TW201224086A - Electroconductive coating composition and laminate - Google Patents
Electroconductive coating composition and laminate Download PDFInfo
- Publication number
- TW201224086A TW201224086A TW100138442A TW100138442A TW201224086A TW 201224086 A TW201224086 A TW 201224086A TW 100138442 A TW100138442 A TW 100138442A TW 100138442 A TW100138442 A TW 100138442A TW 201224086 A TW201224086 A TW 201224086A
- Authority
- TW
- Taiwan
- Prior art keywords
- conductive
- coating composition
- conductive coating
- film
- parts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/044—Forming conductive coatings; Forming coatings having anti-static properties
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/68—Particle size between 100-1000 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/16—Anti-static materials
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
Abstract
Description
201224086 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種可形成導電膜、抗靜電膜等之導電 性塗佈組成物、及使用該組成物而成之積層體。 【先前技術】 若於液晶顯示器等顯示器之光學膜表面,因靜電而附 著塵埃’則顯示器之辨識度降低。用以防止此情況之方法, 已知有於光學膜表面設置抗靜電膜。 於此種抗靜電膜中調配之導電材,先前使用有氧化錫 銻(ΑΤΟ)、氧化銦錫(IT0)等展現導電性之無機微粒子。此 種無機微粒子具有透明性或膜強度優異之優點。 然而,包含無機微粒子之抗靜電膜通常係由濺鍍或真 :蒸鍍等所形成,存在如下缺點:於其形成過程中需要昂 貴之設備、及例如500〜60(rc之高溫之設定。 又,若使包含無機微粒子之抗靜電膜成膜於玻璃基板 上,則反射率會變高,結果與玻璃之折射率差會變大,進 而亦存在顯示器之能見度降低之問題。進而,㉟ 有金屬,供給源受限而存在供給量 、‘… 避免使用。 之變動專,故較理想為 笙道带k u ^个另將例如聚噻吩 專導電性有機兩分子材料用⑨液晶冑示器 如,參照專利文獻I及2)。又,為提/膜中(例 性或膜硬度,亦揭示有與基材之密接 氧矽烷類併用以报出杆抵Φ时 同刀子材料與各種烧 乳y [類併用以形成抗靜電臈(例如, …寻利文獻3、4 201224086 及5)。 ^利用有機系導電性材料,則無需 以-般的塗敷方法即可形成抗靜電膜,由二 且低溫之製程而成膜之復、啕了由間食 有導電性及㈣❹ 並且’所獲得之抗靜電膜肩 . 透^較局,與基材之密接性亦優異之優點。 :而’先别已知之有機系抗靜電膜存在膜硬度不足, 表面易損傷之缺點。造而 _ .., 進而,亦存在耐化學品性不足之問題。 例如,於用作液晶顯干哭 題 從阳顯不器中之抗靜電膜時,於 膜後、在其表面設置偏“& ^ 风柷靜電 、 偏先板别,必需進行使用丙酮等有機 溶劑之清洗或鹼清洗,但 故業界要求加以改善。— Μ㈣清洗而變質’ [專利文獻1]日本特開平1〇_96953號公報 [專利文獻2]日本特開2004-246080號公報 [專利文獻3]日本特開2〇〇5_82768號公報 [專利文獻4]曰本特開2006-294532號公報 [專利文獻5]日本特表2010-528123號公報 【發明内容】 鑒於上述現狀,本發明之課題在於提供一種可形成導 電性及穿透性較高,與基材之密接性優異,且硬度較高, 並且耐化學品性優異之抗靜電膜之導電性塗佈組成物。 本發明人等進行了潛心研究,結果發現,藉由將導電 性聚合物製成粒徑小之粒子狀,並將其與特定之水解性矽 烷化合物組合使用,可解決上述課題,從而達成本發明。 即,本發明係關於一種導電性塗佈組成物,包含粒俨 4 201224086 (D5 0)為2〇Onm以下之導電性聚合妨^ 不。物杻子、及含有下述通式 所表示之烧氧石夕炫低聚物之黏合劑成分.201224086 VI. Description of the Invention: The present invention relates to a conductive coating composition capable of forming a conductive film, an antistatic film, or the like, and a laminate using the composition. [Prior Art] When dust is attached to the surface of the optical film of a display such as a liquid crystal display due to static electricity, the visibility of the display is lowered. As a method for preventing this, it is known to provide an antistatic film on the surface of the optical film. The conductive material formulated in such an antistatic film has previously been used as an inorganic fine particle exhibiting conductivity such as tin oxide (yttrium) or indium tin oxide (IT0). Such inorganic fine particles have the advantage of being excellent in transparency or film strength. However, the antistatic film containing inorganic fine particles is usually formed by sputtering or true: vapor deposition or the like, and has disadvantages in that expensive equipment and, for example, 500 to 60 (the setting of the high temperature of rc) are required in the formation process thereof. When an antistatic film containing inorganic fine particles is formed on a glass substrate, the reflectance becomes high, and as a result, the difference in refractive index from the glass increases, and the visibility of the display also decreases. Further, 35 has a metal. The supply source is limited and there is a supply amount, '...to avoid use. The change is specific, so it is preferable to use the ku belt for another. For example, a polythiophene-specific conductive organic two-molecular material is used for a liquid crystal display. Patent Documents I and 2). Moreover, in the extraction/film (for example, or the film hardness, it is also disclosed that the oxyalkylene is closely attached to the substrate and used to report the rod Φ when the same knife material and various types of yoghurt y are used to form an antistatic 臈 ( For example, ...See document 3, 4 201224086 and 5). ^Using an organic conductive material, it is not necessary to form an antistatic film by a general coating method, and the film is formed by a process of low temperature and low temperature. It has the advantage of being electrically conductive and (4) ❹ and 'the antistatic film shoulder obtained. It is excellent in the adhesion to the substrate. The 'anti-static film of the organic system is known. Insufficient, the surface is easy to damage the shortcomings. _.., and, in turn, there is also a problem of insufficient chemical resistance. For example, when used as an antistatic film in the liquid crystal display After that, the surface of the surface is set to "& ^ pneumatic static, partial plate, and must be cleaned with an organic solvent such as acetone or alkaline cleaning, but the industry requires improvement. - 四 (4) cleaning and deterioration ' [Patent Document 1 ]Japanese Unexamined Japanese Patent No. 196953 [Patent Document] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2006-294. SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide an antistatic which is excellent in electrical conductivity and permeability, excellent in adhesion to a substrate, high in hardness, and excellent in chemical resistance. The inventors of the present invention conducted intensive studies and found that the conductive polymer is formed into particles having a small particle diameter and used in combination with a specific hydrolyzable decane compound. The present invention can be achieved by solving the above problems. That is, the present invention relates to a conductive coating composition comprising a conductive polymer which has a particle size of 4 〇Onm or less in 201224086 (D50). And a binder component containing the pyrochlore oxime oligomer represented by the following formula.
[化1][Chemical 1]
I R4I R4
RjO—Si- ο—r2 -η 式中’ RJ R2相同或不@,表示碳數卜4之烷基; R3及R4相同或不同,表示H(氫原子)、羥基、或碳數i〜4 之炫氧基,其中複數個QR4中之至少丨個為炫氧基;n 表示2〜20之整數。 又,本發明亦關於一種積層體,係包含基材、及設置 於該基材上之導電膜者,其中上述導電臈係由上述導電性 塗佈組成物所形成。 利用本發明之導電性塗佈組成物,可藉由利用_般塗 敷方法於低溫下塗佈於基材上而形成抗靜電臈,可簡便且 廉價地實施自塗佈直至成膜之製程。 由本發明之導電性塗佈組成物獲得之導電膜係導電性 較高(即,表面電阻率較低,為1.0 E+ 10 Ω/□以下),並 且穿透性較尚’與基材之密接性亦優異。進而,膜硬度高 達船筆硬度Β以上。 ° 於將本發明之導電性塗佈組成物塗佈於破璃基材上 時’膜硬度進而變高為鉛筆硬度Η以上,並且亦可發揮優 201224086 異之耐化學品性(耐有機溶劑性、 、耐鹼性)。又,RjO—Si— ο—r2 —η where 'RJ R2 is the same or not @, represents an alkyl group of carbon number 4; R3 and R4 are the same or different, and represent H (hydrogen atom), hydroxyl group, or carbon number i~4 The methoxy group, wherein at least one of the plurality of QR4s is a methoxy group; and n represents an integer of 2 to 20. Further, the present invention relates to a laminate comprising a substrate and a conductive film provided on the substrate, wherein the conductive lanthanum is formed of the conductive coating composition. According to the conductive coating composition of the present invention, it is possible to form an antistatic ruthenium by applying it to a substrate at a low temperature by a general coating method, and the process from the coating to the film formation can be carried out simply and inexpensively. The conductive film obtained from the conductive coating composition of the present invention has high conductivity (that is, a surface resistivity is low, being 1.0 E+10 Ω/□ or less), and the penetrability is better than that of the substrate. Also excellent. Further, the film hardness is as high as the hardness of the ship pen. ° When the conductive coating composition of the present invention is applied to a glass substrate, the film hardness is further increased to a pencil hardness of Η or more, and the chemical resistance of the product is also improved. , and alkali resistance). also,
【實施方式】 所形成之導 因與玻璃之折射率差小,故可 缺陷(孔或小凹坑)之效果。 以下,對本發明之詳細情況進行說明。 本發明之導電性塗佈組成物含有導電性聚合物粒子與 黏合劑成分。 (導電性聚合物粒子) 本發明中所使用之導電性聚合物係表現導電性之高分 子材料。&體而言,可列舉:聚噻吩'%苯胺、聚吡咯、 聚對苯(polyparaphenylene)、 聚對苯亞乙稀 (polyparaphenylene Vinylene)、該等之衍生物等冗共軛系導 電性聚合物。 其中,就高導電性與化學穩定性之觀點而言,可較佳 地使用由聚噻吩與摻雜劑之複合體所構成之聚噻吩系導電 性聚合物。更詳細而言’聚噻吩系導電性聚合物係由聚(3,4_ 一取代嘆吩)與摻雜劑所構成之複合體。 構成聚噻吩系導電性聚合物之聚(3,4-二取代噻吩)較佳 為由以下之式(1): [化2][Embodiment] Since the difference between the refractive index and the glass is small, the effect of defects (holes or small pits) can be obtained. Hereinafter, the details of the present invention will be described. The conductive coating composition of the present invention contains conductive polymer particles and a binder component. (Electroconductive polymer particles) The conductive polymer used in the present invention is a high molecular material which exhibits conductivity. Examples of the & conjugated conductive polymer such as polythiophene '% aniline, polypyrrole, polyparaphenylene, polyparaphenylene Vinylene, and derivatives thereof . Among them, from the viewpoint of high conductivity and chemical stability, a polythiophene-based conductive polymer composed of a composite of polythiophene and a dopant can be preferably used. More specifically, the polythiophene-based conductive polymer is a composite of a poly(3,4-substituted sinus) and a dopant. The poly(3,4-disubstituted thiophene) constituting the polythiophene-based conductive polymer is preferably represented by the following formula (1):
