TW201230224A - Polishing pad for eddy current end-point detection - Google Patents

Polishing pad for eddy current end-point detection Download PDF

Info

Publication number
TW201230224A
TW201230224A TW100135659A TW100135659A TW201230224A TW 201230224 A TW201230224 A TW 201230224A TW 100135659 A TW100135659 A TW 100135659A TW 100135659 A TW100135659 A TW 100135659A TW 201230224 A TW201230224 A TW 201230224A
Authority
TW
Taiwan
Prior art keywords
polishing
molded homogeneous
endpoint detection
polishing pad
detection region
Prior art date
Application number
TW100135659A
Other languages
Chinese (zh)
Other versions
TWI470714B (en
Inventor
William C Allison
Diane Scott
Ping Huang
Richard Frentzel
Alexander William Simpson
Original Assignee
Nexplanar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/895,465 external-priority patent/US8628384B2/en
Priority claimed from US12/895,479 external-priority patent/US8657653B2/en
Priority claimed from US12/895,529 external-priority patent/US8439994B2/en
Application filed by Nexplanar Corp filed Critical Nexplanar Corp
Publication of TW201230224A publication Critical patent/TW201230224A/en
Application granted granted Critical
Publication of TWI470714B publication Critical patent/TWI470714B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Polishing pads for polishing semiconductor substrates using eddy current end-point detection are described, Methods of fabricating polishing pads for polishing semiconductor substrates using eddy current end-point detection are also described.

