publication number
TWI443870B
TWI443870B TW100100357A TW100100357A TWI443870B TW I443870 B TWI443870 B TW I443870B TW 100100357 A TW100100357 A TW 100100357A TW 100100357 A TW100100357 A TW 100100357A TW I443870 B TWI443870 B TW I443870B
Authority
TW
Taiwan
Prior art keywords
layer
diamond
manufacturing
emitting diode
vertical light
Prior art date
Application number
TW100100357A
Other languages
Chinese (zh)
Other versions
TW201230401A (en
Inventor
Chien Min Sung
Ming Chi Kan
I Chiao Lin
Shao Chung Hu
Original Assignee
Ritedia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritedia Corp filed Critical Ritedia Corp
Priority to TW100100357A priority Critical patent/TWI443870B/en
Priority to CN201110281347.4A priority patent/CN102593277B/en
Priority to US13/412,493 priority patent/US9006086B2/en
Publication of TW201230401A publication Critical patent/TW201230401A/en
Priority to US13/834,320 priority patent/US20140042473A1/en
Application granted granted Critical
Publication of TWI443870B publication Critical patent/TWI443870B/en

Links

Landscapes

  • Led Devices (AREA)

Description

垂直式發光二極體及其製造方法Vertical light-emitting diode and manufacturing method thereof

本發明係關於一種垂直式發光二極體及其製作方法,尤指一種具有大功率、且具大尺寸之垂直式發光二極體及其製作方法。The invention relates to a vertical light-emitting diode and a manufacturing method thereof, in particular to a vertical light-emitting diode with high power and large size and a manufacturing method thereof.

自60年代起,發光二極體的耗電量低及長效性的發光等優勢,已逐漸取代日常生活中用來照明或各種電器設備的指示燈或光源等用途。更有甚者,發光二極體朝向多色彩及高亮度的發展,已應用在大型戶外顯示看板或交通號誌。Since the 1960s, the advantages of low power consumption and long-lasting luminescence of LEDs have gradually replaced the use of indicators or light sources for lighting or various electrical appliances in daily life. What's more, the development of light-emitting diodes towards multi-color and high brightness has been applied to large outdoor display billboards or traffic signs.

然而,習知中所使用之發光二極體100,其結構多如圖1所示,係將正電極107及負電極108都作在同一側。再者,習知之發光二極體所使用之基材101(如藍寶石)不導電,因此電流在半導體層102中必須由垂直順流轉變為水平橫流,故而使得電流會集中在內彎處,無法完全使用P-N介面之電子層和電洞層,減少發光效率。此外,前述電流會在半導體層102之集中處產生熱點,使半導體層102中之晶格產生缺陷,因此影響發光二極體100之使用壽命;或者僅能以降低功率以避免熱點之產生,惟此會降低發光二極體100之發光效果並限制其用途。However, the light-emitting diode 100 used in the prior art has a structure as shown in FIG. 1, and the positive electrode 107 and the negative electrode 108 are all on the same side. Moreover, the substrate 101 (such as sapphire) used in the conventional light-emitting diode is not electrically conductive, so the current must be converted from a vertical downstream to a horizontal cross-flow in the semiconductor layer 102, so that the current is concentrated in the inner bend, which cannot be completely The electron layer and the hole layer of the PN interface are used to reduce luminous efficiency. In addition, the foregoing current may generate a hot spot at the concentration of the semiconductor layer 102, causing a defect in the crystal lattice in the semiconductor layer 102, thereby affecting the service life of the light-emitting diode 100; or only reducing the power to avoid the occurrence of hot spots. This reduces the luminous effect of the light-emitting diode 100 and limits its use.

發光二極體中造成電流轉彎的問題無法以封裝設計的改良來改善,例如即使以覆晶方式來製作發光二極體,仍無法避免電流轉彎產生熱點、造成晶格缺陷、影響發光效率、及使用壽命降低等缺失。The problem of causing current turning in the light-emitting diode cannot be improved by the improvement of the package design. For example, even if the light-emitting diode is fabricated by flip chip, it is impossible to avoid hot spots, cause lattice defects, affect luminous efficiency, and Loss of service life, etc.

因此,另有一種垂直式發光二極體將電極製作在該發光二極體兩側以改善電流方向之構想產生。然而,現在所使用之垂直式發光二極體,多使用碳化矽(SiC)基材來生長碳化鎵。但因SiC單晶基板價格太高,一般以Si或金屬等基板取代,並以金-金、金錫-金錫、銦-銦等金屬結合磊晶層。然而,由於此磊晶層與金屬基板或金屬結合層二種材料間之熱膨脹係數差異迥大,在後續的剝離製程中往往導致發光二極體的良率不佳。Therefore, another vertical light-emitting diode is produced by making electrodes on both sides of the light-emitting diode to improve the current direction. However, the vertical light-emitting diodes used today often use a tantalum carbide (SiC) substrate to grow gallium carbide. However, since the price of the SiC single crystal substrate is too high, it is generally replaced by a substrate such as Si or a metal, and the epitaxial layer is bonded with a metal such as gold-gold, gold-tin-gold-tin, or indium-indium. However, since the difference in thermal expansion coefficient between the epitaxial layer and the metal substrate or the metal bonding layer is large, the yield of the light emitting diode is often poor in the subsequent stripping process.

因此,目前亟需一種大功率、散熱效果佳、且具大尺寸之發光二極體及其製作方法。Therefore, there is a need for a light-emitting diode having a high power, a good heat dissipation effect, and a large size, and a manufacturing method thereof.

為達前述目的,本發明提供一種垂直式發光二極體之製造方法,其包括下列步驟:提供一基材;於基材上形成一半導體層,該半導體層係具有以第II至VI族元素所構成之化合物;形成一金屬反射層,使其與半導體層相互結合;形成至少一中間層及至少一類鑽碳層;形成一複合材料層;移除基材;以及形成一第一電極層及一第二電極層,其分別設置於半導體層及複合材料層之一側;其中,至少一中間層及至少一類鑽碳層係以疊層之方式相互堆疊於金屬反射層之一側。To achieve the foregoing objective, the present invention provides a method of fabricating a vertical light emitting diode comprising the steps of: providing a substrate; forming a semiconductor layer on the substrate, the semiconductor layer having elements of Group II to VI a compound formed by forming a metal reflective layer to be bonded to the semiconductor layer; forming at least one intermediate layer and at least one type of drilled carbon layer; forming a composite material layer; removing the substrate; and forming a first electrode layer and A second electrode layer is disposed on one side of the semiconductor layer and the composite material layer; wherein at least one intermediate layer and at least one type of drilled carbon layer are stacked on one side of the metal reflective layer in a stacked manner.

根據本發明之製造方法,其中將基材移除之方式沒有特殊限制,只要不會造成移除基材時,導致發光二極體中各層結構因產生介面應力而造成彎曲。較佳之移除方式係藉由一雷射使基材與半導體層產生剝離。According to the manufacturing method of the present invention, the manner in which the substrate is removed is not particularly limited as long as it does not cause the substrate to be removed, resulting in bending of each layer structure in the light-emitting diode due to interface stress. A preferred method of removal is to cause the substrate to be peeled off from the semiconductor layer by a laser.

此外,根據本發明之製造方法,可依製程上而選擇半導體層、金屬反射層、至少一中間層、及至少一類鑽碳層之形成方法,其中較佳可使用以陰極電弧、濺鍍、蒸鍍、電鍍、無電電鍍、或塗佈等沉積形成。In addition, according to the manufacturing method of the present invention, a semiconductor layer, a metal reflective layer, at least one intermediate layer, and at least one type of diamond-forming carbon layer may be selected according to a process, wherein a cathode arc, sputtering, steaming is preferably used. Deposited by plating, electroplating, electroless plating, or coating.

承上,根據本發明之製造方法,其中基材可為Al2 O3 (藍寶石)、Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、或C(鑽石)之基板;或為至少一陽離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物之基板;半導體層之組成可為Al2 O3 (藍寶石)、Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、或C(鑽石);或為至少一陽離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物;金屬反射層可為至少一選自由Ag、Al、Ni、Co、Pd、Pt、Au、Zn、Sn、Sb、Pb、Cu、CuAg、NiAg、及前述金屬合金所組成之群組,且金屬反射層之厚度沒有限制,只要可以達成導引光線及增加發光效率即可,較佳可為100-500 nm,最佳為200 nm。According to the manufacturing method of the present invention, the substrate may be a substrate of Al 2 O 3 (sapphire), Si, SiC, GaAs, GaP, AlP, GaN, C (graphite), hBN, or C (diamond); Or a substrate having at least one cation of a nitride of B, Al, Ga, In, Be, Mg, a phosphide, or an arsenide; the composition of the semiconductor layer may be Al 2 O 3 (sapphire), Si, SiC, GaAs, GaP, AlP, GaN, C (graphite), hBN, or C (diamond); or a nitride, phosphide, or arsenide of at least one cation of B, Al, Ga, In, Be, Mg; metal reflective layer It may be at least one selected from the group consisting of Ag, Al, Ni, Co, Pd, Pt, Au, Zn, Sn, Sb, Pb, Cu, CuAg, NiAg, and the foregoing metal alloy, and the thickness of the metal reflective layer There is no limitation, as long as the guiding light can be achieved and the luminous efficiency is increased, preferably 100-500 nm, and most preferably 200 nm.

根據本發明之製造方法,其中,中間層之材質係選擇使用能與碳產生反應,且能合成碳化物(carbide former)之金屬皆可,較佳為可包括至少一選自由Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、及前述金屬之合金所組成之群組等材料。而該中間層之厚度沒有限制,較佳為50-500 nm,更佳為100 nm。According to the manufacturing method of the present invention, the material of the intermediate layer is selected to use a metal capable of reacting with carbon and capable of synthesizing a carbide former, and preferably includes at least one selected from the group consisting of Ti, V, and Cr. A material such as a group consisting of Zr, Nb, Mo, Hf, Ta, W, and an alloy of the foregoing metals. The thickness of the intermediate layer is not limited, and is preferably 50 to 500 nm, more preferably 100 nm.