6 201224086 所示之重複結構單位所構成的陽離子㈣ 邊陽離子形態之聚噻吩係指為了與摻 吻 複合體而藉由自聚嗟吩之__部分奪走電p聚陰離子成為 離子形態之聚噻吩。 電子而一部分成為陽 式(1)中,尺4及r5相互獨立,表示氫 席子或C丨·4之烧基, 或表不R4R5鍵結而形成環狀結構的取代或無取代之C 之伸炫基。上述CN4之垸基例如可列舉甲基、乙基、丙基·: 異丙基、正丁基、異丁基、第二丁基、第三丁基等。R二 R5鍵結而形成環狀結構的取代或無取代之C"之伸烷美, 例如可列舉:亞甲基、α伸乙基Ή丙基、14_:丁 基、i甲基伸乙基4乙基·Μ,乙基、"基4 伸丙基、2·甲基-仏伸丙基等。可具有^4之伸院基之取代 基’可列舉函基或苯基等。較佳< c14之伸烧基可列舉亞 曱基、1,2-伸乙基、1,3_伸丙基,尤佳為丨,2伸乙基。作為 具有上述伸烷基之聚噻吩,尤佳為聚(3,4_伸乙基二氧噻吩) (poly(3,4_ethylenedioxythiophene))。 構成聚嗟吩系導電性聚合物之摻雜劑較佳為藉由與上 述聚噻吩成為離子對而形成複合體,可使聚噻吩穩定地分 散於水中之陰離子形態之聚合物,即聚陰離子。此種摻雜 劑例如可列舉:羧酸聚合物類(例如,聚丙烯酸、聚馬來酸、 聚曱基丙烯酸等)、磺酸聚合物類(例如,聚苯乙烯磺酸、聚 乙烯磺酸等)等。該等羧酸聚合物類及磺酸聚合物類亦可為 乙烯羧酸(vinyl carboxylic acid)類及乙烯磺酸類與其他可 聚合之單體類(例如,丙烯酸酯類、苯乙烯等)之共聚物。其 201224086 中,尤佳為聚苯乙烯磺酸。 上述聚苯乙稀績酸較佳為重量平均分子量大於2〇〇〇〇 且為500000以下。更佳為4〇〇〇〇〜2〇〇〇〇〇。若使用分子量 為此範圍外之聚苯乙烯磺酸,則存在聚噻吩系導電性聚合 物對於水之分散穩定性降低之情況。再者,上述聚合物之 重量平均分子量係利用凝膠滲透層析法(Gpc)測定之值。測 定係使用Waters公司製造之uhrahydr〇gel 5〇〇⑶丨_。 聚噻吩系導電性聚合物可藉由在使用有氧化劑之水中 氧化聚合而獲得。於該氧化聚合中使用2種氧化劑(第一氧 化劑及第二氧化劑)。 較佳之第一氧化劑例如可列舉:過氧二硫酸 beroxodisulfuric acid)、過氧二硫酸鈉、過氧二硫酸鉀、過 氧二硫酸錄、過氧化氫、過㈣鉀、重鉻酸鉀、過删酸驗 鹽:銅鹽等》於該等第一氧化劑中’最佳為過氧二硫酸鈉、 過氧二硫酸鉀 '過氧二硫酸銨、及過氧二硫酸。上述第一 氧化劑之使用量相對於所使用之噻吩類單體較佳為丨5〜 3.0 mol當量’進而較佳為2 〇〜2_6 m〇1當量。 適當的第二氧化劑較佳為根據觸媒量而添加金屬離子 (例如’鐵 ' 钻、錄、!目 ' 鈒離子)。其中,鐵離子最有效。 金屬離子之添加量相對於所使用之噻吩類單體較佳為〇 〜〇.1 mol當量,進而較佳為〇 〇1〜〇 〇5 m〇i當量。 〇於本氧化聚合中使用水作為反應溶劑。除水以外,亦 :添加’甲醇、乙醇、2_丙醇、卜丙醇等醇,或丙酮、乙腈 專水溶性溶劑。 201224086 藉由以上之氧化聚合,可獲得導電性聚合物之水分散 體。 本發明之導電性塗佈組成物含有粒子狀導電性聚合 物。此種導電性聚合物粒子可為包含於導電性聚合物之水 刀政體中之導電性聚合物粒子。該水分散體可藉由上述氧 化聚合而製造°又’亦可為有機溶劑(尤其是乙醇等醇)分散 體中所含之導電性聚合物粒子。此種導電性聚合物之有機 冷』刀散體例如可依據專利第4 i 63 號公報中所記載之 方法而製造。 务明中所使用之導電性聚合物粒子之粒徑必需為 2〇〇nm以下。藉由使用粒徑較小且為200nm以下之粒子, 導電!·生聚合物與烧氧石夕烧低聚物複合而形成之導電性膜之 緻密性提尚’膜硬度提高。具體而言,導電性聚合物粒子 可分散性較佳地進入燒氧石夕貌低聚物所形成之緻密的結構 内部,故而膜硬度提高,並且可發揮較高之導電性。又, =目:之理由,於將本發明之導電性塗佈組成物塗佈於玻 =基材上之情形時,膜硬度進而變高且為錯筆硬度Η以上, 並/且耐化學品性(耐有機溶㈣、耐㈣)得収善。於使用 粒徑超過200nm之粒子之情艰陆 ^ 、 達成胺麻“,子之&時,導電性較低,並且無法 度 品性之改善。因粒徑越小上述效果之 下,。更越3^故導電性聚合物粒子之粒徑較佳為6 0 n m以 乂上較佳為3nm以上。更佳為5nm 於本發明中,導電性聚人物 " m以上。 ^物粒子之粒徑係測定導電性粒子6 201224086 The repeating structural unit shown in the cation (tetra) side cation form of polythiophene refers to the polythiophene which is taken into the ionic form by the self-polymerization of the p-anion. . Electron and a part of the positive type (1), the ruler 4 and r5 are independent of each other, and represent a hydrogen mat or a C 丨·4 burnt group, or a substitution or an unsubstituted C extension which forms a cyclic structure without R4R5 bonding. Hyunji. Examples of the thiol group of the above CN4 include a methyl group, an ethyl group, a propyl group: an isopropyl group, an n-butyl group, an isobutyl group, a second butyl group, and a third butyl group. R=R5 is bonded to form a substituted or unsubstituted C" of the cyclic structure, and examples thereof include a methylene group, an α-ethyl propyl group, a 14-: butyl group, and an i-methyl ethyl group. 4 ethyl · hydrazine, ethyl, " base 4 extended propyl, 2 · methyl-hydrazine extended propyl and the like. The substituent which may have a stretching group of ^4 may be a group or a phenyl group. Preferably, the alkylene group of the c14 is an anthracenyl group, a 1,2-extended ethyl group, a 1,3_propyl group, and more preferably an anthracene group. As the polythiophene having an alkylene group as described above, poly(3,4-ethylenedioxythiophene) (poly(3,4-ethylenedioxythiophene)) is preferable. The dopant constituting the polyporous-based conductive polymer is preferably a polymer which forms a complex by ion pairing with the above polythiophene, and which can stably disperse polythiophene in water, that is, a polyanion. Examples of such a dopant include carboxylic acid polymers (for example, polyacrylic acid, polymaleic acid, polyacrylic acid, etc.), and sulfonic acid polymers (for example, polystyrenesulfonic acid, polyvinylsulfonic acid). and many more. The carboxylic acid polymers and sulfonic acid polymers may also be copolymerized with vinyl carboxylic acids and vinyl sulfonic acids and other polymerizable monomers (for example, acrylates, styrene, etc.). Things. In 201224086, it is especially preferred to be polystyrene sulfonic acid. The polystyrene acid preferably has a weight average molecular weight of more than 2 Å and is 500,000 or less. More preferably 4〇〇〇〇~2〇〇〇〇〇. When polystyrenesulfonic acid having a molecular weight outside this range is used, there is a case where the dispersion stability of the polythiophene-based conductive polymer is lowered. Further, the weight average molecular weight of the above polymer is a value measured by gel permeation chromatography (Gpc). The measurement was performed using uhrahydr〇gel 5〇〇(3)丨_ manufactured by Waters. The polythiophene-based conductive polymer can be obtained by oxidative polymerization in water using an oxidizing agent. Two kinds of oxidizing agents (a first oxidizing agent and a second oxidizing agent) are used in the oxidative polymerization. Preferred examples of the first oxidizing agent include: beroxodisulfuric acid peroxydisulfate, sodium peroxodisulfate, potassium peroxodisulfate, peroxodisulfate, hydrogen peroxide, potassium (potassium), potassium dichromate, and deletion. Acid salt: copper salt, etc. Among the first oxidizing agents, 'preferably sodium peroxodisulfate, potassium peroxodisulfate' ammonium peroxodisulfate, and peroxodisulfuric acid. The amount of the first oxidizing agent used is preferably 丨5 to 3.0 mol equivalents and further preferably 2 〇 2 to 6 mm 〇 1 equivalent based on the thiophene monomer to be used. Preferably, the second oxidizing agent is preferably added with a metal ion (e.g., 'iron' drill, 、, 目目' 鈒 ion) depending on the amount of the catalyst. Among them, iron ions are most effective. The amount of the metal ion to be added is preferably 〇 to 1.1 mol equivalent, more preferably 〇 〇1 to 〇 5 m〇i equivalent, based on the thiophene monomer to be used. Water is used as the reaction solvent in the present oxidative polymerization. In addition to water, an alcohol such as methanol, ethanol, 2-propanol or propanol or a water-soluble solvent of acetone or acetonitrile may be added. 201224086 An aqueous dispersion of a conductive polymer can be obtained by the above oxidative polymerization. The conductive coating composition of the present invention contains a particulate conductive polymer. Such a conductive polymer particle may be a conductive polymer particle contained in a waterjet body of a conductive polymer. The aqueous dispersion can be produced by the above-described oxidative polymerization, and can also be a conductive polymer particle contained in an organic solvent (especially an alcohol such as ethanol). The organic cold-knife dispersion of such a conductive polymer can be produced, for example, according to the method described in Japanese Patent No. 4 i 63. The particle size of the conductive polymer particles used in the process must be 2 〇〇 nm or less. Conductive by using particles with a small particle size of 200 nm or less! The compactness of the conductive film formed by the combination of the green polymer and the oxygen-burning oligomer is improved. Specifically, the dispersibility of the conductive polymer particles preferably enters the dense structure formed by the oxygen-depleted oxide oligomer, so that the film hardness is improved and the conductivity is high. Further, when the conductive coating composition of the present invention is applied to a glass substrate, the hardness of the film is further increased to a hardness of 错 or more, and/or chemical resistance. Sex (resistant to organic (four), resistant (four)) to get good. When using a particle having a particle diameter of more than 200 nm, it is difficult to achieve an amine, and the conductivity is low, and the quality is not improved. The smaller the particle size, the lower the effect. The particle size of the conductive polymer particles is preferably 60 nm, preferably 3 nm or more, more preferably 5 nm. In the present invention, the conductive poly character is more than m. Diameter measurement of conductive particles
-S 9 201224086 之個數基準之累計(累積)分佈,作為該累計分佈中之累計值 50%之粒徑而算出。 導電性聚合物粒子之粒徑可藉由於製造上述導電性聚 合物之分散體時適當地選擇分散條件而容易地調整(例如, 參照專利第3966252號公報之段落[剛2])β具體而言,可 使用均質機等分散攪拌機(例如,參照日本專利特開 2010-243 04號公報之段落[〇〇19])。 (黏合劑成分) -本發明之導電性塗佈組成物於含有導電性聚合物粒子 之同時亦含有黏合劑成分。黏合劑成分係導電性塗佈組咸 物於基材上形成膜所必需之成分。於本發明中,黏合劑成 分可為僅由1種所構成者,亦可為併用2種以上者。然而, 於本發明中’作為黏合劑成分,必需至少含有烷氧矽烷低 聚物》 黏口劑成分之總調配量相對於上述導電性聚合物粒子 重量份較佳為150〜10000重量份。若為15〇重量份以 上,則黏合劑成分之使用比例變得充分,所形成之導電膜 可獲得良好的硬度及耐化學品性。若為10000重量份以下, 則含有充分量之導電性聚合⑯,因此可^具有較高之導 電性與良好的耐化學品性之導電膜。更佳為300〜7000重 量份。 (烷氧矽烷低聚物) 於本發明之塗佈組成物中含有烷氧矽烷低聚物。可認 為,由於該烷氧矽烷低聚物於塗膜中形成緻密的結構,故 10 201224086 而本發明可獲得硬度較高之導電膜。進而,小粒徑之導電 性聚合物粒子分散性佳地進入該緻密結構之内部,故而可 獲得硬度及耐化學品性優異且具有較高之導電性之導電 膜。 所謂烷氧矽烷低聚物,係藉由烷氧矽烷之單體彼此縮 合而形成之經高分子量化之烷氧矽烷,係指丨分子内具有1 個以上之矽氧鍵(Si-0-Si)之低聚物。重量平均分子量無特別 限定,但較佳為大於152且為4000以下。更佳為500〜1500 左右。再者,上述低聚物之重量平均分子量係藉由凝膠滲 透層析法(GPC)而測定之值。測定係使用Waters公司製造之 ultrahydrogel 5〇〇 c〇iumil 〇 本發明中所使用之烷氧矽烷低聚物係由下述通式表 示。如由該式所明確,本發明之烷氧矽烷低聚物係與先前 所使用之烷氧矽烷之單體(每1分子含有1個矽原子之化合 物)、或具有環氧基之烷氧矽烷化合物、經聚醚或聚酯等改 質之烷氧矽炫化合物不同之化合物。 [化3] R1° 一一Si——〇--r2 式中’Ri及I相同或不同’表示碳數1〜4之烷基。 