Description

201230224 . 六、發明說明: 【發明所屬之技術領域】 本發明之實施例係關於化學機械拋光(CMP)領域且尤其 關於用於渦電流端點偵測之拋光墊。 • 【先前技術】 • 化學機械平坦化或化學機械拋光(通常縮寫為CMP)為半 導體製造中用於平坦化半導體晶圓或其他基板之技術。 該製程使用研磨劑及腐姓性化學漿料(通常為膠體)以及 拋光墊與擋圈,擋圈直徑通常大於晶圓直徑。藉由動態拋 光頭將拋光墊與晶圓壓製在一起且藉由塑膠擋圈固定在原 位。動態拋光頭在拋光期間旋轉。該方法幫助移除材料且 傾向於使任何不規則外形平坦化,使得晶圓平坦或呈平 面。此舉對於安裝用於形成其他電路元件之晶圓可為必需 的。舉例而言,此對於使整個表面位於光微影系統之場深 度内或基於材料位置選擇性移除材料可能為必需的。最新 低於5 0奈米技術節點之典型場深度要求降至埃級。 材料移除製程不僅僅為研磨到擦(例如在木材上使用砂 紙)。漿料中之化學物質亦與待移除材料反應及/或削弱待 移除材料。研磨劑促進此削弱過程且拋光墊有助於自表面 擦拭反應之材料。 CMP中之-問題為確定拋光過程是否完成,例如基板層 是否已平坦化為所需平坦度或厚度,或何時已移除所需量 之材料。導電層或膜拋光過度使得電路電阻增加◎另一 面,導電層拋光不足可引起電短路。基板層之初始厚度方 159195.doc 201230224 漿料組合物、拋光墊條件、拋光墊與基板之間的相對速度 及基板上負荷之變化可引起材料移除速率之變化。該等變 化使彳于達到拋光端點所需時間變化。因此,通常不能僅根 據拋光時間變化來確定抛光端點。 一種確定拋光端點之方法為現場監測基板上金屬層之拋 光,例如使用光學或電學感測器。一種監測技術為用磁場 誘導金屬層中之渦電流且偵測移除金屬層時磁通量之變 化。由渦電流產生之磁通量與勵磁通量線之方向相反。此 磁通量與渦電流成比例,渦電流與金屬層電阻成比例,金 屬層電阻與層厚度成比例。因此,金屬層厚度之變化引起 由渴電流產生之磁通量的變化。該磁通量之變化誘導初級 線圈中之電流變化’該電流變化可量測為阻抗變化。因 此’線圈阻抗之變化反映金屬層厚度之變化。然而,可能 必須改變拋光墊以適應基板上金屬層之即時拋光期間的渦 電流量測。 因此’除聚料技術之進展外’拋光墊亦在日益複雜之 CMP操作中發揮重要作用。然而’ CMP塾技術之發展需要 進一步改良。 【發明内容】 本發明之實施例包括用於渦電流端點偵測之拋光塾。 在一實施例中’用於拋光半導體基板之拋光墊包括模製 均質拋光體°模製均質拋光體具有拋光表面及後表面。拋 光墊亦包括安置於模製均質拋光體中且與其共價鍵結之端 點傾測區域。端點镇測區域由與模製均質抛光體不同之材 159195.doc 201230224 . 料構成,至少一部分端點偵測區域相對於模製均質拋光體 之後表面凹陷。 在另-實施例中,製造用於拋光半導體基板之抛光塾之 方法包括形成模製均質拋光體。模製均質拋光體具有拋光 . 纟面及後表面。該方法亦包括形成安置於模製均質拋光體 ' +且與其共價鍵結之端點偵測區域。端點偵測區域由與模 製均質拋光體不同之材料構成,至少一部分端點偵測區域 相對於模製均質拋光體之後表面凹陷。 在一實施例中,用於拋光半導體基板之拋光墊包括具有 拋光表面及後表面之模製均質拋光體。凹槽圖案安置於拋 光表面中,凹槽圖案具有底部深度。拋光墊亦包括形成於 模製均質拋㈣中之端點债測區$。端點制區域具有由 拋光表面定向之第一表面及由後表面定向之第二表面。至 少一部分第一表面與凹槽圖案之底部深度共平面且中斷凹 槽圖案。第二表面相對於後表面凹陷入模製均質拋光體 中。 在另一實施例中,製造拋光墊之方法包括在成形模具中 形成拋光墊前驅體混合物。成形模具之蓋罩定位於拋光墊 • 月_』驅體混合物中。該蓋罩上安置有凹槽目帛,凹槽圖案具 ,有中斷區域。使拋光塾前驅體混合物固化以提供具有拋光 表面及後表面之模製均質拋光體。來自蓋罩之凹槽圖案安 置於拋光表面中,凹槽圖案具有底部深度。在模製均質拋 光體中提供端點偵測區域,端點偵測區域具有由拋光表面 定向之第一表面及由後表面定向之第二表面。至少一部分 159195.doc 201230224 第表面與凹槽圖案之底部深度共平面且包括凹槽圓案之 中斷區域@時,第一表面相對於後表面凹陷入模製^質 拋光體中。 在一實施例中,製造用於拋光半導體基板之拋光墊之方 法包括在模製過程中形成包含模製均質拋㈣之拋光墊, 該模製均質拋光體具有㊈光表面及後表面。㈤槽圖案安置 於拋光表面中,凹槽圖案具有底部深度。拋光墊亦包括形 成於模製均質拋光體中之端點㈣區域。端點偵測區域具 有由拋光表面定向之第一表面及由後表面定向之第二表 面。至少一部分第一表面與凹槽圖案之底部深度共平面且 中斷凹槽圖案。第一表面相對於後表面凹陷入模製均質抛 光體中。 在一實施例中,製造拋光墊之方法包括在第一成形模具 中形成部分固化之端點偵測區域前驅體。部分固化之端點 偵測區域前驅體係定位於第二成形模具之蓋罩之接收區域 上。在第二成形模具中提供拋光墊前驅體混合物》藉由使 蓋罩與第二成形模具之基底接觸在一起,部分固化之端點 偵測區域前驅體移入拋光墊前驅體混合物中。接著加熱拋 光墊前驅體混合物及部分固化之端點偵測區域前驅體以提 供與固化之端點偵測區域前驅體共價鍵結之模製均質拋光 體’模製均質拋光體具㈣光表面及後表φ。接t使固化 之端點偵測區域前驅體相對於模製均質抛光體之後表面凹 陷’以提供安置於模製均質拋光體中且與其共價鍵結之端 點偵測區域。 159195.doc 201230224 . 在另-實施例中’製造抛光塾之方法包括在第—成形模 具中安置支撐結構《•在第一成形模具中在支樓結構上方提 供摘測區域前驅體混合物。藉由加熱第一成形模具中之偵 泪m域前驅體混合物來形成部分固化之端點偵測區域前驅 體,部分固化之端點㈣區域前驅體與支擇结構輕接。藉 • &使支撐結構與蓋罩之凹人接收區㈣接將支#結構及部 分固化之端點偵測區域前驅體定位於第二成形模具之蓋罩 之凹入接收區域上。在第二成形模具中提供拋光墊前驅體 混合物。藉由使蓋罩與第二成形模具之基底接觸在一起, 將部分固化之端點偵測區域前驅體移入拋光墊前驅體混合 物中。加熱拋光墊前驅體混合物及部分固化之端點偵測區 域前驅體以提供與固化之端點偵測區域前驅體共價鍵結之 模製均質拋光體,模製均質拋光體具有拋光表面及後表 面,且端點偵測區域耦接至支撐結構上。自端點偵測區域 移除支撐結構。 【實施方式】 本文描述使用渴電流端點偵測拋光半導體基板之拋光 塾。在以下描述中閣述許多特定細節(諸如特定拋光墊組 -成及设計)以提供對本發明之實施例之透徹理解。熟習此 ,項技術者將顯而易知本發明之實施例可在無此等特定細節 之情況下實踐。在其他情況下,未詳細描述熟知處理技術 (諸如用於進行半導體基板之CMP之漿料與拋光墊之組合) 以避免不必要地混淆本發明之實施例。此外,應理解’圖 式中展示之各個實施例為說明性表示且未必按比例描繪。 159195.doc 201230224 可形成包括經設計以容納併入化學機械拋光裝置之壓板 中之滿電流偵測探針之區域的拋光墊。舉例而言,在本發 明之一實施例中,在模製拋光墊期間拋光墊中包括相異材 料區域°相異材料區域經成形及定尺寸以容納自壓板突出 之滿電流探針。此外,可使該區域至少稍微透明以幫助在 包括渦電流探針之壓板上對準拋光塾。在本發明之另一實 施例中’拋光墊完全為模製均質拋光體,其具有形成於拋 光體背面區域中之凹部。凹部亦可經成形及定尺寸以容納 自壓板大出之渴電流探針。在一實施例中,單一凹部經定 尺寸以容納壓板上突出之渦電流偵測器之所有部分。此 外’在模製均質拋光體不透明之情況下,可在拋光墊之拋 光表面中形成圖案’其中該圖案指示拋光墊背面上凹部之 位置或為該凹部位置之密鑰(key)。該密鑰可用於幫助在包 括渦電流探針之壓板上對準拋光墊。 根據本發明之一實施例,提供用於拋光半導體基板之拋 光墊以允許諸如感測器之裝置延伸至CMP工具之壓板上 方。舉例而言,在一實施例中,拋光墊包括設計特徵以便 於其在配備有渦電流端點偵測系統之拋光工具上及在利用 滿電流端點偵測之CMP製程中之用途。拋光墊設計特徵一 般可允許CMP工具之渦電流感測器上升超過CMP工具壓板 之平面’且在進行拋光製程時延伸入拋光墊背面中。在一 實施例中’該等設計特徵允許此操作在不影響拋光墊之整 體拋光效能的情況下發生。設計特徵亦可允許在壓板上以 正破定向安置拋光墊’由此使渦電流感測器可上升超過壓 159195.doc 201230224 . 板之平面而無干擾。 在一實施例中’設計特徵包括拋光墊背面中之凹部,其 經適當定尺寸、成形及定位以與渦電流感測器對準。在— 實施例中’另一設計特徵包括對壓板上之拋光墊進行目視 定向以與感測器(諸如渦電流感測器)之位置對準的構件。 在一實施例中’拋光墊具有透明部分。在另一實施例中, 拋光墊為完全不透明的但包括指示相應背面凹部位置的可 見信號或密输’諸如其拋光表面上之中斷圖案。 在本發明之一態樣中’用於渦電流偵測之拋光墊包括端 點偵測區域’其由與拋光墊之其餘部分不同之材料構成。 舉例而言’圖1A說明根據本發明之一實施例的適用於渦電 流端點偵測之拋光墊之橫截面圖。圖1B說明根據本發明之 一實施例的圖1A之拋光墊之俯視圖。 參看圖1A及1B,拋光墊1〇〇包括模製均質拋光體1〇2。 模製均質拋光體102具有拋光表面1〇4及後表面ι〇6(注意, 圖1A中僅描繪後表面1〇6)。拋光表面1〇4可包括複數個凹 槽150 ’如圖1中描繪。端點偵測區域1〇8安置於模製均質 抛光體102中。端點偵測區域1〇8由與模製均質拋光體1〇2 不同之材料110構成。材料11〇與模製均質拋光體1〇2之材 料共價鍵結112。 在一實施例中,端點偵測區域108比大部分拋光墊薄, 具有或不具有凹槽,如圖1A中描繪。舉例而言,在一實施 例中,端點偵測區域1〇8之材料u〇之厚度(T3)薄於模製均 質抛光體102之厚度(Τ1)。且詳言之,Τ3薄於模製均質拋 159195.doc 201230224 光體102除拋光表面104之凹槽150以外之部分的厚度 (T2)。在一特定實施例中,T1為拋光墊1〇〇最薄的部分。 再次參看圖1A,端點偵測區域1 〇8之至少一部分材料】i 〇 相對於模製均質拋光體102之後表面106凹陷。舉例而言, 在一實施例中’端點偵測區域108之材料11〇整體相對於模 製均質拋光體102之後表面1〇6凹陷。詳言之,端點偵測區 域108之材料110具有第一表面Π4及第二表面116。第二表 面116相對於後表面1〇6以程度D凹陷。在一實施例中,第 二表面116以足以容納自化學機械拋光裝置之壓板突出之 渦電流探針的程度D凹陷。在一特定實施例中,凹陷深度 D為表面106以下約70 mil(0.001对)。 參看圖1B ’在一實施例中,模製均質拋光體ι〇2之拋光 表面104中安置有凹槽圖案’亦即由圖1A中展示之凹槽15〇 形成之圖案。在一實施例中,凹槽圖案包括複數個同心多 邊形118以及複數條輻射線12〇,如圖1B中描繪。 在一實施例中,術語「共價鍵結」係指來自端點偵測區 域108之材料110之原子與來自模製均質拋光體之原子 交聯或共用電子以實現實際化學鍵結的配置。該共價鍵結 與可由切掉一部分拋光墊且用插入區域(諸如窗式插入物) 替換而產生之靜電相互作用不同。共價鍵結亦與機械結合 (諸如經由螺釘、釘子、膠水或其他黏附劑之結合)不同。 如下文詳細描述’與拋光體及稍後加入之插入物之澈底分 離成形相反,可藉由固化其中已安置有端點偵測區域前驅 體之拋光體前驅體實現共價鍵結。 159195.doc -10- 201230224 在另一實施例中,端點偵測區域之材料相對於模製均質 拋光體之後表面不完全凹陷。舉例而言,圖2A說明根據本 發明之另一實施例的另一拋光墊之橫截面圖。圖2B說明根 據本發明之一實施例的圖2A之拋光墊之俯視圖。 參看圖2A及2B,拋光墊2〇〇包括模製均質拋光體2〇2。 模製均質拋光體202具有拋光表面204及後表面206(注意, 圖2A中僅描繪後表面2〇6)。端點偵測區域2〇8安置於模製 均質拋光體202中。端點偵測區域2〇8由與模製均質拋光體 202不同之材料21〇構成。材料21〇與模製均質拋光體2〇2之 材料共價鍵結212。 在一實施例中,僅一部分端點偵測區域2〇8之材料21〇相 對於模製均質拋光體202之後表面206凹陷。舉例而言,端 點偵測區域208之材料210具有第一表面214、第二表面216 及第二表面218。第二表面僅包括端點偵測區域2〇8之内部 部分且相對於模製均質拋光體2〇2之後表面2〇6及端點偵測 區域208之第三表面218以程度D凹陷。因此,端點偵測區 域208之側壁220沿界面222延伸,其中端點偵測區域2〇8與 模製均質拋光體202在界面222處相交。 在-實施例中’藉由保持側壁220,可實現端點摘測區 域208與模製均質拋光體202之間更大程度的共價鍵結,從 而提高拋光墊200之完整性。在一實施例中,第二表面 以足以容納自化學機械拋光裝置之壓板突出之渦電流探針 的程度D凹陷。在一特定實施例中,凹陷深度β為表面 以下約 7 0 m i 1 ( 0 · 〇 〇 1 叫)。 159195.doc 201230224 參看圖iA、1B、2A及2B,根據本發明之一實施例,端 點偵測區域(例如區域108或208)為局部面積透明(lat)區 域。在一實施例中,模製均質拋光體不透明,但LAT區域 透明。如下文所描述’在-實施例中,模製均質拋光體至 少部分由於在材料中包含用於其製造之無機物而呈不透 明。在該實施例中,製造不含無機物之LAT區域且該區域 對例如可見光、紫外線、紅外線或其組合實質上(若非完 全)透明。在一特定實施例中,模製均質拋光體中包括之 無機物為乳濁潤滑劑,而LAT區域不含任何無機材料且基 本上不含乳濁潤滑劑。 在實施例中,L AT區域為有效透明的(理想地完全透 明)以使光能夠經拋光墊透射以用於例如在壓板上安置抛 光墊或用於端點偵測。然而,實情可為,LAT區域無法或 無需製造成完全透明的,但可仍然對用於在壓板上安置抛 光塾或用於端點彳貞測之光透射有效。舉例而言,在一實施 例中,LAT區域能透射小於80%在7〇〇_71〇奈米範圍内之入 射光,但仍適於充當拋光墊内之窗口。在一實施例中,上 述L AT區域不能渗透化學機械抛光操作中使用之衆料。 在一實施例中,再次參看圖1B及2B,端點偵測區域ι〇8 及208分別為LAT區域且在俯視圖中可見透明。在一實施 例中,此可見透明性有助於在配備有渦電流偵測探針之壓 板上安裝拋光墊。在圖2B中,可自此透明區域看到側壁 220 ’如由虛線矩形所描繪。 然而,在另一實施例中,端點偵測區域之材料不透明且 159195.doc 201230224 因此不供局部面積透明區域。舉例而言,圖3A及3B 說明根據本發明之另一實施例的其他拋光墊之橫截面圖。 參看圖3A及3B ’拋光墊300(或300,)包括模製均質拋光 體302。模製均質拋光體3〇2具有拋光表面3〇4及後表面 306。端點偵測區域3〇8(或3〇8,)安置於模製均質拋光體3〇2 中。端點偵測區域308(或308,)由與模製均質拋光體3〇2不 同之不透明材料310構成。材料31〇與模製均質拋光體3〇2 之材料共價鍵結312。 在一實施例中,參看圖3Λ,端點偵測區域3〇8之材料31〇 相對於模製均質拋光體302之後表面306完全凹陷。在另一 實施例中,參看圖3B,僅一部分端點偵測區域3〇8,之材料 310相對於模製均質拋光體302之後表面306凹陷(除側壁 320外)。在一實施例中,端點偵測區域3〇8(或3〇8,)為不透 明區域’其硬度與模製均質拋光體3〇2之硬度不同。在一 特定實施例中,端點偵測區域308(或3〇8,)之硬度大於模製 均質拋光體3 02之硬度。然而,在一替代性實施例中,端 點偵測區域308(或308,)之硬度小於模製均質拋光體3〇2之 硬度。在一實施例中,端點偵測區域3〇8(或3〇8,)不能滲透 化學機械拋光操作中所用的漿料。 儘官端點偵測區域3〇8(或308')由不透明材料3 1 〇構成, 但該區域仍可分別用於在配備有渦電流探針之壓板上目視 安裝拋光墊300或300,。舉例而言,在一實施例中,端點偵 測區域308(或308,)之第一表面304上缺乏凹槽圖案可提供 端點偵測區域308(或308,)之位置之可見信號或該位置之密 139195.doc -13- 201230224 錄。 在本發明之另一態樣中,用於渦電流偵測之拋光墊包括 端點偵測區域,其由與拋光墊之其餘部分相同的材料構成 且為均質的。圖4A說明根據本發明之一實施例的用於拋光 半導體基板且適用於渦電流端點偵測之拋光墊之橫截面 圖。圖4B說明根據本發明之一實施例的圖4A之拋光墊之 俯視圖。 參看圖4Α及4Β ’拋光墊400包括模製均質拋光體402。 模製均質拋光體402具有拋光表面404及後表面406。凹槽 圖案408安置於拋光表面404中。凹槽圖案之各凹槽具有底 部深度410〇拋光墊400亦包括形成於模製均質拋光體4〇2 中之端點偵測區域412。端點偵測區域具有由拋光表面4〇4 定向之第一表面414及由後表面406定向之第二表面416。 至少一部分第一表面414與凹槽圖案之底部深度41〇(例如 深度D1)共平面。第二表面416相對於後表面4〇6以程度D2 凹陷入模製均質拋光體402中。在一實施例中,第二表面 416以足以容納自化學機械拋光裝置之壓板突出之渦電流 探針的程度D2凹陷。在一特定實施例中,凹陷深度〇2為 表面406以下約70 mil(〇〇〇1吋)。在一實施例中,因為至少 一部分第一表面414與凹槽圖案之底部深度41〇共平面,所 以第一表面414在晶圓拋光期間不妨礙漿料移動。 在貫施例中,至少一部分第一表面414中斷拋光表面 4〇4之凹槽圖案彻。舉例而言,在一實施例中,參看圖 4A,端點偵測區域412之整個第一表面414與凹槽圖案4〇8 I59195.doc -14· 201230224 ^底二冰度410基本上共平面。因此,凹槽圖案彻在端點 /則區域412處中斷,這是因為實際上端點偵測區域412之 第一表面4M上形成單一大凹槽。再次參看圖4b,模製均 質抛光體402之拋光表面4G4中安置有凹槽圖案。在一實施 例中’凹槽圖案包括複數個同^多邊形418以及複數條輕 射線420 ‘然而’由於缺乏凹槽,圖案在端點伯測區域化 處中斷。 因此,儘管端點偵測區域412由與模製均質抛錢4〇2相 同之材料構成,但仍提供端點偵測區域4丨2之位置的目視 指不器。在-特定實施财,模製均質拋光體術(包括端 點偵測區域408)為不透明的,但使用凹槽圖案中之中斷來 目視確定用於安裝於配備有渦電流偵測系統之壓板上的端 點"ί貞測區域4 0 8之位置。 在另實施例中’端點债測區域具有第二凹槽圖案,其 具有與女置於拋光墊之拋光表面中的凹槽圖案之底部深度 基本上共平面之深度。舉例而言,圖5Α說明根據本發明之 另一實施例的另一拋光墊之橫截面圖。圓5Β說明根據本發 明之一實施例的圖5 Α之拋光墊之俯視圖。 參看圖5A及5B,拋光墊500包括模製均質拋光體5〇2。 模製均質撤光體502具有拋光表面504及後表面506。凹槽 圖案508安置於拋光表面504中。凹槽圖案之各凹槽具有底 部深度510。拋光墊500亦包括形成於模製均質拋光體5〇2 中之端點偵測區域5 12。端點偵測區域具有由拋光表面5〇4 定向之第一表面514及由後表面5 06定向之第二表面516。 159195.doc 15 201230224 至少一部分第一表面5 14與凹槽圖案之底部深度5丨〇(例如 深度D1)共平面。第二表面516相對於後表面506以程度D2 凹陷入模製均質抛光體502中。在一實施例中,第二表面 5 1 6以足以容納自化學機械拋光裝置之壓板突出之渦電流 探針的程度D2凹陷。在一特定實施例中,凹陷深度D2為 表面506以下約70 mil(0.001忖)。 在一實施例中’至少一部分第一表面514中斷拋光表面 504之凹槽圖案508。舉例而言,在一實施例中,參看圖 5A ’端點偵測區域512之第一表面514具有第二凹槽圖案 518 ’其具有與安置於拋光表面5 〇4中的凹槽圖案508之底 部深度(例如深度D1)基本上共平面之深度。然而,拋光表 面504之凹槽圖案508及端點偵測區域512之第二凹槽圖案 5 18由間隔520中之變化中斷。舉例而言,凹槽圖案5〇8及 第二凹槽圖案518之個別凹槽間隔寬度wi,且第二凹槽圖 案518與第一凹槽圖案508偏離大於寬度W1之距離W2。 再次參看圖5B,模製均質拋光體502之拋光表面504中安 置有凹槽圖案。在一實施例中,凹槽圖案包括複數個同心 多邊形522以及複數條輻射線524。然而,在端點偵測區域 512處,圖案在第二凹槽圖案518周圍中斷。因此,儘管端 點偵測區域512由與模製均質拋光體502相同之材料構成, 但仍提供端點彳貞測區域5 12之位置的目視指示器。在一特 定實施例中’模製均質拋光體502(包括端點偵測區域508) 為不透明的,但使用凹槽圖案中之中斷目視確定用於安裝 於配備有渦電流偵測系統之壓板上的端點偵測區域5〇8之 159195.doc •16· 201230224 位置》 如上文所描述,使用凹槽圖案中之中斷目視確定用於安 裝於配備有渦電流偵測系統之壓板上的端點偵測區域之位 置不限於其中凹槽圖案之偏移指示拋光墊背面上的端點偵 測區域之位置之實施例。在另一實施例中,拋光表面上包 括另一凹槽以追蹤拋光墊背面上偵測區域之位置之輪廓。 在另一實施例中,使用拋光表面上凹槽寬度之變化來指示 拋光墊背面上偵測區域之位置。在另一實施例中,使用拋 光表面上凹槽間距之變化來指示拋光墊背面上偵測區域之 位置。在另一實施例中,拋光表面上包括以上特徵中之兩 者或兩者以上以指示拋光墊背面上偵測區域之位置。 根據本發明之一實施例,上述模製均質拋光體由熱固性 閉孔聚胺基甲酸酯材料構成。在一實施例中,術語「均 質」用於扣示熱固性閉孔聚胺基甲酸酯材料之組成在整個 拋光體之組成中一致。舉例而言,在一實施例中術語 「均質」排除由例如浸潰毛氈或不同材料之多層之組合物 (複合物)構成之拋光墊。在一實施例中,術語「熱固性」 用於私示不了逆固化之聚合物材料,例如,材料之前驅體 藉由固化而不可逆地變為不熔性不可溶聚合物網狀結構。 舉例而言,在一實施例中,術語「熱固性」排除由例如 「熱塑膠」材料或「勢塑性」材料(彼等由在加熱時變為 液體且在充分冷卻時凍結為完全玻璃態之聚合物構成的材 料)構成之拋光墊。應注意,由熱固性材料製成之拋光墊 通常由較低分子量前驅體(其在化學反應中反應以形成聚 159195.doc 17 201230224 合物)製造,而由熱塑性材料製成之拋光墊通常藉由加熱 先刖已存在之聚合物以引起相變使得在物理過程中形成拋 光墊來製造。在一實施例中’術語「模製」用於指示在成 形模具中形成模製均質拋光體,如下文中更詳細描述。 在一實施例中,上述拋光體為不透明的。在—實施例 中,術語「不透明」用於指示允許約丨〇%或丨〇%以下的可 見光通過之材料。在一實施例中,模製均質拋光體大部分 或兀全因為乳濁潤滑劑(例如作為額外組分)遍及模製均質 拋光體之均質熱固性閉孔聚胺基甲.酸酯材料中而為不透明 的在特疋貫施例中,乳濁满滑劑為諸如(但不限於)以 下之材料:氮化硼、氟化鈽、石墨、氟化石墨、硫化鉬、 硫化鈮、滑石、三硫化鈕、二硫化鎢或鐵氟龍(Tefl〇n)。 在一實施例中’模製均質拋光體包括致孔劑。在一實施 例中,術語「致孔劑」用於指示具有「中空」中心之微米 級或奈米級球狀顆粒。中空中心未經固體材料填充,但可 包括氣態或液態核心。在一實施例中,模製均質拋光體包 括遍及模製均質拋光體之均質熱固性閉孔聚胺基曱酸酯材 料中的作為致孔劑之預膨脹及氣體填充之EXPANCEL(例 如作為額外組分p在一特定實施例中,ExpanCEL填充 有戊烷》 模製均質拋光體之尺寸可視應用而不同。然而,可使用 某些參數使包括該模製均質拋光體之拋光墊與習知加工設 備或甚至與習知化學機械加工操作相容。舉例而言,根據 本發明之一實施例’模製均質拋光體之厚度大約在〇.〇75 159195.doc -18· 201230224 叫·至0.130叫·範圍内,例如大約在丨9-3.3毫米範圍内。在 一實施例中’模製均質拋光體2〇2之直徑大約在2〇叶至 30.3吋範圍内,例如大約在5〇_77公分範圍内,且可能大約 在10吋至42吋範圍内,例如大約在25_1〇7公分範圍内。在 一實施例中,模製均質拋光體之孔隙密度大約在18%_3〇% 總空隙體積範圍内,且可能大約在15%_35%總空隙體積範 圍内。在一實施例中,模製均質拋光體具有閉孔型孔隙 率。在一實施例中,模製均質拋光體之孔徑為直徑約4〇微 米,但可為更小,例如直徑約2〇微米。在一實施例中,模 製均質拋光體之可壓縮性為約2.5%β在一實施例中,模製 均質拋光體之密度大約在〇.7〇_〇 9〇公克/立方公分範圍 内,或大約在0.95-1.05公克/立方公分範圍内。 使用用於渦電流偵測之拋光墊(包括模製均質拋光體)時 各種膜之移除速率可視所用^光^、漿料、冑節或抛光 劑配方而變化1而’在—實施例中,模製均質拋光體之 銅移除速率大約在30—900奈米/分鐘範圍内。在一實施例 中,本文中所描述之模製均質拋光體之氧化物移除速率大 約在30-900奈米/分鐘範圍内。 如上所述,可以模製製程製造適用於渦電流偵測之拋光 墊。在-實施例t ’模製製程可用於製造具有由與拋光塾 之其餘邻为不同之材料構成的端點偵測區域之拋光墊。舉 例而言,圖6A-6J說明根據本發明之一實施例的在製造用 於拋光半導體基板且適用於渴電流端點偵測之拋光整中的 各種處理操作之橫戴面圖。 159195.doc -19· 201230224 參看圖6A-6D,製造拋光墊之方法包括首先形成部分固 化之端點偵測區域前驅體。舉例而言,參看圖6八及6B, 用前驅體混合物604填充第一成形模具602且將第一成形模 具602之蓋罩606置於混合物604之頂部.在一實施例中, 在蓋罩606保持原位之情況下,在壓力下加熱混合物6〇4以 提供部分固化體608(例如遍及混合物604中的至少以某一 程度形成的鏈延伸及/或交聯,如圖6C中描繪)。在自第一 成形模具602移除部分固化體6〇8後,提供部分固化之端點 偵測區域前驅體608,如圖6D中描繪。 在一實施例中’藉由混合胺基曱酸酯預聚物與固化劑來 形成部分固化之端點偵測區域前驅體6〇8。在一實施例 中’部分固化之端點偵測區域前驅體608最終在拋光墊中 k供局部面積透明(L AT)區域。LAT區域可由與各種端點 偵測技術相容且適於納入由模製製程製造之拋光墊中的材 料構成。舉例而言,部分固化之端點偵測區域前驅體608 係藉由首先混合芳族胺基甲酸酯預聚物與固化劑形成。在 另一實施例中,藉由使混合物中包括乳濁劑來形成不透明 區域。在任一情況下,接著在第一成形模具中部分固化所 得混合物以提供模製膠體。 參看圖6E,部分固化之端點偵測區域前驅體608定位於 第二成形模具610之蓋罩612之接收區域614上》在第二成 形模具610中形成拋光墊前驅體混合物616。根據本發明之 一實施例,拋光墊前驅體混合物616包括聚胺基甲酸酯預 聚物及固化劑。 159195.doc •20· 201230224 在一實施例中,拋光墊前驅體混合物616用於最終形成 由熱固性閉孔聚胺基曱酸酯材料構成之模製均質拋光體。 在一實施例中’拋光墊前驅體混合物616用於最終形成硬 墊且僅使用單一類型固化劑。在另一實施例中,拋光墊前 驅體混合物616用於最終形成軟墊且使用第一固化劑與第 二固化劑之組合》舉例而言,在一特定實施例中,預聚物 包括聚胺基甲酸酯前驅體,第一固化劑包括芳族二胺化合 物且第二固化劑包括醚鍵聯。在一特定實施例中,聚胺基 甲酸酯前驅體為異氰酸酯,第一固化劑為芳族二胺且第二 固化劑為諸如(但不限於)聚丁二醇、胺基官能化二醇或胺 基官能化聚氧丙稀。在一實施例中,預聚物、第一固化劑 及第二固化劑具有100份預聚物、85份第一固化劑及15份 第二固化劑之近似莫耳比率。應瞭解,可使用不同比率或 基於預聚物以及第一固化劑及第二固化劑之特定性質提供 具有不同硬度值之拋光墊。在一實施例中,混合進一步包 括混合乳濁潤滑劑與預聚物、第一固化劑及第二固化劑。 在一實施例中’乳濁劑為諸如(但不限於)以下之材料:氮 化蝴、氟化鈽、石墨、氟化石墨、硫化鉬、硫化鈮、滑 石、三硫化钽、二硫化鎢或鐵氟龍。 在一特定實施例中’藉由使以下物質反應以形成具有實 質上均勻微蜂窩狀閉孔結構的幾乎不透明淺黃色熱固性聚 胺基甲酸酯來製造模製均質拋光體:(a)芳族胺基甲酸酯預 聚物,諸如AIRTHANE 60D :聚丁二醇-甲苯二異氰酸酯, (b)致孔劑’諸如expancel DE40 :具有異丁烯或戊烷填 159195.doc •21 - 201230224 充劑之丙烯腈/丙稀酸酯共聚物’(c)潤滑劑及增白劑填充 物’(d)多元醇,諸如Terathane 2000 :聚氧丁二醇,及(e) 催化劑’諸如DABCO 1027,及(f)固化劑,諸如CURENE 107 :硫醚芳族二胺,(g)熱穩定劑,諸如Irgastab piJR68, 及(g) UV吸收劑,諸如Tinuvin 213。在一實施例中,用氣 體填充EXPANCEL且各EXPANCEL單元之平均孔徑大約在 20至40微米範圍内。 參看圖6F,藉由降低第二成形模具610之蓋罩612使部分 固化之端點偵測區域前驅體608移入拋光塾前驅體混合物 616中》在一實施例中,部分固化之端點偵測區域前驅體 608移至第二成形模具610之最底部表面。在一實施例中, 在成形模具612之蓋罩612中形成複數個凹槽。複數個凹槽 用於將凹槽圖案印壓至在成形模具61〇中形成的拋光墊之 拋光表面中。應瞭解,描述藉由降低成形模具之蓋罩使部 分固化之端點偵測區域前驅體移入拋光塾前驅體混合物令 的本文所述之實施例僅需實現使蓋罩與成形模具之基底接 觸在一起。亦即在一些實施例中,成形模具之基底朝向成 形模具之蓋罩上升,而在其他實施例中,成形模具之蓋罩 朝向成形模具之基底下降同時基底朝向蓋罩上升。 參看圖6G,在壓力下加熱拋光墊前驅體混合物616及部 分固化之端點偵測區域前驅體6〇8(例如在蓋罩6丨2保持原 位之情況下)’以提供與固化之端點偵測區域前驅體622共 價鍵結之模製均質拋光體62(^參看圖6H,自模具6ι〇移除 拋光墊(或若需進一步固化,則為拋光墊前驅體),以提供 159195.doc -22- 201230224 其中安置有固化之端點偵測區域前驅體622之模製均質拋 光體620。應注意,可能需要經加熱來進一步固化且可藉 由將抛光墊置於烘箱中並加熱來進行。總之,最終提供拋 光墊,其中拋光墊之模製均質拋光體62〇具有拋光表面(頂 部,圖6H之凹槽表面)及後表面(底部,圖之平坦表 面)。在一實施例中,在成形模具61〇中之加熱包括在蓋罩 612(其密封成形模具61 〇中之混合物616)存在之前在大約在 華氏200-260度(degrees Fahrenheit)之溫度及大約在2-12磅/ 平方吋範圍内之壓力下至少部分固化。 最終,參看圖61及6J,固化之端點偵測區域前驅體622 相對於模製均質拋光體620之後表面凹陷。凹部提供拋光 墊,安置於模製均質拋光體620中且與其共價鍵結的端點 偵測區域624。舉例而言,可以上述方式獲得之拋光墊可 包括(但不限於)結合圖1A及IB、2A及2B、3A及3B描述之 抛光塾。 根據本發明之一實施例,藉由挖出一部分固化之端點偵 測區域前驅體622使固化之端點偵測區域前驅體622凹陷。 在一實施例中,整個端點偵測區域624相對於模製均質拋 光體620之後表面凹陷,如圖61中描繪及結合圖1A、 3A所描述。然而,在另一實施例中,僅端點偵測區域a* 之内部部分相對於模製均質拋光體之後表面凹陷,如圖6j 中描繪及結合圖2A、2B及3B所描述。 在另一態樣中,可使用模製製程製造具有由與拋光墊之 其餘部分不同之材料構成的端點偵測區域之拋光墊。 159l95.doc -23- 201230224 而’可在模製製程中所需容納之獨立支撐結構上將用於端 點價測區域之材料引入模製製程中。舉例而言,圖6κ_6丁 說明根據本發明之一實施例的製造用於拋光半導體基板且 適用於渦電流端點偵測之拋光墊中各種處理操作之橫截面 圖。 參看圖6K-60 ’製造拋光墊之方法包括首先在支撐結構 上形成部分固化之端點偵測區域前驅體。舉例而言,參看 圖6K及6L,支撐結構699置於第一成形模具602内部。根 據本發明之一實施例,支撐結構699經定尺寸以與第一成 形模具602之底部等形。在一實施例中,支撐結構699由非 可撓性材料構成’例如脆性材料’諸如剛性環氧樹脂板。 在一實施例中,支撐結構699由適於耐受約華氏300度之溫 度的材料構成。在一實施例中,支撐結構699由適於耐受 向熱預算之材料構成,這是因為在一特定實施例中,支稽· 結構699經再循環以在圖6Κ-6Τ中描述之模製製程中重複使 用。在一實施例中,支撐結構699由熱絕緣材料構成以避 免在模製製程期間經支撐結構699轉移任何熱量。在一實 施例中’支樓結構699由化學惰性材料構成且在固化製程 期間不與聚胺基甲酸醋材料共價鍵結。在一實施例中,支 撐結構699由在加熱時釋氣作用可忽略之材料構成。 參看圖6Μ-60,在支撐結構699上方用前驅體混合物604 填充第一成形模具602,且將第一成形模具602之蓋罩606 置於混合物604頂部。在一實施例中’在蓋罩6〇6保持原位 之情況下’在壓力下加熱混合物604以提供安置於支樓結 159195.doc • 24· 201230224 構699上之部分固化體6〇8(例如遍及混合物604中的至少以 某一程度形成之交聯及/或鏈延伸,如圖6N中描繪)。一旦 自第一成形模具602移除部分固化體608及耦接之支撐結構 699 ’即提供耦接至支撐結構699之部分固化之端點偵測區 域前驅體608 ’如圖60中描繪。在一實施例中,在向第一 成形模具602中添加混合物604前,藉由一片雙面膠帶使聚 合物膜黏附至支撐結構699之頂部表面◦因此,在一實施 例中’部分固化體608藉由聚合物膜及一片雙面膠帶耦接 至支撐結構699。 參看圖6P及6Q ’部分固化之端點偵測區域前驅體6〇8及 耦接之支撐結構699定位於第二成形模具610之蓋罩61 2'之 接收區域614’中。在一實施例中,聚合物膜安置於部分固 化之端點偵測區域前驅體6〇8與支撐結構699之間(例如藉 由第一片雙面膠帶),且使用第二片雙面膠帶使支撐結構 699耦接至蓋罩612’之接收區域614,之表面。在第二成形模 具610中形成拋光墊前驅體混合物616。根據本發明之一實 施例’拋光墊前驅體混合物616包括聚胺基甲酸酯預聚物 及固化劑。 參看圖6R,藉由降低第二成形模具61〇之蓋罩612•使部 分固化之端點偵測區域前驅體6〇8(如由支撐結構699所支 撐)移入拋光塾前驅體混合物616中。在一實施例中,部分 固化之端點偵測區域前驅體608移至第二成形模具61〇之真 正底部表面中。在壓力下(例如在蓋罩612,保持原位下)加 熱拋光墊前驅體混合物616及部分固化之端點偵測區域前 159195.doc -25- 201230224 驅體608(且因此加熱支撐結構699)以提供與端點偵測區域 則驅體622交聯之模製均質拋光體620。 參看圖6S,自模具610移除拋光墊(或若需進一步固化’ 則為拋光塾前驅體)以提供其中安置有固化之端點偵測區 域前驅體622之模製均質拋光體620。然而,在一實施例 中’支撐結構699在自成形模具610移除後保持耦接至固化 之h點债測區域前驅體622,如圖6S中描繪。應注意,可 月色需要經加熱來進一步固化且可藉由將拋光墊置於烘箱中 並加熱來進行。總之,最終提供拋光墊,其中拋光墊之模 製均質拋光體620具有拋光表面(頂部,圖6S之凹槽表面) 及後表面(底部’圖6S之平坦表面)以及支樓結構699。因 此,在一實施例中’需要移除支撐結構699以提供拋光 墊’例如藉由自固化之端點偵測區域前驅體622移除支擇 結構699及鄰接雙面膠帶。在一實施例中,移除支撐結構 699且接著使固化之端點偵測區域前驅體622凹陷,如上文 結合圖61及6 J所描述’以提供具有凹陷端點偵測區域之拋 光墊。 參看圖6T,在另一實施例中,一旦自模具610移除拋光 墊’支撐結構699即保持耦接至蓋罩612,之接收區域614, 上。亦即當蓋罩612,自成形模具610上升時,自端點偵測區 域前驅體620剝離掉支撐結構699。在一實施例中,藉由自 接收區域614'牽拉支撐結構699而容易地移除支撑結構 699。然而’在另一實施例中’發現難以自蓋罩612'移除支 撐結構699。因此,在一實施例中,在蓋罩6丨2·中提供開口 159195.doc -26- 201230224 或出口 690。一旦自成形模具61〇移除蓋罩612,,即可迫使 空氣或惰性氣體穿過開口 690自接收區域614,喷射支撐結構 699。在-特定實施例中,支撲結構_接著重新用於後續 模製製程中。 在另一態樣中’部分固化之端點偵測區域前驅體可包括 犧牲層,且藉由移除犧牲層來形成凹部。舉例而言,圖 7A 7C說明根據本發明之一實施例的製造用於拋光半導體 基板且適用於渦電流端點偵測之拋光墊中的各種處理操作 之橫截面圖。 參看圖7A,藉由降低其上具有部分固化之端點偵測區域 前驅體708的成形模具61〇之蓋罩612將部分固化之端點偵 測區域前驅體708插入拋光墊前驅體混合物616中。然而, 在一實施例中,與部分固化之端點偵測區域前驅體6〇8不 同邻刀固化之端點债測區域前驅體7 〇 8包括其上安置之 犧牲層709。因此,部分固化之端點偵測區域前驅體7〇8不 僅插入拋光墊前驅體混合物616中,且接著朝向成形模具 61〇之底部表面移動。實情為,在將部分固化之端點偵測 區域前驅體708置於成形模具61〇之蓋罩612上之前,使犧 牲層709耦接至部分固化之端點偵測區域前驅體7〇8。接 著,部分固化之端點偵測區域前驅體7〇8及犧牲層7〇9共同 朝向成形模具610之底部表面移動,如圖7A中描繪。因 此,犧牲層709位於成形模具底部與部分固化之端點偵測 區域前驅體708之間。在一實施例中,犧牲層7〇9由包括一 層作為組件之麥拉膜(Mylar fUm)層之複合物構成。 159195.doc •27- 201230224 參看圖7B,在壓力下(例如在蓋罩612保持原位之情況 下)加熱拋光墊前驅體混合物61 6及部分固化之端點偵測區 域前驅體708以提供與端點偵測區域722共價鍵結之模製均 質拋光體620。參看圖7C,自模具610移除拋光墊以提供模 製均質拋光體620,其中安置有端點偵測區域722及犧牲層 709。根據本發明之一實施例,藉由移除犧牲層709形成拋 光墊之渦電流偵測區域之凹部,如圖7D中描繪。在一實施 例中,整個端點偵測區域722因此相對於模製均質拋光體 620之後表面凹陷,亦如圖7D中描繪。 根據本發明之一實施例,端點偵測區域(例如圖61之624 或圖7D之722)由與模製均質拋光體不同之材料構成,如上 文及結合圖1A及1B、2A及2B、3 A及3B所描述。舉例而 言,在一實施例中,端點偵測區域624或722為局部面積透 明(LAT)區域,如結合圖ία、1B及2A、2B所描述。在一實 施例中’端點偵測區域624或722為不透明區域,其硬度與 模製均質抛光體620之硬度不同’如結合圖3A及3B所描 述。在一實施例中,模製均質拋光體62〇由熱固性閉孔聚 胺基甲酸酯材料構成。在一實施例中,模製均質拋光體 620之拋光表面包括安置於其中且由第二成形模具61〇之蓋 罩形成之凹槽圖案。 如上文簡要描述,在一實施例中,端點偵測區域624(或 722)及模製均質拋光體62〇可具有不同硬度。舉例而言, 在一實施例中,模製均質拋光體62〇之硬度小於端點偵測 區域624之硬度《在一特定實施例中,模製均質拋光體62〇 159195.doc -28- 201230224 之硬度大約在Shore D 20-45範圍内,而端點偵測區域624 之硬度為約Shore D 60。儘管硬度可能不同,但端點偵測 區域624與模製均質拋光體620之間的共價鍵結及/或交聯 可仍為廣泛的。舉例而言,根據本發明之一實施例,模製 均質拋光體620與端點偵測區域624之硬度差為Shore D 10 或Shore D 10以上,而模製均質拋光體62〇與端點偵測區域 624之間的共價鍵結及/或交聯程度為豐富的。 拋光墊及安置於其中之端點偵測區域之尺寸可視所需應 用而不同。舉例而言,在一實施例中,製造容納渦電流探 針之拋光墊,且模製均質拋光體62〇呈直徑大約在75_78公 分範圍内之圓形,而端點偵測區域624沿模製均質拋光體 620之徑向軸線之長度大約在4_6公分範圍内,寬度大約在 1-2公分範圍内,且定位於距模製均質拋光體62〇之中心大 約16-20公分範圍内之位置。 關於垂直定位,可選擇拋光體中端點偵測區域之位置以 用於特定制,且亦可為成形製程之結果。舉例而言,藉 由經由模製製程使拋光體中包括端點偵測區域,定位及可 達成之準確度與例如在成形後切割拋光墊且在形成拋光墊 後添加窗口插人物之過程相比可明顯更加得當。在一實施 例中’藉由使用如上文所描述之模製製程,在模製均質抛 光體620中包括端點债測區域624,以使其與模製均質抛光 體620之凹槽表面之槽底在同一平面上。在_特定實施例 令’藉由包括與拋光體之凹槽表面之槽底同平面之端㈣ 測區域624,端點錢區域似在由模製均質拋光體㈣及 159195.doc -29- 201230224 端點偵測區域624製造之拋光墊之整個使用壽命期間均不 會妨礙CMP處理操作。 如上文所描述,可以模製製程製造適用於渦電流偵測之 拋光墊。然而,拋光墊無需包括LAT或其他獨立及不同的 材料區域。圖8八_81?說明根據本發明之一實施例的製造用 於拋光半導體基板且適用於渦電流端點偵測之拋光墊中的 各種處理操作之橫截面圖。 參看圖8A’製造拋光墊之方法包括在成形模具610中形 成拋光墊前驅體混合物616。參看圖8A及8B,成形模具 610之蓋罩612定位於拋光墊前驅體混合物616中。蓋罩612 包括安置於其上之凹槽圖案618。凹槽圖案618具有中斷區 域614’其中圖案與凹槽圖案618之大部分不同或稍微隔 離,如下文更詳細描述》 參看圖8C,加熱拋光塾前驅體混合物616以提供模製均 質拋光體620。參看圖8D,自成形模具6 10移除模製均質拋 光體620以提供拋光墊(或若模製製程後需要進一步加熱或 固化,則為拋光墊前驅體)。由模製均質拋光體62〇構成之 拋光墊包括拋光表面822及後表面824 »根據本發明之一實 施例,由成形模具610之蓋罩612形成之凹槽圖案618(包括 中斷區域614)安置於拋光表面822中,如圖8D中描繪。安 置於拋光表面822中之凹槽圖案具有底部深度826。在一實 施例中,模製均質拋光體620由熱固性閉孔聚胺基甲酸酯 材料構成。 參看圖8E及8F,在模製均質拋光體620中提供端點偵測 159195.doc -30- 201230224 區域830。端點偵測區域具有由拋光表面822定向之第一表 面832及由模製均質拋光體62〇之後表面定向之第二表面 834。至少一部分第一表面832與凹槽圖案之底部深度咖 共平面。舉例而言’在一實施例中,整個第一表面832與 凹槽圖案之底部深度826共平面,如圖8E中描繪。此外, 第二表面834相對於後表面824凹入模製均質拋光體62〇 中’亦如圖8E中所描繪。在-實施例中,提供端點制區 域830係藉由挖出一部分模製均質拋光體62〇來進行。在一 實施例中,模製均質拋光體62〇(包括端點偵測區域83〇)為 不透明的。 根據本發明之一實施例,如上文所提及,拋光表面822 包括其凹槽圖案之中斷區域。中斷區域對應於成形模具 610之蓋罩612中之中斷區域614»在一實施例中,如圖8A 及8E中描繪’中斷區域614完全平坦且與蓋罩612之底部同 平面。因此’端點偵測區域830之整個第一表面832與拋光 表面822中的凹槽圖案之底部深度826基本上共平面,如結 合圖4A及4B之拋光塾所描述。然而’在一替代性實施例 中’端點偵測區域830之第一表面包括第二凹槽圖案850, 其具有與安置於模製均質拋光體820之拋光表面822中的凹 槽圖案之底部深度基本上共平面的深度。該替代性實施例 描繪於圖8F中。符合該實施例之拋光墊於上文中結合圖5A 及5B描述。在一特定實施例中,凹槽圖案(拋光表面822之 凹槽圖案)及第二凹槽圖案(中斷區域之凹槽圖案)之個別凹 槽間隔一寬度,且第二凹槽圖案以大於該寬度之距離偏離 159195.doc •31· 201230224 第凹槽圖案,亦如上文結合圖5 A及5B所描述。 在本發明2 Afc . <为—態樣中,藉由移除犧牲層形成模製均質 &光體中之端點#測區域。舉例而f,圖9A-9F說明根據 本發月之實施例的製造抛光塾之各種處理操作之橫截面 圖’其藉由移除嵌入模製均質拋光體中之犧牲層在拋光墊 中提供端點偵測區域。 參看圖9A,犧牲層7〇9安置於成形模具61〇底部。舉例而 言,在一實施例十,在向模具中添加拋光墊成分前,將犧 牲層709插入成形模具中。在一特定實施例中,犧牲層川9 由麥拉膜層構成。參看圖9B,拋光墊前驅體混合物分配至 成形模具610中的犧牲層709上。參看圖9C,在成形模具 〇中蓋罩612保持原位之情況下,加熱拋光墊前驅體混合 物616以提供模製均質拋光體62〇,如結合圖8c所描述。然 而,安置於成形模具610底部之犧牲層7〇9在62〇之模製期 間保留。 參看圖9D,自成形模具移除模製均質抛光體62〇以提供 其中安置有犧牲層709之拋光墊(或若模製製程後需要進一 步加熱或固化,則為拋光墊前驅體)。參看圖9E及9F,一 旦移除犧牲層709,即在模製均質拋光體62〇中提供端點偵 測區域924。因此,根據本發明之一實施例,藉由移除與 拋光墊之後表面共平面的犧牲層7〇9來形成拋光墊之渦電 流搞測區域之凹部。接著在-實施例巾,整個端點偵測區 域924相對於模製均質拋光體62〇之後表面凹陷,如圖卯及 9F中描繪。在一實施例中,端點偵測區域924之整個頂部 159l95.doc •32- 201230224 表面950凹陷且為平坦的,如圖9E中描繪。然而,在另一 實施例中,第二組凹槽952(由62〇之拋光表面之凹槽中斷) 安置於端點偵測區域924之頂部表面上,如圖9F中描繪。 在又一實施例十,可藉由將升高之特徵置於用於形成拋 光墊之模具底部或併入其中來製造拋光墊之凹陷區域。舉 例而言,再次參看圖9A_9C,變黑區域可替代犧牲層7〇9作 為在成形模具610中構造之永久性或半永久性特徵。亦 即,與隨製造之拋光墊自模具轉移之犧牲層7〇9(例如結合 圖9D所描述)相反,該特徵不隨製造之拋光墊轉移。在該 情況下,在一實施例中,在成形模具中直接形成由均質拋 光體620構成之拋光墊(諸如圖犯及卯中所展示),而無需 中間移除犧牲層(需要移除犧牲層之情況如結合圖9D所描 述)。在另一實施例中,於成形模具中構造之永久性或半 永久性特徵與雙重材料墊製造一起使用,諸如用於製造拋 光墊,諸如結合圖1A、2A、3A及3B所描述者。 本文中所描述之拋光墊可適於與配備有渦電流端點镇測 系統之化學機械拋光裝置一起使用。舉例而言,圖1 〇說明 根據本發明之一實施例的與適用於渦電流端點偵測之抛光 墊相容的拋光裝置之等角側視圖。 參看圖10,拋光裝置1000包括壓板1004。壓板1004之頂 部表面1002可用於支撐用於渦電流端點偵測之拋光墊。壓 板1004可經組態以提供軸旋轉1〇〇6及滑件振盪1008。樣品 載體1010用於在具有拋光墊之半導體晶圓之拋光期間固持 例如半導體晶圓1011使其處於原位。樣品載體1010由懸浮 159195.doc -33· 201230224 機制1012進一步支撐《包括漿料給料器丨〇14以在半導體晶 圓拋光之前及拋光期間提供漿料至拋光墊表面。 在本發明之一態樣中,提供適用於渦電流端點偵測之拋 光墊以供與拋光裝置1000類似之拋光裝置一起使用。舉例 而言’圖11說明根據本發明之一實施例的具有渦電流端點 谓測系統及與渦電流端點偵測系統相容之拋光墊的拋光裝 置之橫截面圖。 參看圖11 ’拋光台1000包括可旋轉壓板丨004,其上置放 有拋光墊1118。拋光墊1118提供拋光表面1124»至少一部 分拋光表面1124可具有用於載運漿料之凹槽1128。拋光台 1000亦可包括拋光墊調節器裝置以維持拋光墊之調節使其 將有效拋光基板。在拋光操作期間,化學機械拋光漿料 113〇藉由漿料供應埠或組合之漿料/沖洗臂1014供應至拋 光墊1118之表面。基板1〇11由載體頭1〇1〇相對拋光墊1118 固持。載體頭1010由支撐結構(諸如旋轉料架)懸掉,且藉 由載體驅動軸1136連接至載體頭旋轉馬達,以便載體頭可 圍繞軸1138旋轉。 在壓板1004中形成凹部1140,且將現場監測模組1142裝 配至凹部1140中。現場監測模組1142可包括現場渦電流監 測系統’其具有安置於凹部1140中以隨壓板丨〇〇4旋轉之核 心1144。驅動及感測線圈1146纏繞核心1144且連接至控制 器1150。在操作中,振盪器向驅動線圈提供能量以產生延 伸穿過核心1144之主體的振盪磁場丨148。至少一部分磁場 1148穿過拋光墊1118朝向基板1〇11延伸。若基板ίο〗〗上存 J59195.doc -34· 201230224 在金屬層’則振盈磁場114 8將產生渦電流。 渦電流在與應場相反之方向上產生磁通量,且此磁通量 在初級線圈或感測線圈中誘導與驅動電流方向相反之反向 電流。所產生之電流變化可量測為線圈之阻抗的變化。金 屬層電阻隨金屬層厚度變化而變化。因此,渦電流及由渦 電/’IL誘導之磁通量之強度亦變化,引起初級線圈之阻抗變 化。藉由監測該等變化’例如藉由量測線圈電流之振幅或 線圈電流之相位(相對於驅動線圈電流之相位),渦電流感 測器監測器可偵測金屬層厚度之變化。 再次參看圖11,根據本發明之一實施例,當拋光墊丨丨J 8 緊固至壓板1004時,薄片裝配於壓板中的凹部1140上及核 心及/或線圈之伸出超過壓板1004頂部表面之平面的部分 上。藉由使核心1142更靠近基板1112定位,使得磁場傳播 較少且可改良空間解析。假設拋光墊1〇1丨不與光學端點監 測系統一起使用’則在一實施例中,整個拋光層(包括凹 部上之部分)可為不透明的。然而,在另一實施例中,凹 部上之部分為透明的以幫助在壓板上定位拋光墊。 根據本發明之一實施例,本文中解決之問題包括以下情 形’渴電流端點偵測硬體包括上升高出壓板之平面約 0.070对之感測器,使得感測器可與晶圓表面相距最佳距 離。然而’此情形可在拋光墊之設計及效能方面引起一些 問題’本發明之實施例可提供該等問題之有利解決方法。 