根據本發明之製造方法,類鑽碳層是用以排除發光二極體在發光時所產生之廢熱,並以傳導之方式迅速排除,藉以延長發光二極體之使用壽命。According to the manufacturing method of the present invention, the diamond-like carbon layer is used to eliminate the waste heat generated by the light-emitting diode during light emission, and is quickly eliminated in a conductive manner, thereby prolonging the service life of the light-emitting diode.

根據本發明之製造方法,複合材料層可包括至少一金屬及鑽石所組成之複合材料,且鑽石於複合材料層中可以一單層、多層、或隨機分佈之佈鑽排列,其中鑽石約佔複合材料層總體積之25-60%,較佳為30-50%。至於金屬之組成可為至少一選自由Cu、Ag、Co、Ni、W、Fe、Ti、Cr及B所組成之群組;鑽石可為合成鑽石磨粒(synthetic diamond grits),且鑽石之較佳粒徑為1 μm~1 mm。According to the manufacturing method of the present invention, the composite material layer may comprise a composite material composed of at least one metal and diamond, and the diamond may be arranged in a single layer, a plurality of layers, or a randomly distributed cloth in the composite layer, wherein the diamond occupies a composite The total volume of the material layer is 25-60%, preferably 30-50%. The composition of the metal may be at least one selected from the group consisting of Cu, Ag, Co, Ni, W, Fe, Ti, Cr, and B; the diamond may be synthetic diamond grits, and the diamonds are The preferred particle size is from 1 μm to 1 mm.

根據本發明之製造方法,複合材料層之厚度沒有特別限制,較佳之厚度為100-500 μm,更佳為150 μm。此外,複合材料層之熱膨脹係數係可依所需而進行調整,以避免製造過程中因介面應力而導致發光二極體之半導體層產生彎曲或內部缺陷,進而使產品良率下降而增加生產成本或光衰減效應;根據根據本發明之製造方法,複合材料層較佳之熱膨脹係數為在2~10 ppm/℃間。再者,根據本發明之製造方法,其中更包括有一將該複合材料層之表面拋光至Ra<1μm之步驟,主要是使基材與發光二極體結構剝離時,仍可保持剝離面的平坦面之誤差小於1 mm。According to the manufacturing method of the present invention, the thickness of the composite material layer is not particularly limited, and a thickness is preferably from 100 to 500 μm, more preferably 150 μm. In addition, the thermal expansion coefficient of the composite layer can be adjusted as needed to avoid bending or internal defects of the semiconductor layer of the light-emitting diode due to the interface stress during the manufacturing process, thereby reducing the yield of the product and increasing the production cost. Or a light attenuating effect; according to the manufacturing method according to the present invention, the composite layer preferably has a coefficient of thermal expansion of from 2 to 10 ppm/°C. Furthermore, according to the manufacturing method of the present invention, the method further comprises the step of polishing the surface of the composite material layer to Ra<1 μm, mainly to keep the peeling surface flat when the substrate and the light emitting diode structure are peeled off. The surface error is less than 1 mm.

根據本發明之製造方法,其中更包括有一透明類鑽碳層形成於半導體層之一側,其作用主要將發光二極體中所產生之熱輻射(如螢光粉層)能迅速排除,藉以增加方光效率及產品週期。至於透明類鑽碳層可依所需使用任何沉積法而得,較佳為使用電漿化學氣相沉積法(PECVD)來形成。此外,上述透明類鑽碳層可進一步包括有氫原子於其中,其含量若以透明類鑽碳層全部計算,氫原子可約佔15-40原子百分比,藉以增加熱排除效應及發光二極體之發光效率。According to the manufacturing method of the present invention, a transparent diamond-like carbon layer is further formed on one side of the semiconductor layer, and the function thereof mainly removes heat radiation (such as a phosphor powder layer) generated in the light-emitting diode quickly. Increase the efficiency of the square light and product cycle. As for the transparent diamond-like carbon layer, any deposition method may be used as desired, and it is preferably formed by plasma chemical vapor deposition (PECVD). In addition, the transparent diamond-like carbon layer may further include a hydrogen atom therein, and the content thereof may be about 15-40 atomic percent of the transparent diamond-like carbon layer, thereby increasing the heat-eliminating effect and the light-emitting diode. Luminous efficiency.

本發明亦提供一種垂直式發光二極體之製造方法,其包括下列步驟:提供一基材;於基材上形成一半導體層,半導體層係具有以第II至VI族元素所構成之化合物;形成一金屬反射層,使其與半導體層相互結合;形成一複合材料層;移除該基材;以及形成一第一電極層及一第二電極層,其分別設置於該半導體層及該複合材料層之一側。至於根據本製造方法,其中之方法步驟及各層結構(如基材、半導體層、金屬反射層、複合材料層、及第一電極層及第二電極層)之定義係如上述。The invention also provides a method for manufacturing a vertical light-emitting diode, comprising the steps of: providing a substrate; forming a semiconductor layer on the substrate, the semiconductor layer having a compound composed of elements of Group II to VI; Forming a metal reflective layer to be bonded to the semiconductor layer; forming a composite material layer; removing the substrate; and forming a first electrode layer and a second electrode layer respectively disposed on the semiconductor layer and the composite One side of the material layer. As for the manufacturing method, the method steps and the structure of each layer (such as a substrate, a semiconductor layer, a metal reflective layer, a composite material layer, and a first electrode layer and a second electrode layer) are defined as described above.

本發明之另一目的在提供一種垂直式發光二極體,其包括:一半導體層,其係具有以第II至VI族元素所構成之化合物;一金屬反射層,係與半導體層相互結合;至少一中間層;至少一類鑽碳層;一複合材料層;以及一第一電極層及一第二電極層,其分別設置於半導體層及複合材料層之一側;其中,至少一中間層及至少一類鑽碳層係以疊層之方式相互堆疊於金屬反射層之一側。Another object of the present invention is to provide a vertical light emitting diode comprising: a semiconductor layer having a compound composed of elements of Group II to VI; a metal reflective layer bonded to the semiconductor layer; At least one intermediate layer; at least one type of drilled carbon layer; a composite material layer; and a first electrode layer and a second electrode layer respectively disposed on one side of the semiconductor layer and the composite material layer; wherein at least one intermediate layer and At least one type of drilled carbon layer is stacked on one side of the metal reflective layer in a stacked manner.

根據本發明之垂直式發光二極體,其中半導體層之組成可為Al2 O3 (藍寶石)、Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、或C(鑽石);或為至少一陽離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物;金屬反射層可為至少一選自由Ag、Al、Ni、Co、Pd、Pt、Au、Zn、Sn、Sb、Pb、Cu、CuAg、NiAg、及前述金屬合金所組成之群組,且金屬反射層之厚度沒有限制,只要可以達成導引光線及增加發光效率即可,較佳可為100-500 nm,最佳為200 nm。A vertical light emitting diode according to the present invention, wherein the composition of the semiconductor layer may be Al 2 O 3 (sapphire), Si, SiC, GaAs, GaP, AlP, GaN, C (graphite), hBN, or C (diamond) Or at least one cation is a nitride, phosphide, or arsenide of B, Al, Ga, In, Be, Mg; the metal reflective layer may be at least one selected from the group consisting of Ag, Al, Ni, Co, Pd, Pt, Au, Zn, Sn, Sb, Pb, Cu, CuAg, NiAg, and the foregoing metal alloy group, and the thickness of the metal reflective layer is not limited, as long as the guiding light can be achieved and the luminous efficiency is increased, preferably It can be 100-500 nm, preferably 200 nm.

根據本發明之垂直式發光二極體,其中,中間層之材質係選擇使用能與碳產生反應,且能合成碳化物(carbide former)之金屬皆可,較佳為可包括至少一選自由Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、及前述金屬之合金所組成之群組等材料。而該中間層之厚度沒有限制,較佳為50-500 nm,更佳為100 nm。According to the vertical light-emitting diode of the present invention, the material of the intermediate layer is selected to use a metal capable of reacting with carbon and capable of synthesizing a carbide former, preferably including at least one selected from the group consisting of Ti. A material such as a group consisting of V, Cr, Zr, Nb, Mo, Hf, Ta, W, and an alloy of the foregoing metals. The thickness of the intermediate layer is not limited, and is preferably 50 to 500 nm, more preferably 100 nm.

根據本發明之垂直式發光二極體,類鑽碳層是用以排除發光二極體在發光時所產生之廢熱,並以傳導之方式迅速排除,藉以延長發光二極體之使用壽命。According to the vertical light-emitting diode of the present invention, the diamond-like carbon layer is used to eliminate the waste heat generated by the light-emitting diode during light emission, and is quickly removed in a conductive manner, thereby prolonging the service life of the light-emitting diode.

根據本發明之垂直式發光二極體,複合材料層可包括至少一金屬及鑽石所組成之複合材料,且鑽石於複合材料層中可以一單層、多層、或隨機分佈之佈鑽排列,其中鑽石約佔複合材料層總體積之25-60%,較佳為30-50%。至於金屬之組成可為至少一選自由Cu、Ag、Co、Ni、W、Fe、Ti、Cr及B所組成之群組;鑽石可為合成鑽石磨粒(synthetic diamond grits),且鑽石之較佳粒徑為1 μm~1 mm。According to the vertical light-emitting diode of the present invention, the composite material layer may comprise a composite material composed of at least one metal and diamond, and the diamond may be arranged in a single layer, a plurality of layers, or a randomly distributed cloth in the composite layer, wherein The diamond accounts for about 25-60% of the total volume of the composite layer, preferably 30-50%. The composition of the metal may be at least one selected from the group consisting of Cu, Ag, Co, Ni, W, Fe, Ti, Cr, and B; the diamond may be synthetic diamond grits, and the diamonds are The preferred particle size is from 1 μm to 1 mm.