R3及R4相同或不同’表示H(氫原子)、經基、或碳數1〜4The cumulative (cumulative) distribution of the number of bases of -S 9 201224086 is calculated as the particle size of 50% of the cumulative value in the cumulative distribution. The particle diameter of the conductive polymer particles can be easily adjusted by appropriately selecting the dispersion conditions when the dispersion of the above conductive polymer is produced (for example, refer to paragraph [3962] of the patent No. 3966252]. A dispersing mixer such as a homogenizer can be used (for example, refer to paragraph [〇〇19] of JP-A-2010-243 04). (Binder component) - The conductive coating composition of the present invention contains a binder component in addition to the conductive polymer particles. The binder component is a component necessary for the conductive coating group to form a film on the substrate. In the present invention, the binder component may be composed of only one type, or two or more types may be used in combination. However, in the present invention, the total amount of the adhesive component which is required to contain at least the alkoxysilane oligomer as the binder component is preferably from 150 to 10,000 parts by weight based on the weight of the conductive polymer particles. When the amount is more than 15 parts by weight, the use ratio of the binder component becomes sufficient, and the formed conductive film can obtain good hardness and chemical resistance. When it is 10,000 parts by weight or less, a sufficient amount of the conductive polymerization 16 is contained, so that a conductive film having high electrical conductivity and good chemical resistance can be obtained. More preferably, it is 300 to 7,000 parts by weight. (Alkoxydecane oligomer) The alkoxysilane oligomer is contained in the coating composition of the present invention. It is considered that since the alkoxydecane oligomer forms a dense structure in the coating film, the present invention can obtain a conductive film having a high hardness. Further, since the conductive polymer particles having a small particle diameter are excellent in dispersibility and enter the inside of the dense structure, a conductive film having excellent hardness and chemical resistance and having high conductivity can be obtained. The alkoxysilane oligomer is a polymerized alkoxysilane formed by condensing monomers of alkoxysilanes, and has one or more oxygen bonds in the molecule (Si-0-Si). ) an oligomer. The weight average molecular weight is not particularly limited, but is preferably more than 152 and 4,000 or less. More preferably 500~1500 or so. Further, the weight average molecular weight of the above oligomer is a value measured by gel permeation chromatography (GPC). The measurement was carried out using ultrahydrogel manufactured by Waters Co., Ltd. 5〇〇 c〇iumil® The alkoxysilane oligomer used in the present invention is represented by the following formula. As is clear from the formula, the alkoxysilane oligomer of the present invention is a monomer of the alkoxysilane previously used (a compound containing one atom per molecule) or an alkoxydecane having an epoxy group. A compound, a compound different from the alkoxy oxime compound modified by a polyether or a polyester. R1° - Si - 〇--r2 wherein 'Ri and I are the same or different' represent an alkyl group having 1 to 4 carbon atoms. R3 and R4 are the same or different and represent H (hydrogen atom), meridine, or carbon number 1 to 4
.S 11 201224086 之烧氧基。其中,複數個r + , 攸数個I及I中之至少i個為烷 η表示2〜20之整數,争杜盔主_。 丞。 <坌数更佳為表不2〜14之整數。碳數 4之烧基例如可列舉甲其、„ 〜 Ν芊Τ暴、乙基、正丙基' 異丙基、正丁 異丁基、第三丁基等。碳數 — τ 反裂1 4之烷氧基,例如可列舉 氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、異^ 基、第三丁氧基等。本發明中所使用之烷氧矽烷低聚物; 為僅由下述通式所表示之化合物1種所構成者,亦可為夕 種之混合物。 夕 於本發明中’藉由使用預先於分子内具有矽氧鍵之燒 氧矽烷低聚物作為黏合劑成分,而與無矽氧鍵之烷氧矽烷 單體或環氧矽烷等相比,於導電性膜内易形成更緻密的钟 構,推測其結果可達成本發明之優異之效果。此效果係成 膜溫度越低越顯著。又,於使用烷氧矽烷聚合物(縮合數η 大於烧氧石夕院低聚物者)作為黏合劑成分之情形時,立體排 斥變大’故而反應性變差而難以形成緻密的結構,藉此推 測其結果膜硬度變弱。此傾向係分子量越大越顯著。 院氧矽烷低聚物之調配量相對於導電性塗佈組成物中 所含之全部黏合劑成分較佳為9 7〜1 〇 〇重量%。若為9 7重 量%以上,則利藉由調配烷氧矽烷低聚物而獲得之膜的緻密 性達到充分之水準,可形成表現較高之膜硬度及優異之耐 化學品性之導電膜。更佳為98.5重量%以上。 (除烷氧矽烷低聚物以外之黏合劑成分) 如上所述,本發明之導電性塗佈組成物亦可含有除烷 氧矽烷低聚物以外之黏合劑成分。只要含有上述烷氧矽烷 12 201224086 低聚物,則對於其他黏合劑成分並無限定,具體而言,可 將3-環氧丙氧基丙基三甲氧基矽烷、聚醚改質聚二甲基矽 氧烷、聚醚改質矽氧烷等矽烷偶合劑用作黏合劑成分。又, 亦可使用樹脂黏合劑,具體而言可列舉:聚酿、聚丙稀酸 S旨、聚甲基丙烯酸酯、聚氨酯、聚乙酸乙烯酯、聚偏二氯 乙烯、聚醯胺、聚醯亞胺等均聚物Η吏苯乙烯、偏二氯乙 烯、氣乙烯、烷基丙烯酸醋、甲基丙烯酸烷基酿等單體共 聚合而獲得之共聚物等。該等黏合劑可單獨使用,亦可併 用2種以上。 (>谷劑或分散介質) 本發明之導電性塗佈組成物可為僅由導電性聚合物粒 子及炫乳硬院低聚物所構成者,但為使操作容易,通常較 佳為^含有溶劑及7或分散介質。作為溶劑或分散介質, =要為可使導電性聚合物及院氧錢低聚物溶解或分散 可: 寺別限定。於導電性塗佈組成物為水系之情形時, 吏用水、及水與混和於水中之溶劑之混合溶劑 曰 和於水中之溶劑’並無特別限制,例如可列舉 ‘、、、: 酵、2-丙醇、b丙酵等醇類;乙二醇單甲峻、二乙二醇單 醚、乙一醇二乙醚、二乙二醇二甲醚等乙二 -· 醇單乙鱗乙酸g旨、—乙. A ,員,乙二 醚乙酸…:醇:=…乙酸sl、二乙二醇單丁 曰等乙一醉醚乙酸酯類;丙二醇、_ 二醇等丙二醇類;丙二醇單甲越、 ;:-、三丙 醇單甲謎、二丙二醇單乙鍵、丙二醇二乙二η二 甲醚、丙二醇二乙醚、二丙 @ -醇- 0嘅寻丙二醇醚類;丙 13 201224086 一醇單曱醚乙酸酯、丙二醇單乙醚乙酸酯、二丙二醇單甲 乙酸 6¾、- ^. —丙一醇單乙醚乙酸酯等丙二醇醚乙酸酯類; 一甲基乙醯胺、丙_、乙腈及該等之混和物等。於導電性 塗佈組成物為有機溶劑系之情形時,可使用上述所列舉之 與水混和之溶劑及曱笨、二曱苯、苯、乙酸乙醋、乙酸丁 自曰、甲基乙基酮、甲基異丁基酮、二乙醚、二異丙醚、甲 基第一丁喊、己燒、庚烷等。於上述溶劑或分散介質中, 尤佳為甲醇、乙醇、2_丙醇。再者,將導電性塗佈用組成物 之各成分完全溶解之情況稱為「溶劑」,將某些成分未溶 解而分散之情況稱為「分散介質」。 -要導電性塗佈組成物為均勻之水分散液,則其固形 物成分濃度無特別限定,於塗佈時較佳為@ 0.(Π〜5〇重量 %左右Ή為卜⑼重量%^於此範圍内,則可較容易 地實施塗佈。然而,於銷售忐恤,宙么& ^ 月售次搬運塗佈組成物時亦可為更 高濃度’於此情形時,σ !认y;fc也^ 、要於使用時添加溶劑及/或分散介 質適當地稀釋即可。 (導電性提高劑) 為進一步改善導電性,亦 了於本發明之塗佈組成物中 進而調配導電性提高劑。作為 工现等電性提高劑,並蛊特 別限定,可視需要適當地選擇。 ,…特 具體而言,可列舉二甲亞 颯、N- f基吡咯啶酮、N•甲基 AZQ 丞甲醢胺、N-二f基甲醯胺、 異佛爾酮、碳酸丙烯酯、環已 7 _丁内酯、二乙二醇單.S 11 201224086 Alkoxy. Wherein, a plurality of r + , at least i of the number of I and I are alkane η represents an integer of 2 to 20, and the main helmet is _. Hey. <The number of turns is more preferably an integer of 2 to 14. Examples of the alkyl group having a carbon number of 4 include methyl, „~ Ν芊Τ, ethyl, n-propyl' isopropyl, n-butyl isobutyl, tert-butyl, etc. Carbon number—τ anti-cracking 1 4 Examples of the alkoxy group include an oxy group, an ethoxy group, a n-propoxy group, an isopropoxy group, a n-butoxy group, an iso-yl group, a third butoxy group, etc. The alkoxy decane used in the present invention. The oligomer; a compound consisting of only one compound represented by the following formula may be a mixture of the genus. In the present invention, 'by using a oxyalkylene oxide having a hydrazine bond in the molecule in advance. As the binder component, the oligomer is more likely to form a denser bell structure in the conductive film than the alkoxysilane monomer or epoxy decane having no oxime bond, and the result is estimated to be excellent in the invention. The effect is that the film formation temperature is as low as possible. Further, when an alkoxysilane polymer (the number of condensations η is larger than that of the oxysalisite oligomer) is used as the binder component, the stereoscopic repulsion becomes large. 'Therefore, the reactivity is deteriorated and it is difficult to form a dense structure, and it is estimated that the film hardness is weak. The larger the molecular weight, the more remarkable. The amount of the oxoxane oligomer is preferably 9 7 to 1 〇〇 by weight based on the total binder component contained in the conductive coating composition. Further, the denseness of the film obtained by blending the alkoxysilane oligomer can reach a sufficient level, and a conductive film exhibiting high film hardness and excellent chemical resistance can be formed, and more preferably 98.5% by weight or more. (Binder component other than alkoxysilane oligomer) As described above, the conductive coating composition of the present invention may further contain a binder component other than the alkoxysilane oligomer, as long as it contains the above alkoxydecane. 12 201224086 oligomers, there are no restrictions on other binder components, specifically, 3-glycidoxypropyltrimethoxydecane, polyether modified polydimethylsiloxane, polyether A decane coupling agent such as a modified decane is used as a binder component. Further, a resin binder may be used, and specific examples thereof include polystyrene, polyacrylic acid, polymethacrylate, polyurethane, and polyvinyl acetate. Ester, polyvinylidene chloride, a copolymer obtained by copolymerizing a homopolymer such as polyamine or polyimine, such as styrene, vinylidene chloride, ethylene ethylene, alkyl acrylate vinegar or alkyl methacrylate, etc. The binder may be used singly or in combination of two or more kinds. (> granule or dispersion medium) The conductive coating composition of the present invention may be composed only of conductive polymer particles and a hard emulsion oligomer. However, in order to facilitate the operation, it is generally preferred to contain a solvent and a dispersion medium. As a solvent or dispersion medium, it is necessary to dissolve or disperse the conductive polymer and the hospital oxygen oligomer: When the conductive coating composition is a water system, the mixed solvent of water and water and a solvent mixed in water and the solvent in water are not particularly limited, and examples thereof include ',, and: , 2-propanol, b-propanol and other alcohols; ethylene glycol monomethyl, diethylene glycol monoether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, etc. Purpose, - B. A, member, ethylene diether acetic acid ...: alcohol: = ... acetic acid sl, diethylene glycol Ding Wei and other Ethyl ether acetates; propylene glycol, propylene glycol and other propylene glycol; propylene glycol monomethyl, ;:, tripropanol monomethyl mystery, dipropylene glycol monoethyl bond, propylene glycol diethyl ether dimethyl ether, Propylene glycol diethyl ether, dipropane @ - alcohol - 0 propylene glycol ethers; C 13 201224086 monool monodecyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monoacetic acid 63⁄4, - ^. - propanol Propylene glycol ether acetate such as monoethyl ether acetate; monomethylacetamide, propyl acrylate, acetonitrile, and the like. When the conductive coating composition is an organic solvent system, the above-mentioned water-mixed solvent and hydrazine, diphenylbenzene, benzene, ethyl acetate, butyl acetate, methyl ethyl ketone may be used. , methyl isobutyl ketone, diethyl ether, diisopropyl ether, methyl first sing, hexane, heptane, and the like. Among the above solvents or dispersion media, methanol, ethanol, and 2-propanol are particularly preferred. In addition, the case where the components of the conductive coating composition are completely dissolved is referred to as "solvent", and the case where some components are not dissolved and dispersed is referred to as "dispersion medium". - If the conductive coating composition is a uniform aqueous dispersion, the solid content concentration is not particularly limited, and is preferably @0. (Π~5〇% by weight is 卜(9)% by weight. In this range, the coating can be carried out relatively easily. However, in the case of sales of 忐 ,, 么 && ^ monthly sales of the coating composition can also be a higher concentration 'in this case, σ! y; fc is also required to be appropriately diluted by adding a solvent and/or a dispersion medium at the time of use. (Conductivity improving agent) To further improve conductivity, the conductive composition is further formulated in the coating composition of the present invention. The reinforcing agent is particularly limited as long as it is an electric isoelectric improving agent, and may be appropriately selected as needed. Specifically, dimethyl hydrazine, N-f pyrrolidone, and N•methyl AZQ may be mentioned. Indoleamide, N-di-f-carbamamine, isophorone, propylene carbonate, cyclohexyl 7-butyrolactone, diethylene glycol mono
