M420049 五、新型說明: 【新型所屬之技術領域】 本創作是有關於一種發光二極體基板,且特別是有關 於一種具有高的光萃取效率之發光二極體基板與使用此基 板的發光二極體。 【先前技術】 發光二極體是一種由化合物半導體製作而成的發光元 件,其經由電子與電洞之結合,可將電能轉換成光的形式 釋出。發光二極體屬於冷發光,因此具有耗電量低、無預 暖燈時間、元件壽命長、反應速度快等優點,再加上其體 積小、耐衝擊、適合量產,容易配合應用上的需求而可製 成極小型式或陣列式元件。 為了使發光二極體在未來有更大的應用空間和前景, 如何提高發光二極體的發光亮度是目前各界著重的研究之 一。在理想的發光二極體中,當主動區内載子復合成光子 後’這些光子若能全部輻射至外界,那這個發光二極體的 發光效率也是百分之百,然而實際上主動區所產生的光子 可能會因為各種損耗機制,無法百分之百傳播到外界。 目如為提升發光二極體的發光效率,已有使用具圖案 化的藍寶石基材,譬如圖1所示的發光二極體基板1〇〇是 一種藍寶石基材102,其是由許多三角錐結構所構成 的表面106,以便散射由發光二極體射出的光線。而且為 了增加發光效率’三角錐結構104是以最密集的方式組成。 3 M420049 然而’隨著圖案化藍寶石基材(pattern sapphire subs她’ PSS)往線寬小、高度高的需求發展藍寶石基 材102的三角錐結構104底部容易發生相連的現象,使後 續磊晶遭遇困難。 【新型内容】 本創作提供一種發光二極體基板,具有高的光萃取效 率。 本創作另提供一種發光二極體,具有上述發光二極體 基板。 本創作提出一種發光二極體基板,包括一藍寶石基 材,其特徵在於這樣的藍寶石基材包括由多個角錐結構所 構成的一表面’且每一角錐結構的底面具有多個銳角。單 一角錐結構的每個銳角與相鄰角錐結構的銳角互相接近。 在本創作之一實施例中,上述藍寶石基材的表面包括 底部(0001)面’且底部(0001)面約佔此一表面之投影面積的 5%〜40% ;較佳是佔藍寳石基材的表面的10%〜30%。 在本創作之一實施例中,上述角錐結構包括三角錐型 或六角錐型。 在本創作之一實施例中,上述角錐結構的最大高度例 如在1.5μιη〜2.〇μιη之間。 在本創作之一實施例中,上述角錐結構的頂部可為平 面或尖端。 ’上述角錐結構的頂部為平面 在本創作之一實施例中 yi42〇°49 時’還包括-覆蓋層位於角錐結構的所述平面上。 在本創作之-實施射,上述覆 物、氮化物切⑼,譬如二氧切H他括氧化 本創作另提出一種發光二極體, — 对、配置在所述藍寳石美材上的 μ監實石基 柯斤#w规貝石基材上的一第一半導體層、配 戶斤述弟^導體層上的-發柄、配置在所述發光只上= 〆第-+導體層、接觸所述第—半導體層的—第— 極、以及接觸所述第二半導體層的—第二歐姆電極。 ^本創作之另—實施财,上述第—半導體層、 層與弟-半㈣層包括ΙΠ·ν族系半導體,如氮 導體。 干 ^創作之另-實施财,上述第—與第二歐姆電極 是3自鎳、鉛、鈷、鐵、鈦、鋼、铑、金、釕、鎢、鍅、 鋼、组、銀及此等之氧化物、氮化物所構成之群中所選 的至少一種合金或多層膜。 在本創作之另-實施例中,上述第一與第二歐姆電極 是含自錢、銀、銀、紹所構成之群中所選出的一種合金或 多層膜。 基於上述,本創作的結構基本上是由多個角錐結構所 構成的藍寶石基材做為出絲面,且角錐結構的排列能適 當增加藍寶石基材表面的平面(即底部⑺觀)面)面積,所以 能藉由集中底部⑽⑴)面的裸露面積,以降低i晶的難度。 為讓本創作之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 5 M420049 【實施方式】 圖2是依照本創作之第一實施例之一種發光二極體基 板的立體示意圖。在圖2中的發光二極體基板200包括一 藍寶石基材202。這個藍寶石基材2〇2是由多個角錐結構 204所構成的一表面2〇6。所謂的「角錐結構2〇4」包括底 面208呈現多角形的錐型結構,且底面2〇8具有多個銳角 210;以圖2為例,底面208是邊緣成弧線的三角形並具有 3個銳角210。而單一角錐結構2〇4的每個銳角21〇需與相 鄰角錐結構204的銳角210互相接近,以使藍寶石基材202 表面206的底部(0001)面(即圖1中顯示有點狀分佈的面) 面積集中。舉例來說’每個銳角21〇需與相鄰角錐結構2〇4 的銳角210之間的距離可由圖案間距(space)至彼此相連。 所明的圖案間距」就是每一個角錐結構204之間的距離 S。上述底部(〇〇〇1)面例如佔整個表面2〇6之投影面積的 5%〜40% ;較佳是10%〜3〇%。當底部(〇〇〇1)面佔整個表面 104之投影面積高於40%時,可能會導致光輸出效率的增 益不彰。另外’圖2的角錐結構204的頂部為尖端,但是 本創作並不侷限於此,角錐結構204的頂部也可以具有平 台表面。 在本實施例中,角錐結構204的最大高度例如在 1 .Ομιη〜2.0μιη之間,較佳是在i 5μιη〜2 〇μπι之間。當角錐 結構204的最大高度大於2·〇μιη時,可能會有不易磊晶的 情形發生。所謂的「最大高度」是自角錐結構204的頂部 到底面208的距離。 M420049 此外,圖案間距對於角錐結構204的最大高度也有影 響,例如當圖案間距為3μπι時,最大高度較佳是在 1.5μιη〜2.0μιη之間,當圖案間距為ΐ.5μιη時,最大高度較 佳是在0.8μιη〜1.5μπι之間。因此’圖案間距越小,角錐結 構204的最大高度的容忍高度有越低的傾向。 圖3是依照本創作之一第二實施例之一種發光二極體 基板的立體示意圖。 請參照圖3,第二實施例的發光二極體基板3〇〇包括 一藍寶石基材302,其是由多個角錐結構3〇4所構成的一 表面306。在圖3中的角錐結構304是底面308呈現6角 形的錐型結構,且底面308具有3個銳角310,每個銳角 310需與相鄰角錐結構304的銳角310互相接近。至於藍 寶石基材302表面306的底部(〇〇〇1)面的面積範圍或角錐 結構304的最大高度均可參照上一實施例,故於此不再贅 述。 圖4疋依如、本創作之一第二實施例之一種發光二極體 基板的立體示意圖。 請參照圖4 ’第三實施例的發光二極體基板4〇〇包括 一藍賃石基材402 ’其是由多個角錐結構404所構成的表 面406。在本實施例中的角錐結構4〇4和第二實施例顗似, 是底面408呈現6角形的錐型結構且有3個銳角410,每 個銳角410需與相鄰角錐結構404的銳角410互相接近。 本實施例與第二實施例不同處在於,角錐結構4〇4的頂部 為平面412,且於此平面412上還可覆蓋一層覆蓋層(未繪 7 M420049 示)’其材料包括氡化物、氮化物或矽(si),如氮化石夕或二 氧化石夕…等。至於藍寶石基材402表面406的底部(〇〇〇1) 面的面積範圍或角錐結構4〇4的最大高度均可參照第一實 施例’故於此不再贅述。 圖5是依照本創作之一第四實施例之一種發光二極體 的剖面示意圖。 —請參照圖5 ’本實施例的發光二極體包括第一實施例之 藍寶石基材200(詳見圖2)、配置在藍寶石基材2〇〇上的一第 一半導體層500、配置在第一半導體層5⑻上的一發光層 502、配置在發光層502上的一第二半導體層5〇4、接觸第一 半導體層500的-第-歐姆電極5G6、以及接觸第二半導體 層504的一第二歐姆電極5〇8。由於藍寳石基材2〇〇上的角錐 結構204之間的平面面積集中,所以有利於第一半導體層 500的蟲晶成長。上賴寶石基材·也可換成第二實施例 或第三實施例的藍寶石基材。 合金或多層膜。另外,第—輿 以各自 種合金% /百 在本實施例中,第-半導體層5〇〇、發光層5〇2與第二 半導體層504可為m-v族系半導體,如氮化嫁系半導體。 