根據本發明之垂直式發光二極體,複合材料層之厚度沒有特別限制,較佳之厚度為100-500 μm,更佳為150 μm。此外,複合材料層之熱膨脹係數係可依所需而進行調整,以避免製造過程中因介面應力而導致發光二極體之半導體層產生彎曲或內部缺陷,進而使產品良率下降而增加生產成本或光衰減效應;根據根據本發明之製造方法,複合材料層較佳之熱膨脹係數為在2~10 ppm/℃間。再者,根據本發明之垂直式發光二極體,其中複合材料層之表面具有拋光至Ra<1μm。According to the vertical light-emitting diode of the present invention, the thickness of the composite material layer is not particularly limited, and a thickness is preferably from 100 to 500 μm, more preferably 150 μm. In addition, the thermal expansion coefficient of the composite layer can be adjusted as needed to avoid bending or internal defects of the semiconductor layer of the light-emitting diode due to the interface stress during the manufacturing process, thereby reducing the yield of the product and increasing the production cost. Or a light attenuating effect; according to the manufacturing method according to the present invention, the composite layer preferably has a coefficient of thermal expansion of from 2 to 10 ppm/°C. Further, according to the vertical light-emitting diode of the present invention, the surface of the composite material layer is polished to Ra < 1 μm.

根據本發明之垂直式發光二極體,其中更包括有一透明類鑽碳層形成於半導體層之一側,其作用主要將發光二極體中所產生之熱輻射(如螢光粉層)能迅速排除,藉以增加方光效率及產品週期。至於透明類鑽碳層可依所需使用任何沉積法而得,較佳為使用電漿化學氣相沉積法(PECVD)來形成。此外,上述透明類鑽碳層可進一步包括有氫原子於其中,其含量若以透明類鑽碳層全部計算,氫原子可約佔15-40原子百分比,藉以增加熱排除效應及發光二極體之發光效率。The vertical light-emitting diode according to the present invention further comprises a transparent diamond-like carbon layer formed on one side of the semiconductor layer, the main function of which is to enable thermal radiation (such as a phosphor layer) generated in the light-emitting diode. Quickly eliminate, in order to increase the efficiency and product cycle. As for the transparent diamond-like carbon layer, any deposition method may be used as desired, and it is preferably formed by plasma chemical vapor deposition (PECVD). In addition, the transparent diamond-like carbon layer may further include a hydrogen atom therein, and the content thereof may be about 15-40 atomic percent of the transparent diamond-like carbon layer, thereby increasing the heat-eliminating effect and the light-emitting diode. Luminous efficiency.

根據本發明之再一目的,在提供一種垂直式發光二極體,其包括:一半導體層,其具有以第II至VI族元素所構成之化合物;一金屬反射層,係與半導體層相互結合;一複合材料層;以及一第一電極層及一第二電極層,其分別設置於半導體層及複合材料層之一側;其中,複合材料層係以Au或Au-Sn於約300℃直接軟焊接合至金屬反射層,或直接以高溫接合之方式。至於根據本垂直式發光二極體之結構,其中各層結構(如基材、半導體層、金屬反射層、複合材料層、及第一電極層及第二電極層)之定義係如上述。According to still another object of the present invention, there is provided a vertical light emitting diode comprising: a semiconductor layer having a compound composed of elements of Group II to VI; and a metal reflective layer bonded to the semiconductor layer a composite material layer; and a first electrode layer and a second electrode layer respectively disposed on one side of the semiconductor layer and the composite material layer; wherein the composite material layer is directly at about 300 ° C with Au or Au-Sn Soft soldering is applied to the metal reflective layer or directly to high temperature bonding. As for the structure of the vertical light-emitting diode, the definition of each layer structure (such as a substrate, a semiconductor layer, a metal reflective layer, a composite material layer, and a first electrode layer and a second electrode layer) is as described above.

由上述可知,習知所使用之發光二極體由於正負兩電極都射在同側,且因習知之發光二極體所使用之基材(如藍寶石)不導電,因此電流在半導體層中必須由垂直順流轉變為水平橫流,故而使得電流會集中在內彎處,無法完全使用P-N介面之電子層和電洞層,減少發光效率。此外,前述電流會在集中處產生熱點,使半導體層中之晶格產生缺陷,因此影響發光二極體之使用壽命。然而,根據本發明之垂直式發光二極體及製造方法,其不僅使用由至少一金屬及鑽石所組成之複合材料層,並同時使用至少一中間層及至少一類鑽碳層,且將第一電極層及一第二電極層分別設置於分光二極體結構之兩側。由此,本發明藉類鑽碳層所具有高的熱傳導率,以迅速排除發光二極體發光時所產生之廢熱,並使半導體層中不會因電流密度分佈不均而產生內部晶格缺陷所導致光衰或使用壽命等問題。It can be seen from the above that the conventionally used light-emitting diodes are incident on the same side because both positive and negative electrodes are used, and since the substrate (such as sapphire) used in the conventional light-emitting diode is not electrically conductive, the current must be in the semiconductor layer. The vertical forward flow is converted into a horizontal cross flow, so that the current is concentrated in the inner bend, and the electron layer and the hole layer of the PN interface cannot be completely used, thereby reducing the luminous efficiency. In addition, the aforementioned current generates a hot spot at the concentration, causing a defect in the crystal lattice in the semiconductor layer, thus affecting the service life of the light-emitting diode. However, the vertical light-emitting diode according to the present invention and the manufacturing method thereof use not only a composite material layer composed of at least one metal and diamond, but also at least one intermediate layer and at least one type of drill carbon layer, and will be first The electrode layer and the second electrode layer are respectively disposed on both sides of the beam splitting diode structure. Therefore, the carbon fiber layer of the invention has high thermal conductivity, so as to quickly eliminate the waste heat generated when the light-emitting diode emits light, and the internal crystal lattice defect is not generated in the semiconductor layer due to uneven current density distribution. Problems such as light decay or service life.

因此,根據本發明之發光二極體及其製造方法,可實現一種具有大尺寸(>1mm)、大電流(>1A/mm2 )、及大功率(>10W)之垂直式發光二極體,其顯會優於並聯多顆習知使用電流以彎流式之發光二極體。根據本發明之垂直式發光二極體及其製造方法,具有發光效率更佳使其更光亮,且藉類鑽碳層優異的熱傳導率以排除發光時所產生之廢熱,以及解決內部缺陷使其更耐久等優點。Therefore, according to the light-emitting diode of the present invention and the method of manufacturing the same, a vertical light-emitting diode having a large size (>1 mm), a large current (>1 A/mm 2 ), and a high power (>10 W) can be realized. It is better than paralleling a plurality of conventional light-emitting diodes that use current to bend current. According to the vertical light-emitting diode of the present invention and the method of manufacturing the same, the light-emitting efficiency is better to make it brighter, and the thermal conductivity of the carbon-like layer is excellent to eliminate the waste heat generated when the light is emitted, and to solve internal defects. More durable and so on.

請參閱圖2E及圖3,其係根據本發明製造方法所獲得之垂直式發光二極體結構,包括有一半導體層202,其係具有以第II至VI族元素所構成之化合物;一金屬反射層203,係與半導體層202相互結合;至少一中間層204;至少一類鑽碳層205;一複合材料層206;以及一可為負電極之第一電極層207及一可為正電極之第二電極層208,其分別設置於半導體層202及複合材料層206之一側;其中,至少一中間層204及至少一類鑽碳層205係以疊層之方式相互堆疊於金屬反射層之一側。Referring to FIG. 2E and FIG. 3, the vertical LED structure obtained by the manufacturing method of the present invention comprises a semiconductor layer 202 having a compound composed of elements of Group II to VI; a metal reflection. The layer 203 is combined with the semiconductor layer 202; at least one intermediate layer 204; at least one type of drilled carbon layer 205; a composite material layer 206; and a first electrode layer 207 which may be a negative electrode and a first electrode which may be a positive electrode The two electrode layers 208 are respectively disposed on one side of the semiconductor layer 202 and the composite material layer 206; wherein at least one intermediate layer 204 and at least one type of drilled carbon layer 205 are stacked on one side of the metal reflective layer in a stacked manner .

以下,將詳述本發明垂直式發光二極體之製造方法:Hereinafter, a method of manufacturing the vertical light-emitting diode of the present invention will be described in detail:

實施例1Example 1

請參閱圖2A至2E,係本發明製造垂直式發光二極體之一具體實施例。首先,如圖2A所示,提供一基材201,在本實施例中基材201為使用藍寶石基板,並可依製程上之所需,選擇使用Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、C(鑽石)、或至少一陽離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物之基板。接著如圖2B,於基材201上形成一半導體層202,該半導體層202係具有以第II至VI族元素所構成之化合物,例如Al2 O3 (藍寶石)、Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、C(鑽石)、或至少一陽離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物,在本實施例中係使用GaN作為半導體層202。其後如圖2C所示,形成一金屬反射層203,以陰極電弧之方式使其沉積並與半導體層202相互結合,金屬反射層203可為Ag或Al,其他可選擇為金屬反射層203之材料如Ni、Co、Pd、Pt、Au、Zn、Sn、Sb、Pb、Cu、CuAg、NiAg、或前述金屬合金皆可,且金屬反射層203之厚度沒有限制,只要可以達成導引光線及增加發光效率即可,較佳可為100-500 nm,在本實施例中之金屬反射層203為約200 nm。Referring to Figures 2A through 2E, a specific embodiment of the present invention for fabricating a vertical light-emitting diode is shown. First, as shown in FIG. 2A, a substrate 201 is provided. In the embodiment, the substrate 201 is a sapphire substrate, and Si, SiC, GaAs, GaP, AlP, GaN, and the like are selected according to the requirements of the process. C (graphite), hBN, C (diamond), or a substrate in which at least one cation is a nitride, phosphide, or arsenide of B, Al, Ga, In, Be, Mg. Next, as shown in FIG. 2B, a semiconductor layer 202 is formed on the substrate 201, and the semiconductor layer 202 has a compound composed of elements of Group II to VI, such as Al 2 O 3 (sapphire), Si, SiC, GaAs, GaP. , AlP, GaN, C (graphite), hBN, C (diamond), or at least one cation is a nitride, phosphide, or arsenide of B, Al, Ga, In, Be, Mg, in this embodiment GaN is used as the semiconductor layer 202. Thereafter, as shown in FIG. 2C, a metal reflective layer 203 is formed, which is deposited by a cathodic arc and bonded to the semiconductor layer 202. The metal reflective layer 203 may be Ag or Al, and other metal reflective layers 203 may be selected. The material may be Ni, Co, Pd, Pt, Au, Zn, Sn, Sb, Pb, Cu, CuAg, NiAg, or the foregoing metal alloy, and the thickness of the metal reflective layer 203 is not limited as long as the guiding light can be achieved. The luminous efficiency may be increased, preferably 100-500 nm, and the metal reflective layer 203 in the present embodiment is about 200 nm.