乙謎等’於該等之中較佳為N 醯胺、N-甲基吡咯啶 酮。該等可單獨使用丨種,亦 1汗用2種以上。導電性塗 14 201224086 佈組成物中之$電性提高劑 莫雷极取A 里…、符別限疋,但相對於 聚δ物粒子1〇〇重量份較佳、 為0〜13000重量份左 石更佳為43 0〜43 30重量份左右。 (任意成分) :本發明之導電性塗佈組成物中可進而適當地添加界 面活性表面調整劑)、消泡劑、流變控制劑、密接性賦予 劑、抗氧化劑、氧化觸媒、粒子等。 上述界面活性劑只#為可#高平坦性而獲#均句之塗 佈膜者貝1J無特別限定。此種界面活性劑可列舉如下化合 物:聚峻改質聚二甲基石夕氧燒、聚驗改質石夕氧烧、聚峻酉°旨 改質含羥基之聚二甲基矽氧烷、聚醚改質含丙烯基之聚二 曱基矽氧烷、聚酯改質含丙烯基之聚二甲基矽氧烷、全氟 聚二甲基矽氧烷、全氟聚醚改質聚二甲基矽氧烷、全氟聚 酯改質聚二甲基矽氧烷等矽氧烷化合物;全氟烷基羧酸、 王氟烧基聚氧乙烯乙醇等含氟有機化合物;聚氧乙晞烧基 苯醚'環氧丙烷聚合物、環氧乙烷聚合物等聚醚系化合物; 椰子油脂肪酸胺鹽、松脂膠(gum roSin)等羧酸;蓖麻油硫酸 酯類、磷酸酯、烷基醚硫酸鹽、山梨糖醇酐脂肪酸酯、磺 酸酯、鱗酸酯、琥珀酸酯等酯系化合物;烷基芳基磺酸胺 鹽、續基破拍酸二辛基鈉等續酸鹽化合物;十二烧基磷酸 鈉等填酸鹽化合物;椰子油脂肪酸乙醇醯胺等酿胺化合 物;進而丙烯酸系共聚物等。於該等之中,就流平(leveling) 性之方面而言’較佳為矽氧烷系化合物及含氟化合物,尤 佳為聚醚改質聚二甲基矽氧烷。 15 201224086 為使黏度提高,亦可 # 精胺酸衍生物、三仙…物二匕種增黏劑可列舉: 人物m -、夕生物、卡拉膠或纖維素等糖類化 合物等水溶性高分子等。 上述抗氧化劑並致胜2|丨UP — _ , „ ^ u …、特别限疋,可列舉還原性或非還原 性之水溶性抗氧化劑。 即具有還原性之水溶性抗氧化劑例如 可列舉:L-抗壞血酸、 一 L-抗壞血酸鈉、L-抗壞血酸鉀、異抗 壞血酸、異抗壞血酸鈉、里 〇机碾血0文鉀等具有經2個羥基 取代之内酯環之化合物.夾贫她 ^ 物,麥芽糖、礼糖、纖維雙糖、木糖' 阿拉伯糖、葡萄糖、果糖、半乳糖、甘露糖等單糖類及二 :類::茶素、芸香苦、揚梅黃嗣、槲皮素、山奈盼等類 只嗣,量黃素、迷迭香酸、漂木酸、對苯二齡、34 5-三經 基苯甲酸等具# 2個以上盼性經基之化合物;半胱胺酸、 楚胱甘肽、新戊四醇四(3谨基丁酸醋)等具有硫醇基之化合 物等。非還原性水溶性抗氧化劑例如可列舉:苯_嗤績酸、 苯基三唑磺酸、2·羥基嘧啶、水楊酸笨酯、2·羥基_4_曱氧基 二苯基酮-5-續酸納#吸收成為氧化劣卩之原目之紫外線: 化合物。該等可單獨使用,亦可併用2種以上。 又,本發明之導電性塗佈組成物可包含賦予耐磨性或 滑動性之粒子。粒子可列舉無機粒子,無機粒子可列舉: 石夕石、氧減、氧化鋅、氧化卸、氧㈣、氧化絡氧化 錄、氧化鎢、氧化鎮、氧化鈦、氧化叙、氧化飾、氧化姑、 氧化鐵、氧化鈥、氧化錳、氧化錫 '氧化釔、氧化鍅、氧 化銻、碳酸鈣、碳酸鎂' 碳酸鋇 '矽酸鈣、鈦酸鈣、硫酸 鈣、硫酸鋇等金屬氧化物;或硫化鉬、硫化銻、硫化鎢、 16 201224086 氮化爛、職化鎳等中之一 複數合成物及其含水物; 黏土、滑石、雲母、膨潤土、水滑石、沸石、 葉蠟石、碳黑 '石墨等天然或合成礦物粒子。 (塗佈組成物之製造方法) 製造本發明之導電性塗佈組成物之方法並益特❹ 制,只要利用機械授拌器或磁力攪拌器等攪拌機將上述各 組成物:面搜拌一面混合且㈣混合約no分鐘即可。 具體而言,只要首先以導電性 。物粒子具有特定之粒徑 之方式製造導電性聚合物之分檄俨 合、授拌即可。 ”散體’繼而對各成分進行混 (積層體) 本發明之導電性塗佈組成物可藉由塗佈於被塗佈基材 <進仃乾燥而形成導電性塗膜。構成塗佈導電性塗佈組成 物之被塗佈基材之材料並無特別限定,例如可列舉:聚乙 烯、聚丙烯、乙烯-乙酸乙烯酉旨共聚物、乙稀_丙稀酸輯共聚 物、離子聚合物共聚物、環烯烴系樹脂等聚烯烴樹脂;聚 對苯二甲酸乙二料、聚對苯二甲酸丁二醇醋、聚碳酸醋、 聚氧乙稀、改質聚苯(P〇lyphenylene)、聚苯硫喊等聚醋樹 脂;尼龍6、尼龍6,6、尼龍9、半芳香族聚醯胺6丁6、半芳 香族聚酿胺6Τ66、半芳香族聚醯胺9了等聚醯胺樹脂;除此 从外亦可列舉:丙烯酸樹脂、聚苯乙烯、丙烯腈苯乙烯、 丙烯腈丁二烯苯乙烯、1乙烯樹脂等有機材料;玻璃等益 機材料。尤其是本發明之導電性塗佈組成物藉由塗佈於玻 璃基板上,而膜硬度變得極高且以鉛筆硬度計為Η以上, 17 201224086 ==優異…學品性(耐有機溶劑性、耐驗性),因 導電性塗佈組成物之塗佈法並 之方法中適當地選擇。例如可 1別限制,可自公知 佈法、棒塗法、浸塗法'簾 疋塗法、凹版印刷塗 -fr- -r m m / 、模塗法、噴塗法#。 亦可應用網版印刷、喷霧印刷 ^法等。又, 版印刷、平版印刷等印刷法。 凸版印刷、凹 上述導電性塗佈組成物之塗膜之 風乾燥機、熱風乾燥機、红外 更用通常之通 等中共㈣、·工外線乾燥機等乾燥機等。於該 使用具有加熱機構之乾燥機(熱風乾燥機、紅外線乾 煉機等)’則可同時進行乾烨乃 熱。加熱機構除上述乾燥 f卜,亦可使用具備加熱功能之加熱'加壓輥、加壓機 等。 塗膜之乾燥條件並無特別限定,例如於25<t〜200。匸下 進仃10秒〜2小時左右,較佳為於8(rc〜15〇艺下進行5 〜30分鐘左右。 由本發明之導電性塗佈組成物形成之塗膜之乾燥膜厚 可視需要適當地選擇。然而,為提高導電性及硬度、耐化 學品性’較佳為25〜380 nm。更佳為30〜350 nm。 藉由將導電性塗佈組成物塗佈於基材表面並使之乾 燥,可製造包含形成於基材表面之導電膜之積層體。上述 積層體如下述般可應用於各種用途,尤其是於基材為玻璃 基板之情形時,可較佳地用作液晶顯示裝置中所含之積層 體。 201224086 圖 1係表不通常之洛a瓦g —杜 <液日日顯不裝置之積層結構之示意 圖。符號1係液晶顯示裝£ _ # 衣夏T之和色濾光片,於彩色濾光 片1表面積層有玻璃基板2 极進而依序積層有抗靜電膜(導 電膜)3及偏光板4。本發明之藉禺 之積層體可為僅由玻璃基板2 與抗靜電膜3所構成者,^ Α 考亦了為上述液晶顯示裝置之積層 結構中所含者。又,亦可Λ 士 』马凡成液晶顯不裝置之前的由彩 色渡光片1、玻璃基板2及枋雜雷胺^ 及電膜3所構成之積層體中所 含者。 液日日』不裝置之驅動方式目前廣泛地應用TN(Twisted Nematic,扭轉向列)方式、VA(VerUcai…咖如,垂直排 列)方式 '橫電場驅動方式3種。本發明之積層體可應用於 任一種方式之液晶顯示層β其中,於橫電場驅動方式中, 為防止塵埃附著並且提高液晶驅動性,必需設置抗靜電 膜,本發明之積層體亦可較佳地應用於該橫電場驅動方式 之液晶顯不裝置中。於此情形時’抗靜電膜可達成改善由 靜電所導致之液晶混亂之效果,並且因高透明性或與玻璃 之折射率差而亦具有提高顯示器之能見度之效果。 [實施例] 以下列舉實施例更詳細地說明本發明,但本發明並不 限定於該等實施例。以Τ,「份」只要未特別說明,則表 示「重量份j 。 粒徑(D5 0)係針對各水分散液測定個數基準之累計(累 積)刀佈’並算出作為該累計分佈中之累計值5 〇%之粒徑。 具體而言,使用以純水稀釋各水分散液並調整為〇.1%之水 19 201224086 溶液之樣品,使用 ZETASIZER Nano-ZS, (實施例1)Among them, N amide and N-methylpyrrolidone are preferred. These can be used alone or in combination with two or more types of sweat. Conductive coating 14 201224086 The composition of the electric conductivity enhancer Moore is taken from A, ..., and is limited to 1 part by weight, preferably 0 to 13000 parts by weight relative to the poly-δ particles. Stone is better for 43 0~43 30 parts by weight. (Optional component): The conductive coating composition of the present invention may further contain an interface active surface modifier, an antifoaming agent, a rheology control agent, an adhesion imparting agent, an antioxidant, an oxidation catalyst, a particle, or the like. . The above-mentioned surfactant is only #, which is a high flatness, and is obtained by the coating of the film. Such a surfactant may be exemplified by a poly-modified polydimethyl sulphur-oxygen smoldering gas, a polyfluorinated sulphur-oxygen smoldering gas, and a hydroxy-containing polydimethyl methoxy oxane. Polyether modified polyacrylonitrile-containing polydidecyl fluorene oxide, polyester modified propylene-containing polydimethyl methoxy oxane, perfluoropolydimethyl oxa oxide, perfluoropolyether modified poly 2 a fluorinated organic compound such as a methyl fluorene oxide or a perfluoropolyester modified polydimethyl methoxy hydride; a fluorine-containing organic compound such as a perfluoroalkyl carboxylic acid or a fluoropropoxy ethoxylate; a polyether compound such as a phenylene oxide polymer such as a propylene oxide polymer or an ethylene oxide polymer; a carboxylic acid such as a coconut oil fatty acid amine salt or a gum rosin; a castor oil sulfate, a phosphate, or an alkyl group. An ester compound such as an ether sulfate, a sorbitan fatty acid ester, a sulfonate, a sulphate or a succinate; an alkyl aryl sulfonate amine salt, a contiguous base acid dioctyl sodium, etc. Compound; acid-filling compound such as sodium dodecyl phosphate; brewing amine compound such as coconut oil fatty acid ethanol decylamine; and further acrylic copolymer . Among these, in view of leveling property, a naphthenic compound and a fluorine-containing compound are preferable, and a polyether-modified polydimethylsiloxane is particularly preferable. 15 201224086 In order to improve the viscosity, the # arginine derivative, Sanxian, and the second kind of tackifier may be listed as a water-soluble polymer such as a m-, an eclipse, a carrageenan or a cellulose such as cellulose. . The above-mentioned antioxidants and the winners 2|丨UP — _ , „ ^ u ..., particularly limited, may include a water-reducing antioxidant which is a reducing or non-reducing property, that is, a water-soluble antioxidant having a reducing property, for example, L- Ascorbic acid, sodium L-ascorbate, potassium L-ascorbate, erythorbic acid, sodium erythorbate, sputum, blood, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium, potassium Sugar, cellobiose, xylose 'arabinose, glucose, fructose, galactose, mannose and other monosaccharides and two: class:: tea, fragrant bitter, Yangmei jaundice, quercetin, Shan Nai and so on Only bismuth, rosmarinic acid, oleic acid, phenylephrine, 34 5-tris-benzoic acid, etc. Compounds with more than 2 promising ketones; cysteine, cystein a compound having a thiol group such as a peptide or a neopentyl alcohol tetrakis(3 mercaptobutyric acid vinegar), etc. Examples of the non-reducing water-soluble antioxidant include benzene oxime acid, phenyl triazole sulfonic acid, and 2·. Hydroxypyrimidine, stearate of salicylic acid, 2·hydroxy-4-indolyl diphenyl ketone-5-supply acid Ultraviolet rays which are oxidatively inferior: Compounds. These may be used singly or in combination of two or more. Further, the conductive coating composition of the present invention may contain particles which impart abrasion resistance or slidability. Listed as inorganic particles, inorganic particles can be enumerated: Shi Xishi, oxygen reduction, zinc oxide, oxidative desorption, oxygen (four), oxidative oxidation record, tungsten oxide, oxidation town, titanium oxide, oxidation, oxidation, oxidation, iron oxide , cerium oxide, manganese oxide, tin oxide 'yttria, cerium oxide, cerium oxide, calcium carbonate, magnesium carbonate 'barium carbonate' calcium citrate, calcium titanate, calcium sulfate, barium sulfate and other metal oxides; or molybdenum sulfide, Cerium sulphide, tungsten sulphide, 16 201224086 nitriding rot, nickel and other complexes and their hydrates; clay, talc, mica, bentonite, hydrotalcite, zeolite, pyrophyllite, carbon black 'graphite, etc. Or synthetic mineral particles. (Manufacturing method of coating composition) The method for producing the conductive coating composition of the present invention is specifically modified by using a mixer such as a mechanical agitator or a magnetic stirrer. The composition: the surface is mixed and mixed, and (4) it is mixed for about no minutes. Specifically, the conductive particles are first prepared by electroconductive properties, and the conductive particles are mixed and mixed. The "dispersion" is then mixed with the respective components (layered body). The conductive coating composition of the present invention can be applied to the substrate to be coated by drying to form a conductive coating film. The material constituting the substrate to be coated to which the conductive coating composition is applied is not particularly limited, and examples thereof include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic acid copolymer. Polyolefin resin such as ionic polymer copolymer or cycloolefin resin; polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyoxyethylene, modified polyphenyl (P 〇lyphenylene), polyphenylene sulfide and other polyester resin; nylon 6, nylon 6,6, nylon 9, semi-aromatic polyamine 6 butyl 6, semi-aromatic