至於第-與第二歐姆電極规和爾例如各自選自包含錄、 鉛、鈷、鐵、鈦、銅、铑、金、釕、鎢、錯、鉬、釦、銀 及此等之氧化物、氮化物所構成之群中所選出的至少一種 與第二歐姆電極506和508也可M420049 V. New description: [New technical field] This creation is related to a light-emitting diode substrate, and in particular to a light-emitting diode substrate having high light extraction efficiency and a light-emitting diode using the same Polar body. [Prior Art] A light-emitting diode is a light-emitting element made of a compound semiconductor, which is converted into light in the form of light by a combination of electrons and holes. The light-emitting diode is cold-emitting, so it has the advantages of low power consumption, no pre-warm time, long component life, fast reaction speed, etc., plus its small size, impact resistance, mass production, and easy to match the application. It can be made into very small or array components. In order to make the light-emitting diodes have more application space and prospects in the future, how to improve the light-emitting brightness of the light-emitting diodes is one of the most important researches at present. In an ideal light-emitting diode, when the photons in the active region are combined into photons, if the photons are all radiated to the outside, the luminous efficiency of the light-emitting diode is also 100%. However, in reality, the photons generated by the active region are It may not be 100% transmitted to the outside world due to various loss mechanisms. For the purpose of improving the luminous efficiency of the light-emitting diode, a patterned sapphire substrate has been used, and the light-emitting diode substrate 1 shown in FIG. 1 is a sapphire substrate 102, which is composed of a plurality of triangular pyramids. The surface 106 of the structure is configured to scatter light emitted by the light emitting diode. Moreover, in order to increase luminous efficiency, the triangular pyramid structure 104 is composed in the most dense manner. 3 M420049 However, with the pattern sapphire subs her 'PSS', the bottom of the triangular pyramid structure 104 of the sapphire substrate 102 is easily connected to the requirement of small line width and high height, so that subsequent epitaxial encounters are encountered. difficult. [New content] This creation provides a light-emitting diode substrate with high light extraction efficiency. The present invention further provides a light-emitting diode having the above-described light-emitting diode substrate. The present invention proposes a light-emitting diode substrate comprising a sapphire substrate, characterized in that such a sapphire substrate comprises a surface consisting of a plurality of pyramid structures and the bottom surface of each pyramid structure has a plurality of acute angles. Each acute angle of the single pyramid structure is close to the acute angle of the adjacent pyramid structure. In an embodiment of the present invention, the surface of the sapphire substrate includes a bottom (0001) plane 'and a bottom (0001) plane occupies about 5% to 40% of the projected area of the surface; preferably a sapphire base 10% to 30% of the surface of the material. In an embodiment of the present invention, the pyramid structure comprises a triangular pyramid shape or a hexagonal pyramid shape. In one embodiment of the present invention, the maximum height of the pyramid structure is, for example, between 1.5 μm and 2. 