接著,如圖2D所示,依序以如濺鍍之方式形成一中間層204及一類鑽碳層205,其中關於中間層204之材質係選擇只要是使用能與碳產生反應,且能合成碳化物之金屬皆可,較佳為可包括至少一選自由Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、及前述金屬之合金所組成之群組等材料,在本實施例中係使用鈦作為中間層204。至於中間層204之厚度沒有限制,較佳為50-500 nm,本實施例之中間層約為100 nm。而類鑽碳層205之厚度沒有特別限制,只要能達成較佳之散熱效果及與中間層204能緊密結合即可,並可因中間層204及類鑽碳層205以疊層之方式相互堆疊,進一步達成降低發光二極體中各層結構因產生介面應力而造成彎曲之情形,而導致良率降低,類鑽碳層205較佳厚度為大於300nm以上皆可,本實施例以約500nm厚度之類鑽碳層205。此外,更可依製程上之所需,選擇性地再形成一較薄之中間層204(約60 nm)於上類鑽碳層205,而形成如圖2D所示之結構。Next, as shown in FIG. 2D, an intermediate layer 204 and a type of drilled carbon layer 205 are sequentially formed by sputtering, wherein the material of the intermediate layer 204 is selected to be capable of reacting with carbon and capable of synthesizing carbonization. The metal of the material may preferably comprise at least one material selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, and alloys of the foregoing metals, in this embodiment. Titanium is used as the intermediate layer 204. As for the thickness of the intermediate layer 204, there is no limitation, preferably 50-500 nm, and the intermediate layer of this embodiment is about 100 nm. The thickness of the diamond-like carbon layer 205 is not particularly limited as long as a better heat dissipation effect can be achieved and the intermediate layer 204 can be tightly bonded, and the intermediate layer 204 and the diamond-like carbon layer 205 can be stacked on each other in a stacked manner. Further, the situation that the structure of each layer in the light-emitting diode is bent due to the interface stress is reduced, and the yield is lowered. The thickness of the diamond-like carbon layer 205 is preferably greater than 300 nm, and the embodiment has a thickness of about 500 nm or the like. The carbon layer 205 is drilled. In addition, a thinner intermediate layer 204 (about 60 nm) can be selectively formed on the upper diamond-like carbon layer 205 to form a structure as shown in FIG. 2D.

最後,如圖2E,形成一複合材料層206於前述結構上,並移除基材201;其後並形成一第一電極層207及一第二電極層208,其分別設置於半導體層202及複合材料層206之一側。而複合材料層206可包括至少一金屬及鑽石所組成之複合材料,且鑽石於該複合材料層中也可選擇性地以一單層、多層、或隨機分佈之佈鑽排列。其中鑽石約佔複合材料層206總體積之25-60%,較佳可如本實施例使用鑽石係佔複合材料層總體積之30-50%之比例。至於金屬之組成可為至少一選自由Cu、Ag、Co、Ni、W、Fe、Ti、Cr及B所組成之群組,在本實施例中係以金屬鎳為其組成;鑽石可為合成鑽石磨粒(synthetic diamond grits),且鑽石之較佳粒徑為1 μm-1 mm。換句話說,本實施例之複合材料層206係為使用一鎳-鑽石複合材料。至於複合材料層206之厚度較佳之厚度為100-500 μm,本實施例中複合材料層206之厚度為約150 μm。Finally, as shown in FIG. 2E, a composite material layer 206 is formed on the foregoing structure, and the substrate 201 is removed. Thereafter, a first electrode layer 207 and a second electrode layer 208 are formed, which are respectively disposed on the semiconductor layer 202 and One side of the composite layer 206. The composite material layer 206 may comprise a composite material composed of at least one metal and diamond, and the diamond may also be selectively arranged in a single layer, a plurality of layers, or a randomly distributed cloth in the composite layer. The diamond accounts for about 25-60% of the total volume of the composite layer 206, preferably in the proportion of 30-50% of the total volume of the composite layer used in this embodiment. The composition of the metal may be at least one selected from the group consisting of Cu, Ag, Co, Ni, W, Fe, Ti, Cr, and B. In this embodiment, metal nickel is used as the composition; the diamond may be synthesized. Synthetic diamond grits, and the preferred particle size of the diamond is 1 μm-1 mm. In other words, the composite layer 206 of the present embodiment is a nickel-diamond composite. As for the thickness of the composite material layer 206, which is preferably 100-500 μm, the thickness of the composite material layer 206 in the present embodiment is about 150 μm.

根據本實施例,基材201移除之方式係藉由一氣體雷射(KrF,波長約248 nm)使基材與半導體層產生剝離。藉此方法不僅較為迅速簡便,且因本實施例所製備而得的垂直式發光二極體結構,也不會造成移除基材201時,導致發光二極體中各層結構因產生介面應力而造成彎曲。再者,根據本實施例,將複合材料層206之表面進行拋光至Ra<1μm之步驟,主要是使基材201與發光二極體結構剝離時,仍可保持剝離面的平坦面之誤差小於1 mm。According to this embodiment, the substrate 201 is removed by peeling off the substrate from the semiconductor layer by a gas laser (KrF, wavelength about 248 nm). The method is not only relatively quick and simple, but also the vertical light-emitting diode structure prepared by the embodiment does not cause the substrate layer 201 to be removed due to the interface stress caused by the removal of the substrate 201. Causes bending. Furthermore, according to the embodiment, the step of polishing the surface of the composite material layer 206 to Ra<1 μm is mainly to prevent the flat surface of the peeling surface from being less than that when the substrate 201 and the light emitting diode structure are peeled off. 1 mm.

此外,根據本實施例之製造方法,可依製程上而選擇半導體層202、金屬反射層203、中間層204、及類鑽碳層205之形成方法,其中亦可使用以陰極電弧、濺鍍、蒸鍍、電鍍、無電電鍍、塗佈、銲接、或沉積等方式形成。In addition, according to the manufacturing method of the embodiment, the semiconductor layer 202, the metal reflective layer 203, the intermediate layer 204, and the diamond-like carbon layer 205 may be formed according to a process, in which a cathode arc, sputtering, or the like may be used. Formed by evaporation, electroplating, electroless plating, coating, soldering, or deposition.

承前所述,複合材料層206之熱膨脹係數係可依所需而進行調整,以避免製造過程中因介面應力而導致發光二極體之半導體層202產生彎曲或內部缺陷,進而使產品良率下降而增加生產成本或光衰減效應;根據本實施例之複合材料層206,其熱膨脹係數約在10 ppm/℃。As mentioned above, the coefficient of thermal expansion of the composite material layer 206 can be adjusted as needed to avoid bending or internal defects of the semiconductor layer 202 of the light-emitting diode due to interface stress during the manufacturing process, thereby reducing the yield of the product. The production cost or the light attenuation effect is increased; the composite material layer 206 according to this embodiment has a thermal expansion coefficient of about 10 ppm/°C.

根據本實施例之製造方法,可進一步選擇將一透明類鑽碳層(圖未示)形成於半導體層之一側,其作用主要將發光二極體中所產生之熱輻射(如螢光粉層)能迅速排除,藉以增加發光效率及產品週期。至於透明類鑽碳層可依所需使用任何沉積法而得,例如可使用電漿化學氣相沉積法(PECVD)來形成。此外,上述透明類鑽碳層可進一步包括有氫原子於其中,其含量若以透明類鑽碳層全部計算,氫原子可約佔15-40原子百分比,藉以增加熱排除效應及發光二極體之發光效率。According to the manufacturing method of the embodiment, a transparent diamond-like carbon layer (not shown) may be further formed on one side of the semiconductor layer, and the main function thereof is to generate heat radiation (such as phosphor powder) generated in the light-emitting diode. Layer) can be quickly eliminated to increase luminous efficiency and product cycle. As for the transparent diamond-like carbon layer, any deposition method may be used as needed, for example, by plasma chemical vapor deposition (PECVD). In addition, the transparent diamond-like carbon layer may further include a hydrogen atom therein, and the content thereof may be about 15-40 atomic percent of the transparent diamond-like carbon layer, thereby increasing the heat-eliminating effect and the light-emitting diode. Luminous efficiency.

實施例2Example 2

在本實施例中所使用之製造方法與實施例1相似,故結構亦可直接參照如圖2E,差異在於製造過程中將金屬反射層203(如銀)係以濺鍍之方式形成於半導體層202(如GaN)上,且係使用一銅-鑽石複合材料作為複合材料層206。因此,根據本實施例之複合材料層206,其熱膨脹係數約在5 ppm/℃。至於其他各層之結構與特徵係如實施例1中所定義。The manufacturing method used in this embodiment is similar to that of the first embodiment. Therefore, the structure can also be directly referred to as FIG. 2E. The difference is that the metal reflective layer 203 (such as silver) is formed on the semiconductor layer by sputtering in the manufacturing process. On a 202 (such as GaN), a copper-diamond composite is used as the composite layer 206. Therefore, the composite material layer 206 according to the present embodiment has a coefficient of thermal expansion of about 5 ppm/°C. The structure and characteristics of the other layers are as defined in Embodiment 1.