polyamine 6 Τ 66, semi-aromatic polyamide 9 The polyamine resin; in addition to the above, acrylic resin, polystyrene, acrylonitrile styrene, acrylonitrile butadiene styrene, 1 vinyl resin and other organic materials; glass and other prosperous materials. In particular, the conductive coating composition of the present invention is applied to a glass substrate, and the film hardness is extremely high and the pencil hardness is Η or more, 17 201224086 == excellent... academic properties (organic resistance) And the testability) is suitably selected by the coating method of a conductive coating composition. For example, it may be independently limited, and it may be known by a cloth method, a bar coating method, a dip coating method, a curtain coating method, a gravure printing coating, a fr--r m m / , a die coating method, and a spray coating method #. Screen printing, spray printing, etc. can also be applied. Also, printing methods such as plate printing and lithography. A dryer such as a wind dryer, a hot air dryer, or an infrared ray which is used for the coating of the above-mentioned conductive coating composition, such as a dryer (four), a dryer such as an external line dryer, and the like. In this case, a dryer (hot air dryer, infrared dryer, etc.) having a heating mechanism can be used to simultaneously perform dry heat. The heating means may be a heating 'pressure roller, a press machine or the like having a heating function in addition to the above drying. The drying conditions of the coating film are not particularly limited, and are, for example, 25 < t to 200. The squatting is carried out for 10 seconds to 2 hours, preferably at 8 (rc~15) for about 5 to 30 minutes. The dry film thickness of the coating film formed by the conductive coating composition of the present invention may be appropriately selected. However, in order to improve conductivity, hardness, and chemical resistance, it is preferably 25 to 380 nm, more preferably 30 to 350 nm, by applying a conductive coating composition to the surface of the substrate. Drying can produce a laminate including a conductive film formed on the surface of the substrate. The laminate can be applied to various applications as described below, and particularly when the substrate is a glass substrate, it can be preferably used as a liquid crystal display. The layered body contained in the device. 201224086 Fig. 1 is a schematic diagram showing the laminated structure of the device which is not normally used. The symbol 1 system liquid crystal display device _ #衣夏T和和The color filter has an antistatic film (conductive film) 3 and a polarizing plate 4 laminated on the surface of the color filter 1 with a glass substrate 2 poles. The laminated body of the present invention may be a glass substrate only 2 With the antistatic film 3, ^ Α test is also the above liquid The layered structure of the crystal display device is also included in the laminated structure of the crystal display device, and the layered body composed of the color light-passing sheet 1, the glass substrate 2, and the doped retines and the electric film 3 before the liquid crystal display device of the 士士』马凡成Among the above-mentioned methods, the driving method of the liquid-day-day device is widely applied to three types of TN (Twisted Nematic) and VA (VerUcai, vertical, horizontal) driving methods. The laminated body can be applied to the liquid crystal display layer β of any one of them. In the transverse electric field driving method, in order to prevent dust adhesion and improve liquid crystal driving property, it is necessary to provide an antistatic film, and the laminated body of the present invention can also be preferably applied. In the liquid crystal display device of the horizontal electric field driving method, in this case, the antistatic film can achieve an effect of improving liquid crystal chaos caused by static electricity, and is also improved by high transparency or refractive index difference with glass. The effect of the visibility of the display. [Examples] Hereinafter, the present invention will be described in more detail by way of examples, but the invention is not limited to the examples. In the case of the weight distribution, the particle size (D5 0) is a cumulative (cumulative) knives of the number of the respective aqueous dispersions, and the particle diameter of 5 〇% as the integrated value in the cumulative distribution is calculated. Specifically, a sample of a solution of water 19 201224086 diluted with pure water and adjusted to 1.1% was used, and ZETASIZER Nano-ZS was used, (Example 1)
Sysmex公司製诰夕私+ 取1^之粒度分佈計 進行利用電動勢之粒徑測定。 使用包含粒徑(D50)為2〇·之導電性聚合物(聚“伸 乙基二氧嗟吩/聚苯乙烯績酸)之水分散⑨^州⑽ lH500(HX.starek公司製造胸份(其中包含上述導電性聚 &物、離子交換水98.9份。於將上述導電性聚合物 設為⑽份時’離子交換水為義份)、為毒占合劑之炫氧石夕 烧低聚物MS-5U三菱化學公司製造)24#(於將上述導電性 聚合物設為HH)份時’為2165份)、料電性提高劑之N_ 甲基甲醯胺(Nacalai Tesque公司製造,試劑)丨9份(於將導電 性聚合物設為H)。份時,為份)、乙醇(心心…轉 公司製造,試劑)514份(於將導電性聚合物設為ι〇〇份時, 為46727份)、離子交換水48份(於將導電,性聚合物設為⑽ 份時,為4364份)製備均勻之水分散液。 繼而’於無鹼玻璃板上塗佈上述分散液,利用烘箱於 "(TC下加& 30分鐘進行成膜,而獲得表面具有抗靜電膜 之試片。再者,試片中之乾燥膜厚係根據水分散液之塗佈 量進行計算並調整。 MS-51 :於表示烷氧矽烷低聚物之上述通式中,R| = r: =甲基,R3=R_4=曱氧基,重量平均分子量為5〇〇〜7〇〇(給 定值),n= 4〜7(根據重量平均分子量進行計算) (實施例2) 使用 Baytron PH1000(H.C.Starck 公司製造,D50 為 52 20 201224086 nm’包含hi份上述導電性聚合物)代替實施例 PH500(H.C.Starck公司製造),以與實施例!相同之方式獲 得試片。 (實施例3) 使用 Baytron P(H.C.Starck 公司製造,〇50 為 140 nm, 包含1.1份上述導電性聚合物)代替實施例1之Baytron PH5 00(H.C.Starck公司製造),以與實施例j相同之方式獲 得試片。 (比較例1) 使用 Baytron HC V4(H.C.Starck 公司製造,D50 為 570 nm,包含1.1份上述導電性聚合物)代替實施例1之Baytr〇n PH5 00(H.C.Starck公司製造)’以與實施例1相同之方式獲 得試片。 (實施例4〜7) 除根據表2所記載而變更作為黏合劑之烷氧矽烷低聚 物MS-5 1之使用量以外,以與實施例1相同之方式獲得試 片。 (實施例8及9) 除實施例1之各成分以外,進而以表3所記載之量使 用作為2-(3,4-環氧基環己基)乙基三甲氧基矽烷之 Z-6〇43(Dow Corning Toray公司製造),以與實施例1相同 之方式獲得試片。 (實施例10) 除實施例1之各成分以外,進而以表4所記载之量使 μ 21 201224086 用作為3-環氧丙氧基丙基三甲氧基石夕烧之z-6040(D〇w Corning Toray公司製造)’以與實施例1相同之方式獲得試 片。 (實施例11) 除實施例1之各成分以外,進而以表4所記載之量使 用作為聚醚改質聚二甲基矽氧燒之BYK_3〇i(BYK-Chemie 公司製造),以與實施例1相同之方式獲得試片。 (實施例12) 除使用MS-56(三菱化學公司製造)24份代替實施例1 之燒氧矽烷低聚物MS-5 1(三菱化學公司製造)24份以外,以 與實施例1相同之方式獲得試片。MS-56 :於表示烷氧矽烷 低聚物之上述通式中,Rl=R2==甲基,r3=R4=甲氧基,重 !平均分子量為1100〜13〇〇(給定值),n= 1〇〜12(根據重量 平均分子量進行計算) (比較例2〜4) 除分別使用下述黏合劑24份代替實施例1之院氧石夕院 低聚物MS-5 1 (三菱化學公司製造)24份以外,以與實施例1 相同之方式獲得試片。 比較例2 :單體(烷氧矽烷之單體(不含矽氧鍵)、曱基三 甲氣基石夕烧).Z-6366(Dow Corning Tor ay公司製造) 比較例3 .聚醋樹脂:pi as co atRZ-1 05(互應化學公司製 造) 比較例4 :環氧系矽烷化合物:z-6040(D〇w Corning Toray公司製造) 22 201224086 (實施例1 3) 除使用N-曱基n比略炫酮(Nacalai Tesque公司製造,試 劑)19份代替實施例1之N_甲基甲醯胺(Nacaiai TeSqUe公司 製造,試劑)19份以外,以與實施例1相同之方式獲得試片。 (實施例14〜1 7 ) 除藉由調整實施例1之水分散液之塗佈量而按照表7 所記載變更乾燥膜厚以外,以與實施例丨相同之方式獲得 試片。 (實施例18) 將實施例1之水分散液塗佈於PET膜(LumirrorT-60, Toray公司製造)上而非玻璃板上’利用烘箱於130°C下加熱 30分鐘進行成膜而獲得表面具有抗靜電膜之試片。 (比較例5) 於本比較例中,對專利文獻1(日本專利特開平 10 96953號)之第1實施形態進行驗證。即,根據[〇〇51]之 記載,於無鹼玻璃上塗佈3,4_伸乙基二氧噻吩ig與對曱苯 磺酸鐵5g之乙醇溶液,利用烘箱進行加熱乾燥,形成有機 導電膜而製作試片。 (比較例6) 於本比較例中,對專利文獻丨(日本專利特開平 W96953號)之第5實施形態進行驗證。即,根據[〇〇7〇]之 記載,於無鹼玻璃上塗佈將3,4_伸乙基二氧噻吩ig、對甲 笨續酸鐵2g、聚乙酸乙烯醋5g溶解於異丙醇.丙酮(ι : υ 混合物中而成之溶液後’對經塗佈之基板進行加熱乾燥。 23 201224086 進而,以水流清洗, (比較例7) 進行乾燥而製作試片 於本比較例中 進行驗證。即,藉 製作試片。 ,對利用無機物ITO之先前之抗靜電膜 由濺鍍法於玻璃基板上使IT〇膜成膜而 以上實施例及比較例所獲得之試 利用以下方法對藉由 片之物性進行評價。 (1)膜強度 TTQ各試片之抗靜電膜之膜強度(鉛筆硬度)係依據 *Κ5600·5·4之試驗法,使用安田精機製作所公司製造之 釔筆刮痕硬度試驗機而進行測定。 (2) 密接性 各試片之抗靜電膜與基材之密接性係根據JIS Κ5400 之拇格剝離試驗進行評價。評價係以如下3個階段進行。 ◎ : 10 分 〇:8分 χ : 6分以下 (3) 總光線穿透率(%)、霧度(%) 各試片之總光線穿透率及霧度係根據JIS Κ7150,使用 SUga試驗機公司製造之霧度計HGM-2B(商品名)而進行測 定。 (4)表面電阻率/□) 各試片之抗靜電膜之表面電阻率係根據JIS K7194,使 用二菱化學公司製造之Hiresta UP(MCP-HT-450,商品名), 24 201224086 利用探針UA(Probe UA)於10V〜500V之施加電壓下進行測 定。 (5) 折射率 各試片之折射率係利用池尻光學工業所公司製造之 Ellipsometer DHA-XA2/S6(商品名),於 632.8 nm 之波長下 進行測定。 (6) 耐化學品性 將各試片浸潰於溶劑(氫氧化鈉水溶液或丙酮溶液)中 後,以如上所述之方式測定表面電阻率及膜強度,根據下 述基準以3個階段評價其結果。於氫氧化鈉水溶液中之浸 潰條件係設為於室溫下浸潰2分鐘。於丙酮中之浸潰條件 係設為於室溫下浸潰1小時。 〇:表面電阻率為10乘方以下,且膜強度為鉛筆硬度 B以上 △:表面電阻率為10乘方以下,或膜強度為鉛筆硬度 B以上The particle size distribution meter of Sysmex Co., Ltd. was used to measure the particle size of the electromotive force. Water dispersion 9^ (10) lH500 (HX.starek company made chest) using a conductive polymer (poly(ethylene dioxyn In the above, 98.9 parts of the above-mentioned conductive poly-amplifier and ion-exchanged water are contained. In the case where the conductive polymer is (10) parts, 'ion-exchanged water is a share, and the x-ray-oxygen oxide oligomer MS is a poisonous agent. -5U manufactured by Mitsubishi Chemical Corporation) 24# (2165 parts when the conductive polymer is HH), N_methylformamide (manufactured by Nacalai Tesque Co., Ltd.) 9 parts (in the case where the conductive polymer is H), part by weight, 514 parts of ethanol (manufactured by Shinwa Co., Ltd.) (when the conductive polymer is made of yam, 46727) Partially prepared, 48 parts of ion-exchanged water (4364 parts when the conductive polymer is (10) parts), and then prepared a uniform aqueous dispersion on the alkali-free glass plate, using an oven "(TC is added & 30 minutes to form a film, and a test piece with an antistatic film on the surface is obtained. The dry film thickness in the test piece was calculated and adjusted according to the coating amount of the aqueous dispersion. MS-51: In the above formula representing the alkoxydecane oligomer, R| = r: = methyl group, R3 = R_4 = decyloxy group, weight average molecular weight: 5 〇〇 7 7 〇〇 (given value), n = 4 to 7 (calculated based on weight average molecular weight) (Example 2) Using Baytron PH1000 (manufactured by HC Starck Co., Ltd., D50 was 52 20 201224086 nm' containing hi part of the above conductive polymer) Instead of the example PH500 (manufactured by HC Starck Co., Ltd.), a test piece was obtained in the same manner as in Example! (Example 3) Using Baytron P (HCStarck) A company manufactured by the company, having a 〇50 of 140 nm and containing 1.1 parts of the above-mentioned conductive polymer, was used in place of Baytron PH5 00 (manufactured