〇μιη. In one embodiment of the present invention, the top of the pyramid structure may be a flat surface or a pointed end. The top of the pyramid structure is planar. In one embodiment of the present invention, yi42〇°49' also includes a cover layer on the plane of the pyramid structure. In the creation of this creation, the above-mentioned coating, nitride cutting (9), such as dioxotomy H, and other oxidations, another light-emitting diode, - pair, configured on the sapphire material a first semiconductor layer on the base of the stone base of the stone, and a handle on the conductor layer, disposed on the light-emitting layer only = 〆-+ conductor layer, contacting the a first electrode of the first semiconductor layer and a second ohmic electrode contacting the second semiconductor layer. ^ The other part of the creation - the implementation of the above-mentioned - semiconductor layer, layer and brother - half (four) layer including ΙΠ ν family semiconductors, such as nitrogen conductors. The first and second ohmic electrodes are 3 from nickel, lead, cobalt, iron, titanium, steel, tantalum, gold, tantalum, tungsten, tantalum, steel, group, silver, and the like. At least one alloy or multilayer film selected from the group consisting of oxides and nitrides. In still another embodiment of the present invention, the first and second ohmic electrodes are an alloy or a multilayer film selected from the group consisting of: money, silver, silver, and so on. Based on the above, the structure of the present invention is basically a sapphire substrate composed of a plurality of pyramidal structures as a silk surface, and the arrangement of the pyramid structure can appropriately increase the plane (ie, the bottom (7) view) surface area of the surface of the sapphire substrate. Therefore, it is possible to reduce the difficulty of the i crystal by concentrating the bare area of the bottom (10) (1) surface. To make the above-described features and advantages of the present invention more comprehensible, the following detailed description of the embodiments and the accompanying drawings are set forth below. 5 M420049 [Embodiment] FIG. 2 is a perspective view of a light-emitting diode substrate according to a first embodiment of the present invention. The light emitting diode substrate 200 in Fig. 2 includes a sapphire substrate 202. This sapphire substrate 2〇2 is a surface 2〇6 composed of a plurality of pyramid structures 204. The so-called "corner cone structure 2"4 includes a pyramidal structure in which the bottom surface 208 has a polygonal shape, and the bottom surface 2〇8 has a plurality of acute angles 210; in the example of Fig. 2, the bottom surface 208 is a triangle having an edge in an arc and has three acute angles. 210. Each of the acute angles 21 of the single pyramid structure 2〇4 needs to be close to the acute angle 210 of the adjacent pyramid structure 204 so that the bottom (0001) surface of the surface 206 of the sapphire substrate 202 (i.e., a bit-shaped distribution is shown in FIG. Face) Area is concentrated. For example, the distance between each acute angle 21 and the acute angle 210 of the adjacent pyramid structure 2〇4 may be connected to each other by a pattern space. The known pattern pitch is the distance S between each pyramid structure 204. The bottom (〇〇〇1) surface accounts for, for example, 5% to 40% of the projected area of the entire surface 2〇6; preferably 10% to 3〇%. When the bottom (〇〇〇1) plane