在一實施例中,拋光墊經設計以容納渦電流感測器,通常 藉助於形成於拋光墊背面中之凹部。在一特定實施例中, 159195.doc -35- 201230224 使用拋光墊中約0.080吋深之凹部達成此目的。 在本發明之一態樣中,經設計以容納渦電流端點偵測系 統之拋光墊(諸如以上各個實施例中描述之拋光墊)藉由黏 附表面黏附至壓板1004上。舉例而言,在一實施例中,使 用無載體膜之黏附劑(亦即轉移黏附劑)使拋光墊與壓板 1004黏附性耦接。在該等情況下,因為無永久性載體膜隨 該塾轉移至壓板,所以無需在於轉移至壓板前自抛光塾移 除之臨時或犧牲離型襯墊中切割出開口。在一實施例中, 自拋光墊移除臨時或犧牲離型襯墊,保留黏附薄膜。薄膜 之任何跨越拋光墊中凹部(諸如形成以容納渦電流偵測系 統之凹部)之部分將與離型襯墊保持在一起或其將保留作 為跨越凹部之開口的薄膜。在後一種情況下,在於壓板上 安裝拋光墊之前,可能需要移除薄膜之該跨越凹部之開口 的部分。在一實施例中,犧牲離型襯墊及保留於拋光墊上 之黏附薄膜均非雙面膠帶。 因此,已揭示使用渦電流端點偵測拋光半導體基板之拋 光墊。根據本發明之一實施例,用於拋光半導體基板之拋 光墊包括模製均質拋光體。模製均質拋光體具有拋光表面 及後表面。拋光墊亦包括安置於模製均質拋光體中且與其 共價鍵結之端點偵測區域。端點偵測區域由與模製均質拋 光體不同之材料構成,至少一部分端點偵測區域相對於模 製均質拋光體之後表面凹陷。根據本發明之另一實施例, 用於拋光半導體基板之拋光墊包括具有拋光表面及後表面 之模製均質拋光體。凹槽圖案安置於拋光表面中,凹槽圖 159195.doc •36- 201230224 案具有底部深度。拋光墊亦包括形成於模製均質拋光體中 之端點俄測區域。端點偵測區域具有由拋光表面定向之第 —表面及由後表面定向之第二表面。至少一部分第一表面 與凹槽圖案之底部深度共平面且中斷凹槽圖案。第二表面 相對於後表面凹陷入模製均質拋光體中。 【圖式簡單說明】 圖1A說明根據本發明之一實施例的用於拋光半導體基板 且適用於渦電流端點偵測之拋光墊之橫截面圖。 圖1B說明根據本發明之一實施例的圖ία之拋光墊之俯 視圖。 圖2 A說明根據本發明之一實施例的用於拋光半導體基板 且適用於渦電流端點偵測之拋光墊之橫截面圖。 圖2B說明根據本發明之一實施例的圖2a之拋光墊之俯 視圖。 圖3 A說明根據本發明之一實施例的用於拋光半導體基板 且適用於渦電流端點偵測之拋光墊之橫截面圖。 圖3B說明根據本發明之一實施例的用於拋光半導體基板 且適用於渦電流端點偵測之拋光墊之橫截面圖。 圖4 A說明根據本發明之一實施例之的用於拋光半導體基 板且適用於渦電流端點偵測之拋光墊之橫截面圖。 圖4B說明根據本發明之一實施例的圖4 A之拋光墊之俯 視圖。 圖5 A說明根據本發明之一實施例的用於拋光半導體基板 且適用於渦電流端點偵測之拋光墊之橫戴面圖》 159195.doc -37· 201230224 圖5B說明根據本發明之一實施例的圖5 A之拋光墊之俯 視圖。 圖6A-6T說明根據本發明之一實施例的用於製造抛光塾 之操作之橫戴面圖。 圖7 A-7D說明根據本發明之一實施例的用於製造拋光墊 之操作之橫截面圖。 圖8A-8F說明根據本發明之一實施例的用於製造拋光墊 之操作之橫截面圖。 圖9A-9F說明根據本發明之一實施例的用於製造拋光墊 之操作之橫截面圖。 圖10說明根據本發明之一實施例的與用於渦電流端點偵 測之拋光墊相容的拋光裝置之等角側視圖。 圖11說明根據本發明之一實施例的拋光裝置之橫截面 圖,該拋光裝置具有渦電流端點偵測系統及與渦電流端點 偵測系統相容之拋光墊。 【主要元件符號說明】 100 拋光墊 102 模製均質拋光體 104 拋光表面 106 後表面 108 端點偵測區域 110 材料 112 共價鍵結 114 第一表面 159195.doc 201230224 116 第二表面 118 同心多邊形 120 輕射線 150 凹槽 200 抛光墊 202 模製均質拋光體 204 抛光表面 206 後表面 208 端點偵測區域 210 材料 214 第一表面 216 第二表面 218 第三表面 220 端點偵測區域之側壁 222 界面 300 拋光墊 300' 拋光塾 302 模製均質拋光體 304 拋光表面 306 後表面 308 端點偵測區域 308' 端點偵測區域 310 材料 312 共價鍵結 l:59195.doc 39 · 201230224 320 側壁 400 拋光墊 402 模製均質拋光體 404 拋光表面 406 後表面 408 凹槽圖案 410 底部深度 412 端點偵測區域 414 第一表面 416 第二表面 418 同心多邊形 420 輻射線 500 拋光墊 502 模製均質拋光體 504 拋光表面 506 後表面 508 凹槽圖案 510 底部深度 512 端點偵測區域 514 第一表面 516 第二表面 518 第二凹槽圖案 520 間隔 522 同心多邊形 159195.doc -40- 201230224 524 輕射線 602 第一成形模具 604 前驅體混合物 606 蓋罩 608 部分固化體 610 第二成形模具 612 蓋罩 612' 蓋罩 614 接收區域 614' 接收區域 616 拋光墊前驅體混合物 618 凹槽圖案 620 模製均質拋光體 622 固化之端點偵測區域前驅體 624 端點偵測區域 690 開口 /出口 699 支撐結構 708 端點偵測區域前驅體 709 犧牲層 722 端點偵測區域 822 抛光表面 824 後表面 826 底部深度 830 端點偵測區域 159195.doc -41 - 201230224 832 第一表面 834 第二表面 850 第二凹槽圖案 924 端點偵測區域 950 端點偵測區域之頂部表面 952 凹槽 1000 拋光裝置 1002 壓板之頂部表面 1004 壓板 1006 軸旋轉 1008 滑件振盪 1010 樣品載體/載體頭 1011 半導體晶圓 1012 懸浮機制 1014 漿料給料器/漿料/沖洗臂 1118 拋光墊 1124 抛光表面 1128 凹槽 1130 化學機械拋光漿料 1136 載體驅動軸 1138 轴 1140 凹部 1142 現場監測模組 1144 核心 159195.doc -42- 201230224 1146 驅動及感測線圈 1148 振盪磁場 1150 控制器 D 凹陷深度 D1 深度 D2 程度/凹陷深度 T1 模製均質拋光體之厚度 T2 模製均質拋光體除拋光表面之凹槽以外之 部分的厚度 T3 端點偵測區域之材料之厚度 W1 寬度 W2 距離 159195.doc •43·201230224 .  6. Description of the Invention: TECHNICAL FIELD OF THE INVENTION Embodiments of the present invention relate to the field of chemical mechanical polishing (CMP) and, in particular, to polishing pads for eddy current endpoint detection. • [Prior Art] • Chemical mechanical planarization or chemical mechanical polishing (often abbreviated as CMP) is a technique used to planarize semiconductor wafers or other substrates in semiconductor fabrication. The process uses abrasives and poultry chemical slurries (usually colloids) as well as polishing pads and retaining rings, which are typically larger than the wafer diameter. The polishing pad is pressed against the wafer by a dynamic polishing head and held in place by a plastic retaining ring. The dynamic polishing head rotates during polishing. This method helps remove material and tends to flatten any irregular shape, making the wafer flat or flat. This may be necessary to install a wafer for forming other circuit components. For example, this may be necessary to have the entire surface be within the field depth of the photolithography system or to selectively remove material based on the material location. The latest field depth requirements below the 50 nanotechnology node are down to the ohm level. The material removal process is not just grinding to rubbing (for example using sandpaper on wood). The chemicals in the slurry also react with the material to be removed and/or weaken the material to be removed. The abrasive promotes this weakening process and the polishing pad helps to wipe the reactive material from the surface. The problem in CMP is to determine if the polishing process is complete, such as whether the substrate layer has been flattened to the desired flatness or thickness, or when the desired amount of material has been removed. Excessive polishing of the conductive layer or film causes an increase in circuit resistance. On the other hand, insufficient polishing of the conductive layer may cause an electrical short. The initial thickness of the substrate layer is 159195. Doc 201230224 Slurry composition, polishing pad conditions, relative speed between the polishing pad and the substrate, and changes in load on the substrate can cause changes in material removal rate. These variations cause the time required to reach the polished end point to vary. Therefore, it is generally not possible to determine the polishing endpoint based solely on polishing time variations. One method of determining the polishing endpoint is to monitor the polishing of the metal layer on the substrate in situ, for example using an optical or electrical sensor. One monitoring technique is to induce eddy currents in the metal layer with a magnetic field and to detect changes in magnetic flux as the metal layer is removed. The magnetic flux generated by the eddy current is opposite to the direction of the excitation flux line. This magnetic flux is proportional to the eddy current, the eddy current is proportional to the metal layer resistance, and the metal layer resistance is proportional to the layer thickness. Therefore, the change in the thickness of the metal layer causes a change in the magnetic flux generated by the thirsty current. This change in magnetic flux induces a change in current in the primary coil. This current change can be measured as a change in impedance. Therefore, the change in the impedance of the coil reflects the change in the thickness of the metal layer. However, it may be necessary to modify the polishing pad to accommodate eddy current measurements during the instant polishing of the metal layer on the substrate. Therefore, polishing pads have played an important role in increasingly complex CMP operations, in addition to advances in polymer technology. However, the development of CMP technology needs further improvement. SUMMARY OF THE INVENTION Embodiments of the present invention include a polishing pad for eddy current endpoint detection. In one embodiment, the polishing pad for polishing a semiconductor substrate comprises a molded homogeneous polishing body. The molded homogeneous polishing body has a polished surface and a rear surface. The polishing pad also includes an end point tilting region disposed in the molded homogeneous polishing body and covalently bonded thereto. The endpoint town area is made of a different material than the molded homogeneous body 159195. Doc 201230224 .  The material is constructed such that at least a portion of the end point detection area is recessed relative to the surface of the molded homogeneous polishing body. In another embodiment, a method of making a polishing crucible for polishing a semiconductor substrate includes forming a molded homogeneous polishing body. The molded homogeneous polishing body has a finish.  Kneading and back surface. The method also includes forming an endpoint detection region disposed in the molded homogeneous polishing body '+ and covalently bonded thereto. The endpoint detection area is constructed of a different material than the molded homogeneous polishing body, at least a portion of the endpoint detection area being recessed relative to the surface after molding the homogeneous polishing body. In one embodiment, a polishing pad for polishing a semiconductor substrate includes a molded homogeneous polishing body having a polished surface and a back surface. The groove pattern is disposed in the polishing surface, and the groove pattern has a bottom depth. The polishing pad also includes an edge bond zone $ formed in the molded homogeneous throw (4). The endpoint region has a first surface oriented by the polishing surface and a second surface oriented by the back surface. At least a portion of the first surface is coplanar with the bottom of the groove pattern and interrupts the groove pattern. The second surface is recessed into the molded homogeneous polishing body with respect to the rear surface. In another embodiment, a method of making a polishing pad includes forming a polishing pad precursor mixture in a forming mold. The cover of the forming mold is positioned in the polishing pad • Month _』 in the body mixture. The cover is provided with a grooved target, a groove pattern, and an interrupted area. The polishing ruthenium precursor mixture is cured to provide a molded homogeneous polishing body having a polished surface and a back surface. A groove pattern from the cover is placed in the polishing surface, the groove pattern having a bottom depth. An endpoint detection region is provided in the molded homogeneous projection having a first surface oriented by the polishing surface and a second surface oriented by the rear surface. At least part of 159195. Doc 201230224 When the bottom surface is coplanar with the bottom of the groove pattern and includes the interruption area @ of the groove circle, the first surface is recessed into the molded body relative to the rear surface. In one embodiment, a method of making a polishing pad for polishing a semiconductor substrate includes forming a polishing pad comprising a molded homogeneous polishing pad (4) during molding, the molded homogeneous polishing body having a nine-light surface and a back surface. (5) The groove pattern is placed in the polished surface, and the groove pattern has a bottom depth. The polishing pad also includes an end (four) region formed in the molded homogeneous polishing body. The endpoint detection region has a first surface oriented by the polishing surface and a second surface oriented by the rear surface. At least a portion of the first surface is coplanar with the bottom of the groove pattern and interrupts the groove pattern. The first surface is recessed into the molded homogeneous projection relative to the rear surface. In one embodiment, a method of making a polishing pad includes forming a partially cured endpoint detection region precursor in a first forming mold. The partially cured end point detection area precursor system is positioned on the receiving area of the cover of the second forming mold. Providing a polishing pad precursor mixture in the second forming die" by contacting the cover with the substrate of the second forming die, the partially cured end detecting region precursor is moved into the polishing pad precursor mixture. The polishing pad precursor mixture and the partially cured endpoint detection region precursor are then heated to provide a molded homogeneous polishing body covalently bonded to the cured endpoint detection region precursor. Molded homogeneous polishing body (4) Light surface And the back table φ. The cured endpoint detection region precursor is recessed relative to the surface of the molded homogeneous polishing body to provide an end detection region disposed in the molded homogeneous polishing body and covalently bonded thereto. 159195. Doc 201230224 .  In another embodiment, the method of making a polishing crucible includes placing a support structure in the first forming tool. • Providing a pick-up region precursor mixture over the branch structure in the first forming mold. The partially cured endpoint detection region precursor is formed by heating the tear-mask m-domain precursor mixture in the first forming mold, and the partially cured end (four) region precursor is lightly coupled to the selective structure. By &<> attaching the support structure to the recessed receiving area (4) of the cover to position the structure and the partially cured end detecting area precursor to the concave receiving area of the cover of the second forming mold. A polishing pad precursor mixture is provided in the second forming die. The partially cured endpoint detection region precursor is moved into the polishing pad precursor mixture by contacting the cover with the substrate of the second forming mold. Heating the polishing pad precursor mixture and the partially cured endpoint detection region precursor to provide a molded homogeneous polishing body covalently bonded to the cured endpoint detection region precursor, the molded homogeneous polishing body having a polished surface and thereafter The surface and the end point detection area are coupled to the support structure. Remove the support structure from the endpoint detection area. [Embodiment] Described herein is the use of a thirst current endpoint to detect a polishing enamel of a polished semiconductor substrate. Many specific details, such as specific polishing pad sets and designs, are set forth in the following description to provide a thorough understanding of the embodiments of the invention. It will be apparent to those skilled in the art that the embodiments of the invention may be practiced without the specific details. In other instances, well-known processing techniques (such as combinations of pastes and polishing pads for performing CMP of semiconductor substrates) have not been described in detail to avoid unnecessarily obscuring embodiments of the present invention. In addition, it should be understood that the various embodiments shown in the drawings are illustrative and not necessarily 159195. Doc 201230224 may form a polishing pad that includes a region of a full current sensing probe designed to accommodate a platen incorporated into a chemical mechanical polishing device. For example, in one embodiment of the invention, the polishing pad includes a dissimilar material region during molding of the polishing pad. The dissimilar material region is shaped and sized to receive a full current probe protruding from the platen. In addition, the area can be made at least slightly transparent to aid in aligning the polishing crucible on the platen including the eddy current probe. In another embodiment of the invention, the polishing pad is entirely a molded homogeneous polishing body having a recess formed in the back surface region of the polishing body. The recess can also be shaped and sized to accommodate the thirst current probe from the platen. In one embodiment, the single recess is sized to receive all of the portion of the eddy current detector that protrudes from the platen. Further, in the case where the molded homogeneous polishing body is opaque, a pattern can be formed in the polishing surface of the polishing pad, wherein the pattern indicates the position of the concave portion on the back surface of the polishing pad or a key for the position of the concave portion. This key can be used to help align the polishing pad on the platen that includes the eddy current probe. In accordance with an embodiment of the present invention, a polishing pad for polishing a semiconductor substrate is provided to allow a device such as a sensor to extend onto a press plate of a CMP tool. For example, in one embodiment, the polishing pad includes design features to facilitate its use on polishing tools equipped with eddy current endpoint detection systems and in CMP processes utilizing full current endpoint detection. The polishing pad design features generally allow the eddy current sensor of the CMP tool to rise above the plane of the CMP tool platen and extend into the back of the polishing pad during the polishing process. In one embodiment, these design features allow this to occur without affecting the overall polishing performance of the polishing pad. The design features may also allow the polishing pad to be placed in a positively broken orientation on the platen' thereby allowing the eddy current sensor to rise above the pressure 159195. Doc 201230224 .  The plane of the board is without interference. In one embodiment, the design feature includes a recess in the back of the polishing pad that is appropriately sized, shaped, and positioned to align with the eddy current sensor. Another design feature in the embodiment includes a member that visually orients the polishing pad on the plate to align with the position of the sensor, such as an eddy current sensor. In one embodiment the polishing pad has a transparent portion. In another embodiment, the polishing pad is completely opaque but includes a visible signal or a dense indication indicating the position of the corresponding back recess, such as an interrupted pattern on its polished surface. In one aspect of the invention, the polishing pad for eddy current detection includes an end point detection area which is constructed of a different material than the remainder of the polishing pad. By way of example, FIG. 1A illustrates a cross-sectional view of a polishing pad suitable for eddy current endpoint detection in accordance with an embodiment of the present invention. Figure 1B illustrates a top view of the polishing pad of Figure 1A in accordance with an embodiment of the present invention. Referring to Figures 1A and 1B, the polishing pad 1A includes a molded homogeneous polishing body 1〇2. The molded homogeneous polishing body 102 has a polishing surface 1〇4 and a back surface 〇6 (note that only the rear surface 1〇6 is depicted in FIG. 1A). The polishing surface 1 〇 4 can include a plurality of grooves 150 ′ as depicted in FIG. The end point detecting area 1〇8 is placed in the molded homogeneous polishing body 102. The end point detecting area 1〇8 is composed of a material 110 different from the molded homogeneous polishing body 1〇2. Material 11 is covalently bonded 112 to the material of the molded homogeneous polishing body 1〇2. In one embodiment, the endpoint detection area 108 is thinner than most polishing pads, with or without grooves, as depicted in Figure 1A. For example, in one embodiment, the thickness (T3) of the material u〇 of the endpoint detection region 1〇8 is thinner than the thickness (Τ1) of the molded homogeneous polishing body 102. And in detail, Τ3 is thinner than the molded homogeneous throw 159195. Doc 201230224 Thickness (T2) of the portion of the body 102 other than the groove 150 of the polishing surface 104. In a particular embodiment, T1 is the thinnest portion of the polishing pad 1〇〇. Referring again to FIG. 1A, at least a portion of the material of the endpoint detection region 1 】 8 is recessed relative to the surface 106 of the molded homogeneous polishing body 102. For example, in one embodiment, the material 11 of the endpoint detection region 108 is entirely recessed relative to the surface 1〇6 of the molded homogeneous polishing body 102. In particular, the material 110 of the endpoint detection area 108 has a first surface Π4 and a second surface 116. The second surface 116 is recessed to a degree D with respect to the rear surface 1〇6. In one embodiment, the second surface 116 is recessed to a degree D sufficient to accommodate an eddy current probe projecting from a platen of the chemical mechanical polishing apparatus. In a particular embodiment, the depth D of the recess is about 70 mils below the surface 106 (0. 001 pairs). Referring to Fig. 1B', in an embodiment, the polishing surface 104 of the molded homogeneous polishing body ι 2 is provided with a groove pattern ', i.e., a pattern formed by the groove 15' shown in Fig. 1A. In one embodiment, the groove pattern includes a plurality of concentric polygons 118 and a plurality of radiant lines 12A, as depicted in Figure 1B. In one embodiment, the term "covalent bonding" refers to a configuration in which atoms from material 110 of endpoint detection region 108 crosslink or share electrons from atoms of a molded homogeneous polishing body to effect an actual chemical bond. The covalent bond is different from the electrostatic interaction that can result from cutting off a portion of the polishing pad and replacing it with an insertion region, such as a window insert. Covalent bonding is also different from mechanical bonding (such as via a combination of screws, nails, glue or other adhesives). As described in detail below, in contrast to the polishing of the polishing body and the later-inserted insert, covalent bonding can be achieved by curing the polishing body precursor in which the endpoint detection region precursor has been disposed. 