by HC Starck Co., Ltd.) of Example 1, and a test piece was obtained in the same manner as in Example j. (Comparative Example 1) Using Baytron HC V4 (manufactured by HC Starck Co., Ltd., D50 was 570 nm, containing 1.1 parts of the above-mentioned conductive polymer) instead of Baytr〇n PH5 00 (manufactured by HC Starck Co., Ltd.) of Example 1 was obtained in the same manner as in Example 1. Test piece. (Examples 4 to 7) A test piece was obtained in the same manner as in Example 1 except that the amount of the alkoxydecane oligomer MS-5 1 used as the binder was changed. (Examples 8 and 9) The components of Example 1 were excluded. Further, in the amount described in Table 3, Z-6〇43 (manufactured by Dow Corning Toray Co., Ltd.) as 2-(3,4-epoxycyclohexyl)ethyltrimethoxydecane was used in the same manner as in Example 1. The test piece was obtained in the same manner. (Example 10) In addition to the components of Example 1, in addition, in the amounts described in Table 4, μ 21 201224086 was used as z-glycidoxypropyltrimethoxy sulphide z-6040 (D〇) w Corning Toray Co., Ltd.) A test piece was obtained in the same manner as in Example 1. (Example 11) In addition to the components of Example 1, the BYK_3〇i (manufactured by BYK-Chemie Co., Ltd.) which is a polyether-modified polydimethyl oxime was used in the amount described in Table 4, and was carried out. A test piece was obtained in the same manner as in Example 1. (Example 12) The same procedure as in Example 1 except that 24 parts of MS-56 (manufactured by Mitsubishi Chemical Corporation) was used instead of 24 parts of the pyrithione oligomer MS-5 1 (manufactured by Mitsubishi Chemical Corporation) of Example 1. The way to get the test piece. MS-56: In the above formula representing alkoxydecane oligomer, R1=R2==methyl, r3=R4=methoxy, heavy! The average molecular weight is 1100~13〇〇 (given value), n = 1 〇 to 12 (calculated based on the weight average molecular weight) (Comparative Examples 2 to 4) In addition to the use of 24 parts of the following adhesives, respectively, instead of the oxyssite oligomer MS-5 1 of Example 1 (Mitsubishi Chemical) Test pieces were obtained in the same manner as in Example 1 except for 24 parts manufactured by the company. Comparative Example 2: Monomer (monomer of alkoxysilane (excluding oxime bond), thiol trimethyl ketone). Z-6366 (manufactured by Dow Corning Tor ay Co., Ltd.) Comparative Example 3. Polyacetate: pi As co at RZ-1 05 (manufactured by Mutual Chemical Co., Ltd.) Comparative Example 4: epoxy decane compound: z-6040 (manufactured by D〇w Corning Toray Co., Ltd.) 22 201224086 (Example 1 3) In addition to using N-fluorenyl n A test piece was obtained in the same manner as in Example 1 except that 19 parts of the flavonoid (manufactured by Nacalai Tesque Co., Ltd.) was used instead of 19 parts of N-methylformamide (manufactured by Nacaiai TeSqUe Co., Ltd.) of Example 1. (Examples 14 to 17) Test pieces were obtained in the same manner as in Example 除 except that the dry film thickness was changed as described in Table 7 by adjusting the coating amount of the aqueous dispersion of Example 1. (Example 18) The aqueous dispersion of Example 1 was applied onto a PET film (Lumirror T-60, manufactured by Toray Co., Ltd.) instead of a glass plate. The film was obtained by heating at 130 ° C for 30 minutes in an oven to obtain a surface. Test piece with antistatic film. (Comparative Example 5) In the present comparative example, the first embodiment of Patent Document 1 (Japanese Patent Laid-Open No. Hei 10 96953) was verified. That is, according to the description of [〇〇51], an ethanol solution of 3,4_ethylidene dioxythiophene ig and 5 g of p-toluenesulfonate was applied to an alkali-free glass, and dried by an oven to form an organic conductive material. A test piece was prepared by film. (Comparative Example 6) In the present comparative example, the fifth embodiment of the patent document 日本 (Japanese Patent Laid-Open No. W96953) was verified. That is, according to the description of [〇〇7〇], 3,4_ethylidene dioxythiophene ig, 2 g of p-stanoic acid iron, and 5 g of polyvinyl acetate vinegar were dissolved in isopropanol on the alkali-free glass. Acetone (I: a solution obtained in a mixture) was heated and dried on a coated substrate. 23 201224086 Further, it was washed with a water stream, and (Comparative Example 7) was dried to prepare a test piece for verification in this comparative example. That is, by making a test piece, the previous antistatic film using inorganic ITO is formed by sputtering on the glass substrate by the sputtering method, and the above examples and comparative examples are obtained by the following methods. The physical properties of the film were evaluated. (1) Film strength TTQ The film strength (pencil hardness) of the antistatic film of each test piece was determined according to the test method of *Κ5600·5·4, using the scratch hardness of the pen manufactured by Yasuda Seiki Co., Ltd. (2) Adhesiveness The adhesion between the antistatic film and the substrate of each test piece was evaluated according to the JEV Κ5400's thumb peel test. The evaluation was carried out in the following three stages: ◎ : 10 minutes : 8 minutes : 6 points or less (3) Total light penetration Rate (%), haze (%) The total light transmittance and haze of each test piece were measured according to JIS Κ7150 using a haze meter HGM-2B (trade name) manufactured by SUGA Testing Machine Co., Ltd. (4) Surface resistivity / □) The surface resistivity of the antistatic film of each test piece is based on JIS K7194, using Hiresta UP (MCP-HT-450, trade name) manufactured by Mitsubishi Chemical Corporation, 24 201224086 using probe UA ( Probe UA) was measured at an applied voltage of 10V to 500V. (5) Refractive index The refractive index of each test piece was measured at a wavelength of 632.8 nm using an Ellipsometer DHA-XA2/S6 (trade name) manufactured by Ikebukuro Optical Co., Ltd. (6) Chemical resistance After the test pieces were immersed in a solvent (aqueous sodium hydroxide solution or acetone solution), the surface resistivity and the film strength were measured as described above, and evaluated in three stages according to the following criteria. the result. The impregnation conditions in the aqueous sodium hydroxide solution were set to be immersed for 2 minutes at room temperature. The impregnation conditions in acetone were set to impregnate for 1 hour at room temperature. 〇: The surface resistivity is 10 or less, and the film strength is pencil hardness B or more. △: The surface resistivity is 10 or less, or the film strength is pencil hardness B or more.
X:表面電阻率為10乘方以上,且膜強度為鉛筆硬度B 以下 將以上所獲得之結果示於以下之表1〜表8中。 [表1] 實施例1 實施例2 實施例3 比較例1 導電性聚合物粒徑(nm) 粒徑20 粒徑52 粒徑140 粒徑570 導電性聚合物(份) 100 100 100 100 烷氧矽烷低聚物(份) 2165 2165 2165 2165 導電性提高劑(份) 1730 1730 1730 1730 乙醇(份) 46727 46727 46727 46727 25 201224086 離子交換水(份) 13355 13355 13355 13355 膜厚(nm) 224 224 224 224 基材 玻璃 玻璃 玻璃 玻璃 膜強度(紹筆硬度) 3H Η Η F 密接性 ◎ ◎ ◎ ◎ 總光線穿透率 92.6 92.5 92.5 93.0 霧度 0.1 0.1 0.0 0.2 表面電阻率 4.0E + 04 3.7Ε + 04 3.3 Ε + 05 3.4Ε+12 折射率 1.45 1.45 1.46 1.45 耐化學品性(驗) 〇 〇 〇 Δ 耐化學品性(丙酮) 〇 〇 〇 Δ 26 201224086 [表2] 實施例4 實施例5 實施例1 實施例6 實施例7 導電性聚合物(份) 100 100 100 100 100 烷氧矽烷低聚物(份) 9090 4550 2165 430 220 導電性提高劑(份) 1730 1730 .1730 1730 1730 黏合劑/導電性聚合物之比 90.9 45.5 21.7 4.3 2.2 乙醇(份) 46727 46727 46727 46727 46727 離子交換水(份) 13355 13355 13355 13355 13355 膜厚(nm) 224 224 224 224 224 基材 玻璃 玻璃 玻璃 玻璃 玻璃 膜強度(錯筆硬度) 2H 4H 3H HB Η 密接性 ◎ ◎ ◎ ◎ ◎ 總光線穿透率 92.2 91.7 92.6 90.1 90.0 霧度 0.0 0.1 0.1 0.0 0.0 表面電阻率 5.9E + 07 1.6E + 07 4.0E + 04 1.1 E + 04 9.5Ε + 03 折射率 1.50 1.47 1.45 1.43 1.39 而t化學品性(驗) △ 〇 〇 〇 Δ 耐化學品性(丙酮) 〇 〇 〇 〇 〇 [表3] 實施例1 實施例8 實施例9 導電性聚合物(份) 100 100 100 烷氧矽烷低聚物(份) 2165 2143 2122 導電性提高劑(份) 1730 1730 1730 其他成分(份) 0 22 43 黏合劑中之低聚物之比 100.0 99.0 98.0 乙醇(份) 46727 46727 46727 離子交換水(份) 13355 13355 13355 膜厚(nm) 224 224 224 基材 玻璃 玻璃 玻璃 膜強度(鉛筆硬度) 3H B B 密接性 ◎ ◎ ◎ 總光線穿透率 92.6 90.9 81.0 霧度 0.1 0.1 0.1 表面電阻率 4.0E + 04 8.1 E + 04 5.6E + 05 折射率 1.45 1.47 1.49 而才化學品性(驗) 〇 〇 △ 耐化學品性(丙酮) 〇 〇 〇 27 201224086 [表4] 實施例1 實施例10 實施例11 導電性聚合物(份) 100 100 100 烷氧矽烷低聚物(份) 2165 2165 2165 導電性提高劑(份) 1730 1730 1730 矽烷偶合劑(份) 0 22 22 矽烷偶合劑之種類 無 3-環氧丙氧基丙基 三曱氧基矽烷 聚醚改質聚二 甲基矽氧烷 乙醇(份) 46727 46727 46727 離子交換水(份) 13355 13355 13355 膜厚(nm) 224 226 226 基材 玻璃 玻璃 玻璃 膜強度(船筆硬度) 3H 3H 4H 密接性 ◎ ◎ ◎ 總光線穿透率 92.6 92.5 92.6 霧度 0.1 0.0 0.1 表面電阻率 4.0E + 04 6.4E + 05 1,1 E + 05 折射率 1.45 1.46 1.46 耐化學品性(鹼) 〇 〇 〇 耐化學品性(丙酮) 〇 〇 〇 28 201224086 [表5] 實施例1 實施例12 比較例2 比較例3 比較例4 導電性聚合物(份) 100 100 100 100 100 烷氧矽烷低聚物(份) 2165 2165 0 0 0 烷氧矽烷低聚物之種類 MS-51 MS-56 - - - 導電性提高劑(份) 1730 1730 1730 1730 1730 其他成分(份) 0 0 2165 2165 2165 其他成分之種類(除烷 氧矽烷低聚物以外) 無 無 單體 聚S旨樹脂 3-環氧丙氧 基丙基三甲 氧基夕烧 乙醇(份) 46727 46727 46727 46727 46727 離子交換水(份) 13355 13355 13355 13355 13355 膜厚(nm) 224 224 224 224 225 基材 玻璃 玻璃 玻璃 玻璃 玻璃 膜強度(鉛筆硬度) 3Η Η F Β以下 Β以下 密接性 ◎ ◎ ◎ ◎ ◎ 總光線穿透率 92.6 91.4 90.5 89.8 90.0 霧度 0.1 0.1 0.1 0.1 0.0 表面電阻率 4.0Ε + 04 1.2Ε + 07 2.2Ε + 04 1.4Ε + 04 9.4Ε + 03 折射率 1.45 1.5 1.45 1.54 1.47 而ί化學品性(驗) 〇 〇 X X Δ 耐化學品性(丙酮) 〇 〇 Δ X Δ [表6] 實施例1 實施例13 導電性聚合物(份) 100 100 烷氧矽烷低聚物(份) 2165 2165 導電性提高劑(份) 1730 1730 導電性提高劑之種類 NMFA NMP 乙醇(份) 46727 46727 離子交換水(份) 13355 13355 膜厚(nm) 224 224 基材 玻璃 玻璃 膜強度(船筆硬度) 3H 2H 密接性 ◎ ◎ 總光線穿透率 92.6 90.7 霧度 0.1 0.1 表面電阻率 4.0E + 04 1.3 E + 09 折射率 1.45 1.47 耐化學品性(鹼) 〇 〇 耐化學品性(丙酮) 〇 〇 29 201224086X: The surface resistivity is 10 or more, and the film strength is pencil hardness B or less. The results obtained above are shown in Tables 1 to 8 below. [Table 1] Example 1 Example 2 Example 3 Comparative Example 1 Conductive polymer particle size (nm) Particle size 20 Particle size 52 Particle size 140 Particle size 570 Conductive polymer (parts) 100 100 100 100 Alkane