實施例3Example 3

如圖3所示,在本實施例中所使用之製造方法與實施例1及實施例2相似,差異在於製造過程中將製作中間層304及類鑽碳層305依序相互堆疊,且該中間層304及類鑽碳層305之疊層結構總厚度約為3μm,且在本實施例中係使用一銅-鎳-鑽石複合材料作為複合材料層306。因此,根據本實施例之複合材料層306,其熱膨脹係數可依製程上之所需調整約在2~10 ppm/℃。至於其他各層之結構與特徵係如實施例1中所定義。As shown in FIG. 3, the manufacturing method used in the present embodiment is similar to that of Embodiment 1 and Embodiment 2, except that the intermediate layer 304 and the diamond-like carbon layer 305 are sequentially stacked on each other in the manufacturing process, and the middle is stacked. The laminate structure of layer 304 and diamond-like carbon layer 305 has a total thickness of about 3 μm, and in the present embodiment a copper-nickel-diamond composite is used as composite layer 306. Therefore, according to the composite material layer 306 of the present embodiment, the coefficient of thermal expansion can be adjusted to about 2 to 10 ppm/° C. as required in the process. The structure and characteristics of the other layers are as defined in Embodiment 1.

實施例4Example 4

如圖4所示,在本實施例中所使用之製造方法與實施例1及實施例2相似,差異在於在本實施例中沒有形成類鑽碳層及中間層,而是形成一第一電極407/半導體層402/金屬反射層403/複合材料層406/第二電極408之結構,而其中複合材料層406係以Au或Au-Sn於約300℃直接軟焊接合至金屬反射層403,或可依製程所需,直接以高溫接合直接結合複合材料層406及金屬反射層403之方式。至於根據本實施例之各層結構(如基材、半導體層、金屬反射層、複合材料層、及第一電極層及第二電極層)係如實施例1所定義。As shown in FIG. 4, the manufacturing method used in the present embodiment is similar to that of Embodiment 1 and Embodiment 2, except that in the present embodiment, the diamond-like carbon layer and the intermediate layer are not formed, but a first electrode is formed. 407 / semiconductor layer 402 / metal reflective layer 403 / composite material layer 406 / second electrode 408 structure, and wherein the composite material layer 406 is directly soft soldered to the metal reflective layer 403 at about 300 ° C with Au or Au-Sn, Alternatively, the composite material layer 406 and the metal reflective layer 403 may be directly bonded at a high temperature as required by the process. The layer structures (such as the substrate, the semiconductor layer, the metal reflective layer, the composite material layer, and the first electrode layer and the second electrode layer) according to the present embodiment are as defined in Embodiment 1.

根據前述實施例,並請參閱圖5A至圖7,習知中發光二極體結構在進行雷射剝離之步驟前,會在半導體層上製作一層反射金屬層(如銀),其後並再接上一導電的支撐體。然而,金屬反射層往往因熱膨脹係數遠大於半導體層(如GaN),所以介面會產生應力。鑑此,習知之發光二極體在通電時電流乃沿電阻最小處滲透前進,應力較大的局部溫度會快速昇高,金屬反射層會把半導體層之晶格撐大。並由於發光二極體開關頻繁,半導體層晶格會被重覆拉扯以致不斷產出缺陷,且易造成金屬反射層與半導體層間之剝離(如圖5A及圖5B),以致造成發光二極體的亮度就會快速減低。在此時,若如本發明使用藉類鑽碳層所具有高的熱傳導率,以迅速排除發光二極體發光時所產生之廢熱,且因具大幅降低介面應力之功效,並能使半導體層中不會因電流密度分佈不均而產生內部晶格缺陷所導致光衰或使用壽命等問題(如圖6)。According to the foregoing embodiment, and referring to FIG. 5A to FIG. 7, the light-emitting diode structure of the prior art may form a reflective metal layer (such as silver) on the semiconductor layer before the step of performing laser stripping, and then Connect a conductive support. However, the metal reflective layer tends to generate stress because the coefficient of thermal expansion is much larger than that of the semiconductor layer (such as GaN). In view of this, the current of the conventional light-emitting diode is infiltrated along the minimum resistance when the current is energized, and the local temperature of the stress is rapidly increased, and the metal reflective layer will support the lattice of the semiconductor layer. And because of the frequent switching of the LED, the crystal lattice of the semiconductor layer is repeatedly pulled to continuously produce defects, and it is easy to cause peeling between the metal reflective layer and the semiconductor layer (as shown in FIGS. 5A and 5B), resulting in a light-emitting diode. The brightness will be reduced quickly. At this time, if the carbon layer of the borrowed diamond is used in the present invention to have a high thermal conductivity, the waste heat generated when the light emitting diode emits light is quickly eliminated, and the semiconductor layer can be obtained by greatly reducing the effect of the interface stress. There will be no problems such as light decay or service life caused by internal lattice defects due to uneven current density distribution (Figure 6).

再者,根據本發明所包括之複合材料層及類鑽碳層,以包括鑽-銅複合材料層之發光二極體結構為例,其分析係如圖7所示,明顯可見根據本發明可有效控制熱膨脹係數,也能降低熱阻。Furthermore, the composite material layer and the diamond-like carbon layer included in the present invention are exemplified by the light-emitting diode structure including the drill-copper composite layer, and the analysis thereof is as shown in FIG. 7, and it can be clearly seen according to the present invention. Effective control of the coefficient of thermal expansion also reduces thermal resistance.

承前,本發明上述實施例中之複合材料層的熱膨脹係數(CTE)可依鑽石粒徑和體積百分率而進行調整,如前所述,為了控制較佳CTE值(如在2-10 ppm/℃間),故較佳的鑽石體積分率為30-50 Vol%(如圖8所示),以及較佳之鑽石粒徑如圖9所示;更可依需要,可選擇性地使用碳化物助劑的重量百分率為2-5 wt%,該碳化物助劑可為Fe、Co、Ni、Cr、Ti、或B等。The coefficient of thermal expansion (CTE) of the composite layer in the above embodiments of the present invention can be adjusted according to the particle size and volume percentage of the diamond, as described above, in order to control the preferred CTE value (eg, at 2-10 ppm/°C). Between), so the preferred diamond volume fraction is 30-50 Vol% (as shown in Figure 8), and the preferred diamond particle size is shown in Figure 9; more optional carbide can be used as needed The weight percentage of the agent is 2-5 wt%, and the carbide aid may be Fe, Co, Ni, Cr, Ti, or B, or the like.

因此,根據本實施例之製造方法所獲得之發光二極體,可實現一種具有大尺寸(>1mm)、大電流(>1A/mm2 )、及大功率(>10W)之垂直式發光二極體,其顯會優於並聯多顆習知使用電流以彎流式之發光二極體。因此,並具有發光效率更佳使其更光亮,且藉類鑽碳層優異的熱傳導率以排除發光時所產生之廢熱,以及解決內部缺陷使其更耐久等優點。Therefore, according to the light-emitting diode obtained by the manufacturing method of the embodiment, a vertical light-emitting type having a large size (>1 mm), a large current (>1 A/mm 2 ), and a high power (>10 W) can be realized. In the polar body, it is better than paralleling a plurality of conventional light-emitting diodes that use current to bend current. Therefore, it has better luminous efficiency to make it brighter, and the excellent thermal conductivity of the carbon layer is used to eliminate the waste heat generated when the light is emitted, and to solve the internal defects to make it more durable.

上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.

100‧‧‧發光二極體100‧‧‧Lighting diode

101‧‧‧基材101‧‧‧Substrate

102、302、402‧‧‧半導體層102, 302, 402‧‧‧ semiconductor layer

107‧‧‧正電極107‧‧‧ positive electrode

108‧‧‧負電極108‧‧‧Negative electrode

201‧‧‧基材201‧‧‧Substrate

202‧‧‧半導體層202‧‧‧Semiconductor layer

203、303、403‧‧‧金屬反射層203, 303, 403‧‧‧ metal reflective layer

204、304‧‧‧中間層204, 304‧‧‧ middle layer

205、305‧‧‧類鑽碳層205, 305‧‧‧Drilling carbon layer

206、306‧‧‧複合材料層206, 306‧‧‧ Composite layers

207、307、407‧‧‧第一電極207, 307, 407‧‧‧ first electrode

208、308、408‧‧‧第二電極208, 308, 408‧‧‧ second electrode

圖1係習知中發光二極體結構示意圖。FIG. 1 is a schematic view showing the structure of a light-emitting diode in the prior art.

圖2A至2E係本發明一較佳實施例之垂直式發光二極體之製造方法流程示意圖。2A to 2E are schematic flow charts showing a method of manufacturing a vertical light-emitting diode according to a preferred embodiment of the present invention.

圖3係本發明另一較佳實施例之直式發光二極體結構示意圖。3 is a schematic structural view of a straight light emitting diode according to another preferred embodiment of the present invention.

圖4係本發明再一較佳實施例之直式發光二極體結構示意圖。4 is a schematic structural view of a straight light emitting diode according to still another preferred embodiment of the present invention.

圖5A至5B係習知中發光二極體結構中電鍍金屬和半導體層介面若僅以機械式而無化學鍵結時,產生剝離之電子顯微鏡照片示意。5A to 5B are diagrams showing the electron micrograph of the peeling of the electroplated metal and the semiconductor layer interface in the conventional light-emitting diode structure, if only mechanically and without chemical bonding.

圖6係本發明一較佳實施例之直式發光二極體部分結構電子顯微鏡照片。Fig. 6 is a partial electron micrograph of a portion of a straight light emitting diode according to a preferred embodiment of the present invention.

圖7係本發明一較佳實施例中鑽-銅複合材料層之熱擴散係數及熱傳導係數之比較圖。Figure 7 is a graph comparing the thermal diffusivity and heat transfer coefficient of a drill-copper composite layer in accordance with a preferred embodiment of the present invention.

圖8至圖9係本發明一較佳實施例中複合材料層之鑽石體積分率比較圖。8 to 9 are graphs showing a comparison of diamond volume fractions of composite layers in a preferred embodiment of the present invention.