159195. Doc -10- 201230224 In another embodiment, the material of the endpoint detection region is not completely recessed relative to the surface after molding the homogeneous polishing body. For example, Figure 2A illustrates a cross-sectional view of another polishing pad in accordance with another embodiment of the present invention. Figure 2B illustrates a top view of the polishing pad of Figure 2A in accordance with an embodiment of the present invention. Referring to Figures 2A and 2B, the polishing pad 2A includes a molded homogeneous polishing body 2〇2. The molded homogeneous polishing body 202 has a polishing surface 204 and a rear surface 206 (note that only the rear surface 2〇6 is depicted in Fig. 2A). The end point detection area 2〇8 is placed in the molded homogeneous polishing body 202. The end point detecting area 2〇8 is composed of a material 21〇 different from the molded homogeneous polishing body 202. Material 21 is covalently bonded 212 to the material of the molded homogeneous polishing body 2〇2. In one embodiment, only a portion of the material 21' of the endpoint detection region 2〇8 is recessed relative to the surface 206 after the molded homogeneous polishing body 202. For example, the material 210 of the end point detection region 208 has a first surface 214, a second surface 216, and a second surface 218. The second surface includes only the inner portion of the end point detection area 2〇8 and is recessed to a degree D with respect to the surface 2〇6 after the molded homogeneous polishing body 2〇2 and the third surface 218 of the end point detection area 208. Thus, the sidewall 220 of the endpoint detection region 208 extends along the interface 222, wherein the endpoint detection region 2〇8 intersects the molded homogeneous polishing body 202 at the interface 222. In the embodiment - by maintaining the sidewalls 220, a greater degree of covalent bonding between the endpoint stripping region 208 and the molded homogeneous polishing body 202 can be achieved, thereby enhancing the integrity of the polishing pad 200. In one embodiment, the second surface is recessed to a degree D sufficient to accommodate an eddy current probe projecting from the platen of the chemical mechanical polishing apparatus. In a particular embodiment, the depth of depression β is about 70 m i 1 (0 · 〇 〇 1 called) below the surface. 159195. Doc 201230224 Referring to Figures iA, 1B, 2A and 2B, in accordance with an embodiment of the present invention, an end point detection area (e.g., area 108 or 208) is a local area transparent (lat) area. In one embodiment, the molded homogeneous polishing body is opaque, but the LAT region is transparent. As described below, in the embodiment, the molded homogeneous polishing body is at least partially opaque due to the inclusion of inorganic substances in the material for its manufacture. In this embodiment, an inorganic-free LAT region is produced and is substantially (if not completely) transparent to, for example, visible light, ultraviolet light, infrared light, or a combination thereof. In a particular embodiment, the inorganic material included in the molded homogeneous polishing body is an opaque lubricant, while the LAT region is free of any inorganic material and is substantially free of an opacifying lubricant. In an embodiment, the LAT region is effectively transparent (ideally fully transparent) to enable light to be transmitted through the polishing pad for, for example, placing a polishing pad on the platen or for endpoint detection. However, it may be that the LAT region may not or need not be made completely transparent, but may still be effective for light transmission for placement of the polishing pad on the platen or for endpoint speculation. For example, in one embodiment, the LAT region can transmit less than 80% of the incident light in the range of 7 〇〇 71 〇 nanometers, but is still suitable for use as a window within the polishing pad. In one embodiment, the LAT region described above is impermeable to the materials used in chemical mechanical polishing operations. In one embodiment, referring again to FIGS. 1B and 2B, the endpoint detection regions ι 8 and 208 are respectively LAT regions and are transparent in a top view. In one embodiment, this visible transparency facilitates the mounting of a polishing pad on a plate equipped with an eddy current sensing probe. In Figure 2B, the sidewall 220' can be seen from this transparent region as depicted by the dashed rectangle. However, in another embodiment, the material of the endpoint detection area is opaque and 159195. Doc 201230224 Therefore no transparent area for partial area is available. For example, Figures 3A and 3B illustrate cross-sectional views of other polishing pads in accordance with another embodiment of the present invention. Referring to Figures 3A and 3B' polishing pad 300 (or 300,) includes a molded homogeneous polishing body 302. The molded homogeneous polishing body 3〇2 has a polished surface 3〇4 and a rear surface 306. The end point detection area 3〇8 (or 3〇8,) is placed in the molded homogeneous polishing body 3〇2. The endpoint detection area 308 (or 308,) is comprised of an opaque material 310 that is different from the molded homogeneous polishing body 3〇2. Material 31 is covalently bonded 312 to the material of the molded homogeneous polishing body 3〇2. In one embodiment, referring to Figure 3, the material 31〇 of the endpoint detection region 3〇8 is completely recessed relative to the surface 306 after the molded homogeneous polishing body 302. In another embodiment, referring to Fig. 3B, only a portion of the endpoint detection region 3〇8, the material 310 is recessed relative to the surface 306 of the molded homogeneous polishing body 302 (except for the sidewalls 320). In one embodiment, the endpoint detection area 3〇8 (or 3〇8,) is an opaque area' having a hardness that is different from the hardness of the molded homogeneous polishing body 3〇2. In a particular embodiment, the endpoint detection area 308 (or 3〇8,) has a hardness that is greater than the hardness of the molded homogeneous polishing body 302. However, in an alternative embodiment, the hardness of the end point detection region 308 (or 308,) is less than the hardness of the molded homogeneous polishing body 3〇2. In one embodiment, the endpoint detection zone 3〇8 (or 3〇8) is impermeable to the slurry used in the chemical mechanical polishing operation. The end point detection area 3〇8 (or 308') is composed of an opaque material 3 1 ,, but this area can still be used to visually mount the polishing pad 300 or 300 on a pressure plate equipped with an eddy current probe, respectively. For example, in an embodiment, the absence of a groove pattern on the first surface 304 of the endpoint detection region 308 (or 308,) may provide a visible signal of the location of the endpoint detection region 308 (or 308,) or The location is dense 139195. Doc -13- 201230224 Recorded. In another aspect of the invention, a polishing pad for eddy current sensing includes an endpoint detection region that is constructed of the same material as the remainder of the polishing pad and that is homogeneous. 4A illustrates a cross-sectional view of a polishing pad for polishing a semiconductor substrate and suitable for eddy current endpoint detection, in accordance with an embodiment of the present invention. Figure 4B illustrates a top view of the polishing pad of Figure 4A, in accordance with an embodiment of the present invention. Referring to Figures 4A and 4', the polishing pad 400 includes a molded homogeneous polishing body 402. The molded homogeneous polishing body 402 has a polished surface 404 and a rear surface 406. A groove pattern 408 is disposed in the polishing surface 404. Each groove of the groove pattern has a bottom depth 410. The polishing pad 400 also includes an end point detection region 412 formed in the molded homogeneous polishing body 4〇2. The endpoint detection region has a first surface 414 that is oriented by the polishing surface 4〇4 and a second surface 416 that is oriented by the rear surface 406. At least a portion of the first surface 414 is coplanar with a bottom depth 41 〇 (e.g., depth D1) of the groove pattern. The second surface 416 is recessed into the molded homogeneous polishing body 402 at a degree D2 with respect to the rear surface 4〇6. In one embodiment, the second surface 416 is recessed to a degree D2 sufficient to accommodate an eddy current probe protruding from the platen of the chemical mechanical polishing apparatus. In a particular embodiment, the recess depth 〇2 is about 70 mils (〇〇〇1吋) below surface 406. In one embodiment, because at least a portion of the first surface 414 is coplanar with the bottom depth 41 of the groove pattern, the first surface 414 does not interfere with slurry movement during wafer polishing. In one embodiment, at least a portion of the first surface 414 interrupts the groove pattern of the polishing surface 4〇4. For example, in one embodiment, referring to FIG. 4A, the entire first surface 414 of the endpoint detection region 412 and the groove pattern 4〇8 I59195. Doc -14· 201230224 ^The bottom two ices 410 are substantially coplanar. Therefore, the groove pattern is completely interrupted at the end/area region 412 because a single large groove is actually formed on the first surface 4M of the end point detecting region 412. Referring again to Fig. 4b, a groove pattern is disposed in the polishing surface 4G4 of the molded homogeneous polishing body 402. In one embodiment, the 'groove pattern includes a plurality of identical polygons 418 and a plurality of light rays 420 'however' the pattern is interrupted at the end point localization region due to the lack of grooves. Thus, although the endpoint detection area 412 is constructed of the same material as the molded homogeneous throw money 4, it provides a visual indication of the location of the endpoint detection area 4丨2. In a specific implementation, the molded homogeneous polishing body (including the endpoint detection area 408) is opaque, but is visually determined to be mounted on a pressure plate equipped with an eddy current detection system using an interruption in the groove pattern. The endpoint of the endpoint is the location of the area 4 0 8 . In another embodiment, the endpoint defect region has a second groove pattern having a depth that is substantially coplanar with the bottom depth of the groove pattern in which the female is placed in the polishing surface of the polishing pad. For example, Figure 5A illustrates a cross-sectional view of another polishing pad in accordance with another embodiment of the present invention. Circle 5A illustrates a top view of the polishing pad of Figure 5 in accordance with an embodiment of the present invention. Referring to Figures 5A and 5B, the polishing pad 500 includes a molded homogeneous polishing body 5〇2. The molded homogeneous evacuator 502 has a polished surface 504 and a back surface 506. A groove pattern 508 is disposed in the polishing surface 504. Each groove of the groove pattern has a bottom depth 510. The polishing pad 500 also includes an end point detecting area 512 formed in the molded homogeneous polishing body 5〇2. The endpoint detection region has a first surface 514 oriented by a polishing surface 5〇4 and a second surface 516 oriented by a rear surface 506. 159195. Doc 15 201230224 At least a portion of the first surface 5 14 is coplanar with a bottom depth 5 丨〇 (e.g., depth D1) of the groove pattern. The second surface 516 is recessed into the molded homogeneous polishing body 502 at a degree D2 relative to the back surface 506. In one embodiment, the second surface 516 is recessed to a degree D2 sufficient to accommodate an eddy current probe projecting from the platen of the chemical mechanical polishing apparatus. In a particular embodiment, the depth D2 of the recess is about 70 mils below the surface 506 (0. 001忖). In one embodiment, at least a portion of the first surface 514 interrupts the groove pattern 508 of the polishing surface 504. For example, in one embodiment, referring to FIG. 5A, the first surface 514 of the endpoint detection region 512 has a second groove pattern 518' having a groove pattern 508 disposed in the polishing surface 5? The bottom depth (eg, depth D1) is substantially coplanar depth. However, the groove pattern 508 of the polished surface 504 and the second groove pattern 5 18 of the end point detection region 512 are interrupted by variations in the spacing 520. For example, the individual grooves of the groove pattern 5〇8 and the second groove pattern 518 are spaced apart by a width wi, and the second groove pattern 518 is offset from the first groove pattern 508 by a distance W2 greater than the width W1. Referring again to Figure 5B, a groove pattern is placed in the polishing surface 504 of the molded homogeneous polishing body 502. In one embodiment, the groove pattern includes a plurality of concentric polygons 522 and a plurality of radiation lines 524. However, at the endpoint detection area 512, the pattern is interrupted around the second groove pattern 518. Thus, although the end point detection area 512 is constructed of the same material as the molded homogeneous polishing body 502, a visual indicator of the position of the end point detection area 51 is provided. In a particular embodiment, the molded homogeneous polishing body 502 (including the endpoint detection region 508) is opaque, but is determined to be mounted on a pressure plate equipped with an eddy current sensing system using an interrupt visual in the groove pattern. Endpoint detection area 5〇8 of 159195. Doc •16· 201230224 Position” As described above, the position of the end point detection area for mounting on the platen equipped with the eddy current detecting system is determined by the interruption visual in the groove pattern, and is not limited to the groove pattern therein. The offset indicates an embodiment of the position of the end point detection area on the back side of the polishing pad. In another embodiment, the polishing surface includes another recess to track the contour of the location of the detection area on the back side of the polishing pad. In another embodiment, a change in the width of the groove on the polishing surface is used to indicate the location of the detection area on the back side of the polishing pad. In another embodiment, the change in groove pitch on the polishing surface is used to indicate the location of the detection area on the back side of the polishing pad. In another embodiment, the polishing surface includes two or more of the above features to indicate the location of the detection area on the back side of the polishing pad. According to an embodiment of the invention, the molded homogeneous polishing body is composed of a thermosetting closed cell polyurethane material. In one embodiment, the term "homogeneous" is used to indicate that the composition of the thermoset closed cell polyurethane material is consistent throughout the composition of the polishing body. For example, in one embodiment the term "homogeneous" excludes a polishing pad comprised of a composition (composite) of, for example, impregnated felt or multiple layers of different materials. In one embodiment, the term "thermosetting" is used to privately indicate a reverse cured polymeric material. For example, the precursor of the material irreversibly becomes an infusible insoluble polymer network by curing. For example, in one embodiment, the term "thermosetting" excludes materials such as "hot plastic" materials or "potential plastic" materials (they are converted from a liquid upon heating to a fully glassy state upon sufficient cooling). The material composed of the material) constitutes a polishing pad. It should be noted that a polishing pad made of a thermosetting material is usually composed of a lower molecular weight precursor which reacts in a chemical reaction to form a poly 159195. Doc 17 201230224 is manufactured, and a polishing pad made of a thermoplastic material is usually produced by heating a pre-existing polymer to cause a phase change to form a polishing pad in a physical process. In one embodiment, the term "molding" is used to indicate the formation of a molded homogeneous polishing body in a forming mold, as described in more detail below. In an embodiment, the polishing body is opaque. In the embodiment, the term "opaque" is used to indicate a material that allows visible light to pass below about 丨〇% or 丨〇%. In one embodiment, the molded homogeneous polishing body is mostly or substantially turbid because of the opaque lubricant (e.g., as an additional component) throughout the molded homogeneous elastomeric homogeneous thermoset closed-cell polyamine. In the ester material, it is opaque. In special embodiments, the opal slip agent is such as, but not limited to, the following materials: boron nitride, barium fluoride, graphite, graphite fluoride, molybdenum sulfide, sulfurization铌, talc, trisulfide button, tungsten disulfide or Teflon (Tefl〇n). In one embodiment, the molded homogeneous polishing body comprises a porogen. In one embodiment, the term "porogen" is used to indicate micron or nanoscale spherical particles having a "hollow" center. The hollow center is not filled with solid material, but may include a gaseous or liquid core. In one embodiment, the molded homogeneous polishing body comprises a pre-expanded and gas-filled EXPANCEL as a porogen throughout the homogeneous thermoset closed-cell polyamine phthalate material of the molded homogeneous polishing body (eg, as an additional component) p In a particular embodiment, the size of the ExpanCEL filled pentane molded homogeneous polishing body may vary depending on the application. However, certain parameters may be used to cause the polishing pad including the molded homogeneous polishing body to be associated with conventional processing equipment or Even compatible with conventional chemical machining operations. For example, in accordance with an embodiment of the present invention, the thickness of the molded homogeneous polishing body is approximately 〇. 〇75 159195. Doc -18· 201230224 Called to 0. 130 calls within the range, for example around 丨9-3. Within 3 mm range. In one embodiment, the diameter of the molded homogeneous polishing body 2 〇 2 is approximately 2 至 to 30. Within the range of 3 ,, for example, in the range of about 5 〇 77 77, and possibly in the range of 10 吋 to 42 ,, for example, in the range of 25 〇 7 cm. In one embodiment, the molded homogeneous polishing body has a pore density in the range of about 18% to about 3% by total void volume, and may be in the range of about 15% to about 35% of the total void volume. In one embodiment, the molded homogeneous polishing body has a closed cell type porosity. In one embodiment, the molded homogeneous polishing body has a pore size of about 4 microns in diameter, but can be smaller, such as about 2 microns in diameter. In one embodiment, the compressibility of the molded homogeneous polishing body is about 2. In one embodiment, the density of the molded homogeneous polishing body is about 〇. 7〇_〇 9〇 gram/cubic centimeter range, or approximately 0. 95-1. Within 05 gram / cubic centimeter. When using a polishing pad for eddy current detection (including molding a homogeneous polishing body), the removal rate of each film may vary depending on the formulation used, the paste, the knuckle or the polishing agent formulation. The copper removal rate of the molded homogeneous polishing body is in the range of about 30-900 nm/min. In one embodiment, the molded homogeneous polishing body described herein has an oxide removal rate in the range of from about 30 to about 900 nanometers per minute. As described above, a polishing pad suitable for eddy current detection can be manufactured by a molding process. The -t t' molding process can be used to fabricate a polishing pad having an endpoint detection region comprised of a different material than the remaining neighbors of the polishing pad. By way of example, Figures 6A-6J illustrate cross-sectional views of various processing operations in the fabrication of a polishing substrate for polishing a semiconductor substrate and suitable for use in thirst current endpoint detection, in accordance with an embodiment of the present invention. 159195. Doc -19· 201230224 Referring to Figures 6A-6D, a method of making a polishing pad includes first forming a partially cured endpoint detection region precursor. For example, referring to Figures 6-8 and 6B, the first forming die 602 is filled with the precursor mixture 604 and the cap 606 of the first forming die 602 is placed on top of the mixture 604. In one embodiment, the mixture 6〇4 is heated under pressure with the cover 606 in place to provide a partially cured body 608 (eg, extending over at least some extent in the mixture 604 and/or Crosslinking, as depicted in Figure 6C). After the partial solidified body 6〇8 is removed from the first forming die 602, a partially cured end detecting region precursor 608 is provided, as depicted in Figure 6D. In one embodiment, the partially cured endpoint detection region precursor 6〇8 is formed by mixing an amine phthalate prepolymer with a curing agent. In one embodiment, the ' partially cured endpoint detection region precursor 608 is ultimately provided in the polishing pad for a local area transparent (LAT) region. The LAT region can be constructed of materials that are compatible with various endpoint detection techniques and that are suitable for inclusion in a polishing pad manufactured by a molding process. For example, the partially cured endpoint detection region precursor 608 is formed by first mixing an aromatic urethane prepolymer with a curing agent. In another embodiment, the opaque region is formed by including an opacifying agent in the mixture. In either case, the resulting mixture is then partially cured in a first forming die to provide a molded colloid. Referring to Figure 6E, the partially cured endpoint detection region precursor 608 is positioned over the receiving region 614 of the cover 612 of the second forming die 610. A polishing pad precursor mixture 616 is formed in the second forming die 610. In accordance with an embodiment of the present invention, polishing pad precursor mixture 616 includes a polyurethane prepolymer and a curing agent. 