oxygen Decane oligomer (parts) 2165 2165 2165 2165 Conductivity improver (parts) 1730 1730 1730 1730 Ethanol (parts) 46727 46727 46727 46727 25 201224086 Ion exchange water (parts) 13355 13355 13355 13355 Film thickness (nm) 224 224 224 224 Substrate glass glass glass film strength (sand hardness) 3H Η Η F Adhesiveness ◎ ◎ ◎ ◎ Total light transmittance 92.6 92.5 92.5 93.0 Haze 0.1 0.1 0.0 0.2 Surface resistivity 4.0E + 04 3.7Ε + 04 3.3 Ε + 05 3.4Ε+12 Refractive index 1.45 1.45 1.46 1.45 Chemical resistance (test) 〇〇〇Δ Chemical resistance (acetone) 〇〇〇Δ 26 201224086 [Table 2] Example 4 Example 5 Example 1 Example 6 Example 7 Conductive polymer (parts) 100 100 100 100 100 Alkoxysilane oligomer (parts) 9090 4550 2165 430 220 Conductivity improver (parts) 1730 1730 .1730 1730 1730 Adhesive / conductive Polymer ratio 90.9 45.5 21.7 4.3 2.2 Ethanol (parts) 46727 46727 46727 46727 46727 Ion exchange water (parts) 13355 13355 13355 13355 13355 Film thickness (nm) 224 224 224 224 224 Substrate glass glass glass glass film strength (wrong pen hardness) 2H 4H 3H HB密 Adhesiveness ◎ ◎ ◎ ◎ ◎ Total light transmittance 92.2 91.7 92.6 90.1 90.0 Haze 0.0 0.1 0.1 0.0 0.0 Surface resistivity 5.9E + 07 1.6E + 07 4.0E + 04 1.1 E + 04 9.5Ε + 03 Refractive index 1.50 1.47 1.45 1.43 1.39 and t chemical properties (test) △ 〇〇〇 Δ chemical resistance (acetone) 〇〇〇〇〇 [Table 3] Example 1 Example 8 Example 9 Conductive polymer (parts) 100 100 100 alkoxydecane oligomer (parts) 2165 2143 2122 Conductivity improver (parts) 1730 1730 1730 Other components (parts) 0 22 43 Oligomer ratio in the adhesive 100.0 99.0 98.0 Ethanol (parts) 46727 46727 46727 Ion exchange water (parts) 13355 13355 13355 Film thickness (nm) 224 224 224 Substrate glass glass film strength (pencil hardness) 3H BB Adhesion ◎ ◎ ◎ Total light transmittance 92.6 90.9 81.0 Haze 0.1 0.1 0.1 Surface resistivity 4.0E + 04 8.1 E + 04 5.6E + 05 Refractive index 1.45 1.47 1.49 Chemical properties (test) 〇〇△ Chemical resistance (acetone) 〇〇〇27 201224086 [Table 4] Implementation Example 1 Example 10 Example 11 Conductive polymer (parts) 100 100 100 Alkoxy oxane oligomer (parts) 2165 2165 2165 Conductivity improver (parts) 1730 1730 1730 decane coupling agent (parts) 0 22 22 decane The type of coupling agent is not 3-glycidoxypropyltrimethoxy decane polyether modified polydimethyl methoxy oxane ethanol (parts) 46727 46727 46727 ion exchange water (parts) 13355 13355 13355 film thickness (nm ) 224 226 226 Substrate glass glass film strength (tank hardness) 3H 3H 4H Adhesion ◎ ◎ ◎ Total light transmittance 92.6 92.5 92.6 Haze 0.1 0.0 0.1 Surface resistivity 4.0E + 04 6.4E + 05 1, 1 E + 05 Refractive index 1.45 1.46 1.46 Chemical resistance (base) 〇〇〇 Chemical resistance (acetone) 〇〇〇28 201224086 [Table 5] Example 1 Example 12 Comparative Example 2 Comparative Example 3 Comparative Example 4 Conductive polymer (parts) 100 100 100 100 100 alkane Decane oligomer (parts) 2165 2165 0 0 0 Alkoxysilane oligomer type MS-51 MS-56 - - - Conductivity improver (parts) 1730 1730 1730 1730 1730 Other components (parts) 0 0 2165 2165 2165 Types of other ingredients (except alkoxydecane oligomer) No monomer-free polystyrene resin 3-glycidoxypropyltrimethoxyoxyethanol (part) 46727 46727 46727 46727 46727 Ion exchange water ( Parts) 13355 13355 13355 13355 13355 Film thickness (nm) 224 224 224 224 225 Substrate glass glass glass glass film strength (pencil hardness) 3Η Η F Β The following Β the following adhesion ◎ ◎ ◎ ◎ ◎ Total light transmittance 92.6 91.4 90.5 89.8 90.0 Haze 0.1 0.1 0.1 0.1 0.0 Surface resistivity 4.0Ε + 04 1.2Ε + 07 2.2Ε + 04 1.4Ε + 04 9.4Ε + 03 Refractive index 1.45 1.5 1.45 1.54 1.47 and chemical (test) 〇 〇XX Δ Chemical resistance (acetone) 〇〇Δ X Δ [Table 6] Example 1 Example 13 Conductive polymer (parts) 100 100 Alkoxy oxane oligomer (part) 2165 2165 Conductivity improver ( Parts) 1730 1730 Conductivity improver Type NMFA NMP Ethanol (parts) 46727 46727 Ion exchange water (parts) 13355 13355 Film thickness (nm) 224 224 Substrate glass film strength (tank hardness) 3H 2H Adhesion ◎ ◎ Total light transmittance 92.6 90.7 Fog Degree 0.1 0.1 Surface resistivity 4.0E + 04 1.3 E + 09 Refractive index 1.45 1.47 Chemical resistance (alkali) 〇〇 Chemical resistance (acetone) 〇〇29 201224086
實施例14 實施例15 實施例1 實施例16 實施例17 導電性聚合物(份) 100 100 100 100 100 烷氧矽烷低聚物(份) 2165 2165 2165 2165 2165 導電性提高劑(份) 1730 1730 1730 1730 1730 乙醇(份) 46727 46727 46727 46727 46727 離子交換水(份) 13355 13355 13355 13355 13355 膜厚(nm) 28 34 224 336 370 基材 玻璃 玻璃 玻璃 玻璃 玻璃 膜強度(鉛筆硬度) 4H 4H 3H F HB 密接性 ◎ ◎ ◎ ◎ ◎ 總光線穿透率 90.5 90.5 92.6 92.7 92.2 霧度 0.1 0.0 0.1 0.0 0.1 表面電阻率 6.4E + 09 8.0E + 05 4.0E + 04 1.9E + 04 1.7E + 04 折射率 1.45 1.45 1.45 1.45 1.45 耐化學品性(鹼) Δ 〇 〇 〇 Δ 耐化學品性(丙酮) 〇 〇 〇 〇 〇 [表8] 實施例1 實施例18 比較例5 比較例6 比較例7 導電性聚合物(份) 100 100 烷氧矽烷低聚物(份) 2165 2165 導電性提高劑(份) 1730 1730 乙醇(份) 46727 46727 離子交換水(份) 13355 13355 膜厚(nm) 224 224 基材 玻璃 PET 玻璃 玻璃 玻璃 膜強度(船筆硬度) 3H HB B以下 B以下 6H 密接性 ◎ ◎ X X ◎ 總光線穿透率 92.6 90.7 86.3 91.4 80%以上 霧度 0.1 2.8 0.5 0.2 3〜4% 表面電阻率 4.0E + 04 4.8E + 04 1.2E + 08 5.8E+12 1〜2 折射率 1.5 1.5 無法測定 無法測定 2.1 财化學品性(驗) 〇 Δ X X 〇 耐化學品性(丙酮) 〇 〇 X X 〇 30 201224086 再者,於表8中之比較例5及6中,成膜之抗靜電膜 之塗膜表面較粗糙,因此無法測定折射率。 根據表1之實施例1〜3及比較例1可知,導電性聚合 物粒子之粒徑必需為2〇〇 nm以下,若粒徑超過2〇〇 nm,則 表面電阻率上升(即導電性較低),耐化學品性較差。 根據表5之實施例1、12及比較例2〜4可知,若使用 烧氧妙燒之低聚物作為黏合劑成分,則耐化學品性優異且 膜硬度較高,但若使用烷氧矽烷之單體,則耐化學品性大 幅又降低右使用聚醋系石夕烧化合物或環氧系石夕烧化合 物’則除耐化學品性以外膜硬度亦降低。 根據表2之實施例1及4〜7可知,若烷氧矽烷低聚物 之使用量相對於導電性聚合物粒子100重量份於150〜 10000重量份之範圍内則可達成本發明之優異之效果。 根據表3之實施例1、8及9及表4之實施例1 〇及! ! 可知’即便於本發明之組成物含有除烷氧矽烷低聚物以外 之黏s劑成分之情形時,只要黏合劑成分中之烷氧矽烷低 聚物之比例於97〜100重量%之範圍内,則可達成本發明之 優異之效果。 根據表7之實施例1及實施例14〜17可知,若抗靜電 、 乾燥膜厚於25〜380. nm之範圍内,則可達成本發明之 優異之效果。 根據表8之實施例1 8可知,即便塗佈於無鹼玻璃以外 之PET基材上’亦可達成本發明之優異之效果。 [產業上之可利用性] 31 201224086 本發明之導電性塗佈組成物可於液晶顯示器(Lcd) '電 致發光顯示器、電漿顯示器、電子呈色顯示器、太陽電池、 電池' 電容器、化學感測器、顯示元件、半導體材料、電 磁波遮罩材等中,藉由塗佈基材而用以於該基材上形成導 電膜或抗靜電膜。又,亦可用作塗佈於眼鏡或汽車等之玻 璃上之導電性塗料或防銹塗料。 【圖式簡單說明】 圖1為表示通常之液晶顯示裝置之積層結構之示意圖。 【主要元件符號說明】 1 彩色濾光片 2 破璃基板 3 抗靜電層 4 偏光板 32Example 14 Example 15 Example 1 Example 16 Example 17 Conductive polymer (part) 100 100 100 100 100 Alkoxydecane oligomer (part) 2165 2165 2165 2165 2165 Conductivity improver (part) 1730 1730 1730 1730 1730 Ethanol (parts) 46727 46727 46727 46727 46727 Ion exchange water (parts) 13355 13355 13355 13355 13355 Film thickness (nm) 28 34 224 336 370 Substrate glass glass glass glass film strength (pencil hardness) 4H 4H 3H F HB Adhesiveness ◎ ◎ ◎ ◎ ◎ Total light transmittance 90.5 90.5 92.6 92.7 92.2 Haze 0.1 0.0 0.1 0.0 0.1 Surface resistivity 6.4E + 09 8.0E + 05 4.0E + 04 1.9E + 04 1.7E + 04 1.45 1.45 1.45 1.45 1.45 Chemical resistance (base) Δ 〇〇〇 Δ Chemical resistance (acetone) 〇〇〇〇〇 [Table 8] Example 1 Example 18 Comparative Example 5 Comparative Example 6 Comparative Example 7 Conductivity Polymer (parts) 100 100 alkoxydecane oligomer (parts) 2165 2165 Conductivity improver (parts) 1730 1730 Ethanol (parts) 46727 46727 Ion-exchanged water (parts) 13355 13355 Film thickness (nm) 224 224 Material glass PET glass glass film strength (pen hardness) 3H HB B below B 6H adhesion ◎ ◎ ◎ ◎ total light transmittance 92.6 90.7 86.3 91.4 80% or more haze 0.1 2.8 0.5 0.2 3~4% surface resistance Rate 4.0E + 04 4.8E + 04 1.2E + 08 5.8E+12 1~2 Refractive index 1.5 1.5 Unable to measure Unable to measure 2.1 Chemical properties (test) 〇Δ XX 〇 Chemical resistance (acetone) 〇〇XX 〇30 201224086 Further, in Comparative Examples 5 and 6 in Table 8, the surface of the film formed by the antistatic film formed was rough, and thus the refractive index could not be measured. According to Examples 1 to 3 and Comparative Example 1 of Table 1, the particle diameter of the conductive polymer particles must be 2 〇〇 nm or less, and when the particle diameter exceeds 2 〇〇 nm, the surface resistivity increases (that is, the conductivity is higher. Low), poor chemical resistance. According to the examples 1 and 12 and the comparative examples 2 to 4 of Table 5, when the oligomer of the smoldering oxygen is used as the binder component, the chemical resistance is excellent and the film hardness is high, but if alkoxy decane is used, In the case of the monomer, the chemical resistance is greatly lowered, and the right-hand use of the vinegar-based compound or the epoxy-based compound is reduced in chemical hardness in addition to chemical resistance. According to the examples 1 and 4 to 7 of Table 2, it is understood that the amount of the alkoxysilane oligomer used is in the range of 150 to 10,000 parts by weight based on 100 parts by weight of the conductive polymer particles. effect. According to the embodiment 1, 8, and 9 of Table 3 and the embodiment 1 of Table 4 ! It can be seen that even in the case where the composition of the present invention contains a component other than the alkoxysilane oligomer, the proportion of the alkoxysilane oligomer in the binder component is in the range of 97 to 100% by weight. , can achieve the excellent effect of the invention. According to Example 1 and Examples 14 to 17 of Table 7, when the antistatic and dry film thickness is in the range of 25 to 380 nm, the excellent effects of the invention can be obtained. According to the embodiment 18 of Table 8, it is understood that the excellent effects of the present invention can be achieved even if it is applied to a PET substrate other than the alkali-free glass. [Industrial Applicability] 31 201224086 The conductive coating composition of the present invention can be used in a liquid crystal display (Lcd) 'electroluminescence display, plasma display, electronic color display, solar cell, battery' capacitor, chemical sense In a detector, a display element, a semiconductor material, an electromagnetic wave mask, or the like, a conductive film or an antistatic film is formed on the substrate by coating a substrate. Further, it can also be used as a conductive paint or a rust preventive paint applied to glass such as glasses or automobiles. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a laminated structure of a general liquid crystal display device. [Main component symbol description] 1 Color filter 2 Glass substrate 3 Antistatic layer 4 Polarizer 32