202...半導體層202. . . Semiconductor layer

203...金屬反射層203. . . Metal reflective layer

204...中間層204. . . middle layer

205...類鑽碳層205. . . Diamond-like carbon layer

206...複合材料層206. . . Composite layer

207...第一電極207. . . First electrode

208...第二電極208. . . Second electrode

Claims (74)

一種垂直式發光二極體之製造方法,其包括下列步驟:提供一基材;於該基材上形成一半導體層,該半導體層係具有以第II至VI族元素所構成之化合物;形成一金屬反射層,使其與該半導體層相互結合;形成至少一中間層及至少一類鑽碳層;形成一複合材料層;移除該基材;以及形成一第一電極層及一第二電極層,其分別設置於該半導體層及該複合材料層之一側;其中,該至少一中間層及該至少一類鑽碳層係以疊層之方式相互堆疊於該金屬反射層之一側,且該複合材料層具有熱膨脹係數為2~10ppm/℃。 A method for manufacturing a vertical light-emitting diode, comprising the steps of: providing a substrate; forming a semiconductor layer on the substrate, the semiconductor layer having a compound composed of elements of Group II to VI; forming a a metal reflective layer bonded to the semiconductor layer; forming at least one intermediate layer and at least one type of drilled carbon layer; forming a composite material layer; removing the substrate; and forming a first electrode layer and a second electrode layer Provided on one side of the semiconductor layer and the composite material layer, wherein the at least one intermediate layer and the at least one type of drilled carbon layer are stacked on one side of the metal reflective layer in a stacked manner, and the The composite layer has a coefficient of thermal expansion of 2 to 10 ppm/°C. 如申請專利範圍第1項所述之製造方法,其中,該基材係為Al2 O3 (藍寶石)、Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、或C(鑽石)之基板;或為至少一陽離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物之基板。The manufacturing method according to claim 1, wherein the substrate is Al 2 O 3 (sapphire), Si, SiC, GaAs, GaP, AlP, GaN, C (graphite), hBN, or C ( a substrate of diamonds; or a substrate having at least one cation of a nitride, a phosphide, or an arsenide of B, Al, Ga, In, Be, Mg. 如申請專利範圍第1項所述之製造方法,其中,該基材之移除步驟係藉由一雷射使其與該半導體層剝離。 The manufacturing method of claim 1, wherein the removing step of the substrate is separated from the semiconductor layer by a laser. 如申請專利範圍第1項所述之製造方法,其中,該半導體層、該金屬反射層、該至少一中間層、及該至少一類鑽 碳層係以陰極電弧、濺鍍、蒸鍍、電鍍、無電電鍍、或塗佈等沉積形成。 The manufacturing method of claim 1, wherein the semiconductor layer, the metal reflective layer, the at least one intermediate layer, and the at least one type of drill The carbon layer is formed by deposition of cathodic arc, sputtering, evaporation, electroplating, electroless plating, or coating. 如申請專利範圍第1項所述之製造方法,其中,該半導體層之組成係為Al2 O3 (藍寶石)、Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、或C(鑽石);或為至少一陽離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物。The manufacturing method according to claim 1, wherein the semiconductor layer is composed of Al 2 O 3 (sapphire), Si, SiC, GaAs, GaP, AlP, GaN, C (graphite), hBN, or C (diamond); or at least one cation is a nitride, phosphide, or arsenide of B, Al, Ga, In, Be, Mg. 如申請專利範圍第1項所述之製造方法,其中,該金屬反射層係至少一選自由Ag、Al、Ni、Co、Pd、Pt、Au、Zn、Sn、Sb、Pb、Cu、CuAg、NiAg、及前述金屬合金所組成之群組。 The manufacturing method according to claim 1, wherein the metal reflective layer is at least one selected from the group consisting of Ag, Al, Ni, Co, Pd, Pt, Au, Zn, Sn, Sb, Pb, Cu, CuAg, NiAg, and a group of the aforementioned metal alloys. 如申請專利範圍第1項所述之製造方法,其中,該金屬反射層之厚度為100~500nm。 The manufacturing method according to claim 1, wherein the metal reflective layer has a thickness of 100 to 500 nm. 如申請專利範圍第1項所述之製造方法,其中,該中間層係包括至少一選自由Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、及前述金屬之合金所組成之群組。 The manufacturing method according to claim 1, wherein the intermediate layer comprises at least one selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, and an alloy of the foregoing metals. Group. 如申請專利範圍第1項所述之製造方法,其中,該中間層之厚度為50-500nm。 The manufacturing method according to claim 1, wherein the intermediate layer has a thickness of 50 to 500 nm. 如申請專利範圍第1項所述之製造方法,其中,該複合材料層係包括至少一金屬及鑽石所組成之複合材料,且該鑽石於該複合材料層中係以一單層、多層、或隨機分佈之佈鑽排列。 The manufacturing method of claim 1, wherein the composite material layer comprises a composite material composed of at least one metal and diamond, and the diamond is in a single layer, a plurality of layers, or Randomly distributed cloth arrangement. 如申請專利範圍第10項所述之製造方法,其中,該鑽石係佔該複合材料層總體積之25-60%。 The manufacturing method of claim 10, wherein the diamond is 25-60% of the total volume of the composite layer. 如申請專利範圍第10項所述之製造方法,其中,該鑽石係佔該複合材料層總體積之30-50%。 The manufacturing method of claim 10, wherein the diamond is 30-50% of the total volume of the composite layer. 如申請專利範圍第10項所述之製造方法,其中,該金屬係至少一選自由Cu、Ag、Co、Ni、W、Fe、Ti、Cr及B所組成之群組。 The manufacturing method according to claim 10, wherein the metal is at least one selected from the group consisting of Cu, Ag, Co, Ni, W, Fe, Ti, Cr, and B. 如申請專利範圍第10項所述之製造方法,其中,該鑽石係為合成鑽石磨粒(synthetic diamond grits)。 The manufacturing method according to claim 10, wherein the diamond is a synthetic diamond grits. 如申請專利範圍第10項所述之製造方法,其中,該鑽石之粒徑為1μm-1mm。 The manufacturing method according to claim 10, wherein the diamond has a particle diameter of from 1 μm to 1 mm. 如申請專利範圍第1項所述之製造方法,其中,該複合材料層之厚度為100-500μm。 The manufacturing method according to claim 1, wherein the composite material layer has a thickness of 100 to 500 μm. 如申請專利範圍第1項所述之製造方法,其中,更包括有一將該複合材料層之表面拋光至Ra<1μm之步驟。The manufacturing method of claim 1, further comprising the step of polishing the surface of the composite material layer to Ra < 1 μm. 如申請專利範圍第1項所述之製造方法,其中,更包括有一透明類鑽碳層形成於該半導體層之一側。 The manufacturing method of claim 1, further comprising a transparent diamond-like carbon layer formed on one side of the semiconductor layer. 如申請專利範圍第18項所述之製造方法,其中,該透明類鑽碳層係以電漿化學氣相沉積法(PECVD)形成。 The manufacturing method according to claim 18, wherein the transparent diamond-like carbon layer is formed by plasma chemical vapor deposition (PECVD). 如申請專利範圍第18項所述之製造方法,其中,該透明類鑽碳層包括有氫原子於其中。 The manufacturing method according to claim 18, wherein the transparent diamond-like carbon layer comprises a hydrogen atom therein. 如申請專利範圍第20所述之製造方法,其中,以該透明類鑽碳層全部計算,該氫原子係佔15-40at%。 The manufacturing method according to claim 20, wherein the hydrogen atomic system accounts for 15 to 40 at% of the transparent diamond-like carbon layer. 一種垂直式發光二極體之製造方法,其包括下列步驟:提供一基材;於該基材上形成一半導體層,該半導體層係具有以第II至VI族元素所構成之化合物; 形成一金屬反射層,使其與該半導體層相互結合;形成一複合材料層,該複合材料層具有熱膨脹係數為2~10ppm/℃;移除該基材;以及形成一第一電極層及一第二電極層,其分別設置於該半導體層及該複合材料層之一側。 A method for manufacturing a vertical light-emitting diode, comprising the steps of: providing a substrate; forming a semiconductor layer on the substrate, the semiconductor layer having a compound composed of elements of Group II to VI; Forming a metal reflective layer to be bonded to the semiconductor layer; forming a composite material layer having a thermal expansion coefficient of 2 to 10 ppm/° C.; removing the substrate; and forming a first electrode layer and a The second electrode layer is disposed on one side of the semiconductor layer and the composite material layer, respectively. 如申請專利範圍第22項所述之製造方法,其中,該複合材料層係以Au或Au-Sn於約300℃直接軟焊接合至該金屬反射層,或直接以高溫接合之方式結合該複合材料層及該金屬反射層。 The manufacturing method according to claim 22, wherein the composite material layer is directly soft-bonded to the metal reflective layer by Au or Au-Sn at about 300 ° C, or directly combined by high temperature bonding. a material layer and the metal reflective layer. 如申請專利範圍第22項所述之製造方法,其中,該基材係為Al2 O3 (藍寶石)、Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、或C(鑽石)之基板;或為至少一陽離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物之基板。The manufacturing method according to claim 22, wherein the substrate is Al 2 O 3 (sapphire), Si, SiC, GaAs, GaP, AlP, GaN, C (graphite), hBN, or C ( a substrate of diamonds; or a substrate having at least one cation of a nitride, a phosphide, or an arsenide of B, Al, Ga, In, Be, Mg. 如申請專利範圍第22項所述之製造方法,其中,該基材之移除步驟係藉由一雷射使其與該半導體層剝離。 The manufacturing method of claim 22, wherein the removing step of the substrate is separated from the semiconductor layer by a laser. 如申請專利範圍第22項所述之製造方法,其中,該半導體層、及該金屬反射層係以陰極電弧、濺鍍、蒸鍍、電鍍、無電電鍍、或塗佈等沉積形成。 The manufacturing method according to claim 22, wherein the semiconductor layer and the metal reflective layer are formed by deposition of cathodic arc, sputtering, vapor deposition, electroplating, electroless plating, or coating. 如申請專利範圍第22項所述之製造方法,其中,該半導體層之組成係為Al2 O3 (藍寶石)、Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、或C(鑽石);或為至少一陽離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物。The manufacturing method according to claim 22, wherein the semiconductor layer is composed of Al 2 O 3 (sapphire), Si, SiC, GaAs, GaP, AlP, GaN, C (graphite), hBN, or C (diamond); or at least one cation is a nitride, phosphide, or arsenide of B, Al, Ga, In, Be, Mg. 如申請專利範圍第22項所述之製造方法,其中,該金屬反射層係至少一選自由Ag、Al、Ni、Co、Pd、Pt、Au、Zn、Sn、Sb、Pb、Cu、CuAg、NiAg、及前述金屬合金所組成之群組。 The manufacturing method according to claim 22, wherein the metal reflective layer is at least one selected from the group consisting of Ag, Al, Ni, Co, Pd, Pt, Au, Zn, Sn, Sb, Pb, Cu, CuAg, NiAg, and a group of the aforementioned metal alloys. 如申請專利範圍第22項所述之製造方法,其中,該金屬反射層之厚度為100~500nm。 The manufacturing method according to claim 22, wherein the metal reflective layer has a thickness of 100 to 500 nm. 如申請專利範圍第22項所述之製造方法,其中,該複合材料層係包括至少一金屬及鑽石所組成之複合材料,且該鑽石於該複合材料層中係以一單層、多層、或隨機分佈之佈鑽排列。 The manufacturing method of claim 22, wherein the composite material layer comprises a composite material composed of at least one metal and diamond, and the diamond is in a single layer, a plurality of layers, or Randomly distributed cloth arrangement. 如申請專利範圍第30項所述之製造方法,其中,該鑽石係佔該複合材料層總體積之25-60%。 The manufacturing method of claim 30, wherein the diamond is 25-60% of the total volume of the composite layer. 如申請專利範圍第30項所述之製造方法,其中,該鑽石係佔該複合材料層總體積之30-50%。 The manufacturing method of claim 30, wherein the diamond is 30-50% of the total volume of the composite layer. 如申請專利範圍第30項所述之製造方法,其中,該金屬係至少一選自由Cu、Ag、Co、Ni、W、Fe、Ti、Cr及B所組成之群組。 The manufacturing method according to claim 30, wherein the metal is at least one selected from the group consisting of Cu, Ag, Co, Ni, W, Fe, Ti, Cr, and B. 如申請專利範圍第30項所述之製造方法,其中,該鑽石係為合成鑽石磨粒(synthetic diamond grits)。 The manufacturing method according to claim 30, wherein the diamond is a synthetic diamond grits. 如申請專利範圍第30項所述之製造方法,其中,該鑽石之粒徑為1μm-1mm。 The manufacturing method according to claim 30, wherein the diamond has a particle diameter of from 1 μm to 1 mm. 如申請專利範圍第22項所述之製造方法,其中,該複合材料層之厚度為100-500μm。 The manufacturing method according to claim 22, wherein the composite material layer has a thickness of 100 to 500 μm. 如申請專利範圍第22項所述之製造方法,其中,更包括有一將該複合材料層之表面拋光至Ra<1μm之步驟。 The manufacturing method according to claim 22, further comprising the step of polishing the surface of the composite material layer to Ra < 1 μm. 