159195. Doc • 20· 201230224 In one embodiment, the polishing pad precursor mixture 616 is used to ultimately form a molded homogeneous polishing body comprised of a thermoset closed cell polyamine phthalate material. In one embodiment, the polishing pad precursor mixture 616 is used to ultimately form a hard mat and only a single type of curing agent is used. In another embodiment, the polishing pad precursor mixture 616 is used to ultimately form a cushion and a combination of a first curing agent and a second curing agent is used. By way of example, in a particular embodiment, the prepolymer comprises a polyamine. The urethane precursor, the first curing agent includes an aromatic diamine compound and the second curing agent includes an ether linkage. In a particular embodiment, the polyurethane precursor is an isocyanate, the first curing agent is an aromatic diamine and the second curing agent is such as, but not limited to, polybutylene glycol, an amine functional diol Or an amine functionalized polyoxypropylene. In one embodiment, the prepolymer, the first curing agent, and the second curing agent have an approximate molar ratio of 100 parts prepolymer, 85 parts first curing agent, and 15 parts second curing agent. It will be appreciated that polishing pads having different hardness values can be provided using different ratios or based on the specific properties of the prepolymer and the first curing agent and the second curing agent. In one embodiment, the mixing further comprises mixing the opaque lubricant with the prepolymer, the first curing agent, and the second curing agent. In one embodiment, the 'emulsion is such as, but not limited to, the following materials: nitride, barium fluoride, graphite, graphite fluoride, molybdenum sulfide, barium sulfide, talc, barium trisulfide, tungsten disulfide or Teflon. In a particular embodiment, a molded homogeneous polishing body is produced by reacting the following materials to form an almost opaque pale yellow thermosetting polyurethane having a substantially uniform microcellular closed cell structure: (a) aromatic A urethane prepolymer, such as AIRTHANE 60D: polytetramethylene glycol-toluene diisocyanate, (b) a porogen 'such as expancel DE40: with isobutylene or pentane filled 159195. Doc •21 - 201230224 Acrylonitrile/Acrylate Copolymer '(c) Lubricant and Brightener Filler' (d) Polyols, such as Terathane 2000: Polyoxybutylene glycol, and (e) Catalysts such as DABCO 1027, and (f) curing agents such as CURENE 107: thioether aromatic diamines, (g) heat stabilizers such as Irgastab piJR68, and (g) UV absorbers such as Tinuvin 213. In one embodiment, the EXPANCEL is filled with a gas and the average pore size of each EXPANCEL unit is in the range of about 20 to 40 microns. Referring to FIG. 6F, the partially cured endpoint detection region precursor 608 is moved into the polished germanium precursor mixture 616 by lowering the cover 612 of the second forming mold 610. In one embodiment, the partially cured endpoint is detected. The region precursor 608 is moved to the bottommost surface of the second forming die 610. In one embodiment, a plurality of grooves are formed in the cover 612 of the forming mold 612. A plurality of grooves are used to press the groove pattern into the polishing surface of the polishing pad formed in the forming mold 61. It will be appreciated that the embodiments described herein by moving the partially cured endpoint detection region precursor into the polished ruthenium precursor mixture by lowering the cover of the forming mold need only achieve contact with the substrate of the forming mold. together. That is, in some embodiments, the base of the forming mold is raised toward the cover of the forming mold, while in other embodiments, the cover of the forming mold is lowered toward the base of the forming mold while the base is raised toward the cover. Referring to Figure 6G, the polishing pad precursor mixture 616 and the partially cured endpoint detection region precursor 6〇8 (e.g., in the case where the cover 6丨2 remains in place) are heated under pressure to provide and cure the end. Point detection area precursor 622 covalently bonded molded homogeneous polishing body 62 (see Figure 6H, removing the polishing pad from the mold 6 ( (or polishing pad precursor if further curing is required) to provide 159195 . Doc -22- 201230224 A molded homogeneous projection 620 in which a cured endpoint detection region precursor 622 is placed. It should be noted that heating may be required for further curing and may be carried out by placing the polishing pad in an oven and heating. In summary, a polishing pad is finally provided, wherein the molded homogeneous polishing body 62 of the polishing pad has a polishing surface (top portion, groove surface of Fig. 6H) and a rear surface (bottom, flat surface of the figure). In one embodiment, the heating in the forming mold 61 is included at a temperature of about 200-260 degrees Fahrenheit and about at a temperature of about 126 degrees Fahrenheit before the presence of the cover 612 (the mixture 616 in the sealing forming mold 61) At least partially cured at a pressure in the range of 2-12 psi. Finally, referring to Figures 61 and 6J, the cured endpoint detection region precursor 622 is recessed relative to the surface of the molded homogeneous polishing body 620. The recess provides a polishing pad disposed in the end detecting region 624 that is molded into the homogeneous polishing body 620 and covalently bonded thereto. For example, polishing pads obtainable in the manner described above can include, but are not limited to, polished enamels described in connection with Figures 1A and IB, 2A and 2B, 3A and 3B. In accordance with an embodiment of the present invention, the cured endpoint detection region precursor 622 is recessed by scooping a portion of the cured endpoint detection region precursor 622. In one embodiment, the entire endpoint detection region 624 is recessed relative to the surface after molding the homogeneous polishing body 620, as depicted in Figure 61 and described in connection with Figures 1A, 3A. However, in another embodiment, only the inner portion of the endpoint detection region a* is recessed relative to the rear surface of the molded homogeneous polishing body, as depicted in Figure 6j and described in connection with Figures 2A, 2B and 3B. In another aspect, a polishing process can be used to fabricate a polishing pad having an endpoint detection region comprised of a different material than the remainder of the polishing pad. 159l95. Doc -23- 201230224 The material used in the end point measurement area can be introduced into the molding process on a separate support structure that needs to be accommodated in the molding process. For example, Figure 6Kb illustrates a cross-sectional view of various processing operations in a polishing pad for polishing a semiconductor substrate and suitable for eddy current endpoint detection in accordance with an embodiment of the present invention. Referring to Figures 6K-60', a method of making a polishing pad includes first forming a partially cured endpoint detection region precursor on a support structure. For example, referring to Figures 6K and 6L, the support structure 699 is placed inside the first forming die 602. According to one embodiment of the invention, the support structure 699 is sized to conform to the bottom of the first forming mold 602. In an embodiment, the support structure 699 is constructed of a non-flexible material such as a brittle material such as a rigid epoxy sheet. In one embodiment, the support structure 699 is constructed of a material suitable for withstanding temperatures of about 300 degrees Fahrenheit. In one embodiment, the support structure 699 is constructed of a material adapted to withstand the thermal budget because, in a particular embodiment, the structure 699 is recycled to be molded as described in Figures 6-6. Repeated use in the process. In one embodiment, the support structure 699 is constructed of a thermally insulating material to avoid any heat transfer through the support structure 699 during the molding process. In one embodiment, the 'tower structure 699 is constructed of a chemically inert material and is not covalently bonded to the polyurethane material during the curing process. In one embodiment, the support structure 699 is constructed of a material that has negligible outgassing upon heating. Referring to Figures 6A-60, the first forming die 602 is filled with a precursor mixture 604 over the support structure 699 and the cap 606 of the first forming die 602 is placed on top of the mixture 604. In one embodiment, the mixture 604 is heated under pressure to provide placement on the branch 159195 while the cover 6 6 is held in place. Doc • 24· 201230224 Part of the solidified body 6〇8 on the 699 (e.g., cross-linking and/or chain extension formed at least to some extent in the mixture 604, as depicted in Figure 6N). Once the partially cured body 608 and the coupled support structure 699' are removed from the first forming die 602, a partially cured end detecting region precursor 608' that is coupled to the support structure 699 is provided as depicted in FIG. In one embodiment, the polymer film is adhered to the top surface of the support structure 699 by a piece of double-sided tape prior to the addition of the mixture 604 to the first forming die 602. Thus, in one embodiment, the 'partially cured body 608' The support structure 699 is coupled by a polymer film and a piece of double sided tape. Referring to Figures 6P and 6Q', the partially cured end detection region precursors 〇8 and the coupled support structure 699 are positioned in the receiving region 614' of the cover 61 2' of the second forming die 610. In one embodiment, the polymeric film is disposed between the partially cured endpoint detection region precursors 6〇8 and the support structure 699 (eg, by a first piece of double-sided tape) and a second double-sided tape is used. The support structure 699 is coupled to the surface of the receiving region 614 of the cover 612'. A polishing pad precursor mixture 616 is formed in the second forming mold 610. The polishing pad precursor mixture 616 according to one embodiment of the present invention comprises a polyurethane prepolymer and a curing agent. Referring to Fig. 6R, the cover portion 612 of the second forming mold 61 is lowered to allow the partially cured end detecting portion precursor 6?8 (as supported by the support structure 699) to be moved into the polishing crucible precursor mixture 616. In one embodiment, the partially cured endpoint detection region precursor 608 is moved into the true bottom surface of the second forming mold 61. The polishing pad precursor mixture 616 and the partially cured endpoint detection area are heated under pressure (e.g., in the cover 612, held in place) 159195. The doc -25-201230224 body 608 (and thus the heating support structure 699) provides a molded homogeneous polishing body 620 that is cross-linked to the end point detection area. Referring to Figure 6S, the polishing pad is removed from the mold 610 (or the polishing precursor is further cured) to provide a molded homogeneous polishing body 620 in which the cured endpoint detection region precursor 622 is disposed. However, in one embodiment the support structure 699 remains coupled to the cured h-point defect region precursor 622 after removal from the forming mold 610, as depicted in Figure 6S. It should be noted that the moonlight needs to be further cured by heating and can be carried out by placing the polishing pad in an oven and heating. In summary, a polishing pad is ultimately provided, wherein the molded homogeneous polishing body 620 of the polishing pad has a polishing surface (top, groove surface of Figure 6S) and a rear surface (bottom surface of Figure 6S) and a wrap structure 699. Thus, in one embodiment, the support structure 699 needs to be removed to provide a polishing pad', such as by the self-curing endpoint detection area precursor 622 to remove the support structure 699 and the adjacent double-sided tape. In one embodiment, the support structure 699 is removed and then the cured endpoint detection region precursor 622 is recessed as described above in connection with Figures 61 and 6J to provide a polishing pad having a recessed endpoint detection region. Referring to Figure 6T, in another embodiment, once the polishing pad' support structure 699 is removed from the mold 610, it remains coupled to the receiving area 614 of the cover 612. That is, when the cover 612 is lifted from the forming die 610, the support structure 699 is peeled off from the end detecting area precursor 620. In an embodiment, the support structure 699 is easily removed by pulling the support structure 699 from the receiving area 614'. However, it has been found in another embodiment that it is difficult to remove the support structure 699 from the cover 612'. Therefore, in an embodiment, an opening 159195 is provided in the cover 6丨2·. Doc -26- 201230224 or export 690. Once the cover 612 is removed from the forming die 61, air or inert gas is forced through the opening 690 from the receiving region 614 to eject the support structure 699. In a particular embodiment, the whip structure _ is then reused in the subsequent molding process. In another aspect, the ' partially cured endpoint detection region precursor can include a sacrificial layer and the recess is formed by removing the sacrificial layer. For example, Figures 7A 7C illustrate cross-sectional views of various processing operations for fabricating a polishing pad for polishing a semiconductor substrate and suitable for eddy current endpoint detection, in accordance with an embodiment of the present invention. Referring to FIG. 7A, the partially cured endpoint detection region precursor 708 is inserted into the polishing pad precursor mixture 616 by lowering the mask 612 of the forming mold 61 having the partially cured endpoint detection region precursor 708 thereon. . However, in one embodiment, the edge defect region precursor 7 不 8 that is different from the partially cured edge detection region precursor 6 〇 8 is included with the sacrificial layer 709 disposed thereon. Therefore, the partially cured end detecting region precursor 7〇8 is not only inserted into the polishing pad precursor mixture 616, but is then moved toward the bottom surface of the forming mold 61〇. Rather, the sacrificial layer 709 is coupled to the partially cured endpoint detection region precursor 7〇8 prior to placing the partially cured endpoint detection region precursor 708 on the mask 612 of the forming mold 61. Then, the partially cured end detecting region precursors 7〇8 and sacrificial layers 7〇9 collectively move toward the bottom surface of the forming mold 610, as depicted in Fig. 7A. Therefore, the sacrificial layer 709 is located between the bottom of the forming mold and the partially cured end detecting region precursor 708. In one embodiment, the sacrificial layer 7〇9 is comprised of a composite comprising a layer of Mylar fUm layers as a component. 159195. Doc • 27- 201230224 Referring to Figure 7B, the polishing pad precursor mixture 61 6 and the partially cured endpoint detection region precursor 708 are heated under pressure (e.g., with the cover 612 held in place) to provide the endpoints The detection region 722 is covalently bonded to the molded homogeneous polishing body 620. Referring to Figure 7C, the polishing pad is removed from the mold 610 to provide a molded homogeneous polishing body 620 in which an end point detection region 722 and a sacrificial layer 709 are disposed. In accordance with an embodiment of the present invention, the recess of the eddy current detecting region of the polishing pad is formed by removing the sacrificial layer 709, as depicted in Figure 7D. In one embodiment, the entire endpoint detection region 722 is thus recessed relative to the surface after molding the homogeneous polishing body 620, as also depicted in Figure 7D. In accordance with an embodiment of the present invention, the endpoint detection region (e.g., 624 of FIG. 61 or 722 of FIG. 7D) is constructed of a different material than the molded homogeneous polishing body, as described above and in conjunction with FIGS. 1A and 1B, 2A and 2B, 3 A and 3B are described. By way of example, in one embodiment, the endpoint detection region 624 or 722 is a local area transparency (LAT) region, as described in connection with Figures ία, 1B and 2A, 2B. In one embodiment, the end point detection region 624 or 722 is an opaque region having a hardness that is different from the hardness of the molded homogeneous polishing body 620 as described in connection with Figures 3A and 3B. In one embodiment, the molded homogeneous polishing body 62 is constructed of a thermoset closed cell polyurethane material. In one embodiment, the polishing surface of the molded homogeneous polishing body 620 includes a groove pattern disposed therein and formed by a cover of the second forming mold 61. As briefly described above, in one embodiment, the endpoint detection region 624 (or 722) and the molded homogeneous polishing body 62 can have different stiffnesses. For example, in one embodiment, the hardness of the molded homogeneous polishing body 62 is less than the hardness of the endpoint detection region 624. In a particular embodiment, the molded homogeneous polishing body 62 159 159195. The hardness of doc -28-201230224 is approximately in the range of Shore D 20-45, and the hardness of the endpoint detection area 624 is approximately Shore D 60. Although the hardness may vary, the covalent bonding and/or cross-linking between the endpoint detection region 624 and the molded homogeneous polishing body 620 may still be extensive. For example, according to an embodiment of the present invention, the hardness difference between the molded homogeneous polishing body 620 and the end point detecting region 624 is Shore D 10 or Shore D 10 or more, and the molded homogeneous polishing body 62〇 and the end point are detected. The degree of covalent bonding and/or crosslinking between the measurement regions 624 is abundant. The size of the polishing pad and the endpoint detection area disposed therein may vary depending on the application desired. For example, in one embodiment, a polishing pad containing an eddy current probe is fabricated, and the molded homogeneous polishing body 62 is circular in a diameter of approximately 75-78 cm, and the endpoint detection region 624 is molded along The radial axis of the homogeneous polishing body 620 has a length in the range of about 4-6 cm, a width in the range of about 1-2 cm, and a position within about 16-20 cm from the center of the molded homogeneous polishing body 62. Regarding the vertical positioning, the position of the end point detection area in the polishing body can be selected for the specific system, and can also be the result of the forming process. For example, by including the endpoint detection region in the polishing body via a molding process, the positioning and achievable accuracy is compared to, for example, the process of cutting the polishing pad after forming and adding a window to the person after forming the polishing pad. Can be significantly more appropriate. In one embodiment, by using a molding process as described above, the endpoint defect region 624 is included in the molded homogeneous polishing body 620 to be grooved with the groove surface of the molded homogeneous polishing body 620. The bottom is on the same plane. In the specific embodiment, by measuring the region 624 including the end of the groove surface of the groove surface of the polishing body, the end money region appears to be molded by a homogeneous polishing body (four) and 159195. Doc -29- 201230224 The polishing pad manufactured by Endpoint Detection Area 624 does not interfere with CMP processing operations throughout its useful life. As described above, a polishing pad suitable for eddy current detection can be fabricated by a molding process. However, the polishing pad need not include LAT or other separate and distinct material areas. Figure 8-8-81 illustrates a cross-sectional view of various processing operations for fabricating a polishing pad for polishing a semiconductor substrate and suitable for eddy current endpoint detection in accordance with an embodiment of the present invention. The method of making a polishing pad with reference to Figure 8A' includes forming a polishing pad precursor mixture 616 in a forming mold 610. Referring to Figures 8A and 8B, a cover 612 of forming die 610 is positioned in polishing pad precursor mixture 616. The