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010254419A JP5740925B2 (en) | 2010-11-15 | 2010-11-15 | Conductive coating composition and laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201224086A true TW201224086A (en) | 2012-06-16 |
TWI541304B TWI541304B (en) | 2016-07-11 |
Family
ID=46268971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100138442A TWI541304B (en) | 2010-11-15 | 2011-10-24 | Conductive coating composition and laminate |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5740925B2 (en) |
KR (1) | KR20120052164A (en) |
CN (1) | CN102559043B (en) |
TW (1) | TWI541304B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9102838B2 (en) | 2012-07-17 | 2015-08-11 | Tech. Taiyo Kogyo Co., Ltd. | Anti-corrosive coating composition precursor |
TWI679655B (en) * | 2014-03-13 | 2019-12-11 | 日商長瀨化成股份有限公司 | Method for repairing and regenerating transparent conductive film and transparent conductive laminated body |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5919095B2 (en) * | 2012-05-31 | 2016-05-18 | 信越ポリマー株式会社 | Conductive polymer paint and conductive coating film |
KR102026446B1 (en) * | 2012-07-20 | 2019-09-27 | 주식회사 동진쎄미켐 | Organic conductive composition |
JP5874561B2 (en) * | 2012-07-25 | 2016-03-02 | デクセリアルズ株式会社 | Antistatic release film |
KR101467062B1 (en) * | 2012-12-11 | 2014-12-01 | 현대제철 주식회사 | Method for manufacturing non-oriented electrical steel sheet with high efficiency using aluminium foil |
JP6426331B2 (en) * | 2013-03-13 | 2018-11-21 | マクセルホールディングス株式会社 | Transparent conductive coating composition and transparent conductive film |
JP2014201595A (en) * | 2013-04-01 | 2014-10-27 | スリーボンドファインケミカル株式会社 | Conductive coating material and adherend using the same |
JP2015078338A (en) * | 2013-09-11 | 2015-04-23 | ナガセケムテックス株式会社 | Composition for formation of functional film and functional film laminate |
CN104131467B (en) * | 2014-07-09 | 2016-03-30 | 常熟市翔鹰特纤有限公司 | A kind of preparation method of acrylic fibers electrically conductive filament |
JP5812311B1 (en) * | 2014-08-08 | 2015-11-11 | ナガセケムテックス株式会社 | Transparent conductor, liquid crystal display device, and method of manufacturing transparent conductor |
JP6617949B2 (en) * | 2015-06-01 | 2019-12-11 | ナガセケムテックス株式会社 | Conductive laminate |
JP6158461B1 (en) * | 2015-12-25 | 2017-07-05 | 株式会社ノリタケカンパニーリミテド | Silver powder and silver paste and use thereof |
CN105824142A (en) * | 2016-03-08 | 2016-08-03 | 展群科技(深圳)有限公司 | Novel construction method for preventing liquid crystal panel from electromagnetic interference |
JP6745153B2 (en) * | 2016-07-11 | 2020-08-26 | 信越ポリマー株式会社 | Paint for forming conductive release layer and method for producing the same, and conductive release film and method for producing the same |
CN106182025A (en) * | 2016-07-21 | 2016-12-07 | 王可欣 | A kind of electrochromism stealth robot |
EP3318589A1 (en) * | 2016-11-02 | 2018-05-09 | Heraeus Deutschland GmbH & Co. KG | Pedot/pss with coarse particle size and high pedot-content |
CN107204153B (en) * | 2017-05-31 | 2019-10-11 | 杭州光谷高新集团有限公司 | A kind of advertisement distributing system based on application of solar energy |
CN107086656A (en) * | 2017-05-31 | 2017-08-22 | 深圳众厉电力科技有限公司 | A kind of unmanned plane charging device |
JP6910854B2 (en) * | 2017-06-02 | 2021-07-28 | 信越ポリマー株式会社 | Conductive polymer dispersion, conductive substrate and its manufacturing method |
CN108178945B (en) * | 2017-12-28 | 2021-02-09 | 郑州拓洋生物工程有限公司 | Application of D-erythorbic acid and/or salt thereof in coating, antioxidant coating and preparation method thereof |
JP2019218510A (en) * | 2018-06-21 | 2019-12-26 | 信越ポリマー株式会社 | Conductive polymer dispersion, and method for producing conductive laminate |
JP7129287B2 (en) * | 2018-09-10 | 2022-09-01 | 信越ポリマー株式会社 | Conductive polymer dispersion and method for producing conductive laminate |
CN109537304A (en) * | 2018-11-21 | 2019-03-29 | 无锡高强特种纺织有限公司 | A kind of interior decoration antistatic PPS base fabric coating and preparation method thereof |
JP7097832B2 (en) * | 2019-01-29 | 2022-07-08 | 信越ポリマー株式会社 | Manufacturing method of conductive laminate |
JP7340955B2 (en) * | 2019-05-09 | 2023-09-08 | 信越ポリマー株式会社 | Conductive polymer-containing liquid and method for producing the same, and method for producing conductive film |
JP7288133B1 (en) | 2021-12-06 | 2023-06-06 | Dowaエレクトロニクス株式会社 | Silver powder, method for producing silver powder, and conductive paste |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19633311A1 (en) * | 1996-08-19 | 1998-02-26 | Bayer Ag | Scratch-resistant conductive coatings |
JP2978867B2 (en) * | 1996-12-13 | 1999-11-15 | 三星電管株式會社 | Transparent conductive composition, transparent conductive film formed therefrom and method for producing the same |
DE102004037542A1 (en) * | 2004-08-03 | 2006-02-23 | Chemetall Gmbh | Method, useful to protect metallic surface with corrosion inhibitor composition coating comprises applying coating on metallic surface, where the components comprising: deposit substance; and further components and/or matrix substance |
JP2006199781A (en) * | 2005-01-19 | 2006-08-03 | Dainippon Printing Co Ltd | Electroconductive coating composition and formed product |
JP4621950B2 (en) * | 2005-05-13 | 2011-02-02 | ナガセケムテックス株式会社 | Antistatic coating composition |
JP2008257934A (en) * | 2007-04-03 | 2008-10-23 | Konica Minolta Holdings Inc | Conductive polymer composition, and its manufacturing method |
JP5441891B2 (en) * | 2007-05-18 | 2014-03-12 | エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック | Curable coating composition providing articles coated with antistatic and abrasion resistance |
JP5243067B2 (en) * | 2008-03-10 | 2013-07-24 | 日機装株式会社 | Method for improving conductivity of conductive polymer |
-
2010
- 2010-11-15 JP JP2010254419A patent/JP5740925B2/en active Active
-
2011
- 2011-10-24 TW TW100138442A patent/TWI541304B/en active
- 2011-11-10 KR KR1020110116978A patent/KR20120052164A/en not_active Application Discontinuation
- 2011-11-14 CN CN201110358012.8A patent/CN102559043B/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9102838B2 (en) | 2012-07-17 | 2015-08-11 | Tech. Taiyo Kogyo Co., Ltd. | Anti-corrosive coating composition precursor |
TWI679655B (en) * | 2014-03-13 | 2019-12-11 | 日商長瀨化成股份有限公司 | Method for repairing and regenerating transparent conductive film and transparent conductive laminated body |
Also Published As
Publication number | Publication date |
---|---|
KR20120052164A (en) | 2012-05-23 |
CN102559043B (en) | 2016-03-16 |
JP5740925B2 (en) | 2015-07-01 |
TWI541304B (en) | 2016-07-11 |
JP2012102304A (en) | 2012-05-31 |
CN102559043A (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201224086A (en) | Electroconductive coating composition and laminate | |
TWI664232B (en) | Conductive resin composition and transparent conductive laminate | |
TWI679655B (en) | Method for repairing and regenerating transparent conductive film and transparent conductive laminated body | |
US9944812B2 (en) | Composition for ink and transparent electrode | |
TWI591072B (en) | Silane compounds containing perfluoro(poly)ether groups | |
TWI518154B (en) | A thermosetting type conductive coating composition, an optical film, and a protective film | |
TWI303832B (en) | Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, bnd optical information recording medium | |
JP6575893B2 (en) | Conductive resin composition and transparent conductive laminate | |
JPWO2015056609A1 (en) | Composition for forming transparent conductive film, transparent conductor, and method for producing transparent conductor | |
TW201527447A (en) | Composition for forming functional film, and functional film laminate | |
CN106488943B (en) | Fluorine-containing bond object and its utilization | |
KR20090041243A (en) | Membrane using composition of conductive polymers | |
KR20130104869A (en) | Coating composition for shielding electromagnetic wave comprising graphene | |
KR20130104848A (en) | Metal-graphene powder and coating composition for shielding electromagnetic wave comprising the same | |
CN106575053A (en) | Transparent conductor, liquid crystal display device and method for producing transparent conductor | |
JP5984054B2 (en) | Organic conductive film | |
TW201620837A (en) | Dispersion of silver particles, ink composition, silver electrode, and thin film transistor | |
JP2011152667A (en) | Conductive film | |
JP6864879B2 (en) | Conductive polymer composite, method for producing conductive polymer composite, conductive polymer composite composition and thin film | |
KR20220164714A (en) | Conductive polymer composition, substrate, and method for manufacturing the substrate | |
JP2016186032A (en) | Conductive adhesive, transparent laminate and liquid crystal display device | |
TW201945312A (en) | Optical laminate with transparent conductive film, and coating composition wherein the optical laminate is excellent in productivity and weather resistance while achieving both noise cutting performance and high-frequency signal transmittance | |
JP6361059B2 (en) | Silver fine particle dispersion, ink composition, silver electrode, and thin film transistor | |
JP2024115530A (en) | Conductive polymer solutions and their applications | |
JP2011225789A (en) | Electroconductive coating composition |