如申請專利範圍第22項所述之製造方法,其中,更包括有一透明類鑽碳層形成於該半導體層之一側。 The manufacturing method according to claim 22, further comprising a transparent diamond-like carbon layer formed on one side of the semiconductor layer. 如申請專利範圍第38項所述之製造方法,其中,該透明類鑽碳層係以電漿化學氣相沉積法(PECVD)形成。 The manufacturing method according to claim 38, wherein the transparent diamond-like carbon layer is formed by plasma chemical vapor deposition (PECVD). 如申請專利範圍第39項所述之製造方法,其中,該透明類鑽碳層包括有氫原子於其中。 The manufacturing method according to claim 39, wherein the transparent diamond-like carbon layer comprises a hydrogen atom therein. 如申請專利範圍第40所述之製造方法,其中,以該透明類鑽碳層全部計算,該氫原子係佔15-40at%。 The manufacturing method according to claim 40, wherein the hydrogen atomic system accounts for 15 to 40 at% of the transparent diamond-like carbon layer. 一種垂直式發光二極體,其包括:一半導體層,其係具有以第II至VI族元素所構成之化合物;一金屬反射層,係與該半導體層相互結合;至少一中間層;至少一類鑽碳層;一複合材料層;以及一第一電極層及一第二電極層,其分別設置於該半導體層及該複合材料層之一側;其中,該至少一中間層及該至少一類鑽碳層係以疊層之方式相互堆疊於該金屬反射層之一側,且該複合材料層具有熱膨脹係數為2~10ppm/℃。 A vertical light emitting diode comprising: a semiconductor layer having a compound composed of elements of Group II to VI; a metal reflective layer bonded to the semiconductor layer; at least one intermediate layer; at least one type a carbon layer; a composite material layer; and a first electrode layer and a second electrode layer respectively disposed on the side of the semiconductor layer and the composite material layer; wherein the at least one intermediate layer and the at least one type of drill The carbon layers are stacked on one side of the metal reflective layer in a stacked manner, and the composite material layer has a thermal expansion coefficient of 2 to 10 ppm/° C. 如申請專利範圍第42項所述之垂直式發光二極體,其中,該半導體層之組成係為Al2 O3 (藍寶石)、Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、或C(鑽石);或為至少一陽 離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物。The vertical light-emitting diode according to claim 42, wherein the semiconductor layer is composed of Al 2 O 3 (sapphire), Si, SiC, GaAs, GaP, AlP, GaN, C (graphite). , hBN, or C (diamond); or at least one cation is a nitride, phosphide, or arsenide of B, Al, Ga, In, Be, Mg. 如申請專利範圍第42項所述之垂直式發光二極體,其中,該金屬反射層係至少一選自由Ag、Al、Ni、Co、Pd、Pt、Au、Zn、Sn、Sb、Pb、Cu、CuAg、NiAg、及前述金屬合金所組成之群組。 The vertical light-emitting diode according to claim 42, wherein the metal reflective layer is at least one selected from the group consisting of Ag, Al, Ni, Co, Pd, Pt, Au, Zn, Sn, Sb, Pb, A group consisting of Cu, CuAg, NiAg, and the aforementioned metal alloy. 如申請專利範圍第42項所述之垂直式發光二極體,其中,該金屬反射層之厚度為100-500nm。 The vertical light-emitting diode according to claim 42, wherein the metal reflective layer has a thickness of 100-500 nm. 如申請專利範圍第42項所述之垂直式發光二極體,其中,該中間層係包括至少一選自由Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、及前述金屬之合金所組成之群組。 The vertical light-emitting diode according to claim 42, wherein the intermediate layer comprises at least one selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, and the foregoing metal. A group of alloys. 如申請專利範圍第42項所述之垂直式發光二極體,其中,該中間層之厚度為50-500nm。 The vertical light-emitting diode according to claim 42, wherein the intermediate layer has a thickness of 50-500 nm. 如申請專利範圍第42項所述之垂直式發光二極體,其中,該複合材料層係包括至少一金屬及鑽石所組成之複合材料,且該鑽石於該複合材料層中係以一單層、多層、或隨機分佈之佈鑽排列。 The vertical light-emitting diode according to claim 42, wherein the composite material layer comprises a composite material composed of at least one metal and diamond, and the diamond has a single layer in the composite material layer. , multi-layer, or randomly distributed cloth arrangement. 如申請專利範圍第48項所述之垂直式發光二極體,其中,該鑽石係佔該複合材料層總體積之25-60%。 The vertical light-emitting diode according to claim 48, wherein the diamond accounts for 25-60% of the total volume of the composite layer. 如申請專利範圍第48項所述之垂直式發光二極體,其中,該鑽石係佔該複合材料層總體積之30-50%。 The vertical light-emitting diode according to claim 48, wherein the diamond is 30-50% of the total volume of the composite layer. 如申請專利範圍第48項所述之垂直式發光二極體,其中,該金屬係至少一選自由Cu、Ag、Co、Ni、W、Fe、Ti、Cr及BCu、Ag、Co、Ni、W、Fe、Ti、Cr所組成之群組。 The vertical light-emitting diode according to claim 48, wherein the metal is at least one selected from the group consisting of Cu, Ag, Co, Ni, W, Fe, Ti, Cr, and BCu, Ag, Co, Ni, A group consisting of W, Fe, Ti, and Cr. 如申請專利範圍第48項所述之垂直式發光二極體,其中,該鑽石係為合成鑽石磨粒(synthetic diamond grits)。 The vertical light-emitting diode according to claim 48, wherein the diamond is a synthetic diamond grits. 如申請專利範圍第48項所述之垂直式發光二極體,其中,該鑽石之粒徑為1μm-1mm。 The vertical light-emitting diode according to claim 48, wherein the diamond has a particle diameter of 1 μm to 1 mm. 如申請專利範圍第42項所述之垂直式發光二極體,其中,該複合材料層之厚度為100-500μm。 The vertical light-emitting diode according to claim 42, wherein the composite material layer has a thickness of 100-500 μm. 如申請專利範圍第42項所述之垂直式發光二極體,其中,該該複合材料層之表面具有拋光至Ra<1μm。 The vertical light-emitting diode according to claim 42, wherein the surface of the composite material layer has a polishing to Ra<1 μm. 如申請專利範圍第42項所述之垂直式發光二極體,其中,更包括有一透明類鑽碳層於該半導體層之一側。 The vertical light-emitting diode of claim 42, further comprising a transparent diamond-like carbon layer on one side of the semiconductor layer. 如申請專利範圍第56項所述之垂直式發光二極體,其中,該透明類鑽碳層包括有氫原子於其中。 The vertical light-emitting diode according to claim 56, wherein the transparent diamond-like carbon layer comprises a hydrogen atom therein. 如申請專利範圍第57項所述之垂直式發光二極體,其中,以該透明類鑽碳層全部計算,該氫原子係佔15~40at%。 The vertical light-emitting diode according to claim 57, wherein the hydrogen atomic system accounts for 15 to 40 at% of the transparent diamond-like carbon layer. 一種垂直式發光二極體,其包括:一半導體層,其係具有以第II至VI族元素所構成之化合物;一金屬反射層,係與該半導體層相互結合;一複合材料層,該複合材料層具有熱膨脹係數為2~10ppm/℃;以及一第一電極層及一第二電極層,其分別設置於該半導體層及該複合材料層之一側。 A vertical light emitting diode comprising: a semiconductor layer having a compound composed of elements of Group II to VI; a metal reflective layer bonded to the semiconductor layer; a composite material layer, the composite The material layer has a thermal expansion coefficient of 2 to 10 ppm/° C.; and a first electrode layer and a second electrode layer respectively disposed on one side of the semiconductor layer and the composite material layer. 如申請專利範圍第59項所述之垂直式發光二極體,其中,該複合材料層係以Au或Au-Sn於約300℃直接軟焊接合至 該金屬反射層,或直接以高溫接合之方式結合該複合材料層及該金屬反射層。 The vertical light-emitting diode according to claim 59, wherein the composite material layer is directly soft-welded to Au or Au at about 300 ° C. The metal reflective layer or the composite material layer and the metal reflective layer are bonded directly at a high temperature. 如申請專利範圍第59項所述之垂直式發光二極體,其中,該半導體層之組成係為Al2 O3 (藍寶石)、Si、SiC、GaAs、GaP、AlP、GaN、C(石墨)、hBN、或C(鑽石);或為至少一陽離子為B、Al、Ga、In、Be、Mg之氮化物、磷化物、或砷化物。The vertical light-emitting diode according to claim 59, wherein the semiconductor layer is composed of Al 2 O 3 (sapphire), Si, SiC, GaAs, GaP, AlP, GaN, C (graphite). , hBN, or C (diamond); or at least one cation is a nitride, phosphide, or arsenide of B, Al, Ga, In, Be, Mg. 如申請專利範圍第59項所述之垂直式發光二極體,其中,該金屬反射層係至少一選自由Ag、Al、Ni、Co、Pd、Pt、Au、Zn、Sn、Sb、Pb、Cu、CuAg、NiAg、及前述金屬合金所組成之群組。 The vertical light-emitting diode according to claim 59, wherein the metal reflective layer is at least one selected from the group consisting of Ag, Al, Ni, Co, Pd, Pt, Au, Zn, Sn, Sb, Pb, A group consisting of Cu, CuAg, NiAg, and the aforementioned metal alloy. 如申請專利範圍第59項所述之垂直式發光二極體,其中,該金屬反射層之厚度為100-500nm。 The vertical light-emitting diode according to claim 59, wherein the metal reflective layer has a thickness of 100-500 nm. 如申請專利範圍第59項所述之垂直式發光二極體,其中,該複合材料層係包括至少一金屬及鑽石所組成之複合材料,且該鑽石於該複合材料層中係以一單層、多層、或隨機分佈之佈鑽排列。 The vertical light-emitting diode according to claim 59, wherein the composite material layer comprises a composite material composed of at least one metal and diamond, and the diamond has a single layer in the composite material layer. , multi-layer, or randomly distributed cloth arrangement. 如申請專利範圍第64項所述之垂直式發光二極體,其中,該鑽石係佔該複合材料層總體積之25-60%。 The vertical light-emitting diode according to claim 64, wherein the diamond is 25-60% of the total volume of the composite layer. 如申請專利範圍第64項所述之垂直式發光二極體,其中,該鑽石係佔該複合材料層總體積之30-50%。 The vertical light-emitting diode according to claim 64, wherein the diamond is 30-50% of the total volume of the composite layer. 如申請專利範圍第64項所述之垂直式發光二極體,其中,該金屬係至少一選自由Cu、Ag、Co、Ni、W、Fe、Ti、Cr及BCu、Ag、Co、Ni、W、Fe、Ti、Cr所組成之群組。 The vertical light-emitting diode according to claim 64, wherein the metal is at least one selected from the group consisting of Cu, Ag, Co, Ni, W, Fe, Ti, Cr, and BCu, Ag, Co, Ni, A group consisting of W, Fe, Ti, and Cr. 如申請專利範圍第64項所述之垂直式發光二極體,其中,該鑽石係為合成鑽石磨粒(synthetic diamond grits)。 The vertical light-emitting diode according to claim 64, wherein the diamond is a synthetic diamond grits. 如申請專利範圍第64項所述之垂直式發光二極體,其中,該鑽石之粒徑為1μm-1mm。 The vertical light-emitting diode according to claim 64, wherein the diamond has a particle diameter of 1 μm to 1 mm. 如申請專利範圍第59項所述之垂直式發光二極體,其中,該複合材料層之厚度為100-500μm。 The vertical light-emitting diode according to claim 59, wherein the composite material layer has a thickness of 100-500 μm. 如申請專利範圍第59項所述之垂直式發光二極體,其中,該該複合材料層之表面具有拋光至Ra<1μm。 The vertical light-emitting diode according to claim 59, wherein the surface of the composite material layer has a polishing to Ra<1 μm. 如申請專利範圍第59項所述之垂直式發光二極體,其中,更包括有一透明類鑽碳層於該半導體層之一側。 The vertical light-emitting diode according to claim 59, further comprising a transparent diamond-like carbon layer on one side of the semiconductor layer. 如申請專利範圍第72項所述之垂直式發光二極體,其中,該透明類鑽碳層包括有氫原子於其中。 The vertical light-emitting diode according to claim 72, wherein the transparent diamond-like carbon layer comprises a hydrogen atom therein. 如申請專利範圍第73項所述之垂直式發光二極體,其中,以該透明類鑽碳層全部計算,該氫原子係佔15~40at%。 The vertical light-emitting diode according to claim 73, wherein the hydrogen atomic system accounts for 15 to 40 at% of the transparent diamond-like carbon layer.
TW100100357A 2010-09-21 2011-01-05 Vertical light emitting diode and its manufacturing method TWI443870B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW100100357A TWI443870B (en) 2011-01-05 2011-01-05 Vertical light emitting diode and its manufacturing method
CN201110281347.4A CN102593277B (en) 2011-01-05 2011-09-21 Vertical light emitting diode and manufacturing method thereof
US13/412,493 US9006086B2 (en) 2010-09-21 2012-03-05 Stress regulated semiconductor devices and associated methods
US13/834,320 US20140042473A1 (en) 2010-09-21 2013-03-15 Vertical light emitting diode and manufacturing method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100100357A TWI443870B (en) 2011-01-05 2011-01-05 Vertical light emitting diode and its manufacturing method