cover 612 includes a groove pattern 618 disposed thereon. The groove pattern 618 has an interrupted region 614' in which the pattern is different or slightly spaced from the majority of the groove pattern 618, as described in more detail below. Referring to Figure 8C, the polished ruthenium precursor mixture 616 is heated to provide a molded homogeneous polishing body 620. Referring to Figure 8D, the molded homogeneous projection 620 is removed from the forming die 610 to provide a polishing pad (or a polishing pad precursor if further heating or curing is required after the molding process). The polishing pad comprised of the molded homogeneous polishing body 62A includes a polishing surface 822 and a back surface 824. The groove pattern 618 (including the interruption region 614) formed by the cover 612 of the forming mold 610 is disposed according to an embodiment of the present invention. In polished surface 822, as depicted in Figure 8D. The groove pattern placed in the polishing surface 822 has a bottom depth 826. In one embodiment, the molded homogeneous polishing body 620 is comprised of a thermoset closed cell polyurethane material. Referring to Figures 8E and 8F, endpoint detection is provided in the molded homogeneous polishing body 620. Doc -30- 201230224 Area 830. The endpoint detection region has a first surface 832 oriented by a polishing surface 822 and a second surface 834 oriented by the surface after molding the homogeneous polishing body 62. At least a portion of the first surface 832 is coplanar with the bottom of the groove pattern. By way of example, in one embodiment, the entire first surface 832 is coplanar with the bottom depth 826 of the groove pattern, as depicted in Figure 8E. Additionally, the second surface 834 is recessed into the molded homogeneous polishing body 62' with respect to the rear surface 824' as also depicted in Figure 8E. In the embodiment, the provision of the endpoint region 830 is performed by scooping a portion of the molded homogeneous polishing body 62. In one embodiment, the molded homogeneous polishing body 62 (including the end detection area 83A) is opaque. According to an embodiment of the invention, as mentioned above, the polishing surface 822 includes an interruption region of its groove pattern. The interruption zone corresponds to the interruption zone 614 in the cover 612 of the forming die 610. In one embodiment, the interruption zone 614 is completely flat and planar to the bottom of the cover 612 as depicted in Figures 8A and 8E. Thus, the entire first surface 832 of the end point detection region 830 is substantially coplanar with the bottom depth 826 of the groove pattern in the polishing surface 822, as described in connection with the polishing 图 of Figures 4A and 4B. However, in an alternative embodiment, the first surface of the endpoint detection region 830 includes a second groove pattern 850 having a bottom portion of the groove pattern disposed in the polishing surface 822 of the molded homogeneous polishing body 820. The depth is substantially coplanar depth. This alternative embodiment is depicted in Figure 8F. A polishing pad consistent with this embodiment is described above in connection with Figures 5A and 5B. In a particular embodiment, the individual grooves of the groove pattern (the groove pattern of the polishing surface 822) and the second groove pattern (the groove pattern of the interruption region) are spaced apart by a width, and the second groove pattern is larger than the The distance of the width deviates from 159195. Doc •31· 201230224 The groove pattern is also as described above in connection with Figures 5A and 5B. In the present invention 2 Afc .   < In the aspect, the end point of the molded homogeneous & optical body is formed by removing the sacrificial layer. By way of example, FIGS. 9A-9F illustrate cross-sectional views of various processing operations for fabricating a polishing crucible in accordance with an embodiment of the present invention, which provides a termination in a polishing pad by removing a sacrificial layer embedded in the molded homogeneous polishing body. Point detection area. Referring to Fig. 9A, the sacrificial layer 7〇9 is placed at the bottom of the forming mold 61. By way of example, in a tenth embodiment, the sacrificial layer 709 is inserted into the forming mold prior to adding the polishing pad component to the mold. In a particular embodiment, the sacrificial layer 9 is composed of a Mylar layer. Referring to Figure 9B, the polishing pad precursor mixture is dispensed onto a sacrificial layer 709 in a forming die 610. Referring to Figure 9C, polishing pad precursor mixture 616 is heated to provide a molded homogeneous polishing body 62, as described in connection with Figure 8c, with the cover 612 held in place in the forming die. However, the sacrificial layer 7〇9 disposed at the bottom of the forming mold 610 is retained during the molding of 62 Å. Referring to Figure 9D, the molded homogeneous polishing body 62 is removed from the forming mold to provide a polishing pad in which the sacrificial layer 709 is disposed (or a polishing pad precursor if further heating or curing is required after the molding process). Referring to Figures 9E and 9F, once the sacrificial layer 709 is removed, the endpoint detection region 924 is provided in the molded homogeneous polishing body 62. Thus, in accordance with an embodiment of the present invention, the recess of the eddy current sensing region of the polishing pad is formed by removing the sacrificial layer 7〇9 that is coplanar with the surface behind the polishing pad. Next, in the embodiment, the entire endpoint detection area 924 is recessed relative to the surface of the molded homogeneous polishing body 62, as depicted in Figures 9 and 9F. In one embodiment, the entire top of the endpoint detection area 924 159l95.doc • 32- 201230224 surface 950 is recessed and flat, as depicted in Figure 9E. However, in another embodiment, a second set of grooves 952 (interrupted by the grooves of the 62 Å polished surface) are disposed on the top surface of the endpoint detection region 924, as depicted in Figure 9F. In still another embodiment 10, the recessed regions of the polishing pad can be fabricated by placing the elevated features on or in the bottom of the mold used to form the polishing pad. By way of example, referring again to Figures 9A-9C, the blackened region can be substituted for the sacrificial layer 7〇9 as a permanent or semi-permanent feature in the forming mold 610. That is, in contrast to the sacrificial layer 7〇9 (e.g., as described in connection with Figure 9D) that is transferred from the mold with the polishing pad being fabricated, this feature does not transfer with the polishing pad being fabricated. In this case, in one embodiment, a polishing pad composed of a homogeneous polishing body 620 is formed directly in the forming mold (such as shown in the drawings) without the need to remove the sacrificial layer in between (removing the sacrificial layer) The situation is as described in connection with Figure 9D. In another embodiment, permanent or semi-permanent features constructed in a forming mold are used with dual material mat manufacturing, such as for making a polishing pad, such as described in connection with Figures 1A, 2A, 3A, and 3B. The polishing pad described herein can be adapted for use with a chemical mechanical polishing apparatus equipped with an eddy current end point test system. For example, Figure 1 illustrates an isometric side view of a polishing apparatus compatible with a polishing pad suitable for eddy current endpoint detection in accordance with an embodiment of the present invention. Referring to Figure 10, polishing apparatus 1000 includes a platen 1004. The top surface 1002 of the platen 1004 can be used to support a polishing pad for eddy current endpoint detection. Platen 1004 can be configured to provide shaft rotation 1〇〇6 and slider oscillation 1008. The sample carrier 1010 is used to hold, for example, the semiconductor wafer 1011 in place during polishing of a semiconductor wafer having a polishing pad. Sample carrier 1010 is further supported by suspension 159195.doc -33.201230224 mechanism 1012, including slurry feeder 丨〇 14 to provide slurry to the polishing pad surface prior to and during polishing of the semiconductor wafer. In one aspect of the invention, a polishing pad suitable for eddy current endpoint detection is provided for use with a polishing apparatus similar to polishing apparatus 1000. By way of example, FIG. 11 illustrates a cross-sectional view of a polishing apparatus having an eddy current endpoint predictive system and a polishing pad compatible with an eddy current endpoint detection system, in accordance with an embodiment of the present invention. Referring to Fig. 11, the polishing table 1000 includes a rotatable platen 004 having a polishing pad 1118 placed thereon. Polishing pad 1118 provides a polishing surface 1124»at least a portion of polishing surface 1124 can have a recess 1128 for carrying slurry. Polishing station 1000 can also include a polishing pad conditioner device to maintain adjustment of the polishing pad to effectively polish the substrate. During the polishing operation, the chemical mechanical polishing slurry 113 is supplied to the surface of the polishing pad 1118 by a slurry supply or a combined slurry/flushing arm 1014. The substrate 1〇11 is held by the carrier head 1〇1〇 relative to the polishing pad 1118. The carrier head 1010 is suspended by a support structure, such as a rotating rack, and is coupled to the carrier head rotation motor by a carrier drive shaft 1136 such that the carrier head is rotatable about the shaft 1138. A recess 1140 is formed in the platen 1004 and the field monitoring module 1142 is assembled into the recess 1140. The on-site monitoring module 1142 can include a field eddy current monitoring system' having a core 1144 disposed in the recess 1140 for rotation with the platen 丨〇〇4. Drive and sense coil 1146 is wound around core 1144 and is coupled to controller 1150. In operation, the oscillator provides energy to the drive coil to create an oscillating magnetic field 丨 148 that extends through the body of the core 1144. At least a portion of the magnetic field 1148 extends through the polishing pad 1118 toward the substrate 1〇11. If the substrate ίο〗 is stored on J59195.doc -34· 201230224 in the metal layer 'the oscillation magnetic field 114 8 will generate eddy current. The eddy current produces a magnetic flux in a direction opposite to the field, and this magnetic flux induces a reverse current in the primary coil or the sense coil opposite to the direction of the drive current. The resulting current change can be measured as a change in the impedance of the coil. The metal layer resistance varies with the thickness of the metal layer. Therefore, the eddy current and the intensity of the magnetic flux induced by the eddy/'IL also change, causing the impedance of the primary coil to change. By monitoring the changes', e.g., by measuring the amplitude of the coil current or the phase of the coil current (relative to the phase of the drive coil current), the eddy current sensor monitor can detect changes in the thickness of the metal layer. Referring again to Figure 11, in accordance with an embodiment of the present invention, when the polishing pad J8 is secured to the platen 1004, the sheet is assembled over the recess 1140 in the platen and the core and/or the coil project beyond the top surface of the platen 1004. On the part of the plane. By positioning the core 1142 closer to the substrate 1112, the magnetic field propagates less and spatial resolution can be improved. Assuming that the polishing pad 1〇1丨 is not used with an optical endpoint monitoring system, then in one embodiment, the entire polishing layer (including portions of the recess) may be opaque. However, in another embodiment, the portion on the recess is transparent to aid in positioning the polishing pad on the platen. According to an embodiment of the invention, the problem solved herein includes the following situation: The thirst current endpoint detection hardware includes a sensor that is raised from the plane of the platen by about 0.070 pairs, so that the sensor can be spaced from the wafer surface. The best distance. However, this situation can cause problems in the design and performance of the polishing pad. Embodiments of the present invention can provide an advantageous solution to these problems. In one embodiment, the polishing pad is designed to accommodate an eddy current sensor, typically by means of a recess formed in the back of the polishing pad. In a particular embodiment, 159195.doc -35- 201230224 achieves this using a recess of about 0.080 inch deep in the polishing pad. In one aspect of the invention, a polishing pad designed to accommodate an eddy current endpoint detection system, such as the polishing pad described in the various embodiments above, is adhered to the platen 1004 by an adhesive surface. For example, in one embodiment, the polishing pad is adhesively coupled to the platen 1004 using an adhesive (i.e., transfer adhesive) that is free of carrier film. In such cases, since no permanent carrier film is transferred to the platen with the crucible, there is no need to cut the opening in the temporary or sacrificial release liner removed from the polishing crucible prior to transfer to the platen. In one embodiment, the temporary or sacrificial release liner is removed from the polishing pad, leaving the adhesive film intact. Any portion of the film that spans the recess in the polishing pad, such as the recess formed to accommodate the eddy current sensing system, will remain with the release liner or it will remain as a film across the opening of the recess. In the latter case, it may be necessary to remove the portion of the film that spans the opening of the recess prior to mounting the polishing pad on the platen. In one embodiment, the sacrificial release liner and the adhesive film retained on the polishing pad are both non-double-sided tape. Thus, the use of eddy current endpoints to detect polishing pads for polishing semiconductor substrates has been disclosed. According to an embodiment of the invention, a polishing pad for polishing a semiconductor substrate includes a molded homogeneous polishing body. The molded homogeneous polishing body has a polished surface and a rear surface. The polishing pad also includes an end point detection area disposed in the molded homogeneous polishing body and covalently bonded thereto. The endpoint detection area is constructed of a different material than the molded homogeneous projection, and at least a portion of the endpoint detection area is recessed relative to the surface after molding the homogeneous polishing body. In accordance with another embodiment of the present invention, a polishing pad for polishing a semiconductor substrate includes a molded homogeneous polishing body having a polished surface and a back surface. The groove pattern is placed in the polished surface, and the groove pattern 159195.doc • 36- 201230224 has a bottom depth. The polishing pad also includes an end detecting region formed in the molded homogeneous polishing body. The endpoint detection region has a first surface oriented by the polishing surface and a second surface oriented by the rear surface. At least a portion of the first surface is coplanar with the bottom of the groove pattern and interrupts the groove pattern. The second surface is recessed into the molded homogeneous polishing body with respect to the rear surface. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A illustrates a cross-sectional view of a polishing pad for polishing a semiconductor substrate and suitable for eddy current endpoint detection, in accordance with an embodiment of the present invention. Figure 1B illustrates a top view of a polishing pad of Figure ία, in accordance with an embodiment of the present invention. 2A illustrates a cross-sectional view of a polishing pad for polishing a semiconductor substrate and suitable for eddy current endpoint detection, in accordance with an embodiment of the present invention. Figure 2B illustrates a top view of the polishing pad of Figure 2a, in accordance with an embodiment of the present invention. 3A illustrates a cross-sectional view of a polishing pad for polishing a semiconductor substrate and suitable for eddy current endpoint detection, in accordance with an embodiment of the present invention. 3B illustrates a cross-sectional view of a polishing pad for polishing a semiconductor substrate and suitable for eddy current endpoint detection, in accordance with an embodiment of the present invention. 4A illustrates a cross-sectional view of a polishing pad for polishing a semiconductor substrate and suitable for eddy current endpoint detection, in accordance with an embodiment of the present invention. Figure 4B illustrates a top view of the polishing pad of Figure 4A, in accordance with an embodiment of the present invention. 5A illustrates a cross-sectional view of a polishing pad for polishing a semiconductor substrate and suitable for eddy current end point detection according to an embodiment of the present invention. 159195.doc -37· 201230224 FIG. 5B illustrates one of the present invention. A top view of the polishing pad of Figure 5A of the embodiment. 6A-6T illustrate cross-sectional views of an operation for fabricating a polishing crucible in accordance with an embodiment of the present invention. 7A-7D illustrate cross-sectional views of an operation for fabricating a polishing pad in accordance with an embodiment of the present invention. 8A-8F illustrate cross-sectional views of an operation for fabricating a polishing pad in accordance with an embodiment of the present invention. Figures 9A-9F illustrate cross-sectional views of an operation for fabricating a polishing pad in accordance with an embodiment of the present invention. Figure 10 illustrates an isometric side view of a polishing apparatus compatible with a polishing pad for eddy current endpoint detection, in accordance with an embodiment of the present invention. Figure 11 illustrates a cross-sectional view of a polishing apparatus having an eddy current endpoint detection system and a polishing pad compatible with the eddy current endpoint detection system, in accordance with an embodiment of the present invention. [Main component symbol description] 100 Polishing pad 102 Molded homogeneous polishing body 104 Polished surface 106 Rear surface 108 End point detection area 110 Material 112 Covalent bonding 114 First surface 159195.doc 201230224 116 Second surface 118 Concentric polygon 120 Light ray 150 groove 200 polishing pad 202 molding homogeneous polishing body 204 polishing surface 206 rear surface 208 end point detection area 210 material 214 first surface 216 second surface 218 third surface 220 side wall detection area 222 interface 300 Polishing pad 300' Polishing 塾 302 Molding homogeneous polishing body 304 Polishing surface 306 Rear surface 308 End point detection area 308' End point detection area 310 Material 312 Covalent bonding l: 59195.doc 39 · 201230224 320 Side wall 400 Polishing pad 402 molding homogeneous polishing body 404 polishing surface 406 back surface 408 groove pattern 410 bottom depth 412 endpoint detection region 414 first surface 416 second surface 418 concentric polygon 420 radiation 500 polishing pad 502 molded homogeneous polishing body 504 polished surface 506 rear surface 508 groove pattern 510 bottom deep 512 Endpoint Detection Region 514 First Surface 516 Second Surface 518 Second Groove Pattern 520 Interval 522 Concentric Polygon 159195.doc -40- 201230224 524 Light Ray 602 First Forming Mold 604 Precursor Mixture 606 Cover 608 Partially Cured Body 610 second forming mold 612 cover 612' cover 614 receiving area 614' receiving area 616 polishing pad precursor mixture 618 groove pattern 620 molded homogeneous polishing body 622 solidified end point detection area precursor 624 end point detection Test area 690 opening/outlet 699 support structure 708 end point detection area precursor 709 sacrificial layer 722 end point detection area 822 polished surface 824 rear surface 826 bottom depth 830 end point detection area 159195.doc -41 - 201230224 832 A surface 834 second surface 850 second groove pattern 924 end point detection area 950 top surface detection area top surface 952 groove 1000 polishing device 1002 plate top surface 1004 platen 1006 axis rotation 1008 slider oscillation 1010 sample carrier / Carrier Head 1011 Semiconductor Wafer 1012 Suspension Mechanism 1014 Slurry Feeding / slurry / rinse arm 1118 polishing pad 1124 polished surface 1128 groove 1130 chemical mechanical polishing slurry 1136 carrier drive shaft 1138 shaft 1140 recess 1142 field monitoring module 1144 core 159195.doc -42- 201230224 1146 drive and sense coil 1148 Oscillating magnetic field 1150 Controller D Depth of depth D1 Depth D2 Degree / Depth of depth T1 Thickness of molded homogeneous polished body T2 Thickness of part of molded homogeneous polished body except for groove of polished surface T3 Material of end point detection area Thickness W1 Width W2 Distance 159195.doc •43·