occupies more than 40% of the projected area of the entire surface 104, the efficiency of light output may be increased. Further, the top of the pyramid structure 204 of Fig. 2 is a tip end, but the present creation is not limited thereto, and the top of the pyramid structure 204 may have a platform surface. In the present embodiment, the maximum height of the pyramid structure 204 is, for example, between 1 and 2.0μηη to 2.0 μm, preferably between i 5 μm and 2 μm. When the maximum height of the pyramid structure 204 is greater than 2·〇μιη, there may be cases where it is difficult to epitaxial. The so-called "maximum height" is the distance from the top of the pyramid structure 204 to the bottom surface 208. M420049 In addition, the pattern pitch also has an influence on the maximum height of the pyramid structure 204. For example, when the pattern pitch is 3 μm, the maximum height is preferably between 1.5 μm and 2.0 μm, and when the pattern pitch is 0.5 μm, the maximum height is preferably. It is between 0.8μιη and 1.5μπι. Therefore, the smaller the pattern pitch, the lower the tolerance height of the maximum height of the pyramid structure 204. Figure 3 is a perspective view of a light emitting diode substrate in accordance with a second embodiment of the present invention. Referring to Fig. 3, the light-emitting diode substrate 3 of the second embodiment comprises a sapphire substrate 302 which is a surface 306 composed of a plurality of pyramid structures 3〇4. The pyramid structure 304 in Fig. 3 is a pyramidal structure in which the bottom surface 308 assumes a hexagonal shape, and the bottom surface 308 has three acute angles 310, each of which needs to be close to the acute angle 310 of the adjacent pyramid structure 304. The area of the bottom (〇〇〇1) surface of the surface 306 of the sapphire substrate 302 or the maximum height of the pyramid structure 304 can be referred to the previous embodiment, and therefore will not be described herein. Fig. 4 is a perspective view showing a light-emitting diode substrate according to a second embodiment of the present invention. Referring to Fig. 4, the LED substrate 4 of the third embodiment includes a blue stone substrate 402' which is a surface 406 composed of a plurality of pyramid structures 404. The pyramid structure 4〇4 in this embodiment is similar to the second embodiment in that the bottom surface 408 exhibits a hexagonal pyramid structure and has three acute angles 410, each of which needs an acute angle 410 with the adjacent pyramid structure 404. Close to each other. The difference between this embodiment and the second embodiment is that the top of the pyramid structure 4〇4 is a plane 412, and the plane 412 can also be covered with a covering layer (not shown in Fig. 7 M420049), the material of which includes telluride and nitrogen. Compound or bismuth (si), such as nitrite or sulphur dioxide, etc. The area of the bottom (〇〇〇1) surface of the surface 406 of the sapphire substrate 402 or the maximum height of the pyramid structure 4〇4 can be referred to the first embodiment, and thus will not be described herein. Figure 5 is a cross-sectional view showing a light emitting diode according to a fourth embodiment of the present invention. - Referring to FIG. 5, the light-emitting diode of the present embodiment includes the sapphire substrate 200 of the first