Publications (2)

Publication Number Publication Date
TW201230401A TW201230401A (en) 2012-07-16
TWI443870B true TWI443870B (en) 2014-07-01

Family

ID=46481681

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100357A TWI443870B (en) 2010-09-21 2011-01-05 Vertical light emitting diode and its manufacturing method

Country Status (2)

Country Link
CN (1) CN102593277B (en)
TW (1) TWI443870B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152773A1 (en) * 2002-02-14 2003-08-14 Chrysler Gregory M. Diamond integrated heat spreader and method of manufacturing same
JP4293027B2 (en) * 2004-03-19 2009-07-08 ブラザー工業株式会社 Wireless tag communication device
JP2008263126A (en) * 2007-04-13 2008-10-30 Oki Data Corp Semiconductor apparatus, method of manufacturing the same, led head, and image formation apparatus
CN101599522B (en) * 2009-06-30 2011-05-25 厦门市三安光电科技有限公司 Vertical LED adopting insulating medium barrier layer and preparation method thereof
CN102122647A (en) * 2010-01-08 2011-07-13 精碳科技股份有限公司 Carbon interface composite heat radiation structure

Also Published As

Publication number Publication date
TW201230401A (en) 2012-07-16
CN102593277A (en) 2012-07-18
CN102593277B (en) 2015-01-28

Similar Documents

Publication Publication Date Title
TWI440212B (en) Led chip thermal management and fabrication methods
TWI479674B (en) Method for handling a semiconductor wafer assembly
CN103560193B (en) Light emitting diode chip with vertical of low cost and preparation method thereof
WO2013038964A1 (en) Clad material for led light-emitting element holding substrate, and method for manufacturing same
TWI381551B (en) A light emitting device containing a composite electroplated substrate
KR100872276B1 (en) Vertical nitride semiconductor light emitting device and manufacturing method of the same
JP4789716B2 (en) LIGHT EMITTING DIODE WITH VERTICAL STRUCTURE AND MANUFACTURING METHOD THEREOF
US8778784B2 (en) Stress regulated semiconductor devices and associated methods
CN107731975B (en) Nanotube LED and manufacturing method thereof
WO2012058656A2 (en) Stress regulated semiconductor and associated methods
TW201310703A (en) Vertical light emitting diodes connecting structure and method of fabricating the same
TW201547053A (en) Method of forming a light-emitting device
CN103305908A (en) Composite substrate for GaN growth
CN101656279B (en) Luminous element comprising composite electroplating substrate
TWI443870B (en) Vertical light emitting diode and its manufacturing method
JP2007142420A (en) Gallium-nitride-based light-emitting diode element of perpendicular structure
CN100490193C (en) Light-emitting element and lighting equipment using the same
CN102157649B (en) Gallium nitride light-emitting diode (GaN LED) chip with vertical structure and manufacturing method thereof
JP5428520B2 (en) LED element and method for manufacturing LED element
US8110846B2 (en) Diamond semiconductor devices and associated methods
CN112234128A (en) Substrate warpage resistant flip LED chip and preparation method thereof
US9006086B2 (en) Stress regulated semiconductor devices and associated methods
KR100726966B1 (en) Gallium nitride based semiconductor light emitting device and method for manufacturing thereof using surface morphology of homogeneous nitride substrates
TWI552379B (en) Light emitting diode and method for fabricating the same
TW201332153A (en) Vertical light emitting diode and manufacturing method and application thereof