Claims (1)

201230224 七、申請專利範圍: 1. 一種用於拋光半導體基板之拋光墊,該拋光墊包含: 模製均質拋光體,其包含拋光表面及後表面;及 μ點彳貞測區域’其安置於該模製均質拋光體中且與其 共價鍵結,該端點偵測區域包含與該模製均質拋光體不 同之材料’至少一部分該端點偵測區域相對於該模製均 質拋光體之該後表面凹陷。 2. 如請求項1之拋光墊,其中至少一部分該端點偵測區域 相對於該模製均質拋光體之該拋光表面凹陷。 3. 如請求項1之拋光墊,其中該端點偵測區域為局部面積 透明(LAT)區域。 4·如請求項3之拋光墊,其中該端點偵測區域之硬度大於 該模製均質拋光體之硬度。 5. 如請求項1之拋光墊,其中該端點偵測區域為具有與該 模製均質拋光體之該硬度不同之硬度的不透明區域。 6. 如請求項5之拋光墊,其中該端點偵測區域之硬度大於 該模製均質拋光體之硬度。 7·如請求項5之拋光墊,其中該端點偵測區域之硬度小於 該模製均質拋光體之硬度。 8·如請求項1之拋光墊,其中該整個端點偵測區域相對於 §亥模製均質拋光體之該後表面凹陷。 9·如凊求項1之拋光墊,其中僅該端點偵測區域之内部部 分相對於該模製均質拋光體之該後表面凹陷。 10·如請求項1之拋光墊’其中該模製均質拋光體包含熱固 159195.doc 201230224 性閉孔聚胺基甲酸酯材料。 11.如吻求項丨之拋光墊,其中該拋光表面包含安置於該拋 光表面中之凹槽圖案。 12種製用於拋光半導體基板之拋光墊的方法,該方法 包含: 形成包含拋光表面及後表面之模製均質拋光體;及 形成端點偵測區域,其係安置於該模製均質拋光體中 且與其共價鍵結,該端點偵測區域包含與該模製均質拋 光體不同之材料,至少一部分該端點偵測區域相對於該 模製均質拋光體之該後表面凹陷。 13. 如請求項12之方法,其中該端點偵測區域為局部面積透 明(LAT)區域。 14. 如請求項13之方法,其中該端點偵測區域之硬度大於該 模製均質拋光體之硬度。 15. 如請求項12之方法,其中該端點偵測區域為具有與該模 製均質拋光體之硬度不同之硬度的不透明區域。 16. 如請求項15之方法,其中該端點偵測區域之硬度大於該 模製均質拋光體之硬度。 17. 如請求項15之方法,其中該端點偵測區域之硬度小於該 模製均質拋光體之硬度。 ' ^ 18_如請求項12之方法,其中該整個端點偵測區域相對於該 模製均質拋光體之該後表面凹陷。 19.如請求項12之方法,其中僅該端點偵測區域之内部部分 相對於該模製均質拋光體之該後表面凹陷。 ° ^ 159195.doc 201230224 20·如请求項12之方法,其中該模製均質拋光體包含熱固性 閉孔聚胺基甲酸酯材料。 21. 如請求項12之方法,其中該拋光表面包含安置於該拋光 表面中之凹槽圖案。 22. 一種用於拋光半導體基板之拋光墊,該拋光墊包含: 模製均質拋光體’其包含拋光表面及後表面; 安置於該拋光表面中之凹槽圖案,該凹槽圖案具有底 部深度;及 形成於該模製均質拋光體中之端點偵測區域,該端點 偵測區域具有由該拋光表面定向之第一表面及由該後表 面定向之第二表面,至少一部分該第一表面與該凹槽圖 案之該底部深度共平面且中斷該凹槽圖案,且該第二表 面相對於該後表面凹陷入該模製均質拋光體中。 23. 如請求項22之拋光墊,其中該端點偵測區域之該整個第 一表面與該凹槽圖案之該底部深度基本上共平面。 24. 如請求項22之拋光墊,其中該端點偵測區域之該第一表 面包含第二凹槽圖案,該第二凹槽圖案具有與安置於該 拋光表面中之該凹槽圖案之該底部深度基本上共平面的 深度。 25·如請求項24之拋光墊’其中該凹槽圖案及該第二凹槽圖 案之個別凹槽間隔-寬度’且其中該第二凹槽圖案以大 於該寬度之距離偏離該凹槽圖案。 26.如請求項22之拋光塾,其中該模製均質拋光體包含熱固 性閉孔聚胺基甲酸酯材料。 159195.doc 201230224 27. 如請求項22之拋光墊,其中包括該端點偵測區域之該模 製均質拋光體為不透明的。 28. —種製造用於拋光半導體基板之拋光墊的方法,該方法 包含z 在成形模具中形成拋光墊前驅體混合物; 將該成形模具之蓋罩定位於該拋光墊前驅體混合物 中,該蓋罩上安置有凹槽圖案,該凹槽圖案具有中斷區 域; 固化該拋光墊前驅體混合物以提供包含拋光表面及後 表面之模製均質拋光體,其中該來自該蓋罩之凹槽圖案 係安置於該拋光表面中,該凹槽圖案具有底部深度;及 在該模製均質拋光體中提供端點偵測區域,該端點偵 測區域具有由該拋光表面定向之第一表面及由該後表面 定向之第二表面,至少一部分該第一表面與該凹槽圖案 之該底部深度共平面且包括該凹槽圖案之該中斷區域, 且該第二表面相對於該後表面凹陷入該模製均質拋光體 中。 29. 如請求項28之方法,其中提供該端點偵測區域係藉由挖 出一部分該模製均質拋光體來進行。 30. 如請求項28之方法,其中提供該端點偵測區域係藉由移 除嵌入該模製均質拋光體中之犧牲層來進行。 3 1.如請求項28之方法,其中該端點偵測區域之該整個第一 表面與該凹槽圖案之該底部深度基本上共平面。 32·如請求項28之方法,其中該端點偵測區域之該第一表面 159195.doc 201230224 包含第二凹槽圖案,該第二凹槽圖案具有與安置於該模 製均質拋光體之該拋光表面中的該凹槽圖案之該底部深 度基本上共平面的深度。 33. 如請求項32之方法,其中該凹槽圖案及該第二凹槽圖案 之個別凹槽間隔一寬度,且其中該第二凹槽圖案以大於 該寬度之距離偏離該第一凹槽圖案。 34. 如請求項32之方法,其中該模製均質拋光體包含熱固性 閉孔聚胺基甲酸酯材料。 35·如請求項28之方法’其中包括該端點偵測區域之該模製 均質拋光體為不透明的。 36· —種製造用於拋光半導體基板之拋光墊的方法,該方法 包含: 藉由模製製程形成拋光墊,該拋光墊包含: 均質抛光體,其具有拋光表面及後表面; 安置於該拋光表面中之凹槽圖案,該凹槽圖案具有 底部深度;及 形成於該模製均質拋光體中之端點偵測區域,該端 點偵測區域具有由該拋光表面定向之第一表面及由該 後表面疋向之第二表面,至少一部分該第一表面與該 凹槽圖案之該底部深度共平面且中斷該凹槽圖案,且 該第二表面相對於該後表面凹陷入該模製均質拋光體 中。 37.如請求項36之方法’其中該端點偵測區域之該整個第一 表面與該凹槽圖案之該底部深度基本上共平面。 159195.doc 201230224 3 8.如請求項3 6之方法,其中續迪 丹r忒鳊點偵測區域之該第一表面 包含第一凹槽圖案,該第二槽 W價圖案具有與安置於該拋 光表面中之該凹槽圖案之該底部深度基本上共平面的深 度0 39. 如請求項38之方法,其中該凹槽圖案及該第二凹槽圖案 之個別凹槽間隔一寬度’且其中該第二凹槽圖案以大於 該寬度之距離偏離該凹槽圖案。 40. 如請求項36之方法,其中該模製均質拋光體包含熱固性 閉孔聚胺基甲酸g旨材料。 41. 如請求項36之方法,其中包括該端點制區域之該模製 均質抛光體為不透明的。 42. —種製造用於拋光半導體基板之拋光墊的方法,該方法 包含: 在第一成形模具中形成部分固化之端點偵測區域前驅 體; 將該部分固化之端點偵測區域前驅體安置於第二成形 模具之蓋罩之接收區域上; 在該第二成形模具中提供拋光墊前驅體混合物; 藉由使該蓋罩與該第二成形模具之基底接觸在一起使 該部分固化之端點偵測區域前驅體移入該拋光墊前驅體 混合物中; 加熱該拋光墊前驅體混合物及該部分固化之端點偵測 區域前驅體以提供與固化之端點偵測區域前驅體共價鍵 結之模製均質拋光體,該模製均質拋光體具有拋光表面 -6 - 159195.doc201230224 VII. Patent application scope: 1. A polishing pad for polishing a semiconductor substrate, the polishing pad comprising: a molded homogeneous polishing body including a polishing surface and a rear surface; and a μ point detection region 'which is disposed therein Molding and covalently bonding with the homogeneous polishing body, the endpoint detection region comprising a material different from the molded homogeneous polishing body - at least a portion of the endpoint detection region relative to the molded homogeneous polishing body The surface is concave. 2. The polishing pad of claim 1, wherein at least a portion of the endpoint detection region is recessed relative to the polishing surface of the molded homogeneous polishing body. 3. The polishing pad of claim 1, wherein the endpoint detection area is a local area transparency (LAT) area. 4. The polishing pad of claim 3, wherein the hardness of the endpoint detection region is greater than the hardness of the molded homogeneous polishing body. 5. The polishing pad of claim 1, wherein the end point detection area is an opaque area having a hardness different from the hardness of the molded homogeneous polishing body. 6. The polishing pad of claim 5, wherein the hardness of the endpoint detection region is greater than the hardness of the molded homogeneous polishing body. 7. The polishing pad of claim 5, wherein the hardness of the endpoint detection region is less than the hardness of the molded homogeneous polishing body. 8. The polishing pad of claim 1, wherein the entire end point detection area is recessed relative to the rear surface of the mod-like homogeneous polishing body. 9. The polishing pad of claim 1, wherein only the inner portion of the end point detection region is recessed relative to the rear surface of the molded homogeneous polishing body. 10. The polishing pad of claim 1 wherein the molded homogeneous polishing body comprises a thermoset 159195.doc 201230224 closed cell polyurethane material. 11. A polishing pad as in the case of a kiss, wherein the polishing surface comprises a pattern of grooves disposed in the polishing surface. 12 methods for polishing a polishing pad of a semiconductor substrate, the method comprising: forming a molded homogeneous polishing body comprising a polished surface and a back surface; and forming an end point detecting region disposed on the molded homogeneous polishing body And covalently bonded thereto, the endpoint detection region comprises a material different from the molded homogeneous polishing body, and at least a portion of the endpoint detection region is recessed relative to the rear surface of the molded homogeneous polishing body. 13. The method of claim 12, wherein the endpoint detection area is a local area transparency (LAT) area. 14. The method of claim 13, wherein the hardness of the endpoint detection region is greater than the hardness of the molded homogeneous polishing body. 15. The method of claim 12, wherein the endpoint detection region is an opaque region having a hardness different from a hardness of the molded homogeneous polishing body. 16. The method of claim 15, wherein the hardness of the endpoint detection region is greater than the hardness of the molded homogeneous polishing body. 17. The method of claim 15, wherein the hardness of the endpoint detection region is less than the hardness of the molded homogeneous polishing body. The method of claim 12, wherein the entire end point detection area is recessed relative to the rear surface of the molded homogeneous polishing body. 19. The method of claim 12, wherein only the inner portion of the endpoint detection region is recessed relative to the rear surface of the molded homogeneous polishing body. The method of claim 12, wherein the molded homogeneous polishing body comprises a thermosetting closed cell polyurethane material. 21. The method of claim 12, wherein the polishing surface comprises a pattern of grooves disposed in the polishing surface. 22. A polishing pad for polishing a semiconductor substrate, the polishing pad comprising: a molded homogeneous polishing body comprising a polishing surface and a back surface; a groove pattern disposed in the polishing surface, the groove pattern having a bottom depth; And an endpoint detection region formed in the molded homogeneous polishing body, the endpoint detection region having a first surface oriented by the polishing surface and a second surface oriented by the rear surface, at least a portion of the first surface The bottom depth is coplanar with the groove pattern and the groove pattern is interrupted, and the second surface is recessed into the molded homogeneous polishing body with respect to the rear surface. 23. The polishing pad of claim 22, wherein the entire first surface of the endpoint detection region is substantially coplanar with the bottom depth of the groove pattern. 24. The polishing pad of claim 22, wherein the first surface of the endpoint detection region comprises a second groove pattern having the groove pattern disposed in the polishing surface The bottom depth is substantially coplanar depth. 25. The polishing pad of claim 24, wherein the groove pattern and the individual groove spacing-width of the second groove pattern and wherein the second groove pattern is offset from the groove pattern by a distance greater than the width. 26. The polishing cartridge of claim 22, wherein the molded homogeneous polishing body comprises a thermoset closed cell polyurethane material. 159195.doc 201230224 27. The polishing pad of claim 22, wherein the molded homogeneous polishing body comprising the endpoint detection region is opaque. 28. A method of making a polishing pad for polishing a semiconductor substrate, the method comprising: forming a polishing pad precursor mixture in a forming mold; positioning a cover of the forming mold in the polishing pad precursor mixture, the cover a mask pattern is disposed on the cover, the groove pattern having an interruption region; curing the polishing pad precursor mixture to provide a molded homogeneous polishing body including a polishing surface and a rear surface, wherein the groove pattern from the cover is disposed In the polishing surface, the groove pattern has a bottom depth; and an end detection region is provided in the molded homogeneous polishing body, the end detection region having a first surface oriented by the polishing surface and a surface-oriented second surface, at least a portion of the first surface being coplanar with the bottom depth of the groove pattern and including the interrupted region of the groove pattern, and the second surface is recessed into the molding relative to the rear surface Homogenized in the body. 29. The method of claim 28, wherein the providing the endpoint detection region is performed by scooping a portion of the molded homogeneous polishing body. 30. The method of claim 28, wherein the providing the endpoint detection region is performed by removing a sacrificial layer embedded in the molded homogeneous polishing body. 3. The method of claim 28, wherein the entire first surface of the endpoint detection region is substantially coplanar with the bottom depth of the groove pattern. 32. The method of claim 28, wherein the first surface 159195.doc 201230224 of the endpoint detection region comprises a second groove pattern having a portion disposed on the molded homogeneous polishing body The bottom depth of the groove pattern in the polished surface is substantially coplanar. 33. The method of claim 32, wherein the groove pattern and the individual grooves of the second groove pattern are spaced apart by a width, and wherein the second groove pattern is offset from the first groove pattern by a distance greater than the width . 34. The method of claim 32, wherein the molded homogeneous polishing body comprises a thermoset closed cell polyurethane material. 35. The method of claim 28, wherein the molded homogeneous polishing body comprising the endpoint detection region is opaque. 36. A method of manufacturing a polishing pad for polishing a semiconductor substrate, the method comprising: forming a polishing pad by a molding process, the polishing pad comprising: a homogeneous polishing body having a polishing surface and a rear surface; a groove pattern in the surface, the groove pattern having a bottom depth; and an end point detection area formed in the molded homogeneous polishing body, the end point detection area having a first surface oriented by the polishing surface and The second surface of the rear surface facing, at least a portion of the first surface is coplanar with the bottom depth of the groove pattern and interrupts the groove pattern, and the second surface is recessed into the molding homogenity relative to the rear surface In the polished body. 37. The method of claim 36, wherein the entire first surface of the endpoint detection region is substantially coplanar with the bottom depth of the groove pattern. The method of claim 36, wherein the first surface of the continuous Dydan r-point detection area comprises a first groove pattern, the second groove W valence pattern having and disposed thereon The bottom depth of the groove pattern in the polished surface is substantially coplanar with a depth of 0. 39. The method of claim 38, wherein the groove pattern and the individual grooves of the second groove pattern are separated by a width 'and wherein The second groove pattern is offset from the groove pattern by a distance greater than the width. 40. The method of claim 36, wherein the molded homogeneous polishing body comprises a thermosetting closed cell polycarbamic acid g material. 41. The method of claim 36, wherein the molded homogeneous polishing body comprising the endpoint region is opaque. 42. A method of fabricating a polishing pad for polishing a semiconductor substrate, the method comprising: forming a partially cured endpoint detection region precursor in a first forming mold; and curing the partially cured endpoint detection region precursor Disposed on a receiving area of the cover of the second forming mold; providing a polishing pad precursor mixture in the second forming mold; curing the part by contacting the cover with the base of the second forming mold The endpoint detection region precursor is moved into the polishing pad precursor mixture; the polishing pad precursor mixture and the partially cured endpoint detection region precursor are heated to provide a covalent bond with the cured endpoint detection region precursor a molded homogeneous polishing body having a polished surface - 6 - 159195.doc 201230224 及後表面;及 使該固化之端點偵 光體之該後表面轉體相對於該模製均質抛 以^供文置於該模製均質拋光體 甲且”其共價鍵結之端點偵測區域。 43.如請求項42之方法,甘 八中。凹陷係藉由挖出一部分該固 化之端點偵測區域前驅體來進行。 44·如請求項42之方法,甘Λ ^ 八中該邛分固化之端點偵測區域前 驅體包括犧牲層,且並由β 耵 且/、中該凹陷係藉由移除該犧牲層來 進行。 45. 如請求項42之方法,甘Λ斗μ /、中該鸲點偵測區域包含與該模 均質拋光體不同之材料。 、 46. 如請求項45之方法,盆由兮山 八中忒鳊點偵測區域為局部面 明(LAT)區域。 47. 如請求項45之方法,其中該端點谓測區域為具有與該模 製均質拋光體之硬度不同之硬度的不透明區域。 48. 如請求項42之方法,其中該整個端點偵測區域相對於該 模製均質拋光體之該後表面凹陷。 49. 如請求項42之方法,其中僅該端點偵測區域之内部部分 相對於該模製均質拋光體之該後表面凹陷。 50. 如請求項42之方法,其中該模製均質拋光體包含熱固性 閉孔聚胺基曱酸酯材料。 51. 如清求項42之方法,其中該拋光表面包含安置於該抛光 表面中且由該第二成形模具之該蓋罩形成之凹槽圖案。 52. —種製造用於拋光半導體基板之拋光墊的方法,該方、去 159195.doc 201230224 包含: 在第一成形模具中安置支撐結構; 在該第一成形模具中在該支撐結構上方提供偵測區域 前驅體混合物; 藉由加熱該第一成形模具中之該偵測區域前驅體混合 物來形成部分固化之端點偵測區域前驅體,該部分固化 之端點偵測區域前驅體耦接至該支撐結構上; 藉由使該支撐結構耦接至該第二成形模具之蓋罩之凹 陷接收區域而將該支撐結構及該部分固化之端點偵測區 域前驅體安置於該蓋罩之該凹陷接收區域上; 在S亥第二成形模具中提供拋光墊前驅體混合物; 藉由使該蓋罩與該第二成形模具之基底接觸在一起而 使該。卩分固化之端點偵測區域前驅體移入該抛光墊前驅 體混合物中; 加熱該拋光墊前驅體混合物及該部分固化之端點偵測 區域前驅體以提供與固化之端點偵測區域前驅體共價鍵 結之模製均質拋光體,該模製均質拋光體具有拋光表面 及後表面,且該端點偵測區域耦接至該支撐結構上;及 自該端點偵測區域移除該支撐結構。 53. 如請求項52之方法,進一步包含: 在該加熱之後,使該固化之端點偵測區域前驅體相對 於該模製均質拋光體之該後表面凹陷,以提供安置於該 模製均質拋光體中且與其共價鍵結之端點偵測區域。 54. 如請求項52之方法,其中該支撐結構包含剛性環氧樹脂 159195.doc 201230224 板0 55. 56. 57. 58. 59. 60. 61. 62. 63, 64. 如=求項54之方法,其中在該第一成形模具中提供該偵 測區域則驅體混合物包含在黏附至該支撐結構上之聚合 物膜上提供該偵測區域前驅體混合物。 如叫求項55之方法,其中使該支撐結構耦接至該蓋罩之 該凹陷接收區域包含m面膠帶使$支撐結構黏附 至該凹陷接收區域上。 如凊求項53之方法,其中該凹陷係藉由挖出一部分該固 化之端點偵測區域前驅體來進行。 如凊求項53之方法,其中該部分固化之端點制區域前 驅體包括犧牲層’且其中該凹陷係藉由移除該犧牲層來 進行。 如凊求項52之方法,其中該端點偵測區域包含與該模製 均質拋光體不同之材料。 如請求項59之方法 明(LAT)區域。 其中該端點偵測區域為局部面積透 如請求項59之方法,其中該端點偵測區域為具有 製均質拋光體之硬度不同之硬度的不透明區域。 如請求項53之方法,其中該整個端則貞測區域㈣ 模製均質拋光體之該後表面凹陷。 ~ 如請求項53之方法,其中僅該端貞測區域之内 相對於該模製均質拋光體之該後表面凹陷。 ° °分 如請求項52之方法,其中該模製均質拋光體包含 閉孔聚胺基甲酸I旨材料。 159195.doc 201230224 65.如請求項52之方法,其中該拋光表面包含安置於該拋光 表面中且由該第二成形模具之該蓋罩形成之凹槽圖案。 159195.doc -10·201230224 and the rear surface; and causing the rear surface swivel of the cured end point light body to be placed on the molded homogeneous polishing body with respect to the molded homogeneous mass and "the covalently bonded end thereof" Point detection area 43. The method of claim 42, wherein the depression is performed by scooping a portion of the cured endpoint detection region precursor. 44. The method of claim 42 is The precursor of the endpoint detection region that is cured in the eighth portion includes a sacrificial layer, and is performed by removing the sacrificial layer by β 耵 and /, wherein the recess is removed by the method of claim 42 The μ μ μ /, the 侦测 point detection area contains a material different from the mold homogeneous polishing body. 46. According to the method of claim 45, the basin is detected by the 兮山八中忒鳊点 detection area as a local surface ( 47. The method of claim 45, wherein the endpoint reference region is an opaque region having a hardness different from a hardness of the molded homogeneous polishing body. 48. The method of claim 42, wherein the entire The endpoint detection area is opposite to the molded homogeneous polishing body 49. The method of claim 42, wherein only the inner portion of the endpoint detection region is recessed relative to the rear surface of the molded homogeneous polishing body. 50. The method of claim 42, wherein the molding The homogeneous polishing body comprises a thermosetting closed-cell polyamine phthalate material. The method of claim 42, wherein the polishing surface comprises a recess disposed in the polishing surface and formed by the cover of the second molding die a groove pattern 52. A method of manufacturing a polishing pad for polishing a semiconductor substrate, the method of 159195.doc 201230224 comprising: arranging a support structure in a first forming die; wherein the support structure is in the first forming die Providing a detection region precursor mixture at a top; forming a partially cured end detection region precursor by heating the detection region precursor mixture in the first molding die, the partially cured end detection region precursor Coupling to the support structure; curing the support structure and the portion by coupling the support structure to the recess receiving area of the cover of the second forming mold The endpoint detection area precursor is disposed on the recess receiving area of the cover; providing a polishing pad precursor mixture in the second forming mold; and contacting the cover with the substrate of the second forming mold The precursor of the endpoint detection region of the cured portion is moved into the polishing pad precursor mixture; the polishing pad precursor mixture and the partially cured endpoint detection region precursor are heated to provide the cured end a point-sensing region precursor covalently bonded molded homogeneous polishing body, the molded homogeneous polishing body having a polished surface and a rear surface, and the end detecting region coupled to the supporting structure; and from the end point The detection area removes the support structure. 53. The method of claim 52, further comprising: after the heating, recessing the cured endpoint detection region precursor relative to the back surface of the molded homogeneous polishing body to provide placement in the molding homogenization An endpoint detection region in the polishing body and covalently bonded thereto. 54. The method of claim 52, wherein the support structure comprises a rigid epoxy resin 159195.doc 201230224 plate 0 55. 56. 57. 58. 59. 60. 61. 62. 63, 64. The method wherein the detection zone is provided in the first forming die and the body fluid mixture comprises providing the detection zone precursor mixture on a polymer film adhered to the support structure. The method of claim 55, wherein the recess receiving area that couples the support structure to the cover comprises an m-face tape to adhere the $support structure to the recess receiving area. The method of claim 53, wherein the recess is performed by scooping a portion of the cured endpoint detection region precursor. The method of claim 53, wherein the partially cured end region region precursor comprises a sacrificial layer' and wherein the recess is performed by removing the sacrificial layer. The method of claim 52, wherein the endpoint detection region comprises a material different from the molded homogeneous polishing body. See the method (LAT) area of claim 59. The endpoint detection area is a method of partially reducing the area as shown in claim 59, wherein the endpoint detection area is an opaque area having a hardness different from that of the homogeneous polishing body. The method of claim 53, wherein the entire end of the speculative region (4) molds the rear surface of the homogeneous polishing body to be recessed. The method of claim 53, wherein only the rear surface of the molded homogeneous region is recessed within the end detecting region. The method of claim 52, wherein the molded homogeneous polishing body comprises a closed-cell polyurethane material. The method of claim 52, wherein the polishing surface comprises a groove pattern disposed in the polishing surface and formed by the cover of the second forming die. 159195.doc -10·
TW100135659A 2010-09-30 2011-09-30 Polishing pad for eddy current end-point detection TWI470714B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/895,465 US8628384B2 (en) 2010-09-30 2010-09-30 Polishing pad for eddy current end-point detection
US12/895,479 US8657653B2 (en) 2010-09-30 2010-09-30 Homogeneous polishing pad for eddy current end-point detection
US12/895,529 US8439994B2 (en) 2010-09-30 2010-09-30 Method of fabricating a polishing pad with an end-point detection region for eddy current end-point detection