embodiment (see FIG. 2 for details), a first semiconductor layer 500 disposed on the sapphire substrate 2, and disposed at a light emitting layer 502 on the first semiconductor layer 5 (8), a second semiconductor layer 5〇4 disposed on the light emitting layer 502, a -first ohmic electrode 5G6 contacting the first semiconductor layer 500, and a second semiconductor layer 504 contacting the second semiconductor layer 504 A second ohmic electrode 5〇8. Since the plane area between the pyramid structures 204 on the sapphire substrate 2 is concentrated, the crystal growth of the first semiconductor layer 500 is facilitated. The sapphire substrate may also be replaced with the sapphire substrate of the second embodiment or the third embodiment. Alloy or multilayer film. In addition, in the present embodiment, the first semiconductor layer 5, the light-emitting layer 5〇2, and the second semiconductor layer 504 may be mv-based semiconductors, such as nitrided semiconductors. . As for the first and second ohmic electrode gauges, for example, each selected from the group consisting of oxides, lead, cobalt, iron, titanium, copper, ruthenium, gold, rhenium, tungsten, ruthenium, molybdenum, ruthenium, silver, and the like, At least one selected from the group consisting of nitrides and the second ohmic electrodes 506 and 508 may also be
综上所述’本創伽發光二極體基板是衫個角錐結 M420049 石基材’且角雜結構的排列能適當增加藍 (貝〇〇^!^卩(圆)面㈣,所以能藉由集中底部 ΓΛ=面積’以降低後續在蠢晶上的困難度。 Μί Γ 實施例揭露如上,職《用以限定 =之=_領域中具有通常知識者,在不脫離 創作之保護範圍當視後附之申請;刪:二 【圖式簡單說明】 圖1是習知的一種發光二極體基板的立體示意圖。 圖2疋依照本創作之第一實施例之一種發光二極 板的立體示意圖。 虹基 圖3是依照本創作之第二實施例之一種發光二 板的立體衫_。 雜基 圖4是依照本創作之第三實施例之一種發光二 板的剖面示意圖。 圖5是依照本創作之第四實施例之一種發光二極體的 剖面示意圖。 & 9 M420049 【主要元件符號說明】 100、200、300、400 :發光二極體基板 102、202、302、402 :藍寶石基材 104、204、304、404 :角錐結構 106、206、306、406 :表面 208、308、408 :底面 210、310、410 :銳角 412 :平面 500 :第一半導體層 502 :發光層 504 :第二半導體層 506 :第一歐姆電極 508 :第二歐姆電極 S :圖案間距In summary, the 'generative gamma light-emitting diode substrate is a corner pyramidal junction M420049 stone substrate' and the arrangement of the angular hybrid structure can appropriately increase the blue (bean 〇〇^!^卩(circle) surface (four), so it can be concentrated by The bottom ΓΛ = area 'to reduce the difficulty of subsequent success in the stupid crystal. 实施ί Γ The embodiment discloses the above, the person who has the usual knowledge in the field of =========== BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a conventional light-emitting diode substrate. FIG. 2 is a perspective view of a light-emitting diode according to a first embodiment of the present invention. Figure 3 is a perspective view of a light-emitting two-plate according to a second embodiment of the present invention. Figure 4 is a cross-sectional view of a light-emitting two-plate according to a third embodiment of the present invention. Figure 5 is in accordance with the present invention. A schematic cross-sectional view of a light-emitting diode of the fourth embodiment. & 9 M420049 [Description of main components] 100, 200, 300, 400: light-emitting diode substrates 102, 202, 302, 402: sapphire substrate 104 , 204, 304, 404: pyramidal junction Structures 106, 206, 306, 406: surface 208, 308, 408: bottom surface 210, 310, 410: acute angle 412: plane 500: first semiconductor layer 502: light-emitting layer 504: second semiconductor layer 506: first ohmic electrode 508 : second ohmic electrode S: pattern pitch