Publications (2)

Publication Number Publication Date
TW201230224A true TW201230224A (en) 2012-07-16
TWI470714B TWI470714B (en) 2015-01-21

Family

ID=44906364

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103123861A TWI501335B (en) 2010-09-30 2011-09-30 Polishing pad for eddy current end-point detection
TW100135659A TWI470714B (en) 2010-09-30 2011-09-30 Polishing pad for eddy current end-point detection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW103123861A TWI501335B (en) 2010-09-30 2011-09-30 Polishing pad for eddy current end-point detection

Country Status (6)

Country Link
JP (3) JP5688466B2 (en)
KR (3) KR101495143B1 (en)
CN (2) CN103260828B (en)
SG (1) SG188632A1 (en)
TW (2) TWI501335B (en)
WO (1) WO2012044683A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI649799B (en) * 2014-06-23 2019-02-01 美商應用材料股份有限公司 Inductive monitoring of the depth of the conductive trench
US10350723B2 (en) 2016-09-16 2019-07-16 Applied Materials, Inc. Overpolishing based on electromagnetic inductive monitoring of trench depth

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238294B2 (en) * 2014-06-18 2016-01-19 Nexplanar Corporation Polishing pad having porogens with liquid filler
US9475168B2 (en) * 2015-03-26 2016-10-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad window
JP2017064899A (en) * 2015-10-01 2017-04-06 株式会社荏原製作所 Polishing device
US11072050B2 (en) * 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
JP7026942B2 (en) * 2018-04-26 2022-03-01 丸石産業株式会社 Underlay for polishing pad and polishing method using the underlay
JP7348860B2 (en) * 2020-02-26 2023-09-21 富士紡ホールディングス株式会社 Polishing pad and polishing pad manufacturing method
CN113621126B (en) * 2020-05-08 2023-03-24 万华化学集团电子材料有限公司 Optical endpoint detection window and preparation method thereof
WO2022202059A1 (en) * 2021-03-24 2022-09-29 富士紡ホールディングス株式会社 Method for manufacturing polishing pad
CN115056137A (en) * 2022-06-20 2022-09-16 万华化学集团电子材料有限公司 Polishing pad with grinding consistency end point detection window and application thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5893796A (en) * 1995-03-28 1999-04-13 Applied Materials, Inc. Forming a transparent window in a polishing pad for a chemical mechanical polishing apparatus
US6068539A (en) * 1998-03-10 2000-05-30 Lam Research Corporation Wafer polishing device with movable window
US7374477B2 (en) * 2002-02-06 2008-05-20 Applied Materials, Inc. Polishing pads useful for endpoint detection in chemical mechanical polishing
US8485862B2 (en) * 2000-05-19 2013-07-16 Applied Materials, Inc. Polishing pad for endpoint detection and related methods
US6924641B1 (en) 2000-05-19 2005-08-02 Applied Materials, Inc. Method and apparatus for monitoring a metal layer during chemical mechanical polishing
JP2002001647A (en) * 2000-06-19 2002-01-08 Rodel Nitta Co Polishing pad
JP2002001652A (en) * 2000-06-22 2002-01-08 Nikon Corp Polishing pad and apparatus, and manufacturing device
JP2003057027A (en) * 2001-08-10 2003-02-26 Ebara Corp Measuring instrument
US7704125B2 (en) * 2003-03-24 2010-04-27 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
JP2004343090A (en) * 2003-04-22 2004-12-02 Jsr Corp Polishing pad and method for polishing semiconductor wafer
US7195539B2 (en) * 2003-09-19 2007-03-27 Cabot Microelectronics Coporation Polishing pad with recessed window
US7258602B2 (en) * 2003-10-22 2007-08-21 Iv Technologies Co., Ltd. Polishing pad having grooved window therein and method of forming the same
JP2006187837A (en) * 2005-01-06 2006-07-20 Toyo Tire & Rubber Co Ltd Polishing pad
TWI385050B (en) * 2005-02-18 2013-02-11 Nexplanar Corp Customized polishing pads for cmp and methods of fabrication and use thereof
CA2598272A1 (en) * 2005-02-18 2006-08-24 Neopad Technologies Corporation Customized polishing pads for cmp and methods of fabrication and use thereof
CN101134303A (en) * 2006-08-30 2008-03-05 力晶半导体股份有限公司 Polishing pad and method of producing the same
JP5105095B2 (en) * 2006-10-27 2012-12-19 Jsr株式会社 Method for manufacturing chemical mechanical polishing pad and method for processing object to be polished
JP5072072B2 (en) * 2007-03-15 2012-11-14 東洋ゴム工業株式会社 Polishing pad

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI649799B (en) * 2014-06-23 2019-02-01 美商應用材料股份有限公司 Inductive monitoring of the depth of the conductive trench
US10741459B2 (en) 2014-06-23 2020-08-11 Applied Materials, Inc. Inductive monitoring of conductive loops
US10350723B2 (en) 2016-09-16 2019-07-16 Applied Materials, Inc. Overpolishing based on electromagnetic inductive monitoring of trench depth

Also Published As

Publication number Publication date
JP2013539233A (en) 2013-10-17
CN106239354A (en) 2016-12-21
JP5933636B2 (en) 2016-06-15
CN103260828A (en) 2013-08-21
KR101495141B1 (en) 2015-02-24
SG188632A1 (en) 2013-04-30
JP5688466B2 (en) 2015-03-25
CN103260828B (en) 2017-08-15
TWI501335B (en) 2015-09-21
TWI470714B (en) 2015-01-21
JP2014179660A (en) 2014-09-25
KR101495143B1 (en) 2015-02-24
JP2016029743A (en) 2016-03-03
WO2012044683A2 (en) 2012-04-05
KR101451230B1 (en) 2014-10-15
KR20140043172A (en) 2014-04-08
KR20130064123A (en) 2013-06-17
TW201440156A (en) 2014-10-16
KR20140046084A (en) 2014-04-17
WO2012044683A3 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
TW201230224A (en) Polishing pad for eddy current end-point detection
US9017140B2 (en) CMP pad with local area transparency
US9296085B2 (en) Polishing pad with homogeneous body having discrete protrusions thereon
TWI634968B (en) Polishing pad with polishing surface layer having an aperture or opening above a transparent foundation layer
US8628384B2 (en) Polishing pad for eddy current end-point detection
US7942724B2 (en) Polishing pad with window having multiple portions
KR102634723B1 (en) Polishing pad having a base layer and a window attached thereto
US20120079773A1 (en) Method of fabricating a polishing pad with an end-point detection region for eddy current end-point detection
JP3239764B2 (en) Polishing apparatus and polishing polisher for CMP
US8657653B2 (en) Homogeneous polishing pad for eddy current end-point detection
JP2000288912A (en) Abrasive polisher and its manufacture